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Dynamical latent state computation in the
male macaque posterior parietal cortex

Kaushik J. Lakshminarasimhan 1 , Eric Avila2, Xaq Pitkow 3,4,5,7 &
Dora E. Angelaki2,6,7

Success in many real-world tasks depends on our ability to dynamically track
hidden states of the world. We hypothesized that neural populations estimate
these states by processing sensory history through recurrent interactions
which reflect the internal model of the world. To test this, we recorded brain
activity in posterior parietal cortex (PPC) of monkeys navigating by optic flow
to a hidden target location within a virtual environment, without explicit
position cues. In addition to sequential neural dynamics and strong inter-
neuronal interactions, we found that the hidden state -monkey’s displacement
from the goal - was encoded in single neurons, and could be dynamically
decoded from population activity. The decoded estimates predicted naviga-
tion performance on individual trials. Task manipulations that perturbed the
world model induced substantial changes in neural interactions, andmodified
the neural representation of the hidden state, while representations of sensory
and motor variables remained stable. The findings were recapitulated by a
task-optimized recurrent neural networkmodel, suggesting that task demands
shape the neural interactions in PPC, leading them to embody a world model
that consolidates information and tracks task-relevant hidden states.

Imagine you are driving on a busy highway and wish to change lanes.
To safely do so, you need to mentally track the pattern of traffic
behind you even when not looking into the rear-view mirror. Many
everyday tasks require maintaining and updating beliefs about state
variables that are not directly observable. This can be computa-
tionally hard especially if the latent world states are continuous-
valued, i.e., assume a range of values, and dynamic (vary in time);
these properties are typically true in the real-world1. Mechanisms
underlying sensory perception andmovement generation have been
extensively investigated under a wide variety of conditions, such
that we are converging on good computational models that are
consistent with neural data2–5. In contrast, we do not understand
how the intermediate, continuous-valued, time-varying, latent
states - the stuff of thoughts - are represented in the brain, nor the
mechanisms used to compute those states6,7. Filling this void is

essential to building a complete picture of neural computations in
the sensorimotor loop.

The past few decades have seen the emergence of two distinct
approaches in the study of neural representation of latentworld states.
These have contributed significantly to our understanding in com-
plementary ways. One approach, following the tradition of sensory
neuroscience, uses binary decision-making tasks (e.g., motion direc-
tion discrimination) in which participants gradually integrate sensory
evidence over time and then report one perceived outcome (e.g., dots
moving to the left or right)8–11. The highdegree of experimental control
afforded by this paradigm has helped reveal a tight link between the
neural activity in the posterior parietal cortex and the time course of
decision variables that guide behavior12,13. However, because the latent
world states themselves tend to be discrete and/or static in such tasks,
it is difficult to fully extrapolate those insights to continuous,
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interactive behaviors where those latent states change continually as a
consequence of one’s own actions. The alternative approach, which
emerged fromcognitive psychology, has sought to characterize neural
correlates of continuously changing latent world states (e.g., position,
heading of freely foraging animals)14,15. This has led to a rich descrip-
tion of neural maps in the hippocampal formation that can potentially
be used for computing latent world states. However, because neither
sensory input nor behavior is controlled in this approach, it is difficult
to determine the precise relationship between neural activity and the
animal’s momentary beliefs in such settings. To overcome these lim-
itations, we took an approach that combined the desirable elements of
both approaches by using a task that was ecologically valid, yet well-
defined and controllable. Our goal was threefold: (i) to characterize the
neural representation of the repertoire of sensory, latent, and motor
variables in a naturalistic closed-loop task featuring action-perception
loops, (ii) to test whether the latent states computed by the neural
population influence behavior, and (iii) to constrain the space of
possible mechanisms that create the neural representation of the
latent states.

We created a virtual environment in which monkeys used a joy-
stick to steer to a transiently cued, random target location by inte-
grating sparse optic flow cues16. To successfully perform the task,
monkeys had to continuously update an internal estimate of the rela-
tive target location (the latent state) by integrating their own move-
ment velocity inferred from the sparse opticflow cues. Brain regions in
the posterior parietal cortex (PPC) have been implicated in various
aspects of this computation such as optic flow processing17,18, working
memory19–21, as well as planning of spatial movements22,23. Because we
are primarily interested in understanding the mechanisms of latent
state computation rather than optic flow processing per se, wewanted
to record neural activity in a region within PPC that likely already
receives abstract velocity signals, such that it may serve as the locus of
latent state computation in our task. There are several properties that
make area 7a a more ideal candidate than other parts of PPC. First,
anatomical tracing studies have consistently found a pattern of inter-
areal connectivity that places area 7a at the top of the motion-
processing (‘dorsal stream’) hierarchy24,25. Moreover, it is one of the
few areas in PPC that directly projects to the hippocampal
formation26,27, with lesions to area 7a affecting navigation
performance28,29. Second, area 7a neurons are known to have large,
bilateral receptive fields (15–25 degrees) and activated by the full-field
motion stimuli used in our VR environment30. Third, response prop-
erties of area 7a neurons indicate that they are capable of margin-
alizing away the influence of eye movements thereby representing
visual inputs in a navigationally useful, non-retinotopic format at the
population level31. Fourth, we confirmed in prior work under passive
viewing conditions that neurons in area 7a indeed encode linear and
angular velocity in an abstract format, regardless of stimulus
modality18. Finally, previous work has shown that representation of
cognitive variables in area 7a is clearly decoupled from the influenceof
sensory andmotor variables32,33 whereas suchdecoupling has not been
demonstrated elsewhere in PPC. Therefore, we simultaneously recor-
ded from a large number of neurons from area 7a of PPC while mon-
keys performed this task.

We found that neural populations exhibited sequential activity
during this task, and that coupling between neurons contributed
substantially to the neural activity. Furthermore, single neurons car-
ried information about sensory, latent, andmotor variables, and latent
world states decoded from the population activity were predictive of
monkeys’ behavioral errors on individual trials. Finally, task manip-
ulations that perturbed the world model dramatically altered both
neuronal coupling and latent state tuning, but only minimally affected
tuning to sensory and motor variables. These results suggest that PPC
maintains dynamical beliefs about latent world states during natur-
alistic behaviors involving action/perception loops.

Results
Threemonkeys performeda visual navigation task inwhich they used a
joystick to steer to a transiently cued target location in a three-
dimensional virtual reality (VR) environment without allocentric
reference cues (i.e., stable landmarks) (Figs. 1a and S1a and “Methods”).
Individual visual elements comprising the ground plane were visible
only transiently and could not be used as landmarks. At the beginning
of each trial, a circular target on the ground plane blinked briefly at a
random location within the field of view, and then disappeared. The
joystick controlled forward and angular velocities, allowing subjects to
steer freely in two dimensions (Fig. 1b—left). The goal was to steer
toward the target and stop when their position fell within a circular
reward zone centered on the target (Fig. 1b—middle). The joystick was
controlled via amixture of frontal and lateral handmovements (Fig. 1b
—right and Fig. S1b). On each trial, a target location was drawn ran-
domly from a uniformly distribution over the ground plane areawithin
the subject’s field of view (1–4m, ±40∘; Fig. 1c—left), eliciting diverse
steering maneuvers as seen from their movement trajectories across
trials (Fig. 1c—right). Performance feedback was provided at the end of
each trial in the form of juice reward for correctly stopping within the
reward zone (0.6m radius; Fig. 1d) after waiting for a variable delay
period (0.2–0.6 s).

Behavioral performance
Because target locations were randomized, travel durations varied
widely across trials (median ± interquartile range [IQR]: 1.9 ± 0.8 s). On
average, 61.5 ± 4% of the trials were rewarded, and the average error in
stopping position was 0.41 ± 0.1 m. Both radial distance (Fig. 1e—left)
and angular eccentricity (Fig. 1e—right) of the monkeys’ responses
(stopping location) were highly correlated with the target location
across trials (Pearson’s r ± SD, radial: 0.71 ± 0.06, angular: 0.87 ± 0.05).
To test whether performance was accurate, we regressed responses
against target locations. The slope of the regression was close to unity
both for radial distance (0.87 ± 0.04) and angle (0.94 ±0.06), sug-
gesting that the monkeys were nearly unbiased. Non-parametric
regression yielded qualitatively similar results (Fig. S1c), but addi-
tionally revealed modest undershooting for the most distant targets,
an effect that is likely due to growing position uncertainty described in
previous work34.

Although the above results suggest that the behavior was appro-
priatelymodulated by task demands, they donot satisfactorily capture
the performance for two reasons. First, they ignore differences in task
difficulty associated with varying target distance. Second, they do not
account for the errors arising from intrinsic variability in motor com-
mands. Therefore, we used an approach that is conceptually similar to
receiver operating characteristic (ROC) analysis to objectively evaluate
the performance by accounting for both sources of variability. For
each behavioral session, we constructed a “psychometric function” by
computing reward probability as a function of a hypothetical reward
window size (Fig. 1f—left; “Methods”). By plotting the true psycho-
metric function against one obtained by shuffling target locations
across trials, we obtain the monkey’s ROC curve (Fig. 1f—right).
Chance-level performance would correspond to an area under the
ROC curve (AUC) of 0.5, while perfectly accurate responses (zero
error) will yield an AUC of one. The AUCs were well above chance
(mean± SD, 0.88 ± 0.03; Fig. 1f—right inset) and stable across target
distances and angles (Fig. S1d). Nonetheless, the AUC was significantly
worse than a subset (10%) of interleaved trials in which the target was
visible throughout (0.94 ±0.04, p =0.002, two-sample t test; Figs. 1g
and S1e). This suggests thatmonkeys found this task quite challenging,
and performance was not limited simply by motor variability.

In principle, it is possible to avoid integrating optic flow by
learning the precise transformation implemented by the joystick
controller. However, as wewill show later and as described in previous
work, monkeys are sensitive to multiple task manipulations in a
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manner that strongly suggests that they perform the task by inte-
grating optic flow to update beliefs about their spatial position35. In the
following sections, we examine the neural dynamics during this task,
including the neural representation of dynamically evolving latent
state estimates about position and other task variables.

