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Spatial probabilistic mapping of metabolite
ensembles in mass spectrometry imaging

Denis Abu Sammour 1,2, James L. Cairns 1,3, Tobias Boskamp 4,5,
Christian Marsching1,4, Tobias Kessler 6,7, Carina Ramallo Guevara 1,
Verena Panitz7,8, Ahmed Sadik 7,9, Jonas Cordes 10, Stefan Schmidt 1,
Shad A. Mohammed 1,2, Miriam F. Rittel 1,2, Mirco Friedrich2,11,12,
Michael Platten 2,11,12, Ivo Wolf 10, Andreas von Deimling 13,14,
Christiane A. Opitz7,8, Wolfgang Wick 6,7 & Carsten Hopf 1,2,3

Mass spectrometry imaging vows to enable simultaneous spatially resolved
investigation of hundreds of metabolites in tissues, but it primarily relies on
traditional ion images for non-data-driven metabolite visualization and analy-
sis. The rendering and interpretation of ion images neither considers non-
linearities in the resolving power of mass spectrometers nor does it yet
evaluate the statistical significance of differential spatialmetabolite abundance.
Here, we outline the computational frameworkmoleculaR (https://github.com/
CeMOS-Mannheim/moleculaR) that is expected to improve signal reliability by
data-dependent Gaussian-weighting of ion intensities and that introduces
probabilisticmolecularmapping of statistically significant nonrandompatterns
of relative spatial abundance of metabolites-of-interest in tissue. moleculaR
also enables cross-tissue statistical comparisons and collective molecular pro-
jections of entire biomolecular ensembles followed by their spatial statistical
significance evaluation on a single tissue plane. It thereby fosters the spatially
resolved investigation of ion milieus, lipid remodeling pathways, or complex
scores like the adenylate energy charge within the same image.

Mass spectrometry imaging (MSI) has evolved into a label-free core
technology for visualization and spatially resolved analysis of digested
proteins, drugs, glycans, and metabolites, including lipids, in basic,
clinical, and pharmaceutical research1,2. Despite enormous advances in
speed, sensitivity, and spatial resolution of MSI instruments and

despite a growing number of successful MSI applications3,4, the fun-
damental concept in MSI data processing, the conversion of raw data
into ion images for visualization, spatial interpretation, and molecular
analysis, has not changed since the inception of the technology5. Ion
images, i.e., false color renderings of m/z intervals that often contain
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multiple unassigned peaks, like other types of images, can be prone to
technical artifacts6 and user perception bias7. Filtering, cross-normal-
ization, and collective judgment approaches, among others, have been
suggested as remedies8–11. Nevertheless, procedures for the processing
of raw data into ion image renderings typically do not include built-in
methods that account formass accuracy and the resolving power- and
instrument-dependent peak width at peak-of-interest (POI) m/z. They
normally use the sum of ion intensities of all peaks present in an end
user-defined mass range centered on the POI m/z instead in a data-
independent uniform weighting (i.e., all peaks treated equally)
approach (Supplementary Fig. 1a). Recently, some probabilistic con-
cepts in MS-based omics, especially false-discovery rates (FDR) typi-
cally assessed by target-decoy searching12, have been introduced inMS
imaging13. However, a coherent probabilistic approach for evaluation
of the spatial aspect in MSI and for identification of areas with sig-
nificantly higher relative spatial abundance (“hotspots”; i.e., nonran-
dom patterns of spatial accumulation) or deficiency (“coldspots”; i.e.,
nonrandom patterns of spatial depletion) of a single metabolite-of-
interest (MOI) in tissue is lacking.

Likewise, methods for probabilistic mapping of metabolite
ensembles comprising tens or hundreds of named MOIs such as lipid
classes14, amino acids15, or nucleotides16 that could be useful as quan-
titative MSI scores (e.g., overall energy charge score) are required.
Moreover, techniques for spatial probing of global tissue character-
istics such as ion milieu, the degree of lipid unsaturation, or even the
distribution of entire lipid classes as a function of tissue morphology
aremuchneeded. Biomedical or pharmaceutical scientists could select
such molecular ensembles based on their research topics, e.g., phos-
phatidylcholines containing saturated fatty acids. Molecular ensem-
bleswould complement peak lists (POI) interpretedbyMSexperts, and
they could be collectively interrogated to probe, for example, entire
molecular pathways in MSI, as is required for translational
applications.

Here, we report the computational framework moleculaR that
suggests peak width-dependent Gaussian-weighting for improved
reliability of metabolite/lipid signals in MSI and that introduces
molecular probabilistic maps (MPMs) based on Kernel density esti-
mation against a complete spatial randomness model of the same
dataset. This procedure enables the plotting of probabilistic “hotspot”
and “coldspot” contours for any given MOI, independent of how an
end usermay perceive its spatial relative abundance or deficiency. The
frameworkmoleculaR also allows for comparisons of different tissues
(cross-tissue MPMs) and for collective projections of metabolite
ensembles onto a single tissue plane, followed by computation of
collective-projection probabilistic maps (CPPMs). These are MPM
“hotspot” and “coldspot” contours for complex metabolite examples,
e.g., alkali metal adducts of lipids as ion milieu indicators, adenylate
energy charge as a possible correlate of metabolic cancer hotspots or
entire lipid classes as the basis for analysis of lipid remodeling path-
ways. The software may therefore contribute to the expanded appli-
cation ofMSI by non-mass spectrometrists and tomore applications of
the technology in translational science.

Results
Data-dependent Gaussian-weighting of ion intensities
Ion images currently used in matrix-assisted laser desorption/
ionization (MALDI) MSI do not strictly represent the ion intensity of a
single observed peak-of-interest (POI) m/z. Instead, to compute ion
intensities, all peaks in a user-defined mass range centering on a POI
are weighted equally and then summed up (“uniform weighting
approach”; Supplementary Fig. 1a). This central POI can be picked
using suitable algorithms (POI-centric approach). It is subsequently
annotated in a false-discovery-rate (FDR)-controlled fashion13 by
computational platforms like METASPACE (https://metaspace2020.
eu) that estimate if the POI may correspond to a certain biologically

relevantmetabolite-of-interest (MOI), i.e., a database entrywith known
m/z such as the potassium adduct of heme [Heme+K]+ (Supplementary
Fig. 1). POIm/z andMOIm/z typically differ, and themolecular identity
of POIs is a statistical consideration.

Many biomedical scientists, however, do not have this POI-centric
analytical perspective, but rather welcome support in their quest to
visualize and analyze single MOI or ensembles of MOI, such as the
oncometabolite R-2-hydroxyglutarate or tryptophan and its catabo-
lites, some of which promote immunosuppression in glioblastoma17,18

(MOI-centric perspective). Therefore,weaimed to introducea spatially
aware perspective that systematically analyzes and visualizes if bio-
medically relevant MOI has a statistically validated relative spatial
abundance in defined areas of a heterogeneous tissue slice. To this
end, we propose molecular probabilistic maps (MPMs) that may
complement ion images for data-driven computational spatial analysis
ofMOI byMOI-centric spatial statistical testing (Supplementary Fig. 2).
MPMs are based on the assumption that for any observed (MOI-mat-
ched) POI, an increase in its spatial autocorrelation19, i.e., systematic
spatial variations of its intensities, could be an indicator of a biological
process or a spatially confined tissue morphology linked directly or
indirectly to this MOI. Instead of estimating this correlation intensity
for the entire image, the MPM approach localizes areas of heightened
relative “activity” in terms of points’ spatial densities and signal
intensities in a spatial point pattern (SPP) representation of the MSI
raw data for any given MOI m/z.

SPP representations are widely applied in statistical data inter-
pretation in other fields of biomedical imaging, such as digital
histology20. This transformation of MSI raw data into SPPs features
data—rather than user-defined mass-windows: First, full-width-at-half-
maximum (FWHM) is plotted against m/z for at least one randomly
chosen single-pixel full (profile) spectrum. The nonlinear mass resol-
ving power across a mass range is calculated from that spectrum (or
several spectra) for any given experiment (Fig. 1, Supplementary
Fig. 1b) and any given mass spectrometer such as the three platforms
used here, magnetic resonance MS (MRMS) based on Fourier trans-
form ion cyclotron resonance (FTICR), linear time-of-flight (TOF) MS
or orthogonal trapped ion mobility spectrometry (tims) TOF MS
(Supplementary Figs. 3 and 4). Experimental peak width is subject to
multiple influences in a sample that do cause variance. Nevertheless,
FWHM curves that were fit via locally estimated scatterplot smoothing
(LOESS) based on a single or 100 randomly chosen full spectra for
positive and negative ion modes were very similar for two replicate
tissue datasets (Supplementary Fig. 3). For any metabolite that an MSI
user may be interested in, a Gaussian centered on that MOI whose
standard deviation σGis computed based on estimates of FWHM at the
MOI’s m/z. All observed peaks within this data-dependent Gaussian
mass-window are then Gaussian-weighted, summed up, and trans-
formed into an SPP (Fig. 1). While other peak shapes might be con-
sidered, Gaussians have frequently been used in MSI21–23.

