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Functional comparison of metabolic net-
works across species

Charlotte Ramon 1,2 & Jörg Stelling 1

Metabolic phenotypes are pivotal for many areas, but disentangling how evo-
lutionary history and environmental adaptation shape these phenotypes is an
open problem. Especially for microbes, which are metabolically diverse and
often interact in complex communities, few phenotypes can be determined
directly. Instead, potential phenotypes are commonly inferred from genomic
information, and rarely were model-predicted phenotypes employed beyond
the species level. Here, we propose sensitivity correlations to quantify similarity
of predicted metabolic network responses to perturbations, and thereby link
genotype and environment to phenotype. We show that these correlations
provide a consistent functional complement to genomic information by cap-
turing how network context shapes gene function. This enables, for example,
phylogenetic inference across all domains of life at the organism level. For 245
bacterial species, we identify conserved and variable metabolic functions,
elucidate the quantitative impact of evolutionary history and ecological niche
on these functions, and generate hypotheses on associated metabolic pheno-
types. We expect our framework for the joint interpretation of metabolic
phenotypes, evolution, and environment to help guide future empirical studies.

Metabolic reactions as well as entire metabolic networks establish
function by yielding phenotypes in terms of metabolic flux distribu-
tions inside the cell and in the cell’s interaction with the environment.
Such metabolic phenotypes of potentially complex cell communities
impact many areas, including biogeochemical cycles1 and human
health2. Understanding the drivers of metabolic functional diversity
requires disentangling links between metabolic gene repertoires, rea-
lized metabolic phenotypes, taxonomy to represent evolutionary his-
tory, and environmental characteristics. However, inferring these links,
and ultimately determining how all factors combined shapemetabolic
phenotypes, is an open problem3. One challenge is that, especially in
complex microbial communities, few phenotypes can be determined
directly4. Instead, potential phenotypes are often inferred from
genomic information5. Analyses of the global ocean microbiome
illustrate common approaches based on metagenomics data: to infer
metabolic functions from gene repertoires6, or to use species-level
functional annotations7, which are then associated with taxonomy and
environment. However, this does not consider interdependencies of

genes, cellular networks their products establish, and phenotypes.
Since network context shapes gene functions, and the whole network
generates metabolic phenotypes. genetic epistasis8 and variable trait
relations along the phylogeny3 indicate a need to incorporate inter-
actions in cellular networks.

Genome-scale metabolic network models (GSMs) make these
dependencies explicit. They can reliably predict metabolic
phenotypes9, their topological analysis can predict environments10,11,
and they were instrumental in analyzing enzyme evolution12, but all for
single species. However, there are only a few studies that employed
model-predicted phenotypes beyond the species level13–15. A recent,
comparative GSM-based study of bacterial phenotype evolution13 did
not make links to genotype or environment, while other comparative
studies linked specific (minimal)15 or generic (sampled)14 environments
to species and ecological relations, but not to detailed metabolic
functions. To bridge the corresponding gaps, here we exploit the
concept that genotype–phenotype relationships connect differences
at the genomic level (and in environments) with differences in
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phenotypes16. Specifically, we quantify how perturbations in enzyme-
catalyzed reactions affect metabolic fluxes to compare identical bio-
chemical reactions and subsystems across species with varying meta-
bolic network structures.

Results
Functional comparisons via sensitivities
Our framework uses structural sensitivity analysis17 to characterize
perturbation effects in metabolic networks (Fig. 1a). It uses only the
network structure (that is, the stoichiometry ofmetabolic reactions) to
assess how perturbations of metabolic fluxes propagate through the
network. Specifically, structural sensitivities measure the predicted
adjustments to all fluxes required to return a network to steady-state
when one or more reactions in the network is perturbed. The predic-
tions assume that cells tend to minimally redistribute fluxes upon a
perturbation; this assumption allowed more accurate predictions of
bacterial growth rates upon a genetic knockout18. To link genes and
enzymes tofluxes,weusegene-protein-reactionmappings, whichare a
common component of GSMs19 (see Methods for details). Here, we
compute absolute sensitivities, which are obtained analytically (see
Methods) and do not assume a specific operating state of the network
or a specific environment17. These sensitivities are considered to cap-
ture adjustments to infinitesimal perturbations; they are valid unless a
network’s operating state is exactly equal to specific constraints such
as the availability of nutrients in a specific environment, which is
unlikely. To compare two common reactions (reactions with identical
biochemical formula) in two GSMs, we correlate the sensitivities of all
common reactions to perturbations of these two reactions (Fig. 1a and
Methods). Correspondingly, we use ‘function’ (‘functional similarity’)
in the sense of (similarity of) flux responses to perturbations of the
common reactions.

We first evaluated if Pearson correlations of sensitivities provide
information on network similarity that is different from measures
based on reaction presence / absence (themetabolic repertoire) such
as the Jaccard index. For this purpose, we quantified the similarities
of the neighborhoods of each common reaction in the Escherichia
coli and Bacillus subtilis networks. Sensitivity correlations and Jac-
card indices for 1-neighborhoods do not correlate (Fig. 1b,
R2 = 0.003). In particular, many reactions have a low Jaccard index,
but a high sensitivity correlation because sensitivities account for the
whole network’s response to a perturbation; they can distribute
over large graph distances (Fig. S1a). Jaccard indices do not capture
this even when considering the 2-neighborhood of reactions
(Fig. S1b).

To illustrate how sensitivity correlations capture the effects of
network context on enzyme function, we consider ornithine carba-
moyl transferase, which operates in the structurally similar, but not
identical arginine biosynthesis pathways of E. coli and B. subtilis
(Fig. 1c). Adding the twomissing reactions to the E. coli GSM increases
context similarity, increasing the sensitivity correlation from 0.61 to
0.74 (Fig. 1d). Sensitivity correlations can also pinpoint known struc-
tural differences between two GSMs. For example, the sensitivities to
perturbing the reaction 5-amino-6-(5-phosphoribosylamino)uracil
reductase in the riboflavin pathway are uncorrelated between B. sub-
tilis and E. coli (R2 =0) because B. subtilis can adapt by active riboflavin
transport across its membrane, but E. coli lacks this transport20,21.
Correspondingly, the correlation increased to 0.71 when augmenting
the E. coliGSMwith riboflavin exchange and transport (Fig. S1c). These
examples and the wide spread of sensitivity correlations (Fig. 1d)
suggest that our measure is sufficiently fine-grained to differentiate
metabolic functions, in contrast to comparisons of metabolic reper-
toires alone.