Neural dynamics
We recorded neural activity from the PPC (area 7a) using chronically
implanted multi-electrode arrays, while monkeys performed the task
(Methods, Fig. 2a). A total of 1612 units were recorded across 32 ses-
sions (44 ± 12 units/session). To avoid double counting neurons, we
restrict our focus to a subset of 244 neurons obtained from three
sessions with the highest yield, one from each monkey. Data from the
remaining sessions are analyzed and presented in Supplementary
Material for comparison. Because this task challenged monkeys to
integrate self-motion and update beliefs about their position relative
to a remembered target throughout the trial, it places a significant
strain on working memory. Classic working memory paradigms have

found either persistent activity of single neurons or activation ofmany
neurons in sequence. Few neurons in our data exhibited persistent
activity during the trial. Instead, neurons seemed to be more active at
certain periods of the trial, with some neurons being active earlier than
others (Fig. 2b—compare #1, #2 vs #3, #4). Therefore, we wanted to
test if neurons instead exhibited sequential activity dynamics at the
population level.

Since changes to the latent state are restricted to the time
between target onset and the end of movement, we estimated popu-
lation firing rate maps by rescaling time over this period and com-
puting the trial-averaged response of each neuron. We sorted the
neurons according to the timing of peak activity (“Methods”). We
found strong sequential activation of neurons in all three monkeys, as
quantified by a standard index of sequentiality (Sql) that ranges from0
(random) to 1 (sequential) (“Methods,” Mean Sql ± 95% CI—Monkey B:
0.34 ±0.1, Monkey S: 0.23 ± 0.12, Monkey Q: 0.28 ± 0.1). Furthermore,
the degree of sequentialitywas robust to task demands: Sql was similar
across groups of trials corresponding to different target distances
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Fig. 1 | Monkeys navigated to a remembered goal by integrating optic flow.
aMonkeys used a joystickwith twodegrees-of-freedom to navigate to a cued target
(yellow disc) using optic flow cues generated by ground plane elements (brown
triangles) in a virtual environment. b Left: The time course of sensory input vari-
ables—linear (top) and angular (bottom) velocities—during one example trial.
Middle: Overhead view of the spatial position of the monkey during the trial. Black
open circle denotes the monkey’s response (stopping location). As there are no
visual landmarks, theposition becomes latent to themonkey as soonas the target is
turned off. Right: Monkey’s hand velocity along two leading principal components
of hand position, while maneuvering the joystick. Yellow shaded regions corre-
spond to the time period (~300ms) when the target was visible on the screen. Time
is also coded by color. c Top: Overhead view of the spatial distribution of target
positions across trials. Bottom: Movement trajectories of one monkey during a
representative subset of trials. Blue dot denotes starting location. d Example trials
showing “incorrect” (left) and “correct” (right) responses of a monkey. e Left:
Comparison of the radial distance of the response against radial distance of the
target across a subset of trials from three different monkeys. Right: Angular
eccentricity of the response versus target angle. Black diagonal lines have unity

slope. The starting position was taken as the origin. f Left: Cumulative distribution
of stopping distance (from the target center) across trials of the three monkeys.
Dashed curves show the corresponding null distribution calculated by shuffling
response and target locations. Gray region highlights the range of stopping dis-
tances that guaranteed reward. The cumulative probability of an arbitrary stopping
distance can also be interpreted as the hit rate (fraction of correct trials) if that
stopping distance was taken to be the edge of the reward zone. With this inter-
pretation, we can construct ROC curves by plotting the true hit rates against
shuffled hit rates across the range of stopping distances. Right: ROC curves from
the three monkeys, averaged across sessions. Data from individual recording ses-
sions are overlaid in thin lines. Inset—Histograms of the area under the corre-
sponding ROC curves (AUC). g In a random subset (10%) of the trials, the target
remained visible throughout such that the world state was fully observable to the
monkeys. Histogramsof theAUCs for trials inwhich theworld statewas latent (gray
shaded) or fully observable (black open). Trials were pooled across monkeys. Inset
—Mean AUCs of individual monkeys under the two conditions (L latent, O fully
observable).a–c reprinted fromLakshminarasimhanet al.16, Copyright (2020), with
permission from Elsevier. Source data are provided as a Source data file.
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(Mean Sql ± 95% CI, Nearby targets: 0.21 ± 0.1, Distant targets:
0.19 ± 0.08) and target angles (Leftward targets: 0.26 ±0.07, Right-
ward targets: 0.22 ± 0.11). However, the overall activity level and the
precise sequence in which neurons were activated was not preserved
across trial groups: normalizing the activity and sorting the neurons
according to one group of trials did not yield identical sequential
activity in the complementary trial group (Figs. 2c, d and S2a, b). To
quantify this, we computed the pattern similarity of population rate
maps between task-relevant trial groups, and found that it was sig-
nificantly lower than the similarity between odd and even trials within
each trial group (Pattern similarity, Odd vs Even trials: 0.92 ± 0.03,
Nearby vs Distant: 0.65 ± 0.04, Leftward vs Rightward: 0.72 ± 0.03;
Fig. 2e, f—left). This suggests that the variability in sequencing is not
due to neural noise, but rather reflects systematic representation dif-
ferences between different trial groups. The pattern similarity was low

throughout the trial and not just at the beginning or the end of the trial
(Fig. 2e, f—right, Fig. S2c, d), suggesting that task demands alter the
population dynamics and neurons are not merely keeping time.

While sequential neural dynamics could partly be a signature of
the temporal integration process by which monkeys update their
position estimates, sensory cues (optic flow) and motor commands
(hand motion) are trajectory-dependent and thus also differ across
trial groups. Consequently, to test whether PPC contains all signals
relevant to this task, we need an explicit encoding model to relate
neural activity to dynamical latent state estimates as well as other
variables that influence neural activity, such as sensory and motor
variables. Furthermore, to the extent that the activity is not driven
solely by external inputs, the presence of sequential dynamics points
to a potentially important role for neural interactions within PPC. We
next fit a model with these features.
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the end of the stopping period while monkeys waited for feedback. c Peak-
normalized responseofneurons calculatedby averaging across the set of trialswith
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to the timing of their peak response observed in the set of trials with nearby (top
panels) or distant (bottom panels) targets. Spike times were rescaled based on the
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used for sorting. Neurons from all threemonkeys are combined before sorting (see
Fig. S2a, b for individual monkeys). d Similar to a, but with trials grouped by target
angle. e Left: Comparison of the pattern similarity of the population dynamics
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with trials grouped by target angle. In e, f, n = 112, n = 68, n = 64 neurons inmonkey
B, S and Q, respectively. Error bars denote ±1 SEM. Source data are provided as a
Source data file.
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Encoding model
Because the causal structure of the task involves an action-perception
loop, all task variables change dynamically during the course of the
trial (Fig. 3a). To simultaneously account for how neural activity is
influenced by dynamic sensory (linear and angular velocity), latent
(target distance and angle), and motor predictors (hand speed along
the two principal components of hand position) in addition to the
monkey’s gaze and discrete events (target onset and reward delivery),
we fit a generalized additive model (GAM) with Poisson distributed

spike counts (“Methods”; Fig. 3b). Consistent with previouswork in the
monkey PPC, we observed robust ~ 15Hz oscillations in the local field
potential (LFP, Fig. S3a). Therefore, we included the LFP phase as a
predictor to capture temporal structure in the spike trains associated
with these global rhythms. Finally, the model also incorporated tem-
poral filters that explicitly captured causal, directional functional
coupling between neurons, and autoregressive effects (spike-history
filter). The model differs from a traditional encoding model in that it
fits arbitrary nonlinearmappings (tuning functions) frompredictors to
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variables. a Causal structure of the task, illustrating the recurrent nature of the
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in variance explained by the model after removing those predictors. Black shows
the distribution of the variance explained by the full model. f Top: Example tuning
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neuronal response rather than linear kernels. However, this approach
is closely related to generalized linear models (GLMs) in
neuroscience36, and is in fact identical to it if the task predictors are
first expressed in terms of an appropriate non-linear basis. An iterative
pruning procedure (backward elimination) identified task variables to
which individual neurons were significantly tuned.

The best-fit GAM captured 58± 6% of variance in the structure of
population response (Fig. 3c) and 15 ± 4% of the temporal variability in
single neuron responses (Fig. S3b) suggesting that themodel hadgood
predictive power. A significant fraction of neurons was tuned to linear
and angular velocity (52 ± 8%), target distance and angle (37 ± 5%) and
motor output (58± 4%) (Fig. 3d). The majority of neurons (53 ± 4%)
were driven by target presentation while few neurons showed sensi-
tivity to reward delivery (7 ± 4%). Because different task signals were
mixed at the level of single neurons (Fig. S3c), the variance explained
by individual task variables was typically low (Figs. 3e and S3d).
Examining the model parameters, we found that single neurons were
often tuned to sensory and motor variables, as well as to latent world
states i.e., target distance and angle (Figs. 3f and S3e). Across the
population of neurons, we found near uniform tiling of the sensory
space with a significant fraction of neurons tuned for low, inter-
mediate, and high linear and angular velocities (Fig. 3f—green). A
similar trend was seen in the temporal kernels fit to motor variables
(hand speed) where we found a good mix of neurons that responded
before and after hand motions (Fig. 3f—blue). On the other hand,
tuning to target distance and angle were relatively skewed, with the
majority of neurons tuned to small target distances and extreme target
angles (Fig. 3f—orange). Greater preference for small target distances
couldbe a reflection of the fact that those states carry thehighest value
in the context of the task. Tuning to LFP phasewas highly stereotyped:
the spiking probability of all neurons peaked just before (18 ± 8∘) the
trough of the LFP signal. Tuning to target onset was somewhat vari-
able, with the vastmajority of neurons (71%) exhibiting anON response
with a latency of 122 ± 15 ms, and a smaller group of neurons (14%)
which responded exclusively after the target turnedOFFwith a latency
of 64 ± 32 ms (Fig. S3f). Tuning to gaze position was also diverse
(Fig. S3g), consistent with the diversity of ‘gain fields’ discovered by
classic studies investigating the role of posterior parietal cortex in
transforming visual input from retinal co-ordinates into actionable co-
ordinates31.