To explore the effects of Gaussian mass-window weighting, we
“contaminated” data for an example MOI, phosphatidylethanolamine
PE(20:1)[M+Na]+ (monoisotopic m/z 544.3009), by computationally
spiking in an interferentm/z at successive mass intervals (multiples of
σG) away from MOI m/z (Supplementary Fig. 5). Compared to tradi-
tional uniform mass-window weighting, Gaussian-weighting removed
interference noise (modeling proximal background signals) more
effectively, as indicated by the computed mean squared error (MSE)
(Supplementary Fig. 5b) and by visual inspection (Supplementary
Fig. 5c). The efficiency of handling such spiked interferences was
clearly dependent on σG, suggesting that it would be most effective in
high-resolution MSI. To test this further, we generated lipid MSI
datasets of adjacent sagittal mouse brain sections for a
cross-platform comparison using FTICR-, timsTOFflex- and MALDI-
TOF mass spectrometers (Supplementary Fig. 6–8). Two almost iso-
baric MOIs, phosphatidylserine PS(40:6)[M−H]− (m/z 834.5290) and
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C20:0 sulfatide (3’-sulfo)GalCer(38:1)[M−H]− (m/z 834.5770), were well
separated by FTICR-MSI, but the separation was improved by Gaussian
mass-window versus uniform “sum” weighting. Interestingly, for
PS(40:6)[M−H]− no difference between Gaussian and uniform weight-
ing was observed, as the apparently “interfering” peaks represent the
same metabolite and can be attributed to “side lobe” signals that can
accompany FTICR runs with longer transients (Supplementary
Fig. 624). They are expected to yield identical images. The impact of
Gaussian-weighting was most evident in high-resolution orthogonal
timsTOFMS data (Supplementary Fig. 7), whereas it did not improve a
substandard MALDI-MSI-TOF measurement of the same tissue (Sup-
plementary Fig. 8). Uniform weighting was ineffective in both cases.
Taken together, we concluded that peak FWHM-dependent Gaussian-
weighting, which does not affect all sources of noise or batch effects in
MSI6, did improve signal reliability and introduced an MOI-cen-
tric down-weighting of neighboring signals.

Molecular probabilistic maps for metabolite hotspot/coldspot
contours
To evaluate whether point intensities in SPPs and spatial relative
accumulation or depletion of a given MOI in tissue sections were sta-
tistically significant, a complete spatial randomness (CSR) model of
that MOI was created by random spatial permutations of MOI points
(see “Methods”), whichwas then used as the spatial null hypothesis for
significance testing (Fig. 2a; Supplementary Fig. 9).

For kernel density estimations (KDE) via an isotropic Gaussian
with an MOI-specific bandwidth estimation (Supplementary Fig. 9–11
and “Methods”), the intensity distribution of the CSR density image
was expected and observed to converge toward a normal distribution
with increasing kernel size (Supplementary Fig. 12). This then forms the
basis for inferring intensity cutoffs, beyond which the intensities of
MOI’s density image are unlikely to occur if generated by a random
spatial process (Fig. 2a, Supplementary Fig. 9).Moreprecisely, for each
pixel intensity value in the MOI’s spatial density function, ρMOI x,yð Þ, a
lower- and an upper-tail P-value is computed based on the null dis-
tribution f CSR kð Þ resulting in two spatial maps of lower and upper-tail
P-values Plwr ðx,yÞ and Pupr x,yð Þ, respectively (Supplementary Fig. 9b).
These P-values are then Benjamini–Hochberg-corrected25. Spatial null-
hypothesis significance testing is carried out against a significance

level α of 0.05. Consequently, an MOI’s MPM hotspot and coldspot
contours are accordingly defined as locations where the null hypoth-
esis is rejected for the upper- or lower-tail corrected P-values, thus
signifying areas of significant MOI relative spatial abundance and
deficiency, respectively (Fig. 2a, Supplementary Fig. 9). MPMs are
therefore composite representations of an MOI’s spatial distribution
on a raster grid with data-dependent Gaussian-weighted intensities
(Fig. 1) and superimposed hotspot and/or coldspot contours indicat-
ing areas of statistically significant nonrandom spatial patterns of MOI
intensities.

The bandwidth estimation for KDE is a critical part of the MPM
computational workflow since too low or too high a bandwidth would
lead to under- or overestimation, respectively, of areas of significantly
different MOI relative spatial abundance/deficiency (Supplementary
Fig. 10). We employed the Moran’s I statistic as a measure of auto-
correlation and determined the optimal bandwidth for KDE as the
“knee” point in the Moran’s I vs bandwidth plot26. For bandwidths
larger than this parameter, increased bandwidth does not result in
considerable increases in spatial autocorrelation of the smoothed
density image (Supplementary Fig. 10; see “Methods”).

In order to test the validity of the proposedMPMs against ground
truth, SPP data was simulated based on four different spatial patterns
of simulated metabolite ground truths (Fig. 2b, c, Supplementary
Fig. 13). For this purpose, points’ intensities were sampled from above
and below the upper quartile of the empirical intensities of a MALDI-
FTICR-MSI measurement of a human glioblastoma (GB) tissue sample
(Fig. 2b, c, Supplementary Fig. 13) and aMALDI-TOF-MSImeasurement
of a human gastrointestinal stromal tumor tissue sample (Supple-
mentary Fig. 14). moleculaR was able to reliably localize ground-truth
high-abundance areas, i.e., to identify points exhibiting significantly
different relative spatial abundance (Fig. 2b, c, Supplementary Figs. 11,
13, 14). High overlaps, as judged by high Dice similarity coefficient
(DSC) values, between the estimated hotspot contours and ground-
truth shapes, were observed (Supplementary Fig. 11). Interestingly,
DSC values were the highest when a bandwidth corresponding to the
“knee” point in Moran’s I was chosen for KDE, thus further supporting
thismethod for bandwidth estimation (Supplementary Figs. 10 and 11).

Applying theMPMworkflow to realMSI data, we first investigated
a neurooncology example (FTICR-MSI data). MPMs of two example
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Fig. 1 | Data-dependent metabolite-of-interest (MOI)-centric Gaussian-
weighting of ion intensities and transformation into a spatial point pattern
(SPP) representation of the MOI. Full-width-at-half-maximum (FWHM) values are
computed for all peaks of a randomly chosen full-profile mass spectrum (Supple-
mentary Fig. 2a, b) and curve-fitted to describe FWHMas a function ofm/z. For any
MOIm/z (dashed black line), a Gaussian envelope is computedwhose σG is inferred

from the estimated FWHM at MOIm/z. All observed peaks (POI: solid blue line;
interference: solid orange line), which fall within the span of the calculated Gaus-
sian envelop centered on MOI, are Gaussian-weighted (projections onto Gaussian
envelope), thereby down-weighting proximal interfering signals: The further the
measured m/z (= POI or interference) from the theoretical m/z (= MOI), the lower
the weight it receives in the final SPP representation.
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MOIs, the sphingomyelin SM(d36:4)[M+H]+ (m/z 725.5592; FDR ≤0.10)
and the phosphatidylserine PS(36:1)[M−H]− (m/z 788.5447; FDR
≤0.05), illustrate how spatial probabilistic mapping aids in outlining
MOIs’ significant relative spatial abundance or deficiency relative to
vital tumor regions, as inferred from a neuropathologist’s annotation
of a fresh-frozen tissue section of GB (Fig. 3a, b). PS(36:1)[M−H]− but
not SM(d36:4)[M+H]+, possibly arachidonic acid-containing sphingo-
myelin, had higher relative spatial abundance in the viable tumor (and
surrounding) area, as indicated by the respective MPM hotspot con-
tours. Viable tumor rather overlapped to some extent with an MPM
coldspot contour of SM(d36:4)[M+H]+ that indicated relative spatial
deficiency (Fig. 3b). Since true locations of thesemetabolites in the GB
example were unknown, we evaluated two cases, for which MOI dis-
tributions had previously beenpublished. Interestingly,MPMmapping
of C24:1 sulfatide ((3’-sulfo)GalCer(d42:2)[M−H]−; m/z 888.6240), pre-
viously reported to be present in midbrain and white matter27 in a
sagittal mouse brain section (FTICR-MSI data), revealed MPM hotspot
contours that coincided well with these regions as referenced by the
Allen mouse brain atlas28 (Allen Reference Atlas—Mouse Brain [brain
atlas]. Available from atlas.brain-map.org; Fig. 3c). Next, we compared
moleculaR with our reported PlaquePickermethod29 for their ability to
detect amyloid peptide Aβ1-38 (m/z 4060.5)—containing plaques in a

brain section of an Alzheimer’s disease mouse model (TOF-MSI data).
As with PlaquePicker, moleculaR was able to localize pockets of Aβ1-38
well (Fig. 3d). One notable distinction was thatmoleculaR disregarded
subsets of single-pixel low-intensity signals, perhaps plaques, which
were counted as such by PlaquePicker. This could be explained by the
fact thatmoleculaR also imposes a spatial co-dependency criterion for
intensities, which could effectively filter out spurious outlier single-
pixel signals. In cases like this,MOI hotspots visualized inMPMs canbe
compared with an orthogonal (e.g., optical) method or with what is
theoretically expected for the imaged object (e.g., minimum theore-
tical amyloid plaque diameter; Supplementary Fig. 15). A ground truth
for evaluation of new computational approaches inMSI is hard to find,
but even in more mature omics sciences like proteomics defining
experimental ground truths is still cutting-edge science with several
emerging concepts30. After validating the MPM workflow (1) using
simulated data, (2) using a known higher presence of a defined sulfa-
tide in defined brain areas, and (3) using intense but spatially sparse
peptide signals previously verified by LC-MS and by comparisonwith a
wild-type mouse, we considered a fourth example. To lend even more
credibility to MPM hotspot and coldspot contours for previously
uncharacterized MOIs in the GB example, we reanalyzed calibration
curves for drug dilution series (imatinib) spotted onto porcine liver

