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Single test-based diagnosis of multiple
cancer types using Exosome-SERS-AI for
early stage cancers

Hyunku Shin 1,10, Byeong Hyeon Choi 2,3,10, On Shim1, Jihee Kim1, Yong Park4,
Suk Ki Cho5, Hyun Koo Kim 2,6 & Yeonho Choi 1,7,8,9

Early cancer detection has significant clinical value, but there remains no single
method that can comprehensively identify multiple types of early-stage can-
cer. Here, we report the diagnostic accuracy of simultaneous detection of 6
types of early-stage cancers (lung, breast, colon, liver, pancreas, and stomach)
by analyzing surface-enhanced Raman spectroscopy profiles of exosomes
using artificial intelligence in a retrospective study design. It includes classifi-
cation models that recognize signal patterns of plasma exosomes to identify
both their presence and tissues of origin. Using 520 test samples, our system
identified cancer presence with an area under the curve value of 0.970.
Moreover, the systemclassified the tumor organ type of 278 early-stage cancer
patients with a mean area under the curve of 0.945. The final integrated
decision model showed a sensitivity of 90.2% at a specificity of 94.4% while
predicting the tumor organ of 72% of positive patients. Since our method
utilizes a non-specific analysis of Raman signatures, its diagnostic scope could
potentially be expanded to include other diseases.

Cancer remains the leading cause of death in modern societies, but
early diagnosis improves cancer outcomes by providing timely and
optimal treatment1–3. Thus, early-stage cancer detection by in vitro
diagnosis is an important goal in the biomedical field, allowing routine
cancer management4. Currently, several cancer biomarkers, including
carcinoembryonic antigen (CEA)5 and prostate-specific antigen (PSA)6,
have been targeted in diagnostic and prognostic strategies, but these
are rarely present at earlier stages of malignancy. Other cancer types
still have no effective prescreening tools7. Recently, biomarkers,
including CTC8, cfDNA9, and extracellular vesicles (EV)10,11 carrying

cytosolic and membrane information from tumor cells, have emerged
as attractive biomedical targets in liquid biopsy approaches for many
cancer types12.

Exosomes, which are a subtype of nano-sized small EVs, are
enclosed by a lipid bilayer and actively secreted from living cells, so
they can be utilized to acquire information about cancer cells
noninvasvely13,14. In addition to their direct secretion by tumor cells,
various biological factors, including immune regulation15, tumor
microenvironment16, and angiogenesis17, are associated with the exo-
somes and potentially induce compositional differences in blood18,19.
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Accordingly, if the cancer-related characteristic patterns of exosomes
are discriminated between cancer types, simultaneous liquid biopsy
for multiple cancer types would be possible.

In this context, vibrational spectroscopy techniques that obtain
information on vibrational and rotational modes of the chemical
structure are emerging as major tools to identify different types of
bio-samples20. In particular, Raman spectroscopy is a powerful
method for detecting compositional differences in biomaterials
such as exosomes based on the advantages of being simple, non-
destructive, and requiring less amount of analytes21–24. With the
development of plasmonic enhancing methods, for example,
surface-enhanced Raman spectroscopy (SERS), many groups have
used Raman spectroscopy to analyze EVs20,22,25–30. These studies
demonstrate that EVs and exosomes from various biosamples from
cell-cultured media27,31 to blood32,33 can be identified without label-
ing and specific antigens. In particular, current advances in multi-
variate statistical methods and machine-learning technologies,
including artificial intelligence (AI), make identifying these vibra-
tional spectra more precise and easy20,31,33,34.

Here, we demonstrate a liquid biopsy method that combines AI
and SERS to simultaneously diagnose multiple cancer types by
label-free analysis of plasma exosomes (Fig. 1a). Our method
acquires SERS signals of isolated exosomes, then analyzes them
with deep learning models. There are two outputs: cancer diagnosis
and tissue of origin (TOO) discrimination. (Fig. 1b) In the first step,
the deep learning model classifies each signal as normal or can-
cerous, yielding a score of cancer presence. In the second step,
multiple classifier models trained cancer types using the one-vs.-
rest method generate TOO determinations of positive predictions
from the first step. In this paper, we demonstrate the diagnostic
performance of this system using 520 test samples that had not
been used for training. The samples include six cancer types (lung,
breast, colon, liver, pancreas, and stomach) and early-stage cancer
patients.