Next, we tested the extent to which coupling and spike-history
filters contributed to neuronal responses. To do this, we compared
likelihoods of the model with neither coupling nor spike-history filters
against themodel that included themboth (Fig. 4a).We found that the
likelihood was substantially greater for the coupled model, and mar-
ginally better for the model with just the spike-history factor (Mean
Likelihoods ± SD across neurons, Uncoupled model: 0.36 ±0.1, Spike-
history model: 0.39 ±0.1, Coupled model: 0.65 ± 0.14). The amplitude
of these filters capture the modulation (‘gain’) in the probability of
spiking as a function of the time since last spike from either the same
neuron or another neuron (Fig. 4b—top). By doing so, they are able to
capture features of spiking that are distinct from features captured by
the task variables. In particular, the spike-history filter and coupling
filter capture autocovariance and cross-covariance between neurons
respectively that are not due to fluctuations in task variables (Fig. 4b—
bottom). As a result, the coupled model is able to recapitulate the
spatiotemporal covariance structure of the population activity very
well (Pearson’s r ± SD, Data vs Coupled model prediction: 0.86 ± 0.08,
Data vs Uncoupled: 0.06 ±0.1; Figs. 4c and S4a), yielding substantially
better predictions than the uncoupledmodel. Note that the uncoupled
model can still capture covariance between neurons induced by the
fluctuations in task variables, but not shared fluctuations at the milli-
second timescale. Moreover, due to the directed nature of coupling
filters, the coupled model can capture millisecond timescale, asym-
metric interactions between neurons that may arise from recurrent

connectivity.We found that the structure of coupling filters was sparse
yet diverse: the same neuron had both net excitatory and inhibitory
effects on different target neurons (Figs. 4d and S4b). This diversity
should not be mistaken for a violation of Dale’s law since coupling
filters capture effective interaction between neurons, rather than
synaptic transmissionproperties. Across the population of all neuronal
pairs, the mean gain was 1.04 ±0.05 suggesting that excitatory and
inhibitory effects were balanced (Fig. 4e—top). The timescale of cou-
pling followed a power-law decay, with fast timescales contributing
substantially more power to the coupling filter (Fig. 4e—bottom,
Fig. S4c). The gain of both excitatory and inhibitory couplings
decreased with distance between neurons (Fig. 4f), mirroring widely
documented trends in anatomical connectivity and correlated
variability.

Population decoding
We have seen that single neurons in the macaque PPC encode task-
relevant variables, in particular, the latent i.e., spatial position of the
monkey. Because successful performance in this task depends on
tracking the dynamical latent state, the above finding indicates that
PPC might be critically involved in implementing the underlying sen-
sorimotor transformation. If this is the case, then we can make the
following predictions. First, we should be able to dynamically decode
sensory, latent, and motor variables with good precision from the
population activity. Second, trial-by-trial fluctuations in the error in
decoding the latent state from neural activity should propagate to the
motor plan and thus should be correlated with behavioral error
(latent→motor). Likewise, trial-by-trial fluctuations in the error in
decoding the sensory input should be correlated with the error in
decoding the latent state (sensory→ latent) that depends on those
sensory inputs. We tested all three predictions.

To test whether neural activity was informative about task
variables, we trained a linear decoder of the population response
separately for each task variable, regressing each variable against
the activity of all simultaneously recorded neurons (“Methods”).
Figure 5a shows the timecourse of different task variables estimated
using the corresponding decoding weights, on six example trials.
The estimates were remarkably well aligned with the ground truth
(gray). The correlation between the true and the decoded values was
high, demonstrating good decoder performance (Pearson’s r ± SD,
Sensory: 0.77 ± 0.04, Latent: 0.66 ± 0.06, Motor: 0.74 ± 0.04;
Fig. 5b). While decoder performance initially increased with popu-
lation size, the performance began to level off suggesting that the
assessment of the decoders was not dramatically limited by the
recording size (Fig. S5a).

Next, we assessed whether the decoding performance was cor-
related with behavior. Because the monkey’s decision to stop moving
ultimately depended on their (internal) estimate of target distance, we
restricted our focus on the decoder of this particular latent variable for
this analysis. Both raw estimates of the decoder performance and
estimates extrapolated to infinite population predicted monkeys’
behavioral accuracy, taken to be the fraction of rewarded trials
(Figs. 5c and S5b). As a stronger test, we evaluated the correlation
between the decoding error and behavioral error across trials for each
monkey. Due to the fine-grained nature of this analysis, we took
behavioral error to be the stopping distance to target rather than a
binary variable (rewarded/unrewarded). The correlation was sig-
nificantly greater than chance in all three monkeys (Fig. 5d—left,
Fig. S5c). Monkeys tended to undershoot when the decoder under-
estimated the target distance, and overshoot when there was over-
estimation (Median decoding errors, Undershot trials: −13 ± 3 cm,
Overshot trials: 11 ± 2 cm; Fig. 5d—middle). Consequently, wewere able
to successfully classify undershot/overshot trials with 69 ± 3% accu-
racy based on an ROC analysis on the distribution of decoding errors
(Fig. 5d—right).
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Finally, we tested whether error in decoding sensory inputs pro-
pagates to the latent state representation. Across trials, we found that
sensory decoding error was significantly correlated with the error in
decoding latent states (Pearson’s r, Linear velocity vs Target distance:
0.15 ± 0.1, Angular velocity vs Target angle: 0.26 ±0.1; Fig. 5e—left and
middle, Fig. S5d). Although the weights of sensory and latent decoders

were very different, they were not perfectly orthogonal (Fig. S5e). We
controlled for this by computing a null distribution of correlations, by
projecting population activity onto pairs of random surrogate modes
that were separated by the same angle as the decoders. Correlation
between surrogate responses was significantly less that the correlation
between error in sensory and latent decoders (p = 0.008, paired t test;
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pling filters between an example pair of neurons. Bottom right: Coupling filters
capture the cross-correlation between the pair, whereas spike-history filters alone
do not. c Top: Structure of the peak-to-trough amplitude of cross-correlation
between the activity of all pairs of simultaneously recorded neurons from an
example monkey. Neurons are ordered according to the weight of their contribu-
tion to the first principal component of the population activity. Coupled model
(bottom), but not the uncoupled model (middle), captures the structure of cross-
correlation of the full population. d Left: The strength of the coupling filters

between all pairs of neurons in the population shown in c. Strength of the filter was
computed by taking the total area under the filter. A strength greater than one
corresponds to excitatory coupling whereas less than one corresponds to inhibi-
tory coupling. The diagonal elements correspond to the strength of the spike-
history filter (self-coupling) as a special case. Right: Details of the coupling (off-
diagonal) and spike-history filters of a subset of the neural population, highlighting
the diversity in the filter profiles across neuronal pairs. e Top: Frequency dis-
tribution over the coupling strengths between all pairs of neurons, pooled across
monkeys. A vastmajority of the neuronswereweakly coupled (note the log scale of
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96, 192, 384] milliseconds). Data points show the average magnitude of weighting
of the different basis functions across all coupling filters, pooled across monkeys.
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black line correspond to excitatory and inhibitory couplings respectively. Source
data are provided as a Source data file.
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Fig. 5e—right). This suggests that neural computations include a sig-
nificant interaction between activity subspaces representing sensory
and latent variables. Suchan interaction is consistentwith a role of PPC
in computing latent world states from sensory inputs.

Effect of task manipulations
To better understand how neural computations for this task are
implemented in monkey PPC, we tested how manipulating task vari-
ables affects neural representations. In separate sessions, two of the
monkeys (S and Q) performed three variations of the baseline task in
which we manipulated either the reliability of optic flow (sensory
input) by changing the density of ground plane elements, the

consequence of actions (motor output) by changing the gain of the
joystick, or the animal’s position in the virtual world (latent state) by
briefly dislodging them off their intended trajectory (details in Meth-
ods; Fig. 6a). Crucially, these sessions also included trials from the
common, unmanipulated task such that we could record and contrast
the activity of the same population of neurons under both conditions.

Behavior was robust to all three manipulations, but there was a
small drop in performance (mean AUC± SD across six sessions of each
manipulation—baseline: 0.88± 0.03, average across manipulations:
0.84 ±0.03, p = 0.002, paired t test; Figs. 6b and S6a). Because activity
of each neuron was greatly influenced by the activity of other neurons,
we first testedwhether the shapeof the coupling filterswas affectedby
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task manipulations. We observed that all three manipulations altered
coupling, albeit to varying degrees (Figs. 6c and S6b). For each pair of
neurons, we quantified the degree to which coupling was altered by
computing the correlation between filters fit to data recordedwith and
without task manipulation (Fig. 6d—top left in color). Under all
manipulations, themedian correlation dropped significantly below the
noise ceiling defined as the correlation between couplings fit to odd/

even trials of the baseline task (color vs black), but remained sig-
nificantly above chance level defined as the correlation between cou-
plings between random pairs of neurons (color vs gray). Notably,
manipulations did not change the extent to which coupling explained
the activity of single neurons (paired t test—sensory manip: p = 0.81,
latent manip: p =0.68, motor manip: p =0.23; Fig. 6e). We quantified
the stability of coupling filters to taskmanipulations bymeasuring the
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stability index (“Methods”) that ranged from 0 (highly unstable) to 1
(perfectly stable). According to the causal structure of the task, all
three manipulations push the latent belief state about the world away
from what the animal has come to expect based on his experience
during the baseline task. However, for a given action, the latent world
states in the sensory manipulation condition remain closer to the
unmanipulated distribution. Strikingly, of the three manipulations,
sensorymanipulation produced the least change in coupling (Stability
Index (SI) of coupling—sensory manip: 0.68 ± 0.01, latent manip:
0.36 ± 0.01, motor manip: 0.49 ± 0.01; Fig. 6f). This suggests that an
internal model of the latent state dynamics may be embedded in the
network connectivity, such that manipulations that defy the learned
model aremore likely to alter the interactions between neurons, either
directly by re-calibrating the recurrent connections or by recruiting
additional neural pathways, in order to maintain good behavioral
performance.