Fig. 2 | Computational molecular probabilistic map (MPM) workflow and
identification of ground- truth in simulated datasets. a MPM computational
workflow. A corresponding complete spatial randomness (CSR) model is created
for eachmetabolite-of-interest’s (MOI) spatial point pattern (SPP)with equal spatial
point density. Kernel density is estimated for both, thus resulting in spatial density
functions, ρMOI x,yð Þ and ρCSR x,yð Þ. The intensity distribution function f CSR kð Þ,
which converges to a normal distribution (Supplementary Fig. 12), then serves as
the null distribution based on which null-hypothesis testing is carried out for each
pixel intensity in ρMOI x,yð Þ with a significance level α of 0.05. MPM hotspots (red/
white contours) and coldspots (blue/white contours) are accordingly defined as
locations where the null hypothesis is rejected for the upper or lower-tail
Benjamini–Hochberg corrected P-values (Supplementary Fig. 9), thus signifying
areas of significant MOI relative spatial abundance and deficiency, respectively.
b Simulated uniform Poisson SPP showing a ring-like area of high MOI abundance)
with 30 and 20 length units for outer and inner radii, respectively (also see Sup-
plementary Fig. 11d). Intensity values were sampled from above and below the

upper quartile of the empirical intensities of aMALDI-FTICR-MSImeasurement of a
human glioblastoma tissue sample (Fig. 3a) atm/z 544.3009 (PE(20:1)[M+Na]+;
FDR ≤0.2) for the simulated high-MOI and background areas, respectively (simu-
lated high-MOI area: n = ~520 with a spatial point density of ~0.4 points per unit
area; background n = ~1950with a spatial point density of ~0.3 points per unit area;
mean signal intensity of simulated high-MOI area/mean signal intensity back-
ground = ~2.3). First row: corresponding spatial density and 3D surface plots. MPM
hotspot contours were able to localize the simulated high-MOI area (green con-
tours in the SPP plot) and identify points exhibiting significant relative spatial
abundance (green points on density and surface plots; bottom row). c Simulated
SPP with a central circle of 20 length units radius and four adjacent smaller circles
of 5 length units radius as simulated high-MOI areas (central circle area/peripheral
circle area = 16; high-MOI area n = ~430; background n = ~1950; same spatial point
density as in (b); mean signal intensity of simulated high-MOI area /mean signal
intensity background = ~2.3).
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using the MPM workflow (FTICR-MSI)31. Interestingly, following MPM
processing, the dilution series plots showed higher linearity, as sug-
gested by higher R2 and x-exponent of the linear and nonlinear curve
fits, respectively (Supplementary Fig. 16). This initial data suggests that
the use of the MPM workflow in quantitative MSI may be worth
exploring more systematically. It should be noted that MPM contours
could, in principle, be calculated for data from various MSI platforms
(Supplementary Figs. 6–8, 17). Our initial experiments suggest that it
might bemostmeaningful for high-mass-resolutionMSI, especially for
MOIs that are in close proximity or have other proximal background
signals.

One important application of MPMs is the spatially aware com-
parison of drug or metabolite distribution in test versus reference
tissues, e.g., those dosed with drugs or carrying mutations versus
controls. As an example, we reanalyzed data that we had published
earlier. For instance, such cross-tissue MPMs (CT-MPMs; Supplemen-
tary Figs. 2, 18–20) can map statistically validated significant cross-
tissue relative spatial abundance of immunosuppression-associated
tryptophan (Trp) in isocitrate dehydrogenase-mutant (IDH-mut)-

compared to IDH-wild-type (IDH-wt) glioma17 as test and reference
tissues, respectively. Cross-tissue MPMs thereby enable spatial prob-
abilistic comparisons of two tissues where currently often only com-
parative boxplots of pooled MOI signals are used that disregard any,
sometimes important, information on the spatial distribution of the
MOI (Fig. 3e, Supplementary Fig. 18). This is achieved by first finding
areas of significant relative spatial abundance/deficiency (i.e., MOI
hotspots/coldspots; here MOI: [Trp−H]−) in the test tissue. Then all
pixel intensities of the test tissue (IDH-mut glioma) are tested against
the empirical cumulative distribution function inferred from the pixel
intensities of the reference tissue (IDH-wt glioma). Test tissue inten-
sities, which reject both the spatial null hypothesis (“spatial distribu-
tion of MOI is random”) and the test-vs-reference intensity
distributions null hypothesis (“no significant difference between
intensity distributions in test and reference tissues”), are designated as
having significant cross-tissue relative spatial abundance/deficiency. In
other words, CT-MPMs identify areas of the test tissue, which exhibit a
statistically significant nonrandom spatial MOI abundance/deficiency
pattern and contain intensities that are unlikely to belong to the

Fig. 3 | Molecular probabilistic maps (MPM) for spatial probabilistic mapping
of MPM hotspot and coldspot contours indicating areas of MOI’s increased
relative spatial abundance or deficiency in tissue, respectively. a Hematoxylin
and eosin (H&E)-stained human glioblastoma (GB) tissue section (VT: vital tumor;
VT-Vasc: vascularized vital tumor; Subnecr: pre-necrotic; Necr: necrotic). b Com-
parison ofMALDI-MSI ion images and correspondingMPMhotspot (red/white) and
coldspot (blue/white) contours of SM(d36:4)[M+H+] and PS(36:1)[M−H]− (FDR ≤

0.10; FTICR-MSI) relative to VT regions (green mesh). c MPM of m/z 888.6240
(C24:1 Sulfatide[M−H]−; FTICR-MSI), previously reported to be present in the mid-
brain and white matter (fiber tracts) regions, in a sagittal mouse brain section.
Hotspot contours correctly outline these regions, as referenced by purple areas in a
brain atlas example (adapted from the Allen Reference Atlas—Mouse Brain; atlas.-
brain-map.org).dMPMof amyloid peptide Aβ1-38 (m/z4060.5; TOF-MSI) in plaques
in an Alzheimer’s disease mouse model (adapted from ref. 29). MPM hotspot con-
tours correctly localized pockets of Aβ1-38-containing amyloid plaques, as

referenced by the previously reported PlaquePicker method29 (pixels highlighted
in red). e Cross-tissue MPMs (CT-MPMs) enable spatially aware comparison of
tryptophan [Trp−H]− in isocitrate dehydrogenase-mutant (IDH-mut) glioma (test
tissue) with IDH-wild-type (IDH-wt) glioma (reference tissue). Test tissue inten-
sities, which display a nonrandom spatial distribution and that significantly differ
from those of the reference tissue, are designated as having significant cross-
tissue relative spatial abundance/deficiency. This MPM workflow variant enables
spatial statistical testing where normally only pooled Trp ion intensities are used
and localization of MOI is disregarded for statistical comparisons (exemplified
here by box/violin plots; P < 2.22 × 10−16; two-sided Wilcoxon rank-sum test;
n = 3195 and n = 3480 detected signals for IDH-mut and IDH-wt glioma samples,
respectively; adapted from ref. 17). Boxplots indicate median (middle line), 25th,
75th percentile (box) and whiskers which extend to the most extreme data point
which is no more than 1.5 times the length of the box away from the box. Source
data are provided as a Source Data file.
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distribution of MOI intensities in the reference tissue. In such scenar-
ios, however, it is important to ensure that the signal intensities of both
test and reference tissues are comparable by observing appropriate
experimental design, which deliberately minimizes technical variation
(e.g., placing them on the same slide to be measured in a single
measurement)6 and/or by relying on robust intensity normalization
methods10,32. To further validate this cross-tissue variant of the MPM
method, we simulated three cases of test and reference SPPs (Sup-
plementary Fig. 19). In case (1) it is expected that both the spatial and
test-vs-reference intensity distributions null hypotheses are rejected,
since a simulated spatial structure of high MOI abundance is present
and intensity values are sampled from different normal distributions
(Supplementary Fig. 19a). In case (2) the spatial null hypothesis is
accepted, but the the intensity distribution null hypothesis is rejected,
because no simulated high-MOI area is present but intensity values are
again sampled from different normal distributions (Supplementary
Fig. 19b). In case (3), the spatial null hypothesis is rejected while the
intensity distributions null hypothesis is accepted, since a simulated
high-MOI area is present, but here intensity values are sampled from
the same normal distribution (Supplementary Fig. 19c). The generated
CT-MPMs on simulated data correctly identified only the first case to
include simulated significant cross-tissue relative spatial abundance
(Supplementary Fig. 19a). We also used CT-MPMs to spatially localize
areas of significant cross-tissue relative spatial abundance of
the kinase inhibitor imatinib in a gastrointestinal stromal tumor (GIST)
tissue sample when compared against a series of imatinib dilution
spots in MALDI-TOF-MSI data from a previous study31 (Supplementary
Fig. 20). There, the reportedmean imatinib content in that samplewas
7.78 pmol (95% CI 7.28, 8.46pmol) and 7.81 pmol (95% CI 7.63,
7.99 pmol) based on MALDI-TOF-MSI and UPLC-ESI-QTOF-MS

quantification, respectively. Consecutive comparison of the imatinib-
tissue content against four imatinib dilution spots (3.13, 6.25, 12.5, and
25 pmol) showed a gradual decrease in the number of pixel intensities
(zero at 25 pmol) that were detected as significant cross-tissue relative
spatial abundance of imatinib (MPM hotspot contours in Supplemen-
tary Fig. 20e–h). The cross-tissue test carried out against the imatinib
dilution spot of 6.25 pmol, i.e., the closest to the reported mean
imatinib-tissue content, revealed that the tissue areas with significant
cross-tissue relative spatial abundance of imatinib (MPM hotspot
contours in Supplementary Fig. 20f) were spatially restricted and
coincided with the high-intensity pixels in the imatinib intensity image
of Supplementary Fig. 20d.

Metabolite probabilisticmaps are robust against spiked-in noise
We had already considered noise at the level of data-dependent
Gaussian-weighting and SPP transformation. To further validate the
concept of molecular probabilistic mapping, we sought to system-
atically investigate the robustness of MPMs against various types of
artificially added noise.