Results
Exosome isolation and signal measurement
Exosome purity and surface chemical status are significant factors in
our label-free detection because other biomolecules and chemicals on
the exosome surface affect the resulting Raman signals. Accordingly,
we employed size exclusion chromatography (SEC) that isolates exo-
somes based on the hydrodynamic size of vesicles35,36. Since SEC does
not use additional chemical reagents that produce undesired Raman
signals in the isolation process, the disturbance of signals can be
minimized in label-free SERS detection. Plasma samples from 210
healthy controls (HC) and 543 cancer patients had pathologically
confirmed their diagnoses by each medical center and stored by rou-
tine protocols in each medical center.

We flowed the provided 500-μL plasma sample through the SEC
column to obtain fractions according to particle size. To determine
fractions as an exosome suspension, exosome protein expression and
physical properties such as size, concentration, and morphology were
analyzed. Bywestern blotting of proteins fromeach eluted fraction, we
identified exosome markers, including CD9, CD63, CD81, and TSG101
at a certain fraction range (Supplementary Fig. 1). A mixture of frac-
tions lacking interfering impurities, such as lipoprotein, calnexin, and
soluble proteins, were subjected to subsequent experiments as an
exosome suspension. We confirmed that the exosome markers CD9,
CD63, andCD81were present in bothHC and patient samples (Fig. 2a).
Vesicle-like particles were observed using cryo-transmission electron
microscopy (cryo-TEM) (Fig. 2b). Nanoparticle tracking analysis (NTA)
showed particle sizes of 100–150 nm at 109–1010 particles/mL
(Fig. 2c, d).

An Au nanoparticle (AuNP)-aggregated array chip for SERS was
prepared using centrifugation-based sedimentation methods that we
have previously reported37 (Supplementary Fig. 2). After colloidal
AuNPs were precipitated, NPs were applied to the APTES-
functionalized glass surface as 2.5-mm diameter dots (Fig. 2e). One
chip is designed to have ten detection spots to increase detection

Fig. 1 | One test-multi cancer using exosome-SERS-AI. a Overview. Exosome
suspension is dropped onto an Au nanoparticle-aggregated array chip and thor-
oughly dried. Signals were observed at 100 spots (10 × 10) per sample and analyzed
by AI algorithms. The systemoutputs predictions about cancer presence and tissue
of origin. A heatmap shows actual examples of the representative predicted results

for each cancer status. b AI framework. In the first step, diagnostic scores are
assigned as the mean values of the multiple instance learning (MIL)-based cancer
classifier results. In the second step, signals predicted by the previous cancer
classifier are analyzed, then an average score is calculated using six types of pre-
diction models. Cartoons were created with BioRender.com.
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throughput. To evaluate the SERS effect, signals of R6G solution were
detected at conditions of SERS and spontaneous Raman (Supple-
mentary Fig. 3a). The enhancement factor was calculated as 4.28 × 105.
The uniformity in the signal acquisition was evaluated through the
trend of 100 R6G signals scanned in the dot (Supplementary Fig. 3b).
Since our substrate was fabricated based on colloidal nanoparticles, it
has a non-uniform hotspot arrangement. Even in this non-uniform
condition, a relatively uniform signal pattern was observed (Supple-
mentary Fig. 3c). The scanned signals exhibited an identical tendency
in intensity at the characteristic band (1364 cm−1) of R6G, showing an
averaged coefficient of variation (CV) of 6.0%. This uniformity may be
due to the average signal enhancement of the nanoparticles in the
laser-focused spot. In this circumstance, the number of nanoparticles
is related to signal enhancement, and their averagenumber of particles
was 51 ± 6 particles/μm2 in SEM characterization (Supplemen-
tary Fig. 3d).

