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Predictive and robust gene selection for
spatial transcriptomics
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A prominent trend in single-cell transcriptomics is providing spatial context
alongside a characterization of each cell’s molecular state. This typically
requires targeting an a priori selection of genes, often covering less than 1% of
the genome, and a key question is how to optimally determine the small gene
panel. We address this challenge by introducing a flexible deep learning fra-
mework, PERSIST, to identify informative gene targets for spatial tran-
scriptomics studies by leveraging reference scRNA-seq data. Using datasets
spanning different brain regions, species, and scRNA-seq technologies, we
show that PERSIST reliably identifies panels that provide more accurate pre-
diction of the genome-wide expression profile, thereby capturing more
information with fewer genes. PERSIST can be adapted to specific biological
goals, and we demonstrate that PERSIST’s binarization of gene expression
levels enables models trained on scRNA-seq data to generalize with to spatial
transcriptomics data, despite the complex shift between these technologies.

Cell type classification has been revolutionized by recent advances in
single-cell genomics. It is now possible to profile the entire mRNA
repertoire (i.e., the transcriptome) of tens, or even hundreds, of
thousands of individual cells (scRNA-seq) in a single experiment.
Large-scale scRNA-seq studies have provided high-resolution taxo-
nomies of the transcriptomic cell types in many tissues across several
species, and leveraging data from these scRNA-seq studies, spatial
transcriptomicmethods can examinemolecularly defined cells in their
native context1–10. This has led to their use in large consortia such as the
Human Cell Atlas and Brain Initiative Cell Census Network, and wide-
spread recognition of their promise11.

In particular, fluorescence in situ hybridization (FISH) is a pro-
minent spatial transcriptomics approach, and it is the basis of many
recently developed technologies3,4,6,7,9,12. By revealing the spatial
organization of cells within tissues, FISH is playing a central role in
uncovering the fundamental principles of brain organization12. In
conjunction with other experimental modalities (e.g., morphological,
connectivity, or electrophysiological studies), FISH can also link tran-
scriptomic identity with other data to provide a better understanding
of the functional role of individual cell types9,13–16.

Whereas scRNA-seq detects genes in a largely unbiased manner,
FISH-based technologies assay a pre-defined list of genes. In routine
FISH experiments, only a small fraction of the transcriptome is
targeted3,6,9,12; this is in part because the complexity and duration of
FISH experiments increases sharply with the number of target genes,
and also because highly specialized methods capable of probing
thousands of genes are applicable only to thin tissue sections and
cultured cells7,17. Thus, judicious selection of a small number of highly
informative target genes (i.e., a gene panel) is key for most FISH
experiments. Experimentalists often rely on ad hoc approaches to
gene selection, most commonly choosing markers based on prior
knowledge or very high expression in a limited subset of cells9,18. Such
methods are suboptimal as they tend to overlook genes with more
complex expression patterns and rarely account for correlated
expression between selected genes, which yields redundant informa-
tion. Here, we frame the identificationofmarkers as a feature selection
problem and seek to address it in a principledmanner using tools from
machine learning.

Feature selection problems arise in many domains19–23, but spatial
transcriptomics studies present unique challenges and thus demand a
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specialized solution. Importantly, because reference datasets consist-
ing of spatially resolvedmRNAdetectionmeasurements for thousands
of genes are unavailable, scRNA-seq datasets are used instead to guide
the selection process. The use of a surrogate dataset presents new
obstacles: the expression counts observed by scRNA-seq and spatial
transcriptomics technologies may differ significantly, with a relation-
ship that is nonlinear and noisy24–26. Hence, a gene panel selected
without considering the difference between the datasets is unlikely to
perform as well as intended, as we demonstrate with several existing
methods.

Moreover, the optimal gene panel should account for specifics of
the target experiment, which may demand tuning of the selection
criterion. For instance, linking of spatial characterization of gene
expression through spatial transcriptomics and the electrical proper-
ties of neurons14,15 may require a gene panel that relates to membrane
excitability. Another scenario could involve investigating a specific
subclass of cells; for example, exploring neurons expressing a specific
marker gene in a particular brain region demands a gene panel based
on reference data from this molecularly and spatially constrained
population. Furthermore, certain spatial transcriptomics methods
might require the target genes to have either relatively high or low
expression levels; for example, when using low-resolution detection
methods, it may be preferable to prioritize highly expressed genes.