If coupling filters reflect neural interactions that support the
computation used to track the latent state dynamics by PPC neurons,
then changes in coupling should produce changes in how single neu-
rons represent the latent state. We tested this by computing the
robustness of tuning functions to the task manipulations, and found
that tuning to latent state (position) was indeed greatly affected (SI of
latent tuning—sensory manip: 0.72 ± 0.05, latent manip: 0.53 ± 0.03,
motor manip: 0.47 ± 0.03; Fig. 6d, f). In contrast, neuronal tuning to
sensory and motor variables was relatively more stable (Figs. 6d, f
and S6c). Thus, both sensory and motor representations were robust
to task manipulations whereas latent state representation was not.

Taken together, results from the manipulation experiments sug-
gest that the functional role of PPC in this task might be primarily to
integrate sensory input (velocity) inherited from upstream brain areas
in order to track the latent world state (position), which could then be
used by downstream circuits to generate appropriate motor com-
mands. Concretely, integration could be implemented locally via
recurrent interactions within PPC which embody the world model,
resulting in a dynamically changing representation of the latent world
state in response to taskmanipulations. In contrast, sensory andmotor
signals may flow through relatively static input and output connec-
tions of PPC yielding more stable representations of those variables.
To test the plausibility of this hypothesis, we trained a recurrent neural
network (RNN) model to perform the same task as monkeys and
compared the representation learned by the network to monkey PPC.
The objective was to produce amodel that was functionally equivalent
to monkeys without explicitly constraining the representations it
learned, such that any similarity between the representation of the
RNN and the monkey PPC could be attributed to the computational
constraints satisfied by the RNN.

RNN model
We trained a fully connectedRNNmodel (Fig. 7a) to solve a task similar
to the one solvedbymonkeys. The network comprised 100 recurrently
connected, nonlinear neuronswhose activity ranged from −1 to +1. The
network received four inputs (2D self-motion velocity and 2D target
position) and the network activity was linearly read out by two con-
troller output neurons (2D hand velocity). The control outputs affec-
ted the latent world states as well as the sensory inputs whichwere fed
back via the two input channels conveying self-motion velocity (World
model block; Methods). At the start of each trial, the network received
transient pulses whose amplitude encoded the target position. We
trained the network to produce controller outputs such that the
resulting trajectory ended atop the target center (“Methods”). The
network learned to generate qualitatively good trajectories (Fig. 7b—
left), and the training was halted when the performance matched that
of the monkeys (Fig. 7b—right, Fig. S7a).

Similar to monkey PPC neurons, model neurons exhibited
sequential activity, with a precise sequence that wasmodulated by the

goal location (Fig. 7c). However, model neurons were active for much
longer periods and consequently exhibited lower sequentiality than
monkeys’ neurons (mean Sql ± 95% CI—Model: 0.08 ±0.05, Monkeys:
0.29 ± 0.1). Introducing a metabolic constraint into the training
objective by penalizing the average activity substantially improved the
degree of sequentiality (“Methods”; Fig. S7b), suggesting that such
constraints might be operating in PPC. Although the model was not
explicitly trained to track the latent state (position), model neurons
nonetheless exhibited tuning to target distance and angle (Fig. 7d—
left) because this was needed to perform the task. There was no evi-
dence for functional specialization and themodel neurons exhibited a
highdegree ofmixed selectivity to sensory, latent, andmotor variables
(Fig. S7c). Furthermore, we found that recurrent connectivity
explained a large fraction of the activity (Mean R2 ± 95% CI—without
coupling: 0.39 ±0.04, with coupling: 0.92 ± 0.1). The distribution of
couplings between neurons in the network reflected a balance
between inhibitory and excitatory interactions (Fig. 7d—right,
Fig. S7d). Similar to monkey PPC, the error in decoding the target
distance frommodel neurons predicted the error in stopping position
(Pearson’s r: Model: 0.55 ± 0.1, Monkeys:0.29 ±0.2; Fig. 7e—left). This
suggests that the latent state representation learned by the network
propagates to the readout neurons that drive motor output. Likewise,
the error in decoding the sensory inputwas correlatedwith the error in
decoding the latent world states (Pearson’s r—Linear velocity vs Target
distance: 0.23 ± 0.2, Angular velocity vs Target angle: 0.45 ± 0.2; Fig. 7e
—right) suggesting that the latent representations were derived, at
least in part, by integrating sensory inputs. Finally, we tested the net-
work on the three manipulations described in the previous section.
Although the network was robust to adding more sensory noise, it
generalized lesswell to latent state andmotormanipulations (Fig. S7e).
Network performance in the latter two manipulations could be
restored by retraining the recurrent weights (Fig. 7f—top left, “Meth-
ods”). Notably, comparable performance in all three manipulations
could be achieved without retraining the input weights or readout
weights (Fig. 7f—top right). Consequently, tuning to both sensory and
motor variables was stable under all manipulations (Fig. 7f—bottom).
In contrast, tuning to latent state and the coupling between model
neuronswereonly robust to sensorymanipulationwhere the recurrent
weights did not have to be retrained. These findings parallel the effect
of manipulations on PPC neurons (Fig. 6f).

The striking similarity between the model and monkey neural
representations suggests that the neural mechanisms by which PPC
contributes to this taskmay be dictated largely by simple architectural
constraints that were incorporated into the RNN model. Specifically,
like the model neurons, PPC neurons might inherit self-motion infor-
mation from upstream brain regions via stable pathways established
during development. This could explain why tuning to self-motion
velocity remains largely invariant under taskmanipulations. Analogous
to the controller units in the model, downstream motor areas
responsible for driving the muscles might decode the activity in PPC
usingfixed readoutweights, yielding a stable relationshipbetweenPPC
activity and hand movements. Finally, recurrent interactions within
PPCmight reflect knowledge of the worldmodel, such that the stream
of sensory inputs are filtered through those interactions to dynami-
cally infer the latentworld state. Critically, changes to theworldmodel,
such as those introduced here through task manipulations, would
effectively modify the neural interactions and change the relationship
betweenneural activity and the latentworld state, aswe see in thedata.

Discussion
To test whether neural circuits can track continuous and dynamical
latent state variables, we designed a naturalistic paradigm in which
monkeys navigated to a remembered goal location in a VR environ-
ment lacking explicit position cues. We recorded the activity of neu-
rons in area 7a of the PPC and found that neurons exhibited sequential

Article https://doi.org/10.1038/s41467-023-37400-4

Nature Communications |         (2023) 14:1832 10



activity at the population level, were strongly influenced by other
neurons, and encoded latent states at the neuronal level. Latent states
decoded from population activity on individual trials were correlated
with the monkeys’ stopping position relative to the goal. Finally,
manipulating sensory reliability, latent state, or motor gain altered
functional coupling between neurons and also affected the latent state
representation, but spared sensory and motor representations.

A large body of work in primates and rodents has found evidence
that PPC neurons encode a dynamic decision variable when inferring
latent causes from sensory inputs8,11, and that the neural activity pre-
dicts behavior9. We highlight three ways in which the paradigm used
here differs from past studies and why it matters. First, in standard
paradigms such as motion discrimination or the towers task8,37, the
animal integrates evidence in favor of a categorical proposition. The
latent state itself is discrete and time-invariant, and the integration
process serves to average away the noise in sensory input thereby
improving decision confidence. In contrast, the latent state in the
paradigm used here (relative goal location) is both continuous and

time-varying, such that integration is needed to continually track this
dynamical state. This does not obviate the need to gather momentary
evidence about self-motion from noisy sense data. Instead, monkeys
had to perform both computations - infer movement velocity from
optic flow, and then integrate that to track the latent world state34.
Second, in contrast to binary decision-making paradigms, the task
used here allows for a continuous behavioral readout via joystick
movements and a greater decoupling of latent state variables and
motor output. Third, due to the interactive nature of this task, spa-
tiotemporal statistics of the sensory input is not predetermined by the
experimenter, but generated online by the monkeys’ own actions,
mimicking the closed-loop nature of real-world behaviors. This paves
the way for a more direct comparison with neural activity in rodents,
where such interactive behaviors are more commonly studied. At the
same time, this did not entail sacrificing experimental control as we
could independently manipulate sensory reliability (optic flow den-
sity), latent state (position), and the motor plant (joystick gain) and
examine their consequences on behavior and neural response. For
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these reasons, the paradigm used here helps generalize past findings
toward the domain of natural behavior, and sheds new light on the
computational role of PPC.

At a very high level, the task required storing and manipulating
latent states in working memory. Classic working memory tasks have
reported two qualitatively different types of neural activity dynamics
dependingon the task: persistent activity38,39 and sequential activity9,40.
Few neurons exhibited activity that persisted throughout the trial in
our task, but there was robust sequential activity at the population
level. A recent study in rodent PPC proposed that sequential activity
observed during virtual navigationmight simply be inherited from the
input due to the presence of spatial cues that signaled location41.
Because there were no explicit landmarks in our task, our results
demonstrate that structured inputs are not needed for sequential
dynamics in parietal cortex. Our findings agree with a recent compu-
tational study on task-optimized neural networks which suggests that
working memory tasks with greater complexity favor sequential
dynamics,whereas simpler tasks such asdelayed recall favorpersistent
activity dynamics42. That same study also demonstrated that the
strength of coupling between neurons was greater in networks with
sequential activity. Indeed, we found that coupling between neurons
contributed substantially to the activity of individual neurons (>80%
increase in information about precise spike times predicted with ver-
sus without coupling). In contrast, previous work in monkeys showed
that coupling had a more modest effect (~20% increase) during a
memory-guided saccade task that elicited persistent activity in lateral
intraparietal area (LIP) neurons43. This difference persisted even when
we subsampled our population and thus could not be attributed to the
larger population size of our recordings. Our results are quantitatively
more compatible with the strong coupling reported in PPC of mice
performing an evidence accumulation task in VR where trial lengths
were much longer44, suggesting that task complexity might be the
primary determinant of neural activity dynamics in PPC. One possibi-
lity is that persistent activity can support holding information in
memory for a brief period (i.e., short-term memory45), but manip-
ulating the information content in workingmemory (e.g., updating the
latent state) might require richer dynamics such as sequential activity.