Fig. 1 | Functional comparison of metabolic networks. a Example of two meta-
bolic networks with metabolites (nodes) and distinct (grey, orange edges) or
common (green edges) reactions. Sensitivities quantify perturbation effects on
common reactions. Correlations between each common reaction’s effect on net-
work fluxes yield similarity measures (see Methods). b Comparison of sensitivity
correlations (Pearson) and Jaccard indices computedon sets of reactions belonging
to the 1-neighborhood for E. coli and B. subtilis models; data points: individual

reactions. Example for differential effects of perturbing the same reaction (cata-
lyzed by ornithine carbamoyltransferase) in Bacillus subtilis and Escherichia coli.
cCircles: adjacentmetabolicpathways; red: perturbed reaction, ornithine carbamyl
transferase (OTC); green: reactions common to bothmodels; black: B. subtilis only.
d Black line: kernel density estimate of Pearson correlation coefficients of common
reactions; red lines: correlations in E. coliwithout (solid) and with (dashed) the two
missing B. subtilis reactions; PDF: probability density function.
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Functional similarity
To assess the biological realism of sensitivity-based predictions, we
characterized the functional similarity of metabolic subsystems (sets
of reactions with related function) in E. coli and B. subtilis (Fig. 2a and
Methods). Sensitivity correlations indicate that lipid and cell wall
metabolism are the least similar, consistent with the bacteria’s differ-
ent Gram status. We also observe a bimodal distribution for reactions
in the coenzymes and prosthetic groups subsystem, where the mode
with lowest similarity includes mostly reactions in riboflavin metabo-
lism as above. The Jaccard index for each metabolic subsystem gives

similar results (Fig. 2a), but it relies entirely on the subsystem classi-
fication of metabolic reactions and cannot reveal fine-grained differ-
ences at the reaction level.

To assess the plausibility of reaction-level predictions as well as
the potential of comparing biological functions with sensitivity cor-
relations in more complex networks, we next used human and yeast
GSMs. We analyzed Enzyme Commission (EC) number similarities
between pairs of enzymes, defined as the number of shared levels in
the four-level ECnumber classification. As expected, enzymepairswith
the highest EC number similarities showed higher sensitivity correla-
tions than more unrelated pairs (Fig. 2b). However, enzymes with
identical EC numbers do not necessarily have high sensitivity correla-
tions, reflecting their different network contexts. This context-
dependence dominates over coarse classification of catalyzed chemi-
cal reactions because even a single difference in EC number abolishes
correlations. Similarly, when we classified each gene pair of yeast and
human as orthologous or not, orthologs had significantly higher cor-
relations (Fig. 2c; one-sided t-test, P<10�10, n = 154 orthologues,
n = 1’140’254 non orthologues). In addition, the correlations span a
large range of values, confirming that orthologs are not functionally
equivalent22, despite often catalyzing the same biochemical reaction.

Because Pearson correlations can be unreliable for highly skewed
distributions23 such as here (e.g., Fig. 1d), we also computed copula
correlations that are not affected by the underlying marginal dis-
tributions (Methods). The two measures can differ for individual
reactions, but they are highly correlated (Fig. S1e, r2 = 0.60, linear
correlation) and give identical results for the applications (Figs. 1c, d
and 2 vs Fig. S2a–d). Also, reducing the number of reactions to cal-
culate sensitivity correlations had only a small effect (Fig. S2e; albeit
more pronounced for Pearson correlation, as expected). Hence, sen-
sitivity correlations establish a detailed, biologically valid, and robust
measure of functional similarity.

Functional alignments and phylogeny
Next, we aimed to align reactions in pairs of GSMs using our measure
to evaluate its precision in general, and for only distinctly related
metabolic networks. This is possible because our sensitivity-based
method yields a one-to-one reaction mapping for each pair of reac-
tions in two networks (Methods). Functional alignment is challenging
because evenphylogenetically closely-related organismscan havevery
different metabolic repertoires24, and structurally similar network
parts (e.g., parallel pathways) could have too similar functions to be
resolved unambiguously by sensitivity correlations. A previous
method for functional network alignment25 reported 85% correct
alignments for 100% common reactions when aligning the yeast GSM
iMM90426 with itself. In contrast, more than 92% of the metabolic
reactions were correctly aligned even when using only 1% of the
reactions to compute sensitivity correlations (Fig. 3a). Importantly,
this indicates that discriminating reaction functions by our measure is
insensitive to the number of common reactions, that is, the similarity
of metabolic repertoires of two networks.

With alignments being at the basis of phylogenetic analyses, we
hypothesized that the sensitivity concept could extend to such com-
parisons overmultiple networks.We define the global similarity of two
GSMs as the average sensitivity correlation of all common reactions
(Methods). To validate this measure, we compared the yeast model
with a randomly reduced version of itself. As expected, both the
Pearson and copula correlations decrease as the number of deleted
reactions increases (Fig. S3a, b). We then compared 16 manually
curated GSMs retrieved from Metanetx27 that represent 15 species
from all kingdoms of life. Consistent with a previous GSM-based ana-
lysis of phenotypic evolution13, average sensitivity correlations
decrease with increasing species divergence time and they saturate at
high divergence times (Fig. 3b). However, two groups with B. subtilis
and Saccharomyces cerevisiae comparisons suggest higher similarities

Fig. 2 | Predictionof subsystemand gene functionality. a Sensitivity correlations
(Pearson) of metabolic reactions (green) and corresponding Jaccard indices (pink)
per subsystem (as defined in the GSMs) in the E. coli and B. subtilis models. Long
(short) horizontal black lines: mean (s.d.) per subsystem. Sensitivity similarities
reflect gene similarities between human and yeast for Enzyme Commission (EC)
numbers (b; zero: no similarity; four:maximal similarity; note that curves for scores
zero to three overlay and are not distinguishable; for details, see Methods), and
gene orthology (c; orthologous gene pairs from the OMA database57).
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than expected by the general trend. We therefore clustered species
hierarchically using the pairwise average sensitivity correlations
(Methods).

The resulting species tree (Fig. 3c) is consistent with some aspects
of phylogeny (e.g., in separating bacteria, eukaryotes, and the archeon
Methanosarcina barkeri), but not with others. For example, the meta-
bolically extreme organisms M. barkeri (a methanogen) and Thermo-
toga maritima (which does not produce ATP when growing on sulfur)
areoutliers. Yeast clusterswithGram-positive bacteria (Mycobacterium
tuberculosis andB. subtilis), andnotwithmulticellular eukaryotes. Note
that the two yeast models with different network coverage clustered
together, indicating a certain robustness to GSM accuracy or com-
pleteness. We also confirmed that the inferred species tree is robust to
the tree construction method (Fig. S3d) and the correlation measured
used (Fig. S3f). In contrast, comparing metabolic repertoires via Jac-
card indices (Methods) gives rather binary species distinctions
(Fig. S3c). This leads to lower resolution at high divergence times
(Fig. 3b) and a qualitatively different inferred tree where, for example,
M. barkeri clusters with bacteria (Fig. S3e). Hence, in particular dis-
tinctions from phylogeny indicate that sensitivities may provide
orthogonal information on species-specific metabolic functions and
lifestyles.