To detect SERS signals of the isolated exosomes, exosomes were
dropped onto each dot array, and their signals were scanned after
thoroughly dried. Figure 2f shows representative spectra of exosomes
isolated from each group. The common broad and strong signals near
860, 1283, and 1597 cm−1 likely indicate citrate molecules on the AuNP
surface or protein components such as tyrosine, phenylalanine, tryp-
tophan, and amide III37,38. We observed subtle peak and intensity var-
iations in several regions near 638, 668, 707, 733, 978, 1001, 1049, 1123,
1162, 1358, 1378, 1394, and 1432 cm−1, which can be assigned to protein
and lipid constituents22,33,39,40. Difference spectra were investigated to
confirm the major difference in Raman signal between HC and cancer
patients (Supplementary Fig. 4). As a result, we identified several
Raman bands common across all cancer groups near 691, 826, 938,

961, 993, 1136–1152, 1245, 1527, and 1595 cm−1. Most signal bands are
assigned to protein constituents41.

Cancer presence diagnosis
Our approach is to recognize cancer patient samples by machine
learning without specifying the characteristic band of the cancerous
exosomes. The first step was to assess whether these data could be
used to detect the presence or absence of cancer. As our approach is
based on analyzing signals from random exosomes in plasma without
selection, some signalsmay not reflect sample characteristics. In other
words, some signals may be indistinguishable because of common
exosomes derived fromnormal cells, even in cancer patient exosomes.
Thus, we scanned 100 signals from one sample to capture the char-
acteristic signal of cancerous exosomes as much as possible (see
Fig. 1a). Then, by applying the multiple instance learning (MIL) con-
cepts, an individual spectrum was collectively labeled with 0 for the
control group and 1 for the patient group (Fig. 3a), then the average of
predicted output derived from an individual sample was used as a
single numerical value for diagnostic criteria. The neural network to
implement the MIL was composed of a serial convolutional neural
network (Supplementary Fig. 5a).

First, we investigated how many training samples are needed to
predict unknown samples. For this purpose, the accuracy of inde-
pendent samples was examined while increasing the number of
training samples (Supplementary Fig. 5b). As a result, the accuracy
tendency was saturated at over 30–40 samples per class. Based on
these results, we set 50 for HC and 183 for cancer patients as the
number of training samples to implement models. Accordingly, the
entire sample was split into training (n = 233) and test (n = 520)
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Fig. 2 | Exosome isolation and detection. a–d Evaluation of isolated exosomes.
a Western blot showing exosome marker expression. b Cryo-TEM image to show
themorphologyof isolatedvesicles. Scale bar, 50nm. c,dNTAshowing cmode size
and d particle concentration. The number of measured samples was 150, 100, 60,
60, 29, 60, and 30, respectively. The central line, box, errorbar, and dots indicate

the median, inter-quartile range (Q1 and Q3), min–max range, and outliers,
respectively. e SERS array. AuNPs were coated on the APTES-functionalized cover
glass using centrifugation. Scale bar, 1mm. f Representative SERS spectra. The
center lines represent a mean of ten spectra from one sample to show general
signal patterns. The light-colored area represents the standard deviation range.
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samples (Fig. 3a). A total of 23,051 signals (4943 HC and 18,108 cancer
samples) passed anomaly data filtering and were used for training.

Using this dataset, we trained the CNN-based binary classification
model to detect the cancer presence. The data-wise training and vali-
dationaccuracy reachedover 90% (Supplementary Fig. 5c). The output
of 100 scanned spectra per sample clearly shows the distinction
between HC and cancer patients (Fig. 3b). Most of the signals had a
value close to 0 in the HC sample, and vice versa in the cancer sample.
The average score showedadistinctdifferencebetweenHCandcancer

patients in both the training samples and the test samples (Fig. 3c).
Cancer patient samples had 1.9-fold higher scores on average and
showed a significant difference fromHC samples, regardless of cancer
type (Fig. 3d). The difference between sex in each group was not sta-
tistically significant (Supplementary Fig. 6).