At the neuronal level, we found that about one-third of the neu-
rons were tuned to the latent state, which here was the position of the
monkey relative to the goal. This is similar to a recent finding that PPC
neurons in cats trained to step over obstacles on a treadmill, encoded
distance to those obstacles46. We did not observe ramping activity
dynamics such as those observed in monkey area 7a and LIP during
motion discrimination tasks, which can alternatively be interpreted as

tuning to net evidence. As noted by others, the tuning need not be
monotonic to support evidence accumulation47,48 and so ramping
dynamicsmight emerge only under restricted settings. Precisely which
settings favor ramping over other solutions should becomemore clear
once the link between neural dynamics and computation are fully
elucidated49. Additionally, roughly half of the PPC neurons were tuned
to sensory (linear and angular velocity) and motor (hand movement)
variables. Mixed selectivity to task variables has been widely docu-
mented in many cortical areas50,51 including rodent PPC52. Non-linear
mixed selectivity has been argued to increase neural dimensionality,
thereby allowing linear readout mechanisms to solve arbitrary classi-
fication problems53. This computational benefit might also extend to
regression problems, such as ours, where a representation with high
expressivity would allow PPC to generalize better to new task
variations54.

Decoding analysis revealed that all task-relevant variables could
be dynamically decoded from the population activity to a high degree
of precision. Of note is the finding that trials in which the decoder
underestimated (or overestimated) the target distance tended to
result in undershooting (or overshooting) by the monkey. Recall that
monkeys stop where they believe the target is located. Therefore, this
result directly links PPC neural activity to the monkeys’ belief about a
continuous-valued, dynamical latent state. Relationships linking neural
activity and continuous variables have been found for several sensory
(e.g., orientation, motion direction) and motor (e.g., hand position,
running speed) variables, but for latent states, such relationships are
almost always quantified bymeasuring the correlation between neural
activity and a binary choice55–57. This measure is an artifact of using
experimental paradigms that do not allow for a direct readout of the
animal’s estimate of the latent state, but only an indirect readout after
that estimate undergoes further nonlinear processing that affects
decision-making, such as thresholding. In contrast, the analysis used
here shows that trial-by-trialfluctuations in the neural state of PPC is in
fact correlated with the monkeys’ continuous internal estimate, and
reveals the value of this experimental paradigm in establishing a
tighter link between neural activity and latent beliefs. Since latent
beliefs are formed by integrating past sensory inputs, a role in latent
state computation also provides a parsimonious account of recent
findings that PPC guides behavior based on sensory-history58,59.

The above finding suggests that the latent state representation in
PPC propagates to behavior, but is the latent state information inher-
ited from elsewhere in the brain? We found signatures of latent state
computation within PPC. Specifically, the error in decoding sensory
variables (linear and angular velocity) was correlated with the error in

Fig. 7 | A recurrent neural network model operating in closed loop recapitu-
lates experimental findings. a Schematic of the recurrent neural network archi-
tecture. The network comprised 100 fully-connected neurons receiving a transient
signal (target location) on two input channels, and twomotor output channels that
control linear and angular acceleration which then determined the signal received
by two sensory input channels (velocity). Analogous to the function of the virtual-
reality setup in our experiments that converts the joystick output into visual input,
the “World” block integrates the motor output to generate subsequent velocity
input. So this architecture mimics the interaction between the monkey and the
virtual reality. b The recurrent weights were trained using a standard supervised
learning algorithm (Backpropagation-through-time (BPTT), “Methods”) to generate
appropriate outputs to random target locations. Left: The network’s trajectory in
response to 16 different targets are shown (red—target, black—starting location).
Right: Learning was stopped when the network performance matched the average
monkey as measured by the respective ROC curves. c Neurons in the network
exhibited sequential dynamics in a target location dependent manner (compare
with Fig. 2).dWe fit a generalized additivemodel (GAM) to themodel neurons. Left:
Model neurons were tuned to different task variables including latents (despite not
explicitly training to learn them) (compare with Fig. 3). Right: Coupling was weak
and concentrated around zero (top) but nonetheless affected the goodness of fit
(bottom-right) (comparewith Fig. 4). Model neurons exhibitedmixed selectivity to

a degree that was comparable to PPC neurons (bottom-left, “Methods”). Error bars
denote ± 1 SEM (n = 244/n = 100 for data/model). e We trained linear readouts on
the model population response to decode task variables. Left: Across trials (dots),
the error in decoding target distance was correlated with the performance (quan-
tified by stopping distance) of the network (compare with Fig. 5d). Right: Errors in
decoding target distance and angles were correlated with errors in decoding linear
(gray) and angular velocity (brown), respectively (compare with Fig. 5e). f Simu-
lated manipulations. We added different amounts of noise to the sensory input
channels (sensory manipulation), multiplied the transformation implemented by
the “World” block by a non-unity gain factor (motor manipulation), or added a
randomly timedGaussianpulse to the sensory input channels to displace themodel
off its intended trajectory (latent manipulation). Top: The network readily adapted
to sensory manipulation without additional training, but motor and latent manip-
ulations required a small amount of additional training of recurrentweights to elicit
comparable behavioral performance. Bottom: Sensory and motor tunings were
robust to all three manipulations largely because the input and output weights did
not change during the additional training. However, similar to PPC neurons
(compare with Fig. 6f), the coupling and latent tunings were affected because the
additional training modified the recurrent weights and thus also the latent state
representation. Source data are provided as a Source data file.
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decoding latent state variables (target distance and target angle). Such
a correlation would not arise if the information about latent states and
sensory inputs were inherited from independent sources, but is
entirely expected if latent states were computed by integrating noisy
sensory input within a network that includes PPC. It is theoretically
possible that both sensory and latent state variables are acquired from
a common brain area. Testing this would require causal intervention
experiments and brain-wide recordings, which we hope to perform in
the future. Meanwhile, we assumed that PPC contributed to the com-
putation of the latent states, and probed the underlying neural
mechanisms using experimental manipulations.

All three experimental manipulations yielded strikingly similar
effects. They altered both neuronal coupling and the latent state
representation, but left sensory and motor tuning unaltered. While
previous studies have characterized how functional connectivity
between brain-wide networks changes across tasks60,61 and across
epochs within a task43, how task manipulations affect coupling
between neurons locally within a brain area is not known. Our results
suggest that coupling can vary with taskmanipulations and identifies a
potentialmechanism bywhich behavioral performance in this task can
be maintained in the face of external perturbations to task variables—
namely, by reconfiguring the neural interactions within PPC. This
reconfiguration could either result from synaptic modifications of
recurrent connections within PPC or from contextual inputs to PPC
that alter the effective interactions62. Either way, the concomitant
changes observed in latent tuning suggest that latent states are likely
computed via recurrentmechanismswithin PPC, an interpretation that
was further validated by the striking resemblance with the repre-
sentations learned by a recurrent neural network (RNN) model trained
to perform the same task. Finally, robustness of sensory and motor
tuning to task manipulations was also readily explained by the same
model by freezing the input andoutputweights and retrainingonly the
recurrentweights. This suggests that sensory/motor variables inhabit a
stable subspace in PPC, and could be transmitted from/to other brain
areas via stable communication channels. It follows that the commu-
nication subspace between PPC and sensory cortex, aswell as between
PPC andmotor cortex should be remain relatively invariant to context,
a prediction that future studies can test using available tools63. PPC has
been variously described as a brain area that is involved in sensory
processing, workingmemory, andmotorplanning. Our results suggest
broadening existing views: PPC computes and continuously monitors
the dynamical latent state of the organism in naturalistic behaviors
involving action/perception loops. This is in line with the perspective
of PPC as a state estimator for optimal feedback control to flexibly
interface sensory information with actions64,65.

A limitation of our treatment of the neural computations in this
task is that we have overlooked the contribution of autonomous
strategies. In principle, it is possible to use the learned worldmodel to
plan joystickmovements ahead of timewithout any sensory feedback.
Although we know from manipulation experiments that monkeys
relied on sensory feedback (optic flow), the contribution of autono-
mous strategies to navigation is likely non-negligible35,66,67. Planning-
based computations, which require reasoning about the consequences
of action sequences via mental simulation, are thought to be per-
formed in the prefrontal cortex (PFC)68,69. Predictive signals that
enable planning in dynamic environments have also been found
recently in thedorsal anterior cingulate cortex70. Apromisingdirection
for future could be to compare the causal contributions of PPC against
frontal brain regions in this task, by combining inactivation experi-
ments and statistical tools that characterize behavior in the spectrum
between purely sensory feedback-based vs purely autonomous stra-
tegies. Another open question concerns the stability of representa-
tions across time. Previous studies have demonstrated that neural
representations in the rodent PPC drift over time71. While we have
analyzed how representations are affected by task manipulations,

knowing whether they are stable across long timescales would com-
plement the insights gained from this study and help further constrain
the underlying mechanisms.

Methods
Experimental model
Three rhesus macaques (Macaca mulatta) (all male, 7-8 years. old)—
referred to as B, S, and Q for simplicity—participated in the experi-
ments. All surgeries and experimental procedures were approved by
the Institutional Review Board at Baylor College of Medicine, and were
in accordance with National Institutes of Health guidelines.