We address these challenges by introducing PredictivE and
Robust gene SelectIon for Spatial Transcriptomics (PERSIST), an
algorithm to select genes that can serve as valuable targets in spatial
transcriptomics studies. PERSIST uses scRNA-seq data and deep
learning to find a small number of highly informative genes whose
expression can predict the genome-wide expression profile. In doing
so, PERSIST trains a reconstruction model with a loss function that
accounts for noisy gene dropouts in scRNA-seq; incorporates expert
knowledge by pre-selecting or pre-filtering genes; scales to very large
datasets using minibatched training; and quantizes gene expression
levels to account for the domain shift between scRNA-seq and spatial
transcriptomics. Furthermore, our deep learning-based selection
mechanism is flexible: by changing the prediction target, PERSIST can
also operate in a supervised rather than unsupervised fashion to
address specific experimental aims, such as cell type classification or
electrophysiological characterization. Our work focuses primarily on
FISH-based studies, but many of the challenges identified above are
common to a larger class of spatial transcriptomic methods8,10, thus
suggesting broader applicability of our method.

We validate our approach using reference datasets from different
technologies (plate-based SmartSeq and droplet-based 10X), multiple
brain regions (V1, ALM,MOp) anddifferent species (mouse, human) on
classification and reconstruction tasks. We then highlight PERSIST’s
flexibility and show how to incorporate a different data modality
(electrophysiology) with FISH experiments using a large Patch-seq
dataset14. Finally, we devise an evaluation procedure to showcase the
effectiveness of our robust inference approach based on gene quan-
tization using a recent MERFISH dataset9, which we show allows pre-
dictive models to transfer across technologies despite the
measurement differences. Through our comprehensive set of experi-
ments and comparisons with other methods, we provide strong evi-
dence that PERSIST can identify valuable gene targets for spatial
transcriptomics studies.

Results
Selecting genes using deep learning
Given scRNA-seq data from a cell population to be profiled using
spatial transcriptomics, PERSIST selects a small panel of genes that can
optimally reconstruct the entire scRNA-seq expression profile. Intui-
tively, such gene panels are useful for a variety of downstream tasks
because they sacrifice minimal information. Our approach is inspired
by classical dimension-reduction techniques like principal

components analysis (PCA)27, but PERSIST selects a discrete set of
genes rather than finding linear combinations. Additionally, it recon-
structs the original data using a non-linear model and with a quality
measure more appropriate for scRNA-seq data. PCA measures recon-
struction quality using a mean squared error (MSE) loss, which recent
work has found to be ill-suited for scRNA-seq28,29, so PERSIST instead
uses a hurdle loss function to account for noisy gene dropouts30.
‘Dropouts’ refer to the failure to detect mRNA transcripts due to
inefficiencies in cDNA library preparation, which is prevalent when
using lower resolution (and typically higher throughput) platforms
such as 10X31–33. The hurdle loss used by PERSIST therefore involves
separately predicting each gene’s expression level and whether it is
actually expressed, which lets the model explicitly represent dropout
noise in its predictions (see Methods).

PERSIST uses a deep learningmodel with a custom layer designed
to pinpoint a small number of useful input features (Fig. 1). This
approach is inspired by recent work on differentiable feature selection,
which enables neural networks to select features using gradient-based
optimization20,34–36. The selection layer applies a learned binary mask
that sparsifies over the course of the optimization process; informa-
tion initially flows through the model from all genes, but the relevant
inputs are gradually reduceddown to auser-specifiednumber (Fig. 1B).
The model’s memory usage can be managed via the minibatch size
used for training, and when necessary, the computational cost can be
further reduced by performing a preliminary filtering step (see
Methods).