Receiver operating characteristic (ROC) curves were calculated to
evaluate diagnostic performance. For all HCs and cancer patients, the
area under the curve (AUC) value was 0.970 [95% confidence interval
(CI) 0.957–0.982] (Fig. 3e). Sensitivity and specificity at the optimal
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Fig. 3 | Cancer presence detection. a Training of the CNN classifier. Control and
cancer patient samples were split into training (n = 200) and test (n = 289) sets. All
data were comprehensively labeled by sample type. The CNNmodel was trained to
produce a binary score of 0 or 1 using a sigmoid activation function. b Calculation
of diagnostic scores. Model outputs corresponding to individual SERS signals are
shown as a heatmap. Outputmeans are used asfinal diagnostic scores. cDiagnostic

scores for training (left) and independent test (right) samples. d Score tendency by
cancer type. The inner box plot presents the median, inter-quartile range (Q1 and
Q3), andmin–max range. e ROC curve for the entire test set. The light-colored area
represents a 95% confidence interval range. f PRC curve. Cartoons in panels a and
b were created with BioRender.com.
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cutoff were 89.4% and 96.3%, respectively. AUC values by cancer type
were 0.936, 0.984, 0.972, 0.978, 0.992, and 0.999 for lung, breast,
colorectal, liver, pancreatic, and stomach cancer, respectively
(Table 1). The cutoff was determined based on the closest point to an
ideal point in the ROC curve. The F1 score of the precision-recall curve
(PRC) and the area under the PRC (AUPRC) value show that the model
well predicts positive samples (Fig. 3f). Notably, the model retained
effectiveness even under conditions of extreme specificity (Table 1). In
99% specificity condition minimizing false-positive diagnoses, the
systemhad a sensitivity of 72.5%, suggesting that our approach enables
the precise identification of multiple types of cancer.

For a better understanding of the behavior of the implemented
model, we performed additional examinations of the implemented
model. Firstly, to compare our model with other machine learning
approaches, a dummy classifier and support vector machine (SVM)
classifier were brought. In the prediction of the test dataset, our CNN-
based model offers superior prediction compared to these two base-
line classifiers (Supplementary Fig. 7). In addition, an ablation study
was introduced to investigate the contribution of the layer to predic-
tion; thus, we sequentially removed the layer parts of the model and
monitored the performance (Supplementary Fig. 8a, b). Although
overall convolution networks contributed to the performance, the first
convolution layer was particularly influential (Supplementary Fig. 8b).
Because the first layer is generally associated with basic feature
detection of the input data and lessens unwanted features, the result
indicates that this process is consistently important in Raman spec-
trum analysis as well42,43. In addition, we investigated the influence of
structural parameters (Supplementary Fig. 8c). The filter size of the
first layer is related to the window size skimming an input spectrum,
andperformancedegrades above about afilter size of 10. Thefilter size
of the other layer was saturated above 5. The dropout rate was con-
sistent below 0.5, and the size of the FCL layer showed no significant
effect on performance.

TOO discrimination
Beyond classifying cancer presence, identifying cancer type is
essential for precision diagnosis and appropriate treatment.
Accordingly, we implemented an ensemble of models to classify
cancer-identified samples by tissue of origin (Supplementary Fig. 9).
Each model was built using the training dataset from the previous
step; Subsequently, each model’s diagnostic accuracy was calcu-
lated using the test dataset.

For the test samples, most cancer samples showed significantly
higher scores for their corresponding tumor class (Fig. 4a). To

evaluate model accuracy, ROC curves for one-vs-rest classification
were used (Fig. 4b). Each model was able to predict its target class
with an AUC value of 0.925, a sensitivity of 87.4%, and a specificity of
88.3%, on average (Table 2). Notably, the system had robust per-
formance in identifying early-stage cancers (Fig. 4c). We measured
classification accuracies for early-stage patients among the test
samples based on clinical data, and early-stage samples included
patients of TNM stage II or under. For liver cancer whose TNM
informationwasmissing, stage 0 (very early stage) and stage A (early
stage) patients were selected using the BCLC staging system44.
Notably, the models well predicted TOO even for early-stage cancer,
reaching the mean AUC value of 0.945.

As with cancer presence detection, we compared the TOO dis-
crimination performance against baseline classifiers. The dummy
classifier poorly predicted the target class in all TOO discriminant
cases, and the SVM classifier showed completely biased results in
certain cancer types (breast and pancreatic cancer) as well. These
results support that CNN-based classifiers have better performance
not only in cancer presence but also in TOO discrimination.