Experimental setup
Monkeyswere chronically implantedwith a lightweight polyacetal ring
for head restraint, and scleral coils for monitoring eye movements
(CNC Engineering, Seattle WA, USA). Utah arrays were chronically
implanted in area 7a of the left hemisphere of all three monkeys using
craniotomy. Prior to the surgery, the brain area was identified using
structural MRI to guide the location of craniotomy. After craniotomy,
the array was pneumatically inserted after confirming the co-ordinate
of the target area using known anatomical landmarks. The electrode
arrays implanted inmonkeys Q and B were composed of a 10 × 10 grid
of 96 silicon microelectrodes, each 1 mm long and spaced 400 μm
apart. The array implanted inmonkey S had identical electrode lengths
and spacing, except that it was composed of a 6 × 8 grid of 48 micro-
electrodes. At the beginning of each experimental session, monkeys
were head-fixed and secured in a primate chair placed on top of a
platform (Kollmorgen, Radford, VA, USA). A 3-chip DLP projector
(Christie Digital Mirage 2000, Cypress, CA, USA) was mounted on top
of the platform and rear-projected images onto a 60 × 60 cm tangent
screen that was attached to the front of the field coil frame, ~ 30 cm in
front of the monkey. The projector was capable of rendering stereo-
scopic images generated by an OpenGL accelerator board (Nvidia
Quadro FX 3000G).

Virtual reality
Monkeys used an analog joystick (M20U9T-N82, CTI electronics) with
two degrees of freedom and a circular displacement boundary to
control their linear and angular speeds in a virtual environment. Fore-
aft and sideways movement of the joystick controlled linear and
angular velocity respectively. The virtual world comprised a circular
ground plane with a radius of 70 m (near and far clipping planes at
0.05mand40mrespectively),with the subject positioned at its center
at the beginning of each trial. The ground plane was textured with
small isosceles triangles (base × height: 0.85 cm× 1.85 cm) that were
each randomly repositioned and reoriented anywhere in the arena at
the end of its limited lifetime ( ~ 250 ms), making them impossible to
use as landmarks. The maximum linear and angular speeds were fixed
to 2 m/s and 90 ∘/s respectively, and the density of the ground plane
wasfixed at 2.5 elements/m2. The stimulus was rendered as a red-green
anaglyph and projected onto the screen in front of the subject’s eyes.
Monkeys wore goggles fitted with Kodak Wratten filters (red #29 and
green #61) to view the stimulus. The binocular crosstalk for the green
and red channels was 1.7% and 2.3%, respectively.

Behavioral task
In each session,monkeys performed a series of trials in which they had
to steer to a random target location that was cued briefly at the
beginning of the trial. Each trial was programmed to start after a
variable random delay (truncated exponential distribution, range:
0.2–2.0 s; mean: 0.5 s) following the end of the previous trial. The
target, a circulardiscof radius 20 cmwhose luminancewasmatched to
the texture elements appeared at a random location between θ = ± 40∘

of visual angle at a distance of r = 0.7–4m relative to where the subject
was stationed at the beginning of the trial. The target only appeared
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transiently on the screen for 300ms, but the joystick was always active
so monkeys were free to start moving before the target vanished.
Monkeys were teleported to the origin of the environment at the time
of target onset. Since the environment was comprised of flickering
triangles, teleportation was seamless and did not interfere with the
continuous nature of the task. Trials were aborted after a maximum
duration of 7 seconds (5 seconds in a subset of sessions). Monkeys
typically performed a block of ~ 1500 trials in each experimental ses-
sion, and received binary feedback following a variable waiting period
after stopping (truncated exponential distribution, range: 0.1–0.6 s;
mean: 0.25 s). They received a drop of juice if their stopping position
was within 0.6 m away from the center of the target. No juice was
provided otherwise. Monkeys were first trained extensively, gradually
reducing the size of the reward zone until their performance stopped
improving. In this study, we focus only on their post-training behavior.
At this point, the radius of the reward zone was fixed across trials. The
fixed reward boundary of 0.6 m was determined during pilot experi-
ments using a staircase procedure to ensure that monkeys received
reward in approximately two-thirds of the trials. We collected beha-
vioral data from 110 recording sessions (27 from monkey B, 18 from
monkey S, and 65 frommonkey Q) yielding a total of 121,930 trials for
behavioral analyses.

Task manipulations
Weperformed three different taskmanipulations onmonkeys S andQ.
One of these involved manipulating the reliability of the sensory
observations (optic flow) by changing the density of the ground plane
element. Trials with two densities that differed by a factor of 25 (2.5
elements/m2 and 0.1 elements/m2) were randomly interleaved in these
sessions. In a second version, we manipulated the effect actions (hand
movements) inflicted on the latent state by altering gain of the joystick
controller. In these sessions, we interleaved trials in which the gain of
the joystick controller was switched between 1× (identical to baseline),
1.5×, and 2×. Within each trial, both linear and angular velocities were
scaled by the same gain factor in order to avoid inducing different
effects on linear and angular responses. Finally, we disrupted the
transitions between the latent states by adding a brief external passive
displacement that moved the subjects away from their expected path,
at a random time during the trial. The perturbations had a fixed
duration of 1 s and their velocity had a Gaussian profile with a standard
deviation of 0.2 s and an amplitude that, on each trial, was drawn
randomly from a uniform distribution bound between −2 and 2 m/s
and between −120 and 120 ∘/s for the linear and angular velocity,
respectively. The perturbation onset time was randomly varied from 0
to 1 s after movement onset.

Behavioral recording and acquisition
All stimuli were generated and rendered using C++ Open Graphics
Library (OpenGL) by continuously repositioning the camera based on
joystick inputs to update the visual scene at 60 Hz. The camera was
positioned at a height of 0.1 m above the ground plane.
Spike2 software (Cambridge Electronic Design Ltd., Cambridge, UK)
was used to record and store the time series of target locations as well
as the animal’s location in the virtual environment for offline analysis.
All behavioral data were recorded along with the event markers at a
sampling rate of 8331

3 Hz.

Tracking of eye and hand movements
We recorded the horizontal and vertical positions of both eyes using
chronically implanted scleral search coils in monkeys Q and B. Eye-
tracking inmonkey S was performed using a video-based eye-tracking
system (ISCAN Inc., Woburn, MA, USA). Additionally, a video of the
monkeys’ handmovementswas captured at 30 frames/s using a 1280 ×
960 (1.2Megapixels) industrial-grademonochromeCCDcamera (DMK
23U445, The Imaging Source LLC, Charlotte, NC, USA). The start and

end of the video recording was synchronized with other behavioral
data using a trigger-pulse sent by the stimulus acquisition software
(Spike2). We used DeepLabCut72, a Python toolbox, to extract the tra-
jectory of handmovements from the above videos. To do this, we first
labeled the same set of identifiable features (fingers and wrist) in a
random subset of 200 frames from one randomly chosen video
recording. We then trained a deep neural network model using Dee-
pLabCut on an NVIDIA Quadro P5000 GPU until the training error for
the set of labeled frames saturated (typically around 500,000 itera-
tions). Finally, we analyzed all the videos using the trained network to
extract the time course of the spatial location of the features of
interest.

Neural recording and acquisition
We recorded extracellularly using multi-electrode arrays (Blackrock
Microsystems, Salt LakeCity, UT, USA) fromarea 7a. Broadband neural
signalswere amplified anddigitized at 30KHzusing adigital headstage
(Cereplex E, Blackrock Microsystems, Salt Lake City, UT, USA), pro-
cessed using the data acquisition system (Cereplex Direct, Blackrock
Microsystems) and stored for offline analysis. Additionally, for each
channel, we also stored low-pass filtered (−6 dB at 250 Hz) local-field
potential (LFP) signals sampled at 500 Hz. Finally, copies of event
markers were received online from the stimulus acquisition software
(Spike2) and saved alongside the neural data.

Spike detection and sorting
Spike detection and sorting were initially performed on the raw
(broadband) neural signals using MATLAB KiloSort73 software on an
NVIDIA Quadro P5000 GPU. The software uses template-matching
both for detection and clustering of spike waveforms. The spike clus-
ters produced byKiloSortwere visualizedwith a Python package called
Phy and manually refined by a human observer using standard heur-
istics. A typical recording session yielded 70–100 neurons across
electrodes.

Models
Generalized additive model. To test whether task variables modulate
neural activity, we fit a Poisson generalized additive model (GAM) to
the responses of individual neurons. Themodel relates spike counts of
rt 2 ZN

+ of the neural population to continuous-valued input variables
xt 2 RNC , binary events zt 2 f0, 1gNE and past neural activity r1:t−1
according to:

logðμi
tÞ=

XNC

k = 1

f ikðxk
t Þ+

XNE

l = 1

ðgi
l*z

l
1:t�1Þ+ ðhi*ri1:t�1Þ+ bi ð1Þ

where rit ∼ Poisson ðμi
tÞ denotes the Poisson-distributed response of

neuron i at time t, xkt is magnitude of the kth continuous-valued input
variable at time t, f ikð�Þ is any generic nonlinear function operating on
xk, zlt is the value of the l

th binary event at time t, gi
l is the temporal filter

operating on zl, hi is the causal spike-history filter that accounts for the
refractory period and other autoregressive effects, NC & NE denote the
total number of continuous-valued inputs and binary events respec-
tively, ‘*’ denotes the convolution operator, and bi is an additive
constant to capture tonic firing. This model did not take recurrent
interactions between into account, so we refer to it as the uncoupled
model. We also fit an extension of the above model that included
coupling between neurons as follows:

logðμi
tÞ=

XNC

k = 1

f ikðxkt Þ+
XNE

l = 1

ðgi
l*z

l
1:t�1Þ+ ðhi*ri1:t�1Þ

+
XN
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j*r
j
1:t�1Þ+b

i
ð2Þ
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where pi
j is the causal coupling filter that captures the directional

interaction fromneuron j to neuron i andN denotes the total number
of neurons in the recording. We refer to this as the coupled model.
Details about model parameters are stated in the Model fitting
section.