By default, PERSIST operates in an unsupervised manner by
reconstructing the full scRNA-seq expression profile, which removes
the need for any labels or manual annotation. However, PERSIST can
also operate in a supervised manner by incorporating cell-level anno-
tations as the model’s prediction target, such as cell type labels or
complementary epigenetic data like chromatin accessibility and
methylation (Fig. 1A). As we show in our experiments, this gives PER-
SIST a versatility that is not shared by other methods, and which lets
practitioners select genes that are tailored to meet specific biological
questions and objectives. While spatial transcriptomics studies often
have specific goals like classifying cell types3,5,7,9, enabling PERSIST to
operate in anunsupervisedmanner is important because reference cell
type clusterings are not always available, consensus definitions of cell
types are still evolving37, and focusing on gene expression enables
unbiased characterization of complex tissues and specific brain
regions.

The goal of our evaluation is to demonstrate that genes identified
by PERSIST can serve as valuable targets in spatial transcriptomics
studies. Showing this is not straightforward, both due to the cost of
runningmultiple FISH studieswith panels selectedbydifferent criteria,
as well as the difficulty of providing an unbiased comparison through
studies conducted on different tissues. We therefore evaluate the
PERSIST gene panels by simulating their use in FISH studies, and in
particular via prediction tasks thatwould beof interest to practitioners
in such studies. scRNA-seq and FISH have very different noise sources
and detection issues, and the number of transcript counts observed by
each technology can differ substantially for the same cell, so our
simulated prediction tasks binarize gene expression levels. This pre-
processing step allows models to transfer across technologies despite
the domain shift, as we demonstrate in an experiment with
MERFISH data.

Our experiments compare PERSIST to several widely used and
state-of-the-art gene selection methods. We tested the Seurat38 and
Cell Ranger39 gene selection procedures, which are based on per-gene
variance and dispersion levels and are implemented in the popular
ScanPy package40. These methods are designed primarily to reduce
computation and inform clustering studies that help determine mar-
ker genes, but they are not intended to directly select gene panels;
therefore, their performance is not expected to be competitive with
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methods designed explicitly for selecting small gene sets. Next, we
tested the recently proposed GeneBasis method41 that selects genes
using a greedy algorithm to preserve the data manifold. Finally, we
considered three methods that aim to differentiate cell types: a
method that maximizes the information about cell type labels
(MutInfo)9,42, a method that identifies key gene predictors using fea-
ture importance scores (SMaSH)43, and the scGeneFit method44 that
uses linear programming. These methods span a range of selection
criteria, but PERSIST is a flexible method that can be adapted to mul-
tiple experimental objectives relevant to practitioners, and that was
designed specifically for transferability to spatial transcriptomics
studies.

PERSIST enables more accurate scRNA-seq expression profile
reconstruction
We first tested PERSIST on two scRNA-seq datasets: a SmartSeq v445

dataset consisting of 22,160 neurons from the mouse primary visual
(V1) and anterior lateral motor (ALM) cortices46 (hereafter referred to
as SSv4), and a 10X39 dataset consisting of 72,629 neurons from the
human motor (M1) cortex47 (hereafter referred to as 10X). These
datasets profile different brain regions and species and were collected
using two library preparation platforms that yield different levels of
sparsity. Working with an initial set of 10,000 high-variance genes, we
used PERSIST and the other gene selectionmethods to identify panels
of 8–256 marker genes, a range that spans the vast majority of FISH
studies.

As a benchmark metric for our comparisons, we calculated the
portion of variance explained in the genome-wide scRNA-seq expres-
sion profile by each selected gene panel. For gene panels of all sizes on
both datasets, PERSIST explained more variance and outperformed
the unsupervisedmethods Seurat, Cell Ranger, and GeneBasis (Fig. 2A,

C). The GeneBasis approach is most competitive with PERSIST, but it
explained considerably less variance for smaller genepanels, which are
most commonly used in experiments. There is diminishing improve-
ment as the panel size increases, and even large panels, such as those
with 256 genes, fail to explain all the variance. This is due not only to
themany factors of variation in the full expression profiles, but to high
noise levels in the data. To verify this, we calculated the amount of
variance explained by the cell types in each dataset. We found that cell
type labels explained just 19% of the variance in the SSv4 data and 11%
in the 10X data, suggesting high intra-type variability due to stochas-
ticity in gene expression and detection. Perhaps surprisingly, the
PERSIST panels can explain more variance than the cell type identities
given enough genes.