Finally, we built a decision system toderive diagnostic predictions
by integrating cancer presence detection and TOOdiscrimination. The
decision rules for deriving predictions for individual samples are
shown in Supplementary Fig. 11. First if the average of the cancer
classifier predictions for an individual sample didnot exceed the cutoff
value, it was scored as non-cancer. Positive signals from samples
exceeding the cutoff value were then input to the individual TOO
classifiers. Since the models are not completely optimized, high pre-
diction scores are output from two or more TOO models in single
samples due to the prediction error. Therefore, final TOO predictions
were determined based on the predicted class through a multi-layer
perceptron (MLP) network to avoid false-negative diagnosis and guide
to an appropriate precision diagnosis step. The MLP network was
implemented based on the score value for TOO of the training sample,
and the test samples for deriving the diagnostic accuracy were not
used to implement the algorithm. The classification results derived
from this decision rule for all test samples were summarized in a
confusionmatrix (Fig. 5). As a result, this systemshowed a sensitivity of
90.2% at a specificity of 94.4% while predicting the TOO of 72% of
positive patients. In the analysis by cancer stage, the sensitivity for
advanced-stage cancer patients was 97.5% (Supplementary Fig. 12).
Notably, early-stage cancer patients were detectable with a sensitivity
of 88.1% and a TOO accuracy of 75.9%, suggesting that our approach
can be utilized as an early-stage diagnostic tool (Supplemen-
tary Fig. 12).

Table 1 | Binary diagnostic performance for cancer presence for test samples

# of
samples

AUROC Sensitivity Specificity Accuracy Precision Sensitivity at 99%
specificity

Specificity at 99%
sensitivity

− +

Total 160 360 0.970
(0.957–0.982)

0.894
(0.881–0.937)

0.963
(0.964–0.968)

0.915
(0.908–0.946)

0.982
(0.981–0.986)

0.725 (0.674–0.755) 0.563 (0.180–0.611)

Lung cancer 100 0.936
(0.904–0.963)

0.830
(0.765–0.915)

0.919
(0.918–0.940)

0.885
(0.858–0.931)

0.865
(0.857–0.896)

0.590 (0.500–0.617) 0.563 (0.500–0.193)

Breast cancer 70 0.984
(0.966–0.997)

0.957
(0.869–1.000)

0.944
(0.994–0.950)

0.948
(0.961–0.965)

0.882
(0.981–0.896)

0.857 (0.869–0.913) 0.544 (0.473–0.950)

Colorectal cancer 70 0.972
(0.948–0.992)

0.914
(0.887–0.964)

0.975
(0.956–1.000)

0.957
(0.935–0.987)

0.941
(0.900–1.000)

0.714 (0.690–0.964) 0.575 (0.509–0.653)

Liver cancer 40 0.978
(0.948–0.997)

0.950
(0.879–1.000)

0.975
(0.970–0.988)

0.970
(0.955–0.990)

0.905
(0.853–0.952)

0.675 (0.667–0.900) 0.556 (0.497–0.988)

Pancreatic cancer 40 0.992
(0.980–1.000)

1.000
(1.000–1.000)

0.969
(0.948–0.988)

0.975
(0.960–0.990)

0.889
(0.855–0.950)

0.650 (0.447–0.974) 0.969 (0.948–0.988)

Stomach cancer 40 0.999
(0.995–1.000)

1.000
(1.000–1.000)

0.981
(0.969–1.000)

0.985
(0.975–1.000)

0.930
(0.886–1.000)

0.975 (0.821–1.000) 0.981 (0.969–1.000)

(95% CI)
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Discussion
Recently, methods for detecting circulating biomarkers (e.g., ctDNA
and CTC) based on whole-genome sequencing or DNA methylation
patterns are emerging for liquid biopsy45,46. Despite the innovation in
detection methods, accurate diagnosis of early-stage cancer remains
challenging. Exosomes are attractive because they are relatively free
from problems associated with other biomarkers, such as low abun-
dance and undesired fragmentation, based on their properties of
being actively secreted from living tumor cells, even at early stages,
and having cargoes protected by a lipid bilayer47,48. In addition,

exosome stability in long-term storage or freezing of clinical samples
provides another advantage for their clinical application47,49.