Metabolic diversity across bacteria
To assess the potential orthogonal information in detail, and to exploit
the ability to analyze pathways across multiple organisms, we
addressed the open question how habitat and taxonomy explain
pathway differences. We performed an integrated analysis of meta-
bolic repertoires, functions, lifestyles, and taxonomy, using an estab-
lished collection of 321 (245 after filtering, see Methods) GSMs for
bacteria13. The models cover a broad taxonomic and lifestyle (habitat

and physiological) diversity (Fig. S4a) and represent the high diversity
of metabolic repertoires in bacteria (Fig. S4b). However, more wide-
spreaduseof ametabolic reaction across species is not associatedwith
more similar function in the network context as characterized by
sensitivity correlations (Fig. S4c), confirming orthogonality of our
measure.

We quantify functional similarity across multiple bacteria using
normalized biases (z-scores, that is, standard deviations from the
mean) to aid interpretation and because of heteroskedacity of sensi-
tivity correlations per reaction (Fig. S4d, e and Methods). Metabolic
reactions and subsystems with significant biases respond to pertur-
bations differently than expected froman average (‘standard’) reaction
or subsystem. We classify those with significant positive (negative)
normalized bias as ‘conserved’ (‘variable’). This allows a fine-grained
analysis of functional conservation across the 245bacteria, as shown in
Fig. 4a forKEGG28 annotations of subsystemsandPearson correlations.
Importantly, this classification is stable over evolutionary distances
between species (Fig. S5a–c). It is also robust to alternatives for aver-
aging over reactions (Fig. S5d, e), to significance tests used (Fig. S5f, g),
and within SEED29 subsystem annotations (Fig. S5h, i and Methods).

In this analysis, perturbations in conserved subsystems influence
the operation of the entire metabolic networks of different species
more similarly than expected. Conversely, we anticipate a conserved
subsystem to have limited potential for evolutionary adaptation of its
function, for example, because the function is essential for the entire
cell, or network constraint enforce a specific function of the sub-
system. As one would expect, sensitivity biases identify biomass for-
mation and nucleotide metabolism as conserved (Fig. 4a and S6a, b).
Conserved nucleotide metabolism is also predicted by Jaccard indices
to assessmetabolic repertoire similarity (Fig. S6c) and by comparative
genomics30.

Fig. 3 | Phylogenetic analysis. a Alignment of the yeast GSM iMM904 with itself
using variable numbers of common reactions. Green: average ± s.d.; red: method
by Mazza et al.25 b Average sensitivity correlations (Pearson, green) and Jaccard
indices (pink) for model pairs as a function of divergence time. Red circles:
comparisons between a subset of the Gram-positive bacteria (B. subtilis and

Mycobacterium tuberculosis) and the Gram-negative bacteria; blue circles: com-
parisons between yeast and bacteria. c Species phylogeny (dendrogram) con-
structed from the sensitivity dissimilarity matrix (heat map; see Methods) using
the unweighted average distance (UPGMA). Archaea: orange; bacteria: blue;
eukaryotes: black.

Article https://doi.org/10.1038/s41467-023-37429-5

Nature Communications |         (2023) 14:1699 4



a

b

M: H
ist

idi
ne

 (2
6)

M: A
lan

ine
, a

sp
art

ate
, g

lut
am

ate
 (8

)

S: V
ali

ne
, le

uc
ine

, is
ole

uc
ine

 (1
1)

M: A
rgi

nin
e a

nd
 pr

oli
ne

 (7
1)

S: P
he

ny
lal

an
ine

, ty
ros

ine
, tr

yp
top

ha
n (

27
)

D: L
ys

ine
 (1

9)

M: G
lyc

ine
, s

eri
ne

, th
reo

nin
e (

25
)

S: L
ys

ine
 (1

9)

M: T
yro

sin
e (

39
)

M: T
ryp

top
ha

n (
26

)

D: V
ali

ne
, le

uc
ine

, is
ole

uc
ine

 (2
1)

M: P
he

ny
lal

an
ine

 (2
9)

M: C
ys

tei
ne

 an
d m

eth
ion

ine
 (3

3)

Biom
as

s (
29

1)

S: S
tre

pto
myc

in 
(3)

S: F
lav

on
oid

 (1
6)

S: P
he

ny
lpr

op
an

oid
 (2

4)

M: In
os

ito
l p

ho
sp

ha
te 

(21
)

Glyc
oly

sis
 / G

luc
on

eo
ge

ne
sis

 (1
1)

Citra
te 

cy
cle

 (T
CA cy

cle
) (7

)

M: B
uta

no
ate

 (1
9)

M: G
lyo

xy
lat

e a
nd

 di
ca

rbo
xy

lat
e (

32
)

Pen
tos

e p
ho

sp
ha

te 
pa

thw
ay

 (2
1)

M: F
ruc

tos
e a

nd
 m

an
no

se
 (2

9)

M: P
yru

va
te 

(19
)

I: P
en

tos
e a

nd
 gl

uc
uro

na
te 

(39
)

M: P
rop

an
oa

te 
(23

)

M: A
mino

 su
ga

r a
nd

 nu
cle

oti
de

 su
ga

r (3
8)

M: G
ala

cto
se

 (3
8)

M: S
tar

ch
 an

d s
uc

ros
e (

22
)

M: A
sc

orb
ate

 an
d a

lda
rat

e (
30

)

Carb
on

 fix
ati

on
 (p

ho
tos

yn
the

tic
) (6

)

M: N
itro

ge
n (

13
)

M: S
ulf

ur 
(11

)

M: M
eth

an
e (

31
)

S: G
lyc

os
ph

ing
oli

pid
 (1

3)

S: L
ipo

po
lys

ac
ch

ari
de

 (1
9)

S: P
ep

tid
og

lyc
an

 (6
)

M: G
lyc

ero
lip

id 
(13

)

M: G
lyc

ero
ph

os
ph

oli
pid

 (2
5)

M: S
ph

ing
oli

pid
 (2

5)

S: F
att

y a
cid

 (4
4)

M: E
the

r li
pid

 (1
7)

M: B
iot

in 
(7)

One
 ca

rbo
n p

oo
l b

y f
ola

te 
(5)

S: F
ola

te 
(20

)

M: P
orp

hy
rin

 an
d c

hlo
rop

hy
ll (

67
)

S: U
biq

uin
on

e/t
erp

en
oid

-qu
ino

ne
 (1

9)

S: P
an

tot
he

na
te 

an
d C

oA
 (2

2)

M: V
ita

min 
B6 (

23
)

M: N
ico

tin
ate

 an
d n

ico
tin

am
ide

 (3
6)

M: R
ibo

fla
vin

 (1
4)

M: T
hia

mine
 (1

1)

M: G
lut

ath
ion

e (
17

)

M: T
au

rin
e a

nd
 hy

po
tau

rin
e (

6)

M: P
ho

sp
ho

na
te 

an
d p

ho
sp

hin
ate

 (6
)

M: B
eta

-A
lan

ine
 (4

)

M: C
ya

no
am

ino
 ac

id 
(15

)