As exemplified for the sphingomyelin SM(d34:2)[M+H]+ (m/z
701.5592; FDR ≤0.1), MPMs were rather robust against different types
of computationally added noise. This was evidenced by DSC values of
0.85, 0.97, and 0.98 for comparisons of MPMs based on raw data
versus data with artificially added Gaussian noise, intensity artifacts
(i.e., isolated very high-intensity pixels) or interference peaks (i.e.,
peaks placed in the m/z proximity of the MOI), respectively (Fig. 4).
Applying the same testing procedure to 142 MPMs of MOIs (positive
ion mode; all METASPACE-verified at FDR ≤0.2) revealed median
DSC values of 0.91, 0.98, and 0.98 for these three types of added
noise, respectively (Supplementary Fig. 21), suggesting substantial

Fig. 4 | Molecular probabilistic maps (MPMs) are robust against various forms
of artificially added noise. a Schematic representation of ion intensity distribu-
tions of a typical metabolite-of-interest (MOI) (fMOI(k); dashed black curve) and of
the corresponding Gaussian distribution (fGaussian(k); orange) from which artificial
Gaussian noise and interference noise (b) were sampled. Mean and standard
deviation of fGaussian(k) are equal to those of fMOI (k). fint-artifacts (k) is a uniform
rectangular distribution whose range exceeds the range of fMOI (k) (see dotted x-
axis). b Gaussian noise is sampled from fGaussian (k) and is added for all pixels to the
raw signal ofMOIm/z present in each pixel. Interference noise is also sampled from
fGaussian(k) but is added for all pixels arbitrarily at MOI m/z + 2σG where σG is the
standarddeviationof theGaussian-weighting envelop. The latter is a functionof the
mass resolving power at MOIm/z. Intensity artifact noise is sampled from fint-

artifacts(k) and is added to n = 10 randomly selected pixels at m/z MOI. c MPMs
(middle row) but not ion images (upper row) of a sphingomyelin SM(d34:2)[M+H]+

(m/z 701.5592; FDR ≤0.1) are robust against various forms of artificially addednoise
and signal artifacts: random Gaussian noise (second column), presence of abnor-
mally high-intensity peak artifacts (third column), and added overlapping peaks
2σG away from MOI m/z (fourth column). Despite the degraded visual quality of
artificially “contaminated” data, MPMs are able to identify areas of significant
metabolite spatial relative abundance. This is demonstrated by the high degree of
overlap (yellow) for all noise types between estimated MPM hotspot contours of
raw (green) and artificially “contaminated” data (red), as judged by their Dice
similarity coefficient (DSC).
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robustness for awide rangeofMOIs.We alsoperformed rigorous noise
testing by varying the standard deviation of the sampled noise
between a rather low noise dispersion (resembling Poisson noise) and
up to 10 times the standard deviation of the rawMOI signal. We found
that MPMs were robust against this type of noise up to four times the
standard deviation of the raw MOI signal: MOI hotspot areas retained
overlaps above 0.75 DSC, even though visual image degradation was
observed (Supplementary Fig. 22). A similar computational experi-
ment with sampled noise spiked in the vicinity of MOI (Supplementary
Fig. 23) confirmed that Gaussian mass-window weighting contributes
to MPMs robustness against interfering proximal signals. MOI hotspot
identification was also found to be resilient to substantial numbers of
spiked single-pixel high-intensity artifacts randomly placed within the
tissue image (Supplementary Fig. 24). Single-pixel high-intensity arti-
facts may result from tissue tears, inhomogeneous matrix crystal dis-
tribution, ion source contamination, or other abrupt chemical
inhomogeneities. They are typically rare, but for up to 450 such spiked
signals (~2% of all pixels), DSC remained above 0.75 (Supplemen-
tary Fig. 24).

Since each MOI-specific CSR model is unique for every MPM
evaluation,we also testedMPMstability acrossmany runs by repeating
the same evaluation 100 times, each time with a different CSR per-
mutation. We found that estimated MPM hotspot and coldspot areas
relative to the total tissue area were stable across all iterations, with
mean overlap DSC values of 0.988 and 0.991 between the hotspot and
coldspot areas, respectively, for each of the 100 iterations relative to
that of the first iteration (Supplementary Fig. 25). We also considered
the impact on MPM hotspot contours of additional areas of high-
intensity points that were cumulatively or iteratively spiked into a
simulated SPPs (Supplementary Fig. 26). However, we observed that
the estimated MPM hotspot contours were largely unaffected (Sup-
plementary Fig. 26). To test how MPMs compare in intersample and
intermeasurement scenarios, we evaluated MPMs of four different
lipid MOIs (FDR ≤0.1) in two serial sections of a human GB tissue
(Supplementary Fig. 27) and in six serial mouse brain sections mea-
sured separately with MALDI-FTICR-MSI (Supplementary Fig. 28). We
also tested the effects of common intensity normalization techniques,
i.e., total-ion-count (TIC) and root-mean-squared (RMS) normalization,
on the observed outcomes (Supplementary Figs. 29 and 30). In all
cases, we observed good agreement of MPM hotspot/coldspot con-
tours across serial sections and intensity normalization methods for
several example lipid MOIs.

Collective projections of molecular ensembles onto a single
tissue plane
Perhaps even more far-reaching than single-molecule MPMs, data-
integrating probabilistic maps of larger metabolite (or other biomo-
lecules) sets or ensembles, typically assembledbasedonMSI scientists’
research interests,maypave theway for visualization, exploration, and
advanced analysis of integrated MSI data. We refer to them as
collective-projection probabilistic maps (CPPMs; Supplementary
Fig. 2). Biomedically relevant examples of metabolites include entire
lipid classes in SwissLipids (https://www.swisslipids.org)33, amyloid
peptides29, nucleotides34 and other low-mass hydrophilic metabolites,
potassium or sodium adducts of lipids across lipid classes35 or any
other scientist-defined set of metabolites.

To generate CPPMs, MSI data for every metabolite in a molecular
ensemble is transformed to its respective SPP representation, and then
all of these SPPs are collectively projected into a single SPP in a single
image space (Fig. 5a). Finally, this collective SPP is subjected to spatial
probabilisticmapping into CPPMs using theMPMworkflow (Fig. 5b–d,
Supplementary Fig. 34). Importantly, this computational framework
permits spatial evaluation of composite numeric scores obtained by
applying basic arithmetic operations on spatial point patterns of
multiple MOIs in different ways than before. For example, the relative

spatial abundance or deficiency of the adenine nucleotides [ATP-H]−,
[ADP-H]− and [AMP-H]−, individually relative to their collective sum, or
more complex scores such as the adenylate energy charge34,36 and the
adenylate kinase mass action ratio37 can be probabilistically mapped
within the limits of error propagation (Fig. 5b, Supplementary
Fig. 34b). Our data suggest that the latter two scores, indicative of
areas of high energy metabolism, overlap with tissue regions anno-
tated as viable tumor (VT), suggesting that CPPMs of molecular
ensembles as innovative use of MSI data may provide insights into
spatially resolved pathophysiology that would not be possible by
single-molecule ion images or MPMs not involving collective projec-
tions. This and the following observations will obviously require
extensive follow-on studieswith larger sample cohorts before clinically
valid statements can be made. It should be noted, however, that
Gaussian-weighting and MPM-internal KDE smoothing are both
expected to reduce the impact of signal uncertainty on the rendered
intensities and hotspot/coldspot contours compared to ion images.
Nevertheless, each ion intensity image will still contain an unknown
amount of nonbiological technical variability6, which could be carried
on to the composite image representation. In particular, the division of
variables may be prone to uncertainty amplification.

Another set of examples that illustrates the type of analyses that
CPPMs enable, examined all glycerophospholipids (GPLs) and lyso-
glycerophospholipids (lyso-GPLs), referred to here as (lyso) GPLs,
together in the two GB tissue sections (technical replicates) in detail. A
recent report suggested that monounsaturated GPLs were enriched
andpolyunsaturatedGPLsweredepleted in tumormicroenvironments
of various types of cancer38. In the samples analyzed here, ion images
seemed to support this notion. However, CPPMs suggested that higher
relative spatial abundance/deficiency of both classes of lipids was not
significant, whereas di-unsaturated GPLs displayed higher relative
spatial abundance—but in areas just outside of those annotated as
viable tumors (Supplementary Fig. 31).

Collective projections of metabolite ensembles support initial
surveys of entire molecular pathways. For instance, >150 lipids
involved in GPL biosynthesis and remodeling can be interpreted in a
single pathway overview (Supplementary Figs. 32 and 33). Interest-
ingly, CPPMsof PC, PA, and PSbut less soof PI and their corresponding
lyso-GPL cleavage products suggested alterations in the Lands’ cycle of
phospholipid remodeling in GB, i.e., enrichment of GPLs and con-
comitant depletion of lyso-GPLs in viable tumor (Fig. 5c). Retro-
spective transcript expression profiling of Lands cycle enzymes
revealed overexpression of various acyltransferase genes (LPCAT1,
AGPAT1, LPCAT3,MBOAT7) in GB compared to normal brain tissue but
less changes in phospholipase A2 (PLA2G6) expression that underline
the CPPM-based assessment. Taken together, spatial probabilistic
mapping of molecular ensembles supports the global interrogation of
metabolic pathways, hence opening up new avenues for the compre-
hensive analysis of metabolite classes.