Recurrent neural network model. We trained a fully connected
recurrent neural network (RNN) comprising N = 100 nonlinear firing
rate units to solve the same task as the monkeys. The network con-
tainedM = 4 input channels, two for conveying the 2D target location
(x) encoded in the amplitude of a transient pulse delivered in
the beginning of the trial and two for conveying sensory feedback
about the 2D self-motion velocity (z) throughout the trial. There
were P = 2 output channels, one each for controlling the velocity of
the ‘hand’ along the linear and angular axes of the joystick (y).
The network was similar to those commonly trained to solve stan-
dard neuroscience tasks, butwith one key architecturalmodification:
the output channels were temporally integrated and fed back to the
network through the input channels conveying movement velocity
(i.e., zt =

R t
0 ys ds), thereby closing the sensorimotor loop. This

feedbackmimics the functionality of the virtual reality simulator that
uses the joystick output to render real-time sensory feedback in the
form of optic flow in our experiments. To mimic noise in the motor
periphery, we added a small amount of process noise to the output
channels before integrating. The equation governing the network
dynamics was:

τ _r= � r+ ðW recr+W in~xÞ and y=Woutr ð3Þ

where r is the population activity, _r denotes its time-derivative, y is
the network output representing hand velocity, ~x= ðx, zÞ denotes
the input to the network obtained by concatenating the target
location and sensory feedback obtained by integrating the network
output, τ is the cell-intrinsic time constant, and ð�Þ= tanhð�Þ is the
neuronal nonlinearity. Matrices W rec 2 RN ×N , W in 2 RN ×M and
Wout 2 RP ×N correspond to recurrent, input, and output weights
respectively. Details about inputs, outputs, and the training proce-
dure used to learn the network parameters are stated in the Model
fitting section.

Linear decoder. For each recording session, we regressed the time

course of population pattern of instantaneous firing rates R 2 RT ×N

(where N is the size of the neural population and T is the total number
of timebins) separately against each continuous-valued variablex1:T to

obtain weights w= ðRTRÞ�1
RTx. Firing rates were estimated by con-

volving the spike train with an exponential filter with time constant η
as a hyper-parameter. For each target variable, we obtained the
regression weights w using data from the training set (80% trials)
and decoded that variable from the population activity observed
in a validation set (10% trials) to estimate the decoding error

ϵ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

tðwTRt � xtÞ2
q

where t denotes time bin. For each task variable,

we determined the optimal timescale of the filter η within a range
between ~25 and 250ms as the timescale that minimized the decoding
error in the validation set. Finally, decoding performance was eval-
uated by decoding the population activity observed an independent
test set (remaining 10% trials) using regression weights corresponding
to the optimal timescale.

Model fitting and evaluation
Generalized additive model. Given a time series of neuronal
responses r of a population of neurons, and inputs x& z, the goal is to
recover the set of all tuning functions fi, temporalfiltersgi, hi, coupling
filterspi and the additive constant bi for each neuron i. We solve this by

computing the maximum a posteriori (MAP) estimate:

ff̂ i, ĝi, ĥ
i
, p̂i,big= f i,gi,hi,pi,biargmax Pðr,x, z∣f i,gi,hi,pi,biÞPðf i,gi,hi,pi,biÞ

ð4Þ

where Pðr,x, z∣f i,gi,hi,pi,biÞ=Qte
�μi

t ðμi
tÞ
rit=rit ! is the model likelihood

for the ith neuronwhereμi
t is given by Eq. (1), and P(fi,gi,hi,pi, bi) is the

prior over model parameters. We chose a factorizable Gaussian prior
on the curvature of the tuning functions fi, the temporal filters gi and
the spike-history filter hi to encourage smoothness, a Laplace prior on
coupling filters pi to encourage sparseness, with no prior constraints
on bi:

Pðf i,gi,hi,pi,biÞ=
YN
j = 1

YNE

l = 1

YNC

k = 1

Pðf ikÞPðgi
lÞPðhiÞPðpi

jÞ=
YN
j = 1

YNE

l = 1

YNC

k = 1

exp �λk ∣
∂f ik
∂xk

∣
2

� γl ∣
∂gi

l

∂t
∣
2

� α∣
∂hi

∂t
∣
2

� β∣pi
j ∣

8<
:

9=
;

where λk, γl, α, and β are the hyperparameters that penalize rough
tuning functions, rough temporal kernels, anddensecoupling. ∥ ⋅ ∥ and
∣ ⋅ ∣ denote the ℓ2 norm and the ℓ1 norm respectively. After fitting the
model parameters, we estimated the marginal tuning functions
E½r̂i∣xk � to each variable xk by computing the conditional expectation
of model-predicted response r̂i given variable xk bymarginalizing over
the remaining variables:

E½r̂i∣xk �= ef̂
i
k

YNC

j = 1 j≠k

Z
e f ij ðxj ÞPðxjÞdxj

0
B@

1
CA YNE

l = 1

Z
1
T
eg

i
l
ðtÞ*zl ðtÞdt

 !
ð5Þ

wherewehave assumed that the joint probability density functionover
task variables can be factorized into a product of marginal densities.
Under this assumption, tuning to each task variable is multiplicatively
modulated by the remaining task variables without affecting its shape.
Furthermore, we ignored the effect of spike-history and coupling
filters because these filters did not substantially affect the average
firing rate of the neuron predicted by the model i.e., their multi-
plicative modulation was close to unity. Marginal temporal responses
to events zl were determined by computing E½r̂i∣zl � in an analogous
fashion. To fit the model using experimental data, we used different
combinations of NC = 9 continuous-valued variables—two sensory
variables (linear velocity and angular velocity), two internal estimates
(distance to target and target angle), twomotor variables (hand speed
along the first two principal components of hand position), the
instantaneous phase of the local field potential (LFP), and the two
components of eye position (horizontal and vertical)—and NE = 2
discrete events (target onset and reward onset). Although the motor
variables (hand speeds) were continuous-valued, they changed in a
phasic manner with most changes concentrated around the onset of
navigation and end of navigation. Preliminary analyses indicated that
the associated neural changes were better captured by (acausal)
temporal filtering of hand speed than tuning functions to hand speed.
Therefore, we fit temporal kernels to capture the relationship between
the motor variables and neuronal activity.

To fit the functions f,g,h,p, we expressed each of themas a linear
combination of basis functions. Tuning functions f were para-
meterized using a basis of ten boxcar functions, where each function
spanned an equal range of the predictor variable. Temporal filters g
were parameterized using a basis of ten raised cosine filters spanning a
range of 600 milliseconds. The filter associated with target-onset was
causal ([0, 600] ms), while the remaining filters were non-causal
([-300, 300] ms). Both spike-history filter h and coupling filter p were
expressed using a basis of ten causal raised cosine filters in logarithmic
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time scale. Spike-history filters spanned 350 ms, while coupling filters
spanned 1.375 seconds. For each category of filter, the time duration
was set to be the largest value beyond which the filters did not sub-
stantially improve the model likelihoods in preliminary analyses.

Regularization hyperparameters were first determined using a
cross validation procedure on a subset of neurons. In this procedure,
we varied thehyperparameter values ona logarithmic scale from0.001
to 1000 and fit the model by including all task variables for each
hyperparameter setting using 90% of the data, and chose the hyper-
parameter combination with the highest model likelihood in the
remaining 10%of the data. To reduce the complexity of this procedure,
we assumed a three-dimensional hyperparameter space with one
hyperparameter each for all tuning functions (f), all event-related and
spike-history temporal filters (g, h), and all coupling filters (p). The
value of the hyperparameters dictates the bias-variance trade-off in the
model: whereas large values yield flat tuning functions and predict
responses that lack task-specificity, small values will lead to poor test
performance due to over-fitting. The optimal setting was found to be
identical ([λk=100, γl=α=10, β=10]) for the vast majority of neurons in
the subset. Therefore, we used these values for fitting all neurons in the
data as described below.

We fit several models by choosing different combinations of
variables, performed 10-fold cross-validation to compute model like-
lihoods in each case, and selected the combination with the highest
likelihood by the method of Backward Elimination which removed
variables that did not contribute to improving the model likelihood.
Because themodel contained a large number coupling filters (equal to
population size), these filters were selected as one group in the elim-
ination process to minimize the computational complexity of the fit-
ting procedure. Each fold of cross-validation comprised 9% of the
trials, such that model selection was done using 90% of the data. The
remaining 10%wasused to evaluate the variance explainedby the best-
fit model. We estimated the variance explained (Pseudo-R2) M as

1� ðL1 � LMÞ
ðL1 � L0Þ

h i
where LM is the log-likelihood of the model obtained by

setting the mean of the Poisson spiking process μi
t = r̂ðtÞ, L∞ is the log-

likelihood of a model with μi
t = rðtÞ, and L0 is the log-likelihood of a

model with constant firing rate μi
t = b

i. Note that L∞ is the maximum
possible log-likelihood achievable by any Poisson spikingmodel, while
L0 is the maximum possible log-likelihood achievable by a model with
constant firing rate. The variance explained by any particular variable
was estimated as the reduction in variance explained when that vari-
able is removed from the model containing the set of all variables. We
also estimated the fraction of variance explained in a more conven-
tional way as the coefficient of determination (R2) by comparing the
raw firing rate (obtained by smoothing the observed spike train with a
60ms wide Gaussian) and model-estimated firing rates, and found
qualitatively very similar results.We thereforeused this lattermeasure,

R2 = 1� V arðr̂i�riÞ
V arðriÞ , for reporting variance explained in single neurons

throughout the text. Variance explained in the structure of population
response was computed using an expression similar to coefficient of
determination, except the numerator and denominator were both

summed across neurons, R2
pop = 1�

P
i
V arðr̂i�riÞP
i
V arðriÞ . This measure is influ-

encedmoreby themodel’s ability to explain responses of neuronswith
larger intrinsic variability. This is motivated by the fact that if most of
the fluctuations in population activity is driven by a tiny fraction of
neurons, then capturing the responses of those neurons is more cri-
tical to explaining the structure of population response.