Side
rop

ho
re 

gro
up

 pe
pti

de
s (

3)

S: T
erp

en
oid

 ba
ck

bo
ne

 (2
0)

D: G
era

nio
l (1

2)

M: P
yri

midi
ne

 (8
1)

M: P
uri

ne
 (1

00
)

Pse
ud

oe
xc

ha
ng

es
 (7

08
)

Una
ss

ign
ed

 (2
52

2)

D: P
oly

cy
clic

 ar
om

ati
c h

yd
roc

arb
on

 (1
0)

D: N
ap

hth
ale

ne
 (1

1)

D: S
tyr

en
e (

8)

D: E
thy

lbe
nz

en
e (

8)

D: B
en

zo
ate

 (2
9)

D: A
mino

be
nz

oa
te 

(25
)

D: T
olu

en
e (

16
)

-2

-1

0

1

2
N

or
m

al
iz

ed
 b

ia
s 

(-)
Amino

 ac
ids

Biom
as

s

Othe
r s

ec
on

da
ry

Carb
oh

yd
rat

es

Ene
rgy

Glyc
an

s

Lip
ids

Cofa
cto

rs/
vit

am
ins

Othe
r a

mino
 ac

ids

Terp
en

oid
s/p

oly
ke

tid
es

Nuc
leo

tid
es

Pse
ud

oe
xc

ha
ng

es

Una
ss

ign
ed

Xen
ob

iot
ics

0

0.5

1
D

is
ta

nc
e 

(-)

+0
.0

8
+0

.0
4

-0
.0

3
-0

.0
4

-0
.1

0
-0

.0
5

-0
.0

8
-0

.1
1

-0
.1

2
-0

.1
5

-0
.1

9
-0

.2
0

-0
.2

4
-0

.2
4

-0
.3

0
-0

.7
5

-1
.2

6

-1 0 1
Bias (-)

D: Aminobenzoate
D: Benzoate

D: Naphthalene
D: Polycyclic aromatic hydrocarbon

D: Styrene
Unassigned

Pseudoexchanges
M: Purine

M: Pyrimidine
Siderophore group peptides

S: Terpenoid backbone
M: Cyanoamino acid

M: Glutathione
M: Phosphonate and phosphinate

M: Taurine and hypotaurine
M: Beta-Alanine

M: Biotin
S: Folate

M: Nicotinate and nicotinamide
One carbon pool by folate
S: Pantothenate and CoA

M: Porphyrin and chlorophyll
M: Riboflavin
M: Thiamine

S: Ubiquinone/terpenoid-quinone
M: Vitamin B6

S: Fatty acid
M: Glycerolipid

M: Glycerophospholipid
S: Glycosphingolipid

S: Lipopolysaccharide
S: Peptidoglycan

Carbon fixation (photosynthetic)
M: Methane
M: Nitrogen

M: Sulfur
M: Amino sugar and nucleotide sugar

M: Ascorbate and aldarate
M: Butanoate

Citrate cycle (TCA cycle)
M: Fructose and mannose

M: Galactose
Glycolysis / Gluconeogenesis

M: Glyoxylate and dicarboxylate
M: Inositol phosphate

I: Pentose and glucuronate
Pentose phosphate pathway

M: Propanoate
M: Pyruvate

M: Starch and sucrose
S: Streptomycin

S: Tropane, piperidine, pyridine alkaloid
Biomass

M: Alanine, aspartate, glutamate
M: Arginine and proline

M: Cysteine and methionine
M: Glycine, serine, threonine

M: Histidine
S: Lysine
D: Lysine

M: Phenylalanine
S: Phenylalanine, tyrosine, tryptophan

M: Tryptophan
M: Tyrosine

S: Valine, leucine, isoleucine
D: Valine, leucine, isoleucine

Fres
h w

ate
r

Mari
ne
Othe

r
Soil

Hos
t

Hum
an

Psy
ch

rop
hil

e

Mes
op

hil
e

The
rm

op
hil

e

Ana
ero

be

Aero
be

Fac
ult

ati
ve

Neg
ati

ve

Pos
itiv

e

Chla
myd

iae

Beta
pro

teo
ba

cte
ria

Gam
map

rot
eo

ba
cte

ria

Firm
icu

tes

Dein
oc

oc
cu

s-T
he

rm
us

Acti
no

ba
cte

ria

Chlo
rob

i

Delt
ap

rot
eo

ba
cte

ria

Bac
ter

oid
ete

s

Eps
ilo

np
rot

eo
ba

cte
ria

Aqu
ific

ae

Alph
ap

rot
eo

ba
cte

ria

Spir
oc

ha
ete

s

Ten
eri

cu
tes

-0.8 -0.5 -0.3 +0.0 +0.3 +0.5 +0.8

Amino acids

Biomass
Other secondary

Carbohydrates

Energy

Glycans

Lipids

Cofactors/vitamins

Other amino acids

Terpenoids/polyketides
Nucleotides
Pseudoexchanges
Unassigned

Xenobiotics

Habitat Temp. Oxygen Gram Taxonomy

Article https://doi.org/10.1038/s41467-023-37429-5

Nature Communications |         (2023) 14:1699 5



However, conserved function does not necessarily require a
conserved metabolic repertoire. For exchanges with the environment
(so-called pseudoexchanges), sensitivities indicate conservation
(Fig. 4a) and the metabolic repertoire variability (Fig. S6c). This sug-
gests that, while bacteria have varying exchange repertoires, an
exchange’s metabolic function is similar in the network context across
bacteria.Wefind the inverse for cofactor and lipidmetabolism:despite
their conserved metabolic repertoires (Fig. S6c), they are functionally
variable (Fig. 4a). Cofactor metabolism is enriched for essential
genes31, but, for example, bacteria use diverse mechanisms for redox
balancing32 and they can evolve new enzyme functions to achieve
balance33. Functionally variable lipid metabolism may underlie the
diversity of bacterial lipids34, especially when considered togetherwith
glycan metabolism for synthesis of the outer membrane.

Such distinctions between repertoire and function become more
tangible considering that finer details appear, for example, in amino
acid metabolism (Figs. 4a and S6c). We find conservation for histidine,
as one would expect from one universal known biosynthesis
pathway35, but functional conservation vs variable repertoire for argi-
nine and proline. There, alternative biosynthesis pathways exist across
species, but the functional requirement of providing the amino acids is
conserved. We predict especially proline biosynthesis to be function-
ally conserved (Fig. S8a), consistent with its evolutionary conservation
and proline’s important role in redox and stress protection36.

These results on functional conservation agree with previous
analyses37 and copula correlations yield qualitatively very similar
functional results (Fig. S7). However, as in prior GSM construction38

and analysis39, our analysis depends on manually curated subsystem
classifications. Using the SEED classification29, only some functionally
conserved (e.g., biomass, proline) and variable (e.g., cell wall, cofac-
tors) subsystems agree (Fig. S8a), due to limited mapping between
KEGG and SEED subsystems (Fig. S8b). For example, having few reac-
tions in SEED nucleotide metabolism prevents reaching significance.
This limits biological interpretation, but overall multiple lines of evi-
dence support that sensitivity correlations consistently introduce an
orthogonal functional dimension to comparative network analysis.