Meanwhile, SERS has been applied for cancer diagnosis and liquid
biopsy in various ways. Many groups have tried to detect cancerous
biomolecules in blood, urine, saliva, and breath through SERS for
medical diagnostic application50. Recently, based on the aforemen-
tioned advantages of exosomes as a biomarker, reports on the SERS
characterization for cancerous exosomes are increasing20. In this
stream, several papers have been reported on early-stage detection,
including breast cancer51,52, colon cancer53, and lung cancer33 based on
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Fig. 4 | Tissue of Origin (TOO) discrimination. a Diagnostic score tendency for
each cancer type for test samples. The box plot presents the median, inter-quartile
range (Q1 and Q3), min–max range, and outliers. Bars represent standard errors.
b ROC curves showing classification performance for the entire test sample. AUCs
are shown in each graph. c Classification of early-cancer cases. Lung, breast, colon,

pancreatic, and stomach cancer cases involve stages 0–II using the TNM staging
systembasedon theAJCC staging system. Liver cancer cases include stages0 andA,
according to the Barcelona clinic liver cancer (BCLC) staging system44. The light-
colored area represents a 95% confidence interval range. Cartoons in panel (a) were
created with BioRender.com.
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the SERS profiles of the bio-liquid itself or its components like exo-
somes. However, issues of localization of cancer types in the early
stage and a small number of test samples remain.We attained effective
discrimination between 6 early-stage cancer types and diagnostic
sensitivity and specificity of over 90% with 520 test samples not used
to train algorithms. This diagnostic system offers clinicians the
opportunity to select tissues that need more detailed examination
before the advanced stage of tumors without the time and expense of
multiple tests.

As a diagnostic method, our approach provides additional
advantages. First, it is rapid. Because we utilized an automated system,
exosome isolation (20min) and detection (30min for specimen pre-
paration; 10min for detection) can be completed in an hour. The final
decision can be completed in several seconds using pre-trained AI
models. The SERS chip with 10measurement spots is not reusable, but
it would be possible for automated detection and diagnosis through
programmed stage control. Second, it reduces the resources required
for diagnosis. Our label-free SERS requires no additional extra reagents
for amplifying or capturing analytes; it only requires a concise
experimental procedure of dropping 10μL of exosome solution on a
small hot-spot array. Therefore, the biochemical resources required
for diagnosis can be greatly reduced, in turn reducing cost. Third,
expansion to more diverse diseases is likely possible, as it is not diffi-
cult to insert an additional diagnostic module for identifying other
diseases from the SERS signal. This offers the advantage of expanding
the diagnostic scope to other diseases that may induce disturbance of
the nature and subpopulation of exosomes in plasma.

Nevertheless, several limitations remain to be addressed: first,
there is still a need to augment a larger number of training samples,
and diagnostic performance must be verified using external tests and
prospective clinical trials; second, potential confounding factors,
including those generated by benign tumors, should be considered;
third, major spectral features should be examined, and its association
with reported biological pathways or factors from the pathology per-
spective; fourth, the introduction of uniform and mass-
manufacturable SERS detection chips may be required for precision
and reproducibility in clinical practice. Ultimately, it will be essential to
establish a well-controlled diagnostic process using the actual clinical
workflow from blood draw to diagnostic report.

In summary,we havedemonstrated the simultaneous diagnosis of
six types of early-stage cancers using a single spectroscopic detection.
We implemented and evaluated an AI diagnostic system for hundreds
of human plasma samples. We achieved a high diagnostic accuracy of
over 95% and TOO discrimination performance. Importantly, the sys-
tem was effective even for early-stage cancer patients. We hope that
this method can provide appropriate precision diagnoses to more
potential patients and improve their prognoses.