Recurrent neural networkmodel. We trained the RNNmodel defined
in Eq. (3) by learning the recurrent weights Wrec using Back-
PropagationThroughTime (BPTT). On each trial, the 2D target location
was encodedby the amplitudes of a 300mspulse arriving at twoof the

input channels (x). Target locations were drawn from the possible
locations spanning the same range of distances and angles as monkey
experiments, and varied randomly across trials. The network output
(y) corresponded to the 2D hand velocity, such that an output of zero
is akin to holding the joystick at a fixed position andwould produce no
change in the velocity of self-motion. Non-zero output, on the other
hand, would result in a change in motion velocity. In this sense, the
output of the network encoded acceleration and therefore integrated
twice to compute the 2D position s. The network was trained to reach
the target location (x) within a certain time t* and stay there for 0.6s
(maximum stopping duration for monkeys). t* corresponded to the
time taken when traveling along an idealized circular trajectory from
the starting location to target location atmaximum speed. To simulate
sensory feedback in the form of optic flow, we integrated the network
output once to compute 2D self-motion velocity, and fed it back to the
remaining two input channels (z) with a small amount of sensory noise.
The time-constant τ was set to 20 ms and each training trial lasted
between 2-3 s depending on the target location.Weights were updated
at the endof each trial by computing their gradientswith respect to the
loss function,L=

P
k

P
t > t* ∣skðtÞ � xkðtÞ∣2, using BPTT.We also trained

a variant of this model where the loss function contained additional
terms that penalized high amplitudes and fast fluctuations in the net-
work output and activity (∣∣y∣∣2, ∣∣ _y∣∣2, ∣∣r∣∣2, ∣∣ _r∣∣2). This variant had
smoother and sparser activity profiles, and exhibited sequential
dynamics that was more comparable with the neural data. In all cases,
small amount of process noise was added to the motor output chan-
nels (i.e., noisy plant) during training, to prevent the network from
learning a purely autonomous control policy. Training was halted to
probe the resulting neural representation once the performance
reached the level of the average monkey.

The network was then retrained to be robust to task manipula-
tions by fixing the input and output weights, and updating only the
recurrent weights Wrec. Sensory reliability was manipulated by
increasing the amount of noise added to the sensory feedback chan-
nels (z). Motor gain was manipulated by multiplying the network
output (y) by a gain factor before feeding it to the plant. Toperturb the
latent state dynamics, we added gaussian temporal pulses to the sen-
sory feedback channels (z) at a random time after the target onset.
Because adding sensory noise did not adversely affect performance,
the network was tested on this manipulation without retraining. Since
we do not know the precise change in signal-to-noise ratio that cor-
responds to density manipulation in the monkey experiments, we
added the amount of noise that caused theperformance level to fall off
to the same extent as monkeys. For the remaining manipulations, the
networkwas retrained until the performance reached the same level as
the sensory manipulation condition.

Statistical analysis
Data exclusion. Sincewewere interested in understanding latent state
computation, we wanted to exclude data where the monkey was
clearly not performing this computation. From each experimental
recording session, we therefore excluded a small minority (~15%) of
trials where the monkey appeared to clearly disengage from the task.
Such trials were objectively identified as those in which the monkey
either remained stationary throughout or failed to stopmoving before
the trial timed-out. This is analogous to the standard practice of
excluding trials in which monkeys break fixation in more controlled
experiments.

Behavior. In a co-ordinate system where the monkey’s starting
position was taken to be the origin, we evaluated behavioral perfor-
mance by regressing each monkey’s response positions (r,θ) against
target positions (r*,θ*) separately for the radial (r vs r*) and angular (θ
vs θ*) co-ordinates. The precision of the responses depended on the
target location. To quantify the performance across all target
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locations in a concise manner, we pooled all trials and performed
ROC analysis as follows. For each session, we first constructed a
psychometric function by calculating the proportion of correct trials
as a function of (hypothetical) reward boundary which was varied
between 0-4 m. Whereas an infinitesimally small boundary will result
in all trials being classified as incorrect, a large enough reward
boundary will yield near-perfect accuracy. To define a chance-level
psychometric function, we repeated the above procedure but nowby
shuffling the target locations across trials, thereby destroying the
relationship between target and response locations. Finally, we
obtained the ROC curve by plotting the proportion of correct trials in
the original dataset (true positives) against the shuffled dataset (false
positives) for each value of hypothetical reward boundary. We used
the area under this ROC curve to obtain an accuracy measure as a
single scalar value for each recording session.

Neural sequences. Peak-normalized response of neurons were first
calculated by averaging responses by grouping trials according to
target distance (nearby vs distant) and target angle (leftward vs
rightward). Spike times were re-scaled based on the trial duration
before trial-averaging, and the response profile of each neuron was
subsequently normalized by the peak activity. Neurons were sorted
according to the timing of their peak response observed within each
trial group to construct firing rate maps of sequential activity. Pattern
similarity was defined as the correlation coefficient between the firing
ratemaps taken from either the same trial group (odd vs even trials) or
different trial groups (nearby vs distant targets, or leftward vs right-
ward targets). Time course of the pattern similarity was computed as
the correlation between population activity vectors (columns of the
rate maps) taken from the same trial group (odd vs even trials) or
different trial groups (nearby vs distant targets, or leftward vs right-
ward targets). Following ref. 74, Sequentiality index (Sql) was defined as
the geometric mean of peak sparseness (fpeak) and temporal sparse-

ness (ftemp), Sql =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f temp*f peak

q
where:

f peak =
XM
t = 1

�pt logðptÞ= logðMÞ ð6:1Þ

f temp = 1�Et

XN
i = 1

�rti logðrti Þ= logðNÞ
" #

ð6:2Þ

where M and N denote the number of time bins and neurons respec-
tively, pt is the fraction of neurons whose activity peaked in time bin t,
rti denotes the activity of neuron i in time bin t, normalized by the sum
of activities of all neurons in that bin. Peak sparseness is high if the
distribution of the time of peak activity across the population is
roughly uniform. Temporal sparseness is high if only a few neurons are
active in each time bin.

Cross-correlation function. The cross-correlation between spike
trains ri(t) and rj(t) was computed as RijðτÞ= 1

N�ri
ðPt riðtÞrjðt � τÞÞ � �ri

where �ri denotes the time-averaged firing rate of neuron i. This can be
interpreted as the excess spike rate in neuron i due to neuron j36. The
auto-correlation function was a special case corresponding to i = j.

Stability index. The stability of coupling filters and tuning functions to
task manipulations was quantified using Stability index (SI). Stability
index was of coupling filters was given by ρ�ρ0

ρ*�ρ0
where ρ is the median

correlation between coupling filters fit to data with and without task
manipulation, ρ* is the median correlation between coupling filters fit
to data in odd and even trials of the baseline task, and ρ0 is themedian
of the null distribution constructed by shuffling neuronal pairs. A value
of 0 corresponds to highly unstable coupling where the degree of

match to baseline condition is no better than chance, and 1 corre-
sponds to perfectly stable coupling where the filter did not change
shape. SI of tuning functions was determined in an analogous manner
where ρ denoted the correlation between tuning functions of a neuron
in datawith orwithout taskmanipulations. Note that depending on the
type of task manipulation, the distribution of some of the task vari-
ables would change a lot. For example, the sensory input (velocity) is
scaled by 2x during gain manipulation. To keep things consistent
across all analyses, we fixed the domain over which tuning functions
were computed to be identical to the domain used when fitting the
model using baseline data.

Mixed selectivity index. Mixed selectivity index was used to estimate
the uniformity of variance explained by different task variables in the
neuronal response (Fig. 7). It was quantified as the participation ratio,
½PK

i= 1 vi�
2
=
PK

i = 1 ½vi�2 where vi denotes the variance explained by task
variable i, and K = 6 is the number of task variables. This index is
bounded between 1 (nomixing where only one variable contributes to
predicting neural activity) and K (uniform mixing where all variables
contribute equally to the predicting neural activity).

Canonical correlation analysis. We used canonical correlation ana-
lysis (CCA), an iterative technique to assess task-relevant linear
dimensionality of population response (Fig. S4d).We considered the
set of all continuous-valued variables except for LFP phase resulting
in a total of N = 6 task-relevant variables. We considered the set of all
simultaneously recorded neurons resulting in an M dimensional
vector of neural activity at each time step (M≫N). If X and R denote
the time-course of the set of all task variables and population
response respectively, we first identify a pair of vectors a 2 RN and
b 2 RM that maximizes the correlation, Corr(aTX, bTR), between the
pair of canonical variables obtained by projecting the task and
neural response variables onto the directions specified by those
vectors. Then, we identify a second pair of vectors in the same way
but with the additional constraint that the resulting canonical vari-
ables are uncorrelated with the first pair of canonical variables. We
continue this procedure N times to identify up to N task-relevant
dimensions of neural response. Dimensionality of canonical corre-
lations is classically defined simply as the number of canonical pairs
with significant correlations. However, this measure of dimension-
ality fails to account for the differences between the actual fraction
of covariance in those dimensions. To capture the spectrum of
covariance between task variables and neural response, we instead
defined “task-relevant neural dimensionality” analogously to the
standardmeasure of participation ratio used tomeasure the flatness
of eigenspectra.

D=

PP
i = 1 CovðaT

i X ,b
T
i RÞ

h i2
PP

i = 1 CovðaT
i X ,b

T
i RÞ

h i2 ð6:3Þ

where ai & bi correspond to the ith canonical pair of vectors with unit-
norm, and M & N denote the number of task variables and neurons,
P = minðM,NÞ, and 1 ≤D ≤ P.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Pre-processed data are available at https://gin.g-node.org/kaushik-l/
firefly-monkey. Raw data (~50 GB per experimental session) are stored
in a local database server but available upon reasonable request.
Source data files are provided with this paper. Source data are pro-
vided with this paper.
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Code availability
The codes used to perform the analyses in this study are available at
https://github.com/kaushik-l/neuroGAM, https://github.com/kaushik-
l/firefly-monkey, and https://github.com/DeepLabCut/DeepLabCut/
releases/tag/1.11.
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