Drivers of metabolic diversity
To address how taxonomy and environment influence diversity of
metabolic functions across bacterial species, we determined func-
tional conservation or variability induced by single features (e.g.,
marine habitat). Note that these feature annotations based on widely
used databases (see Methods) are incomplete and subject to uncer-
tainties that may affect the analysis. Because taxonomy and environ-
ment almost always jointly contribute to predicted functional
conservation,weused joint estimation by linear regression to untangle
their influences (Methods and Supplementary Data 3). Distances
between regression coefficients allowed us to cluster species, for
example, by their phyla according to NCBI taxonomy (Fig. 4b). Spir-
ochaetes and Tenericutes are outgroups in the resulting tree, pre-
sumably because they are under-represented (three GSMs each)
and biased (only host-associated species; Fig. S4a). This tree also

reveals aspects of phylogeny, such as proteobacteria not being
monophyletic40 (Fig. S9a). All trees together show significant impact of
both taxonomy and environment on metabolic function, consistent
withmetabolic diversitywithin bacterial phyla.With a phylogenetically
consistent taxonomy41,42 (Fig. S9b, c) and other analysis alternatives
(Fig. S10), we predict more pronounced taxonomic influences and
higher functional similarity within taxa, but environmental factors
remain significant for metabolic diversity. When subsampling sensi-
tivity correlations to approximate the effect of inaccuracies in GSMs,
we observed only small variations in taxonomic clustering (Fig. S11);
the categories discussed next remained stable.

Environmental contributions to metabolic function cluster
according to previously defined categories of environmental
variability43, namely host-associated vs. fresh water and marine vs. soil
and other (Fig. 4b). However, the estimated regression coefficient for
the environments show that environmental variability does not dictate
functional variability. We infer metabolic variability for host associa-
tion, low-variability environments, and conservation for aquatic
environments of intermediate environmental variability. In other
words, bacteria in watery (host) environments tend to be more func-
tionally similar (dissimilar) than their taxonomic peers. In particular,
marine bacteria show a conservative bias, consistent with metabolic
niches reducing metabolic variability across taxa7. Host environments
with comparatively abundant resources and host-specific interactions
may afford or even require moremetabolic variability of bacteria (e.g.,
via auxotrophies).

Predictedmetabolic functions for bacteria living at low-to-average
temperature are conserved, but variable for thermophiles. Functional
variability of thermophiles is consistent with previous analyses that
showed metabolic networks of thermophiles to be less modular than
those of other bacteria44,45, considering that reduced modularity
implies reduced module function45. For oxygen requirements, we
capture diversity of anaerobic metabolism, and facultative anaerobes
as generalists separate. As a negative control, Gram status has no sig-
nificant influence – it is part of taxon definitions.

Variations of (metabolic) phenotypes according to evolutionary
history (represented by taxonomy) and environment are largely
unknown and corresponding experimental studies are rare4,5. Our
approachpredicts the experimentally determined impact of taxonomy
(high variability in proteobacterial classes and Actinobaceria) vs.
environment (low variability in soil) on metabolic phenotypes in soil
ecosystems4 (Fig. 4b). It also suggests more details, namely that β- and
γ-proteobacteria are more functionally similar to their peers than α-
proteobacteria. As another example, among the dominant classes of
functionally conserved psychrophiles (Fig. S4a), we expect higher
similarity within γ-proteobacteria than within firmicutes (Fig. 4b).
Novel hypotheses such as these are testable in experiments similar
to ref. 4.

Diversity of metabolic subsystems
Estimates of normalized sensitivity biases adjusted for taxonomic and
environmental influences (Fig. 4b) overall agree well with those

Fig. 4 | Functional variability of metabolic subsystems in 245 microbial GSMs.
a Functional variability of subsystems for KEGG28 subsystem classification. Points:
average normalized bias per reaction (Pearson correlation of sensitivities). Colors
show subsystem class: green, conserved; orange, variable, grey: standard (non-
significant in two-sample Wilcoxon signed rank test against all reactions, α =0.05).
Horizontal grey lines: subsystem mean (long) and s.d. (short). Coloring of super
classes (top) analogously based on subsystem enrichment (hypergeometric dis-
tribution, α =0.05). Abbreviations: M, metabolism; S, synthesis; D, degradation; I,
interconversion. Brackets in subsystem labels: number of reactions. Only sig-
nificant subsystems and subsystems shown in b are included. b Functional varia-
bility depending on NCBI taxonomy, habitat, and physiology (THP) classes
(Methods and Supplementary Data 3). Trees (top): Functional distances per THP

class based onmean normalized sensitivity bias over all reactions. Node colors (see
color bar) denote regression coefficients for THP variables with respect to nor-
malized sensitivity biases for all reactions; numbers denote values of significant (t-
test, α =0.05) coefficients. Subsystem-specific normalized biases from linear
regression (bottom, left): mean ± s.d. over reactions in each subsystem; color-
coded effect size, see color bar; grey: not significant. Matrix (bottom, right): Sig-
nificant regression coefficients for dependence of subsystem mean biases on THP
variables (bottom labels). Significance of coefficients: two sided t test, α =0.05.
Significance of regressions: F-test against constant model, α =0.05. For subsystem
analysis, out of the n= 102 annotated subsystems, only those with significant
regressions are shown. Abbreviations: Temp., temperature.
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inferred directly from sensitivity data (Fig. 4a), e.g., regarding variable
cofactor and vitamin metabolism. They provide additional evidence
for conservation of many metabolic subsystems, but also unexpected
findings such as higher conservation of pyrimidine vs purine meta-
bolism. Close connections to amino acid metabolism and cofactor
synthesis, respectively, could explain this difference46.

For habitat and taxonomy influences on subsystems, 755 out of
2856 tested hypotheses were significant (Fig. 4b). These significant
hypotheses remained stable under subsampling of sensitivity corre-
lations to a large extent (Fig. S12); this holds for all hypotheses dis-
cussed in the following except for the taurine subsystem for which the
lownumber of data points prevented regressionswith subsamples. For
example, the gut microbiome influences host amino acid and glu-
tathione metabolism in mice47; we predict these subsystems as sig-
nificant for human-associated habitats (Fig. 4b). The most surprising
predicted signatures of human-hostedbacteria are: (i) generally strong
associations (large absolute biases), indicating high adaptation; (ii)
strong conservation of phenylalanine, biotin, and glutathione meta-
bolism, suggesting that adaptation to human requires peculiar func-
tions of these subsystems; and (iii) variability in glycosphingolipid
synthesis exclusive to these bacteria, which is intriguing given the
underexplored role of bacterial sphingolipids in human immunomo-
dulation and metabolic disorders48.