As a final example, and analytical considerations such as region-
specific ion suppression notwithstanding, we reasoned that CPPMs
of all potassium or sodium adducts of lipids in the SwissLipids
database could serve as indicators of the ion milieu in a cancer tissue
sample. Analogously, it has been noted that sodiumMRI can serve as
an indicator of vital tumor in vivo:39 Na+/K+-ATPase maintains high
overall potassium and low tissue sodium concentrations in viable
cells, and higher cellularity corresponds to a lower tissue sodium
concentration39. In contrast, highly abundant Na+-adducts coloca-
lized with necrotic tissue in xenografts of five different tumor cell
lines35. Similarly, the projected molecular ensemble (=CPPM) of
potassium adducts of all (lyso-)GPLs was more abundant in vital
tumor and surrounding areas, whereas the CPPMs of projected
sodium adducts were more pronounced in necrotic tissue showing
significant relative spatial deficiency (coldspot) in vital tumor
(Fig. 5d, Supplementary Fig. 34).
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Fig. 5 | Collective-projection probabilistic maps (CPPMs) of metabolite
ensembles for visualization and interpretation of scores for energy metabo-
lism, of (lyso-) glycerophospholipid (GPL) remodeling pathways, or of ion
milieu. a Computation of CPPMs: Spatial point patterns (SPPs) of user-curated
ensemble of metabolites-of-interest (MOIs) is collectively projected onto the same
tissue plane and a molecular probabilistic map (MPM) is computed. b CPPMs
enable basic arithmetic manipulations on SPPs of multiple MOIs such as the
nucleotides [ATP-H]−, [ADP-H]− and [AMP-H]− (FDR ≤0.2; upper row), e.g., nor-
malization against their sum (bottom row; Σ = [ATP-H]−+[ADP-H]−+[AMP-H]−).
CPPMs also enable complex spatial quantitative scores such as adenylate energy
charge (([ATP-H]−+0.5[ADP-H]−)/ ([ATP-H]−+[ADP-H]−+[AMP-H]−); top right) and
adenylate kinase mass action ratio ([ATP-H]−[AMP-H]−/ [ADP-H]2−; bottom right).
Green mesh indicates co-registered vital tumor regions. c CPPMs enable spatial
investigation of GPL remodeling (Lands’ cycle) in glioblastoma by collectively
visualizing lipid classes. Upper panel: CPPMs of all lyso-GPLs and single classes
(LPC, LPE, LPS, LPI; top row) compared to all GPLs and GPL classes (PC, PE, PS, PI;

bottom row). Lyso- andnon-lyso-GPLpairs are normalized to their sum (e.g., for
LPC andPC, Σ = LPCsplus PCs). Lower panel: Rainfall plot of expression levels of
select Lands’ cycle enzymes in normal brain (blue; GTEx data) and glioblastoma
(red; TCGA data) represented as log2 transcripts per million (two-sided Wil-
coxon rank-sum test; P = 0.0054 for PLA2G6 and <2.22 × 10−16 for the rest;
n = 1671 and n = 156 for every normal brain and Glioblastoma boxplot, respec-
tively). Boxplots indicate median (middle line), 25th, 75th percentile (box) and
whiskers which extend to the most extreme data point, which is no more than
1.5 times the length of the box away from the box. Numbers in parenthesis =
METASPACE-verified lipids at FDR ≤ 0.2. d Analysis of the tissue’s alkali ion
milieu. Top: CPPMs for all (lyso-)GPLs, i.e., lyso-GPLs plus GPLs (FDR ≤ 0.5). Left
column from top: (1) CPPMs of (Lyso-)GPLs potassium adducts, (2) of (Lyso-)
GPLs potassium adducts relative to the sum of all (lyso-)GPL adducts, and (3)
CPPMs of only lyso-GPLs potassium adducts relative to the sum of all (Lyso-)
GPL adducts. Right column: As left column but showing sodium adducts.
Source data are provided as a Source Data file.
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In conclusion, with this study, we make themoleculaR framework
available for the scientific community as an R package complementing
leading MSI-bioinformatics packages40–42. moleculaR is capable of
importing metabolite annotation results from the METASPACE plat-
form to compute FDR-verified MPMs and CPPMs.moleculaR is equally
applicable for ultrahigh-resolution MSI like MRMS, or for high-
resolution instruments like MALDI-timsTOF. It could also be
deployed and hosted on a centralized server and is equipped with a
web-based graphical user interface (GUI).

Methods
Ethics statement
The research, which this study is part of, was conducted in con-
cordance with the declaration of Helsinki and was approved by the
Ethics Committee at Heidelberg University, Germany (applications S-
130/2022 and AFmu-207/2017). Participants were recruited through
theHeidelbergUniversity Hospital and gave informed consent prior to
study inclusion.

Materials
All reagents were of HPLC grade. Milli-Q water (ddH2O; Millipore) was
prepared in-house. Conductive indium tin oxide (ITO)-coated glass
slides were purchased from Bruker Daltonics (Bremen, Germany).
Adhesive slides SuperFrost PlusTM were obtained from Thermo Fisher
Scientific (Waltham, Massachusetts, USA) for histological analysis.
Trifluoroacetic acid (TFA) and 1,5-diaminonaphtalene (1,5-DAN,
≥97.0%) MALDI matrix were purchased from Sigma-Aldrich (St. Louis,
MO). 4-phenyl-α-cyanocinnamic acid amide (PhCCAA) matrix was
obtained from SiChem (Bremen, Germany). Acetonitrile (ACN) was
obtained from VWR (Darmstadt, Germany). For external calibration of
the Bruker solarix magnetic resonance mass spectrometer (MRMS), a
mixture of poly-DL-alanine (10mg/mL), L- alanine ≥ 99.5% (5mg/mL),
and taurine ≥ 99% (5mg/mL; all fromSigma-Aldrich) wasused inwater.

MALDI MSI of human glioblastoma specimens
All patients have been treated at the Heidelberg University Hospital.
Patients gave informed consent prior to inclusion in exploratory
molecular analysis, including, but not limited to, MALDI MSI. The
research is conducted in concordance with the declaration of Helsinki
and was approved by the Ethics Committee at Heidelberg University,
Germany (applications S-130/2022 and AFmu-207/2017). Tissue sam-
ples were taken through the primary operation of the brain tumor.
Frozen resected tumormaterial was retrieved from the Department of
Neuropathology in Heidelberg and reviewed by a board-certified
neuropathologist. Diagnosesweremolecularly confirmed according to
the recentWHOclassification andmethylation profileswere confirmed
with methylation EPIC array (#WG-317-1003, Illumina, San Diego,
California, USA). Hematoxylin and eosin (H&E)-stained tissues were
scanned using an Aperio CS2 scanner (Leica Biosystems, Nussloch,
Germany) and annotated by an expert neuropathologist. Frozen GB
tissue was cryosectioned (10μm; Leica CM1950; Leica Biosystems).
Sections were mounted onto ITO slides (Bruker Daltonics), and adja-
cent sections were placed on SuperFrost slides (Thermo Fisher Sci-
entific) for H&E staining. Cryosections were dried for 15min in a
desiccator and stored at −80 °C. Tissue sections on ITO slides were
coated with 10mg/mL 1,5-DAN matrix in 50% ACN/water using an M3
TM-Sprayer (HTX Technologies, LLC, North Carolina, USA): Tempera-
ture: 75 °C; No. of Passes: 17; Flow Rate: 0.1mL/min; Velocity:
1200mm/min; Track spacing: 3mm; Pattern: CC; Pressure: 10 psi; Gas
Flow Rate: 2 L/min; Nozzle Hight: 40mm; Drying Time: 0 s. MALDI-
High-mass-resolution-imaging was performed on a solariX 7T XR
(Bruker Daltonics) FTICR MRMS using Compass ftmsControl (Version
2.2) and flexImaging (Version 5.0) software (both Bruker Daltonics). All
measurements were performed at 50-μm lateral resolution in themass
range between m/z 100 and 1200 in negative mode followed by

measurement in positive mode, on the same spots. Spectra were
recorded with a 1M data point transient, amass resolving power of 85k
atm/z 400, 98k atm/z 314, 123k atm/z 249, and a FID of 0.4893 s. One
scan from 100 laser shots with a frequency of 1000Hz was used per
pixel. Q1 mass was set tom/z 120, while Time-of-Flight was adjusted to
0.9ms. In bothmodes, a Plate Offset of 100Vwas used in combination
with a deflector plate voltage of 200V. External mass calibration was
performed using poly-alanine with the addition of taurine (m/z
125.014664) to cover the whole mass range43. For internal lock mass
calibration in negative and positive modes, the [M−H]− signal of
phosphatidylinositol (38:4) (m/z 885.54875) and the [M+H]+ signal of
phosphatidylcholine (34:1) (m/z 760.58508) were used, respectively.
To minimize data load, data was saved as Profile Spectrumwith a Data
Reduction Factor of 97% in addition to the centroided mass spectra
(SQLite peaks list), which are generated during data acquisition
(method: Apex; SNR ≥ 3). The reduced profile data was used to sample
a single spectrum for the estimation of FWHM as a function of m/z,
while centroided data was preprocessed and ultimately served as an
input for moleculaR as described below.