Methods
Human plasma samples
The Institutional Review Board of Korea University Guro Hospital
approved this study (approvals 2020GR0176 and 2021GR0013 for

healthy participants and cancer patients, respectively). We obtained
written informed consent from all participants who underwent blood
collection. This study used a total of 210 HC and 543 cancer patient
blood plasma samples (Table S1).

Inclusion criteria of this research include (1) an adult of Korean
nationality, (2) patients who received cancer surgery and permanent
pathology of lung cancer (adenocarcinoma), breast cancer (duct car-
cinoma), colon cancer (adenocarcinoma), liver cancer (hepatocellular
carcinoma), pancreatic cancer (duct carcinoma), and stomach cancer
(adenocarcinoma). (3) Patients without neoadjuvant therapy before
the cancer surgery, and (4) patients who have not been diagnosedwith
other cancers before cancer surgery. Exclusion criteria are patients
who do not meet the inclusion criteria. The sex of participants was
defined based on self-report.

The eligible biospecimen of cancer patients were retrospectively
and randomly obtained according to inclusion/exclusion criteria
through 3 human biobanks (Biobank of Korea University Guro Hospi-
tal, Asan Bio-Resource Center, and Biobank of Ajou University Hospi-
tal) in theRepublic ofKorea.Bloodplasma samples fromHCswithout a
personal cancer history were retrospectively randomly obtained from
the Korea Institute of Radiological and Medical Sciences (KIRAMS)
Radiation Biobank and the Biobank of Seoul National University Bun-
dang Hospital, Republic of Korea. The plasma samples were collected
before surgery after a permanent pathology was confirmed. Since this
study used retrospectively collected samples, the period of time for
recruitment and data collection was not established. Since this study
was a pilot study to develop a method to identify multiple cancers is
possible, no sample size calculation to explore clinical utility was
performed. All samples were stored at −80 °C.

To implement models, clinical information was available to train
models with actual labels. The predictions on the test sample were
made without information on the correct class.

Exosome isolation
Frozen suspensions were thawed at 4 °C. The exosome isolation was
performed using a size-exclusion chromatography column (Exo-I S5,
Exopert, KR)36. After the substitution of the inner liquid, 500-μL of
plasma was loaded onto the prepared column. When the plasma was
permeated into the column thoroughly, PBS was added as a mobile
phase. Then, 500-μL of the eluted fractions were collected serially.
Fractions as the exosome suspension were selected after the evalua-
tion of collected particles. The resulting suspensions were stored at
−80 °C until subsequent analysis.

Exosome evaluation
Western blotting of the isolated exosome. Isolated exosomes were
lysed in DBPS without calcium chloride and magnesium chloride
(WELGENE, South Korea). Proteins were determined using Bradford
Dye Reagent (Bio-Rad, USA) and boiled with 5× SDS loading buffer
(CELLNEST, South Korea) for 5min at 95 °C. Totally, 20μg of exosomal
total proteins were separated in 4–20% precast protein gel (Bio-rad,
USA) and transferred onto PVDF membranes (Bio-rad, USA). The

Table 2 | TOO performance for test samples

# of samples AUROC Sensitivity Specificity

– +

Lung cancer 260 100 0.980 (0.964–0.992) 0.970 (0.899–0.938) 0.927 (0.952–0.992)

Breast cancer 290 70 0.876 (0.814–0.924) 0.714 (0.766–0.826) 0.931 (0.780–0.924)

Colorectal cancer 290 70 0.931 (0.896–0.961) 0.786 (0.712–0.838) 0.924 (0.922–0.962)

Liver cancer 320 40 0.907 (0.847–0.955) 0.875 (0.781–0.932) 0.819 (0.921–0.886)

Pancreatic cancer 320 40 0.913 (0.867–0.949) 0.975 (0.980–0.970) 0.747 (0.712–0.869)

Stomach cancer 320 40 0.941 (0.880–0.988) 0.925 (0.821–1.000) 0.950 (0.944–0.957)

(95% CI)
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membranes were blocked using 3% BSA in TBS containing 0.1% Tween
20 for 1 h at room temperature. Anti-CD9, CD63, CD81, TSG101, and
calnexin antibodieswere used at a dilution of 1:1000. Anti-ApoA, ApoB,
and HSA antibodies were used at a dilution of 1:3000. Themembranes
incubated with the diluted primary antibodies in 2% BSA solution for
overnight at 4 °C. The membranes were then incubated with HRP-
labeled secondary antibodies, goat anti-mouse IgG for exosomal pro-
teins and HSA, and goat anti-rabbit IgG for lipoproteins (CELLNEST,
South Korea) at dilutions of 1:10,000 and developed by chemilumi-
nescence substrate (Bio-Rad, USA). The signals were captured using
the bio-imaging system(Amersham ImageQuant 800, cytiva,
Germany).