To takemarinehabitats as another example,wepredict conserved
siderophore metabolism (Fig. 4b). To scavenge scarce iron efficiently
in this environment, the release of iron-chelating siderophores appears
essential for bacteria49, explaining functional conservation. The
regressions also show higher variability of taurine metabolism (which
is conserved on average) in marine environments. This could reflect
both the importance of taurine as C- and N-source in general, and the
depth-dependence of the availability of taurine and alternative nutri-
ent sources50.

Finally, we suggest that functional variability facilitates the
potentially costly evolution of metabolic cooperation between spe-
cies. Intriguingly, experimental evolution of mutualism between the γ-
proteobacteria Salmonella entericaand E. coli involvedmethionine and
galactose51; those subsystems of γ-proteobacteria are variable among
mostly conserved amino acid and carbohydrate metabolism (Fig. 4b).
Cooperation via siderophores in marine bacteria, however, is a coun-
ter-example: it depends on physico-chemical characteristics of the
environment that cannot be captured inGSMs49. Our hypotheses could
primarily help define relevant metabolic phenotypes for experimental
studies of individual microbial species as well as consortia.

Discussion
We propose sensitivity correlations as a measure to quantify effects of
perturbations in metabolic networks to link metabolic repertoires,
functions, and their relations to evolutionary history and environment.
In contrast to prior work, we do not need to define15 or randomly
sample14 environments, and we cover exchange fluxes as well as
internal fluxes. Combined with our approach’s focus of the network
context, it thereby enables consistent predictions that were previously
inaccessible, for example, on functional conservation of metabolic
subsystems. However, uncertainties in GSMs (which could be reduced
by probabilistic approaches to network reconstruction52), ambiguities
in widely used subsystem annotations, and potential biases in the
collections of analyzed models limit the biological accuracy of these
predictions. For example, detailed reaction-level comparisons of B.
subtilis and E. coli requiredmanual checking. Hypotheses generated by
our integrated analysis of bacterial metabolic diversity therefore
require empirical validation – and they can simultaneously guide
corresponding studies.

We envisage different levels of empirical validation. First, recent
advances that increase accuracy and throughput of 13C metabolic flux
analysis53 canenable systematic testingof sensitivity-basedpredictions

for individual enzymes, provided targeted (and sufficiently small, e.g.,
by drug dosing) perturbations can be introduced and a sufficient
number of common reaction fluxes can be resolved. For example, one
could investigate iso-enzymes predicted to have a most dissimilar
effect on network operation in humans and (pathogenic) yeasts as
candidates for novel antibiotics. Second, more indirect experiments
could be designed that use targeted (e.g., via CRISPR/Cas) or untar-
geted (e.g., transposon mutagenesis) mutations and indirect readouts
such as growth on different nutrient sources for different bacteria to
test predictions on subsystem functional conservation with largest
effect size. Finally, studies of bacterial ecology in different natural
habitats4 could be designed on our corresponding predictions on
drivers of metabolic diversity, for example, focusing on the pro-
nounced predicted differences between β-/γ- and α-/ε-proteobactria.

We consider the concept of sensitivity correlations as the main
contribution of this work, and the range of applications presented as
proofs-of-principle. Increased species diversity and thereby statistical
power could increase taxonomic depth and functional specificity, for
example, regarding ‘accessory’ genomes that enable intra-species
metabolic exchanges in microbiomes54. Incorporating quantitative
characteristics of environments could lead to finer ecological
resolution55. By allowing such refinements directly, our framework will
be instrumental for detailed and systematic studies of relations
between metabolic repertoires, phenotypes, evolution, and
environment.

Methods
Metabolic models and databases
GSMs of yeast (iMM904), human (Recon1), Bacillus subtilis (iYO844),
and Escherichia coli (iJO1366) were retrieved from the BIGG database56.
We addedmissing reactions to iYO844, namely a nitric oxide synthase
reaction and exchange reactions for nitric oxide. 16 GSMs (Supple-
mentary Data 1) were retrieved fromMetanetx27. Orthologous pairs of
human and yeast genes were from the OMA database57. We retrieved
321 automatically reconstructed bacterial GSMs (SEEDmodels) as well
as pairwise genetic distances between organisms from ref. 13. We
obtained the reference bacterial phylogenetic tree from ref. 40.

Curation of SEED models
For every SEEDmodel, we checked that the biomass reaction carries a
strictly positive flux when exchange reactions allow uptake of every
possible exchanged metabolite. Under this condition, whenever pos-
sible, we removed the structurally blocked reactions (reactions that
cannot carry any flux) using flux variability analysis (if the minimum
and maximum fluxes are both equal to zero, then the reaction is
considered blocked)58. As a sanity check, we verified that the biomass
production before and after the removal of the blocked reactions was
identical.When this could not be verified, the originalmodel insteadof
the reduced model was used (24 models out of 321). The cases where
the model reduction did not work are indicated in Supplementary
Data 1. Finally, we restricted themodel set by two criteria: (i) to include
only one representative per species, and (ii) to require a minimum of
two species per taxon. The final set then comprised 245 GSMs for the
NCBI taxonomy and 242 GSMs for the phylogenetically consistent
GTDB taxonomy, as detailed in Supplementary Data 1.

Annotations for SEED models
We augmented SEED models by taxonomic annotations of bacterial
species using the NCBI taxonomy59 as well as the GTDB taxonomy42.
Mapping between models and the corresponding databases was per-
formed by species names, including by species synonyms retrieved
from the MACADAM database60. For habitat and physiology annota-
tions, we used fusionDB61. For species with multiple habitat assign-
ments, we automatically identified the main categories (‘fresh water’,
‘marine’, ‘host’ and ‘soil’), and subsumed entries that could not be
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categorized or of low frequency for SEED models under ‘other’. With
available evidence (e.g., specific annotations for human gut), we clas-
sified ‘host’ as ‘human’more specifically (see Supplementary Data 1). If
not already available from fusionDB, we added annotations on Gram
status from the Microbe Directory62,63. To annotate reactions with
subsystems, we first updated the GSMs with current ModelSEED64

annotations (v2.6.1). To obtain corresponding KEGG28 subsystem
annotations, we relied on reaction aliases provided by ModelSEED
(Supplementary Data 2).

Graph distances
To compute graph distances between pairs of reactions in one GSM,
we transformed the GSM to an adjacency reaction graph and applied
Dijkstra’s algorithm.

Mathematical notation
We denote the set of GSMs byM, and correspondingly the number of
GSMs by ∣M∣. Denote by l,m 2 M twomodels from this set. Denote by R
a set of reactions, by k 2 R a reaction in this set, and by Rl the set of
reactions in model l. Assume that we can identify which two reactions
are identical (have identical biochemical formula) in two reaction sets.
Then, the set of common reactions of the model pair ðl,mÞ 2 M ×M is
R=Rl \ Rm. The notation extends to arbitrary subsets of reactions. In
particular, wedefine ametabolic subsystem j as a subset of reactions in
any model, Sj � ∪

l2M
Rl .