MALDI MSI of mouse brain tissue
Deep-frozen mouse brains from 12-week-old female wild-type C57BL/
6N mice were obtained from the German Cancer Research Center
(DKFZ). Organs were from excess mice, which did not participate in
studies and had to be euthanized. Sex-based analysis has not been
performed since the study did not contain research/comparison of
cohorts of animals. Tissues were sliced and mounted as described
above. After drying, sections were spray-coated with 2.5mg/mL
PhCCAA matrix44 in 70% ACN/H2O using a TM-sprayer (HTX Technol-
ogies). MALDI-MSI was performed as described above. Measurements
were performed at 20-μm lateral resolution in themass range between
m/z 100 and 3000 in negative ion mode. Q1 mass was set to m/z 600,
while Time-of-Flight was adjusted to 1ms. For internal lock mass cali-
bration, the [M−H]− signal of phosphatidylinositol (38:4) (m/z
885.5498553) was used. All other parameters were similar to those
described in the preceding section. Orthogonal MALDI timsTOF MSI
data acquisitionwasperformedon a timsToF fleX (Bruker Daltonics) in
negative ion mode in the range of m/z 600–1800. Spectra were
recorded using 500 shots per pixel with a laser repetition rate of
10 kHz using a 20-µm step size. Transfer parameters were as follows:
Funnel 1 RF 150 Vpp; Funnel 2 RF 200 Vpp; Multipole RF 200 Vpp.
Quadrupole parameters: Ion energy 5.0 eV; Low Massm/z 900. Focus
PreToF Parameters: Transfer Time 100 µs; PrePulse Storage 15 µs.
External calibrationwas performed in the electrospraymodeusing ESI-
Low Concentration Tuning Mix (Agilent Technologies, Santa Clara,
USA). MALDI-TOF-MSI measurements were performed on a Rapiflex
MALDI-TOFMS (Bruker Daltonics) in negative reflectormode withm/z
600−1800 using FlexImaging 5.0 software (Bruker Daltonics). The
acquisition method was calibrated using quadratic calibration; 400
laser shots at 10-kHz repetition rate were accumulated for each raster
spot with a lateral resolution of 20μm. Ion Source 1 was set to 20 kV,
PIE to 2.47 kV, and the ion lens to 1.75 kV, and the delayed extraction
time was set to 90ns. The digitizer was set to 0.8 GS/s, and the
deflector cutoff mass for matrix suppression was set tom/z 590. Some
MALDI-MSI data used in previously published studies were reused: (1)
TOF-MSI of the APPNL-G-FAlzheimer’s diseasemousemodel29 (Fig. 3d
and Supplementary Fig. 12). (2) FTICR-MSI of IDH-mut and IDH-wt
glioma human tissue17 (Fig. 3e and Supplementary Fig. 18). (3) FTICR-
MSI of imatinib drug dilution series on porcine liver31 (Supplementary
Fig. 16). (4) TOF-MSI of gastrointestinal stromal tumor (GIST) tissue31

(Supplementary Fig. 20).

Semi-automatic multimodal image registration
To transform H&E annotations to the MSI image domain, the optical
images (5-µm lateral resolution) acquired prior to MALDI-MSI
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acquisitions (and intrinsically registered with the MSI image informa-
tion) and theH&E images (0.5-µm lateral resolution) were used. Briefly,
H&E and optical images were transformed into grayscale images using
the luminosity method (weighted average of the red, green, and blue
channels). Then, acquisition regions within the MSI data and annota-
tions of the H&E files were used to define a minimal bounding box for
each sample region. Subsequently, all sample regions were cropped
out of the grayscale images. Cropped images of both modalities were
resampled to a lateral resolution of 7.5 µmper pixel. Afterward, images
were exported in the nrrd image file format. Image-based registration
is used to transform the cropped images from the MSI to the H&E
image domain by using elastix45. The full registration is composed of a
rigid step, followed by a deformable step. Each registration results in a
set of parameters describing the transformation from the H&E to the
MSI image domain. Those parameters are used to transform point
information accordingly. Transformed polygons and corresponding
annotation labels were written to mis-files.

Rigid registration is basedon amultiresolution registration strategy
(Gaussian pyramid46 with three levels and down-sampling factors of
4,2,1, each of which represents pattern information at a different scale
allowing for a course-to-fine image registration paradigm). The
Advanced Mattes Mutual Information in elastix was used as multimodal
metric for the optimization of a rigid transformation using linear
interpolation and 250 iterations. For the subsequent deformable regis-
tration steps, the samemultiresolution scheme andmetric were applied.
For the deformable transformation, a recursive B-Spline transformation
was used with interpolation using third-order B-Splines. The optimiza-
tion was run for 750 iterations. For cases of failed image registration, a
multimetric registration approach was used, and manually defined
control points were added at corresponding locations in both mod-
alities to support the registration process. In this case, the multimetric
output was a composition of the Mattes Mutual Information metric and
the Corresponding Points Euclidean Distancemetric (equally weighted).
The M²aia (RRID:SCR_019324; https://www.github.com/jtfcordes/
m2aia)47 desktop application was used to view registration results, to
control registration parameters, and to interactively define pairwise
corresponding control points within both image modalities.

Data preprocessing
The centroided FTICR-MSI data (SQLite peaks list) was first imported
into SCiLS Lab Software version 2016a (Bruker Daltonics) and then
exported into imzML format. Further analysis proceeded in R, using
the MALDIquantForeign R package for data import42. Positive and
negative mode spectra were stored internally in sparse-matrix repre-
sentation (Matrix package) for computation efficiency. Bulk data ana-
lysis and preprocessing were carried out via MALDIquant42. One pixel
representing a continuous (profile) mass spectrum was randomly
chosen from the corresponding profile data and exported as a CSV file
via flexImaging software version 5.0 (Bruker Daltonics). FWHM values
were computed per peak and plotted against them/z axis (see below).
A locally estimated scatterplot smoothing (LOESS) was used for fitting
a smoothing curve to describe FWHM as a continuous function of the
m/z axis (see below), which was then used to estimate FWHM at any
given m/z. For the centroided MSI data, peaks that occurred in less
than 1% of the pixels were filtered out to limit the presence of spurious
random peaks. Peak binning was performed via the peak binning
routine of MALDIquant; the observed peak masses of the entire MSI
data (all peaks of all pixels) were grouped and sorted into a single
vector and the difference between each neighboring pair was com-
puted. Then a series of iterative bisecting was applied on the mass
vector, each time at the largest difference until all peaks within each
bin fulfilled the criterion ∣peakij � μj ∣=μj <tolerance; where peakij the
mass of the i-th peak at the j-th bin, μj is the mean mass of all peaks
present in the j-th bin (bin center; the newpeakposition) and tolerance
is the maximal relative peak deviation (4m=m; see next section) of

peak positions to be considered as identical which, for this study, was
set to 12 ppm (=4m=m;4m=FWHM atm/z 400 ≈0.0048 Da;m=m/z
400). Since the focus of this study was on the lipidome, m/z 400 was
chosen. If the study focus was on smaller metabolites, then m should
be chosen accordingly. Processed centroided datasets (negative and
positive ionmodes)were exported intoprocessed (centroided) imzML
files via MALDIquantForeign. Data-adaptive pixel-wise recalibration
based on endogenous biological signals was conducted using the MSI-
recalibration tool48. The centroided imzML data was uploaded into the
METASPACE annotation platform13 (https://metaspace2020.eu) and
lipid search was performed against the SwissLipid database33. The
corresponding annotations were then downloaded as csv files and
used as metabolites-of-interest (MOIs) for the molecular probabilistic
map (MPM) and collective-projectionmap (CPPM) workflows; in other
words, only METASPACE-verified MOIs were considered for sub-
sequent analysis.

Full-width-at-half-maximum (FWHM) model fitting
The physical basis ofmass resolving power is different for each type of
mass spectrometer. For an FTICRMS, themass resolving power can be
expressed as49

m
4m

= � ωc

4ωc
= � qB

m4ωc
, ð1Þ

where 4m and ωc define the mass resolution at FWHM and the
cyclotron frequency of an ion inside the trap. q and m are the charge
state and mass of the ion, respectively, while B is the magnetic field
strength at the center of the trap of the mass spectrometer. If the ICR
signal is undamped within the free-induction-decay time TFID

(acquisition time of the time-domain signal), the mass resolution is
given by49

4m=
7:589m2

qBTFID

ð2Þ

This state is referred to as the low-pressure limit since ion-neutral
collisions inside the trap are neglected. However, if ion-neutral as well
as ion–ion collisions cannot be neglected, the mass resolution can be
described by49

4m=
2

ffiffiffi
3

p
m

2

qB τ
ð3Þ

where, τ is the damping constant of the radial ion motion. Equations (2)
and (3) show that the mass resolution scales with m2and inversely
with q.

For this study, FWHM as a function of mass for a particular MOI is
estimated by a LOESS, based on the FWHM values of single peaks
(SNR ≥ 3) extracted from profile mass spectra. In addition, a direct
comparison to the theoretical expectations according to Eqs. (2) and
(3) is shown in Supplementary Fig. 4a for z = 1 and q= z × e where e is
the elementary charge.

The resolving power for a TOF mass spectrometer is given by50

m
4m

=
t

24t
ð4Þ

where t denotes the time-of-flight of an ion with massm, and4t is the
corresponding peak width. Since TOF does not only depend on
fundamental parameters likem/z but is also affected bymultiple other
aspects, a theoretical prediction of the FWHM as a function of mass is
difficult. Nevertheless, the same empirical model fitting described
above as for MALDI-FTICR data could still be used to model FWHM
data for TOF and timsTOF devices.
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moleculaR relies on centroided MSI data stored in imzML format,
which typically does not provide FWHM information of the peaks list.
Hence, moleculaR relies on an externally provided randomly chosen
full-profile spectrum of the MSI data under study. It is assumed (and
observed; Supplementary Fig. 3a, b) that FWHM as a function of m/z
should be similar across the tissue.

Gaussian mass-window weighting
The rationale behind using Gaussian mass-window weighting in place
of traditional uniformmass-windowweighting is to incorporate FWHM
versus m/z relationships (especially nonlinear relationships) into the
calculation of MOI intensities. This is done based on the relation
between FWHM and σG of the weighting Gaussian envelop (FWHM
=2

ffiffiffiffiffiffiffiffiffiffi
2ln2

p
σG). This enables data-driven calculationof themass-window

width taken as mMOI ± 3σG (i.e., the span of the erected Gaussian win-
dow; mMOI is the m/z value at MOI) independent of the user, mea-
surement device, and measurement parameters.