For TEM, exosome suspensions were fixed using 0.1% (v/v) par-
aformaldehyde at a 1:1 volume ratio for 30min. A 200 mesh Lacey
carbon grid was immersed in 10μL of fixed exosomes for 7min. The
residual suspension was soaked through gentle touching with filter
paper and thoroughly rinsed with deionized water. The resulting grid
was then immersed in 10μL of 1% UranyLess EM stain solution for
7min. The residual solution was soaked with filter paper and dried.
TEM was performed with an FEI Tecnai F20 G2.

For NTA, the Nanosight NS300 instrument (Malvern Panalytical
Ltd.) was used with samples diluted 100–1000-fold.

SERS detection chips
Cover glasses were cleaned by immersion in piranha solution
(H2SO4:H2O2 = 3:1) for 30min to eliminate organic impurities, then
thoroughly rinsedwith deionizedwater and ethanol. The cover glasses
were then immersed in 1%(v/v) 3-Aminopropyltriethoxysilan (APTES)
ethanoic solution to functionalize the surface, then thoroughly rinsed
with ethanol and dried using N2 gas. Polydimethylsiloxane (PDMS)
wells were prepared by punching holes at regular intervals with a
2.5mm diameter biopsy punch. The resulting PDMS wells were
attached to the APTES-functionalized substrate. Next, 100 nm AuNP
colloidal solution (NanoComposix) was concentrated 5-fold through
centrifugation. Then, 8μL of the concentrate was added to each hole
array. The good substrate with AuNP solution was placed on a

centrifuge rotor configured to hold the substrate and then centrifuged
at 1000×g for 5min. After the PDMS well was detached, the substrate
was rinsed with deionized water and dried. Exosome suspension was
dropped onto each dot and dried at 35 °C.

SERS
The Raman signal was observed with Axio Oberver3 equipped with
iDus420 CCD (Andor iDus420) and spectrograph monochromator
Monora322i (Dongwoo Optron). Laser irradiation was performed at
2mW and 785 nm through a 50× objective lens (NA 0.7). The acquisi-
tion time was 1 s per single take. To maintain focus and automated
signal scanning, customized software was built using Python and the
pyQT5 library. Signals were preprocessed for denoising, baseline cor-
rection, and elimination of spiked data. Anomalous data were exclu-
ded if the intensity of the common band near 860 cm−1 did not exceed
a threshold specified manually through signal comparison.

Neural network algorithm
All data were handled through custom Python code. The neural net-
work model, including CNN, SVM, MLP, and dummy classifier, were
implemented using Python library, including scikit-learn, TensorFlow
2.5, and Keras API. The model architecture was composed of serial
convolutional layers to conduct binary classification through a sig-
moid activation function. 20% of the training data was used as a vali-
dation dataset to monitor overfitting during the learning process. All
hyperparameters, including learning rate, decay rate, and training
epoch, were optimized through manual and random searches.

Statistics and reproducibility
Multivariate and statistical analyses (e.g., ROC curve, AUC calculation,
PRC) were performed using a scikit-learn library in Python. The sta-
tistical analysis, including the t-test, was performed using Python scipy
and pingouin library. All visualizations of dataweremade using Python
and MATLAB R2021a (MathWorks) codes. The western blotting data
and TEM images in Fig. 2 were collected from at least two independent
experiments.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated during and analyzed during the current study
are available in the GitHub repository. Source data are provided in
this paper.

Code availability
All the code used for prediction using implemented algorithms and
generation of figure data is available from the GitHub repository with
sample data for the demo.
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