We denote subsets of models with respect to the presence of a
particular reaction k asMk : = fl 2 M ∣ k 2 Rlg. This directly leads to the
definition of a reaction’s (relative) usage across models as:

ϱðkÞ = ∣Mk ∣
∣M∣

:

Correspondingly, we define all pairs of models as P : = fðl,mÞ 2
M ×M,l≠mg and the subset of model pairs with reaction k, Pk � P,
as Pk : = fðl,mÞ 2 M ×M,l≠m ∣ k 2 Rl \ Rmg.

Structural sensitivity analysis
Structural sensitivity analysis17 quantifies how the perturbation of a
reaction flux affects all fluxes in a GSM, assuming minimal total flux
adjustment as in the minimization of metabolic adjustment (MOMA)
method18. Here, we computed absolute structural sensitivities that
neither require the definition of a reference flux distribution (as in
MOMA18), nor the definition of an environment through constraints on
exchange fluxes (as in flux variability analysis, FVA65). Hence, absolute
structural sensitivities characterize network responses independent of
a cell’s metabolic state or environment.

Specifically, we first characterized each reaction in each GSM
using structural sensitivity analysis17. For model l, we assume that the
flux through reaction k 2 Rl is perturbed with a disturbance δk . The
minimal adjustments of fluxes required to return to steady-state, dl ,
are obtained by singular value decomposition. It solves the mini-
mization problem:

mindl
∣dl ∣2

subject to Nl � dl =0

dl,k = δk ,

whereNl is the stoichiometricmatrixof themetabolic network anddl,k

the element of vector dl corresponding to the perturbed reaction k.
The sensitivity represents the effect of a perturbation on any

reaction relative to the strength of the perturbation. Correspondingly,

we define the vector of sensitivities of each reaction of model l with
respect to a perturbation of reaction k as:

sðRl ,k,lÞ=
dl

δk
:

This vector has elements sði,k,lÞ for i 2 Rl . Here, we used δk = 1.
To make sensitivity computations efficient, GSMs were pre-

processed by removing blocked reactions. For reaction pairs in
pairs of GSMs, we characterized functional similarity (distance) by
correlations (lack of correlations) of absolute structural sensitiv-
ities over all common reactions after perturbing a single reaction.
For gene-based analysis, we computed sensitivities by simulta-
neously perturbing all reactions associated with a gene (via the
GSM’s gene-reaction associations) with the same perturbation
magnitude.

Sensitivity-based correlations and distances
To define the similarity of responses of two models l,m 2 M to per-
turbations in a common reaction k 2 Rl \ Rm, we use a correlation
function ρð�,�Þ:

Sðl,m,kÞ=ρðsðRl \ Rm,k,lÞ,sðRl \ Rm,k,mÞÞ,

where we sort the two vectors in the same order of reactions. The
sensitivity distance between the two models with respect to pertur-
bation of a single reaction is then defined as:

Dðl,m,kÞ= 1� ∣SM ðl,m,kÞ∣:

We extend these concepts from a single reaction k to an arbitrary
set of shared reactions R � Rl \ Rm for sensitivity correlations as

Sðl,m,RÞ= 1
∣R∣

X
k2R

Sðl,m,kÞ:

This is a quite natural extension because Sðl,m,fkgÞ= Sðl,m,kÞ.
The average model similarity of two GSMs is then defined as the

average sensitivity correlation over all common reactions:

SMðl,mÞ= Sðl,m,Rl \ RmÞ:

This directly yields an average dissimilarity for pairwise GSM
combinations that is interpretable:

Dðl,mÞ= 1� ∣SM ðl,mÞ∣:

Measures based on reaction sets
The Jaccard index quantifies the similarity of two sets, and we use it to
compare the reaction contents of two GSMs l and m:

JM ðl,mÞ= ∣Rl \ Rm∣
∣Rl ∪Rm∣

:

To expand this concept to quantify the context similarity of a
reaction k in twomodels, we define a reaction neighborhood via graph
distances. Specifically, with DGðk,iÞ a function yielding the graph dis-
tance between reactions k and i, and δ a distance threshold, the
neighborhood Nðl,kÞ � Rl of reaction k in model l is:

Nðl,kÞ : = fi 2 Rl ∣DGðk,iÞ≤ δg:
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The Jaccard index for reactions then becomes:

JRðl,m,kÞ= ∣Nðl,kÞ \ Nðm,kÞ∣
∣Nðl,kÞ∪Nðm,kÞ∣ :

Normalized similarities
To account for potential biases due to different sets of common
reactions in GSM pairs, we compute normalized similarities as

~Sðl,m,kÞ= 1
σ
ðSðl,m,kÞ � b̂0 � b̂1 � ϱðkÞÞ:

Here, b̂0 and b̂1 are estimated intercept and slope of a linear
regression of the average reaction similarity

SRðkÞ=
1

∣Pk ∣

X
ðl,mÞ2Pk

Sðl,m,kÞ

as a function of reaction usage ϱðkÞ jointly for all k, and σ is the root
mean squared error of the linear regression. Without significant cor-
relations between reaction usages and sensitivity correlations in our
data (Fig. S4c), these definitions amount to computing z-scores.

We expand this normalization to more general similarities by
replacing S with ~S appropriately, leading to average normalized simi-
larities for pairs of models, ~SM ðl,mÞ, and average normalized reaction
similarities, ~SRðkÞ. For conciseness, we termthe latter ‘normalizedbias’.

Subsystem analysis
To study variability of metabolic subsystems across all models, we
partition the set of unique reactions into disjoint subsets Sj according
to subsystem classification and include an additional subset for reac-
tions with unassigned subsystem.

For sensitivity-based analysis, the average normalized bias ~SSðjÞ of
a subsystem j is defined as:

~SSðjÞ=
1
∣Sj ∣

X
k2Sj

~SRðkÞ:

The classification of subsystems into categories relied on three
alternative approaches:
(i) Subsystem mean by reaction: Distribution of ~SRðkÞ for all k 2 Sj .
(ii) Subsystem mean, alignments: Distribution of ns = 100 samples

from ~Sðl,m,kÞ for any ðl,mÞ 2 Pk and any k 2 Sj .
(iii) Subsystem mean, bootstrap: Distribution of nr = 100 estimated

averages of ns = 100 samples from ~Sðl,m,kÞ for any ðl,mÞ 2 Pk and
any k 2 Sj .

For analyses based on reaction sets, we define a corresponding
measure to compare subsystems Sj as:

JSðl,m,SjÞ=
∣Sj \ ðRl \ RmÞ∣
∣Sj \ ðRl ∪RmÞ∣

:

For a subsystem classification that is consistent with the
sensitivity-based approach, we compute normalized Jaccard indices
~JSðl,m,SjÞ by subtracting the average of JM ðl,mÞ over P and dividing by
the corresponding standard deviation. We evaluate the distribution of
ns = 100 samples from ~JSðl,m,SjÞ.