For any MOI, considering ion mode and adducts, the theoretical
monoisotopic m/z,mMOI, is computed or taken from a curated data-
base. For this m/z, the expected data-dependent FWHM and σGof a
Gaussian envelope centered at mMOI are determined. This Gaussian
envelope, scaled to [0,1] intensity, is used as a weighting function for
any observed POIs occurring within its effective support (mMOI ± 3σG),
i.e., computing

Pp
j = 1 wjij where p is the number of peaks observed

withinmMOI ± 3σG, andwj is the corresponding Gaussian weight at the
j-th peak with intensity ij . This serves as a protection against possible
proximal background signals by down-weighting them relative to
mMOI; it does not protect against miscalibrated/misaligned data. Here,
we utilized the data-adaptiveMSI-recalibrationmethod48 in suchcases.

Spatial point pattern (SPP) data representation
The difference between SPP and raster image representations resem-
bles the difference between vector-based and raster-based graphics.
Both can be used to represent the same spatial distribution, but each
provides a unique set of tools and methods that are tailored to the
specific nature of each representation. While MOI’s SPPs inherit the
gridded spatial locations from MSI data, creating a CSR model on a
spatial grid would directly violate the randomness criterion of such
models. Therefore, in order to facilitate the direct and homogeneous
comparison between MOI and a corresponding CSR model, MOI spa-
tial intensities must be converted into an SPP representation. Once
MOI’s intensities are extracted via the Gaussian mass-window weight-
ing as described in the previous section, the Spatstat framework51 is
then used to construct a marked (i.e., intensity-weighted) SPP repre-
sentation SPPMOIof MSI signals distributed in a spatial 2D contour
Φtissue representing the tissue section with a spatial point density Λ,
which equals the number of points per unit area, i.e., the average
spatial density of all points n within Φtissue or n=Atissue where Atissue is
the total area of Φtissue.

Molecular probabilistic map (MPM)
The SPP representation of MOI, SPPMOI, within a given tissue contour
Φtissue enables computation of the corresponding MPMMOI. First, a
random point pattern CSRMOI is created according to a complete
spatial randomness (CSR) model and is used to represent a sample of
random events to be considered as an intrinsic control for every MOI
case. This CSR process is generated spatially as a uniform Poisson
process with a fixed spatial point density of Λ. Unlike in common CSR
generating models20,52, in the case of MSI, CSRMOI must also carry
intensityweights (representing pixel-wise signal intensities) in order to
be a valid intrinsic controlmodel for SPPMOI: To achieve this, a uniform
Poisson spatial point process is created within Φtissue with the same
spatial point density Λ, then point intensities of SPPMOI are randomly
permuted and assigned to the points just created. These two steps
have the effect of a spatial reshuffling of SPPMOI points, until they

assume a spatial uniform Poisson process, thus effectively dissolving
any spatial clustering or autocorrelation of signals (Fig. 2). To capture
the overall spatial trend of the MOIs’ intensities, kernel density esti-
mation (KDE) is applied with an isotropic Gaussian kernel (i.e., no
specific spatial “direction” is assumed of the MOIs under study) for
both SPPMOI and its corresponding CSRMOI (see “KDE Bandwidth Esti-
mation” section) and is sum-normalized to compute the weighted
spatial density functions ρMOI x,yð Þ and ρCSR x,yð Þ, respectively. Let
fMOI kð Þ and f CSR kð Þ denote the probability density functions of inten-
sities k obtained from the resulting ρMOI x,yð Þ and ρCSR x,yð Þ, respec-
tively. As a consequence of the central limit theorem, and as a
convenient byproduct of applying KDE on CSRMOI , the intensity dis-
tribution f CSR kð Þ converges toward a normal distribution as the
bandwidth increases, which inpractice can alreadybeobserved for low
bandwidth values. This does not necessarily apply to fMOI kð Þ (see
Supplementary Fig. 12a, b, respectively). Hence

f CSR kð Þ ffi 1

σCSR

ffiffiffiffiffiffi
2π

p e
�1

2
k�μCSR
σCSR

� �2

, ð5Þ

where μCSR and σCSR are the mean and standard deviation of ρCSR x,yð Þ.
To identify areas with higher likelihood of showing a significant rela-
tive spatial abundance of MOI when compared to a random distribu-
tion (i.e.,MOI’sMPMhotspot; i.e., nonrandomspatial accumulationsof
MOI intensities) and, on the other hand, areas which have a higher
likelihood of showing a significant relative spatial deficiency of MOI
(i.e., MOI’s MPM coldspot; i.e., nonrandom spatial depletions of MOI
intensities), the lower and upper-tail P-value is computed for every
pixel intensity in ρMOI x,yð Þ against the null distribution f CSR kð Þ
resulting in two spatial maps of lower and upper-tail P-values
Plwrðx,yÞ and Pupr x,yð Þ, respectively. Next, to account for the inherent
multiple testing problem, Benjamini–Hochberg P-value correction is
applied resulting in P*

lwrðx,yÞ and P*
upr x,yð Þ (Supplementary Fig. 9).

Then null-hypothesis significance testing is carried out by comparing
each corrected P-value in P*

lwrðx,yÞ and P*
uprðx,yÞ against a significance

level of α =0.05. Locations that reject the null hypothesis are declared
to belong to either an MPM hotspot xhs,yhs

� �
or coldspot xcs,ycs

� �
if

xhs,yhs
� � 2 x,y : P*

upr xhs,yhs
� �

≤ α
n o

xcs,ycs
� � 2 x,y : P*

lwr xcs,ycs
� �

≤ α
n o ð6Þ

The MOI’s molecular probabilistic map, MPMMOI is then defined
as a composite representation of MOI spatial density of Gaussian-
weighted intensities according to the scheme shown in Fig. 1, with
MOI’s MPM hotspots and/or coldspots superimposed as polygonal
contours identifying areas of MOI significant relative spatial abun-
dance and deficiency, respectively. It is important to note that the
above procedure does not affect the visual aspect of the MOI’s inten-
sity distribution; the previously mentioned KDE smoothing occurs
internally at the level of MPM computation, while the original (Gaus-
sian-weighted) SPP intensities are carried on to the resultingMPM, and
individual signal intensities (including sparse or single-pixel signals)
are not altered or removed.

Cross-tissue molecular probabilistic map (CT-MPM)
Ion intensity distributions of metabolites or drugs are compared
between test and reference tissues, e.g., those dosed with a drug or
carrying certain mutations versus controls, in two steps: First, areas of
significant relative spatial abundance/deficiency are computed in the
test tissue (testing against the spatial null hypothesis; MPM method
described above) as shown in Fig. 2a. Then the signal intensities of the
reference tissue are used to infer a nonparametric (distribution-free)
empirical cumulative distribution function (eCDF) which acts as an
estimator of the underlying cumulative distribution function. All MOI
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intensities of the test tissue are then tested against it (i.e., the inferred
eCDF) in order to find the likelihood of them (i.e., signal intensities of
the test tissue) being drawn from the signal distribution of the refer-
ence tissue. More precisely, the lower and upper-tail P-value is com-
puted for every MOI intensity in SPPMOI of the test tissue against the
inferred eCDF of the reference tissue, and Benjamini–Hochberg cor-
rection is applied to account for the inherentmultiple testing problem.
Similar to the “within-tissue” MPM method described above, the P-
value threshold beyond which the null hypothesis is rejected is set to
α = 0.05. Finally, test tissue intensities that reject both the spatial and
test-vs-reference intensity distributions null hypotheses are desig-
nated as having significant cross-tissue relative spatial abundance/
deficiency. In other words, pixel locations of these intensities could be
described as areas of the test tissue which exhibit a statistically sig-
nificant nonrandom spatial MOI abundance/deficiency pattern and
contain intensities that are unlikely to belong to the distribution of
MOI intensities of the reference tissue. It is important to note, how-
ever, that for such comparative cross-tissue analyses, an appropriate
experimental design must be observed in order to minimize technical
variability and ensure comparability. This could be achieved, for
example, by placing tissues on the same slide to be measured in a
single measurement6 and/or by relying on robust intensity normal-
ization methods10,32.

Kernel bandwidth estimation
KDE is a key step in the MPM workflow, both for a given MOI’s spatial
point pattern and the corresponding CSR model: (1) It captures the
overall spatial trend of the MOIs’ intensities; (2) it forces f CSR to con-
verge to a normal distribution and; (3) and, being a low-pass filter, it
has the often-desired outcome of smoothing technical variations and
noise fluctuations during the process of hotspot/coldspot estimation
which has, in turn, a positive outcome on the method’s tolerance to
pixel-to-pixel batch effects, and section-to-section/slide-to-slide batch
effects6. However, smoothing SPPs with high KDE bandwidths while
generating MPMs could potentially have an adverse effect of over-
looking fine, small, or sparse spatial structures, deeming them insig-
nificant in terms of their relative spatial abundance. To prevent spatial
oversmoothing, we ensured that KDE bandwidth ðhKDEÞ estimation
takes into account theMOI’s spatial autocorrelation19 estimated over a
scale-space representation of theMOI intensity image. To achieve this,
KDE was applied iteratively with hKDE varying from 1 to 10 (pixels;
multiples of 50 µm in this study) in 0.5 increments. During each
iteration, the global Moran’s I statistic, a measure of spatial auto-
correlation, is determined (using the raster R package; first order
Queen’s case adjacency with unit weights). The optimal hKDE is then
determined byfinding the point ofmaximumcurvature, i.e., the “knee”
point, via the Kneedlemethod26 in theMoran’s I vs hKDE plot. This is the
point, after which an increase in hKDE does not result in a considerable
increase in the spatial autocorrelation of the smoothed density image.
In other words, the KDE bandwidth at which the Moran’s I statistic’s
rate of change abruptly falls is the scale, at which it is expected that
random pixel fluctuations are smoothed away and important spatial
structures/features/patterns start dominating the spatial landscape.