Enzyme similarity
To validate sensitivity-based predictions with independent measures,
we relied on Enzyme Commission (EC) numbers. They provide a
hierarchical numerical classification for enzyme functions composed

of four levels (numbers) that represent a progressively finer classifi-
cation. To compare two enzymes, we define an EC similarity level
according to themaximal level up towhich their EC numbers coincide.
This leads to five levels of similarity between zero (no similarity) and
four (completely identical EC numbers). When several EC numbers
were mapped to the same enzyme, we used the maximal similarity
level of all possible pairwise comparisons. We proceed identically
when several EC numbers were mapped to one reaction through its
catalyzing enzymes.

Toglobally characterize the aligned reactions in twoGSMs l andm
via their EC number similarity, we define an EC score akin to the
Kullback-Leibler divergence:

Eðl,mÞ=
X4
i =0

ai � log
ai

ni

� �
,

where ai is the fraction of aligned reactions R � Rl \ Rm with an EC
number similarity level i, and ni is the fraction of reaction pairswith EC
number similarity i in the null model (all possible reaction pairs
between two models).

Alignment
Sensitivity distances between all possible pairs of reactions char-
acterize all possible mappings between reactions in two GSMs. The
assignment problem corresponds to identifying the best reaction
mapping using solely sensitivity distances, with blinded reaction
identities. We solved it using the Jonker-Volgenant algorithm66, which
selects the set of pairs of reactions with total minimum sensitivity
distance. Compared to ref. 25, our method is faster (30min versus 48 h
per alignment) because it requires only one optimization per reaction.
It returns a set of mapped reactions with their individual sensitivity
distances, and a set of unmapped reactions in the larger GSM. For
validations, we aligned the yeast GSM with a copy of itself, after ran-
domizing the order of reactions in the copy and varying the number of
common reactions. We measured performance by the number of
correctly aligned reactions.

Tree construction
We characterized the pairwise distance between GSMs by sensitivity-
based average dissimilarity as well as Jaccard index distances. Trees
for analyses of habitat and taxonomy used estimated regression
coefficients (see below). We applied the Unweighted Pair-Group
Method with Arithmetic mean (UPGMA) for all tree constructions.
The phylogenetic tree based on divergence times was retrieved from
TimeTree67.

Taxonomy, habitat, and physiology analysis
We analyze metabolic flux phenotypes with respect to five classes of
features (habitat, temperature preference, gram status, oxygen pre-
ference, and phylum). The features in each class can be mutually
exclusive (e.g., gram positive or gram negative status), or not (e.g., a
microbe may have more than one preferential habitat). Importantly,
the feature classes are not independent (e.g., often, taxonomy defini-
tions are based on the bacteria’s gram status). Therefore, all features
have to be accounted for simultaneously in the analysis.

We encode features in row feature vectors F, where Fl is the fea-
ture vector for model l. The value of element p of Fl, Fl,p, denotes if an
organism has feature p (1) or not (0), or if it is undefined (−1). We
restrict the analysis to those pairs of models where both models have
identical and completely specified feature vectors, denoted as PF � P.
These model pairs are defined as:

PF : = fðl,mÞ 2 M ×M,l≠m ∣ 8p : Fl,p = Fm,p,Fl,p 2 f0,1gg:
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To quantify how similarities depend on features, we estimate
linear models of the form Y=X � b+ ε. We construct the design matrix
X with one row ½1Fl � for each ðl,mÞ 2 PF .

To assess the impact of features on average normalized model
similarity, the elements of the responsematrix Y are ~Sðl,m,Rl \ RmÞ for
ðl,mÞ 2 PF . The resulting coefficient estimates b̂p are used for tree
construction. Correspondingly, for the analysis of a specific subsystem
j, the elements of Y are ~Sðl,m,Sj \ Rl \ RmÞ for ðl,mÞ 2 PF .

Statistical analysis
To assess significance of normalized biases for subsystem classification,
two tests were used as indicated in text and figures: (i) two-sided Wil-
coxon signed rank test with α =0:05, and (ii) empirical p-value deter-
mination after 10'000 repeats of sampling reactions within a given
subsystem and all reactions with replacement according to the number
of reactions per subsystem and computing the average sample differ-
ences. Enrichment of conserved or variable subsystems in their parent
classes was determined by one-sided tests via the hypergeometric
cumulative distribution, again with confidence level α =0:05.

For taxonomy, habitat, and physiology analysis, we evaluated the
impact of features on subsystem variability via significant coefficient
estimates of significant linear regressions. Significance of linear
regressions was determined by F-tests against the constant null model
without correction for multiple testing (α =0:05). P-values for tests
that coefficients are zero were based on the t-statistic (two-sided) and
we used α =0:05 for significance.

Implementation
All calculations were performed with Matlab 2019b, node version
(Mathworks, Natick / MA) and Gurobi Optimizer (version 8.1.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed are available at
https://doi.org/10.3929/ethz-b-000598615. All the data and code for
reproducing figures in the main text and the supplementary infor-
mation are provided in the GitHub repository (see Code availability).
We used the following publicly available datasets: 1. Orthologues:
retrieved using the OMA database, available at https://omabrowser.
org/cgi-bin/gateway.pl?f=PairwiseOrthologs&p1=HUMAN&p2=YE
AST&p3=EntrezGene 2. iMM904, iJO844, iJO1366, and Recon1 mod-
els were downloaded from Bigg (http://bigg.ucsd.edu/). 3. MetaNetX
models were retrieved fromMetaNetX (https://www.metanetx.org/).
4. SEED models were downloaded from the publication: Plata, G.,
Henry, C. & Vitkup, D. Long-term phenotypic evolution of bacteria.
Nature 517, 369–372 (2015) (http://vitkuplab.c2b2.columbia.edu/
phenotypes/) 5. NCBI taxonomy, available at https://www.ncbi.nlm.
nih.gov/taxonomy 6. GTDB taxonomy, available at https://data.gtdb.
ecogenomic.org/releases/latest/ 7. Species synonyms (MACADAM
database), available at http://macadam.toulouse.inra.fr/doc/
MACADAMDatabase.zip 8. Habitat and physiology annotation
(FusionDB), available at https://services.bromberglab.org/fusiondb/
explore 9. Gram status (Microbe directory), available at https://
github.com/microbe-directory/microbe-directory/blob/master/
data/microbe-directory.csv. 10. Model SEED annotations and reac-
tion aliases, available at https://github.com/ModelSEED/ModelSEE
DDatabase/blob/master/Biochemistry/

Code availability
Custom code for the analysis is available at https://doi.org/10.3929/
ethz-b-000598615 and the GitHub repository https://gitlab.com/csb.
ethz/functionalcomparisonmetabnetworks/-/tree/main.
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