Collective projections probabilistic map (CPPM)
Given a set of MOIs C 2 fMOI1,MOI2, . . . ,MOImg, in this study queried
from the SwissLipids database (https://www.swisslipids.org) and ver-
ified against the POI-MOI matching platform METASPACE (https://
metaspace2020.eu), for each single MOIi an SPP representation SPPi is
calculated. Afterward, all individual SPPi are projected into the same
tissue plane Φtissue resulting in an SPP for the collective projection,
SPPC . Since SPP representations do not restrict the number or location
of points in the point pattern, a single SPP can hold any number of
points coming from any number of MOIs. Points sharing the same
coordinate location (e.g., originating from the same x,y-coordinate

location on the MSI raster) can co-exist without the need to sum them
up. Since POI-MOI matching usually reports a group of candidate
molecules for a single POI (at a given FDR, metabolite database, and
mass resolving power), mapping MOIs to POIs could result in dupli-
cated representations of POIs within CPPMs. Here,moleculaR provides
simple tools to filter out duplicated counts of the same m/z value by
incorporating only the intensities of unique masses present in the
computed CPPM. Moreover, if twoMOIs of the MOI set C overlap due
to insufficient resolving power of the mass spectrometer at m/z MOI,
the Gaussian mass-window weighting compensates for this, provided
that the two MOIs are at least partly resolved (unlike the case in Sup-
plementary Fig. 8).

The workflow then commences with intensity standardization
(i.e., z-score normalization) applied to the intensities of each individual
SPPi within SPPC by subtracting its (i.e., SPPi) intensities mean and
dividing by the standard deviation. This type of transformation aims to
equalize the variance of measuredMOI intensities by setting the mean
intensity of each MOI equal to zero, thereby adjusting for differences
in the offset between MOIs with high- and low-intensity ranges, while,
at the same time, setting the standard deviation of intensities equal to
one53. This is done to (at least partially) compensate for the inherent
heteroscedasticity and possible differences in ionization efficiency
between the individualMOIis. Then CSRC is created, and subsequently,
KDE is applied to both SPPC andCSRC , in order to computeMPMC (see
above), i.e., the resulting collective-projection probabilistic map
CPPMC is equivalent to MPMC . The naming distinction is only made to
emphasize that CPPMs are based on the visualization of multipleMOIs
at a time.

Spatial arithmetic expressions
For any number of MOIs, basic arithmetic operations on their SPPs
could also be applied. This is useful when a ratio of twoMOIs is desired
or when a more complex evaluation is of interest. To perform such
operations, first, a set of input SPPMOIs are converted into pixel-based
images with equal pixel grids. Afterwards, the spatial expression is
evaluated on a pixel-by-pixel basis. Calculation artifacts such as divi-
sion by zero (i.e., absence of a peak in that pixel) are computationally
dropped during the conversion back to SPP, while low values in the
denominator (representing detector baseline or very low peak inten-
sities) are not expected because moleculaR works mainly with cen-
troided (SNR ≥ 3) MSI data. The resulting raster image is then
converted back to an SPP whose points are carrying the respective
computed pixel intensities. This SPP is then fed into the MPM frame-
work, i.e., no arithmetic operations are applied on the hotspot/cold-
spot contours. Importantly, even though Gaussian-weighting does
improve signal reliability, each ion intensity image will still contain an
unknown amount of nonbiological technical variability6, which could
be carried on to the composite image representation. Caution is
advised when creating complex composite images involving the divi-
sion of two variables, as thesemay be particularly prone to uncertainty
propagation.

Synthetic data generation
In order to test the MPMmethod against ground truth, SPP data were
simulated based on four spatial patterns of simulated hotspots: (1) a
single central circle, (2) five equidistantly placed circles of the same
size, (3) a ring-like simulated hotspot, and (4) a dominant central circle
with four adjacent smaller ones. Each simulated hotspot pattern was
placed within a square window of 100 length units denoting the
background. Points were distributed within simulated hotspots and
background window according to a homogeneous Poisson point
process with spatial point densities Λ of 0.4 and 0.3 points per unit
area for simulated hotspots and background, respectively. Points’
intensity values (marks) were sampled from above and below the
upper quartile of the empirical intensities of a MALDI-FTICR-MSI
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measurement of a human GB tissue sample atm/z 544.3009 (PE(20:1)
[M+Na]+; FDR ≤0.2) for the simulated hotspot and background,
respectively. The difference in spatial point densities and marked
intensities accounts for the increased signal intensities and spatial
density of peak signals, which is normally observed for areas of high
relative abundance of an MOI (i.e., high spatial autocorrelation). We
hypothesize this to highlight a biological process spatially localized
within a given tissue morphology.

Artificially added noise
The nature of noise inMSI, especially for FTICR datamainly used here,
is still a matter of debate54. Here, in order to assess the stability and
robustness ofMPMs against noise sources observed inMALDI-MSI, we
artificially “contaminated” raw data with different noise types: (1)
randomGaussiannoise, (2) presenceof abnormally high-intensity peak
artifacts (“intensity artifacts”), and (3) added overlapping peaks 2σG

away from MOI m/z (“interference”). For added Gaussian noise,
intensities were sampled from a Gaussian distribution fGaussian with
μnoise = μMOI and σnoise = σMOI and added to all pixels of the MSI data,
where μnoise and σnoise are the mean and standard deviation of fGaussian
and μMOI and σMOI are the mean and standard deviation of the MOI
intensity distribution fMOI. MPMs were tested against a Gaussian noise
source with varying σnoise = σk k =0 . . . 10ð Þ, where σ0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μMOI

p
and

σk = k σMOI for k = 1 . . . 10. Note that for k =0, the resulting noise is
similar to Poisson noise with λPoisson =μMOI≫1000. The same compu-
tational experiment was repeated, this time spiking sampled noise in
the vicinity of MOIm/z atMOIm/z + 2σG. For added intensity artifacts,
noise intensitieswere sampled fromauniform rectangulardistribution
whose range far exceeded the range of the MOI intensity distribution
fMOI. These were added to n= 10 random pixels of theMSI data (Fig. 4)
but also iteratively varied for values up to 5000 random pixels (≈20%
of the total tissue pixels; Supplementary Fig. 24).

Transcript expression profiling of TCGA and GTEx datasets
TCGAbiolinks55 was used to download fragments per kilobase of
transcript per million mapped reads (FPKM) and the clinical informa-
tion of The Cancer Genome Atlas (TCGA) glioblastoma (GB) datasets
from Genomic Data Commons (GDC) (https://gdc.cancer.gov). Patient
samples characterized as “primary tumor”were retained (n = 156). The
FPKM values were converted to transcripts per million (TPMs)56. TPM
data of normal brain tissues (n = 1671) were downloaded from the
Genotype-Tissue Expression (GTEx) dataset (https://gtexportal.org).
All TPM values were log2-transformed. For bioinformatics analysis of
TCGA and GTEx data, all pairwise comparisons were performed using
Kruskal–Wallis andWilcoxon rank-sum tests. All analyses were run in R
(https://cran.r-project.org) version 4.1, and Bioconductor (https://
bioconductor.org) version 3.14. All graphical representations were
generated using ggplot2, RcolorBrewer, gridExtra, and ggridges
packages.

Statistics and reproducibility
All statistical tests and graphical depictions of data are defined within
the figure legends for the respective data panels. For comparisons
between two groups, two-sided Wilcoxon rank-sum tests were per-
formed, as noted within the figure legends. P <0.05 was considered
statistically significant. Boxplots indicate median (middle line), 25th,
75th percentile (box), and whiskers which extend to the most extreme
data point, which is no more than 1.5 times the length of the box away
from the box. The robustness of the proposed methods was tested
against several MALDI-MSI data featuring different modalities, data
types, and tissue samples. MALDI-MSI experiments were replicated as
follows: MSI measurements and analyses of human GB tissues, each
measured in positive and negative ion modes, were performed twice
on two serial sections (Figs. 3b and 5, Supplementary Figs. 27, 29–34).
MSI measurements and analyses of mouse brain tissues were

performed eight times (Fig. 3c, Supplementary Figs. 6–8, 17, 28). MSI
measurements and analyses of IDH-mut and IDH-wt human glioma
tissues were performed on three different tissue sets (Fig. 3e, Sup-
plementary Fig. 18). Some MALDI-MSI data reused from previously
published studies (respectively cited)werenot replicated:MALDI-TOF-
MSI of the APP NL-G-F Alzheimer’s disease mouse model (Fig. 3d and
Supplementary Fig. 15), MALDI-FTICR-MSI of imatinib drug dilution
series on the porcine liver (Supplementary Fig. 16), MALDI-TOF-MSI of
gastrointestinal stromal tumor (GIST) tissue (Supplementary Fig. 20).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
MALDI-MSI Data of humanGB and glioma tissue sections, mouse brain
tissue sections, and porcine tissue presented in this study are available
onMetaspace (metaspace2020.eu) through the following link: https://
metaspace2020.eu/project/abusammour-2022. The MALDI-TOF-MSI
data of the APP NL-G-F Alzheimer’s disease mouse model presented
are available via ProteomeXchange with identifier PXD020824. The
SwissLipids database is available through the Metaspace portal
(metaspace2020.eu) and can also be downloaded as a separate file
(swisslipids.org). Transcript Expression Profiles of TCGA and GTEx
Datasets are available from Genomic Data Commons (https://gdc.
cancer.gov) and Genotype-Tissue Expression dataset (https://
gtexportal.org), respectively. Source data areprovidedwith this paper.

Code availability
The source code is available as a well-documented companion R
package that implements the presented framework at https://github.
com/CeMOS-Mannheim/moleculaR alongside clear introductory sec-
tions and example code vignettes. The R package is equipped with a
web-based graphical user interface (GUI) and could be deployed and
hosted on a centralized server as described in the package link above.
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