Importantly, PERSIST binarizes gene expression levels during
training whereas Seurat, Cell Ranger, and GeneBasis all use either raw
or logarithmized expression counts. This creates a degree of incon-
sistency among methods, so we asked whether this pre-processing
step could account for differences in performance. A modified ver-
sion of GeneBasis becomes more competitive with PERSIST, whereas
Seurat and Cell Ranger perform worse with binarization (Supp.
Fig. 4). For MutInfo, SMaSH and scGeneFit, which leverage cell
type labels to select genes, we find that PERSIST outperforms these
methods independent of binarization (Supp. Fig. 3). Overall, the
results show that PERSIST’s binarization step can be incorporated
into several of the baselines to enable better transferability to FISH
studies.

Recent work has demonstrated that the “dropout pattern” of a
cell (i.e., the set of genes not detected by scRNA-seq) is nearly as
informative as quantitative expression levels for identifying cell
types32,48. We thus wondered whether the selected gene panels could
predict the set of genes with non-zero transcript counts in the rest of

Fig. 1 | Overview of predictive and robust gene selection for spatial tran-
scriptomics (PERSIST). PERSIST selects genes using a deep learningmodel trained
to reconstruct the genome-wide expression profile. A The model is trained using
scRNA-seq data, which is binarized to address the domain shift relative to FISH
measurements. The model by default aims to reconstruct the original scRNA-seq
gene expression levels, and the objective function is a hurdle loss designed to

account for noisy genedropouts. Alternatively, one can use a supervisedprediction
target to address specific experimental aims, such as cell type classification. After
training, the selected gene panel is extracted from the model’s binary mask layer.
BThe binarymask layer selects genesbymultiplying the inputwith a learnedbinary
mask,which controls the subset of input features that areused tomakepredictions.

Article https://doi.org/10.1038/s41467-023-37392-1

Nature Communications |         (2023) 14:2091 3



the scRNA-seq dataset (Fig. 2B, D). In this task, PERSIST again per-
forms more accurately than other methods on both datasets for all
panel sizes; this is due in part to our hurdle loss function, which
involves predicting whether each gene is detected. For this analysis,
we excluded genes that were rarely expressed and housekeeping
genes that are ubiquitously expressed, focusing on those expressed
in 20–80%of cells (n = 4972 genes), but similar results were found for
varying cutoffs (Supp. Fig. 6). Supp. Fig. 5 shows the prediction
accuracy for each gene, revealing that those with moderate mean
expression are more difficult to predict than those with pre-
dominantly high or low expression.

Finally, from an experimental standpoint, it would be most prac-
tical to select a single general-purpose gene panel using the entire
dataset rather than generating a genepanel for eachparticular subtype
of interest. To assess the feasibility of this strategy, we focused on the
class of somatostatin-expressing (Sst) interneurons (2701 cells) in the
SSv4 dataset and compared gene sets selected by PERSIST when
trained on the entire scRNA-seq dataset versus just the Sst sub-
population. Performance improved when we only used data from the
specific cell type of interest during gene selection (Fig. 2E, F). However,
the improvement diminished when 32 or more genes were selected,
which suggests that general purpose gene panels may be appropriate

Fig. 2 | Evaluating gene panels based on their ability to reconstruct scRNA-seq
expression profiles.The selected genes are used to predict either log-normalized
expression counts for the remaining genes (A, C, E) or whether each gene is
expressed in the genome-wide profile (B, D, F). The panels selected by PERSIST
perform better than those selected by previous methods. A Explained variance
for gene panels identified by PERSIST and other methods with the SSv4 V1/ALM
neuronal cells (higher is better). B Expressed gene prediction accuracy with the
SSv4 V1/ALM neuronal cells (higher is better). C Explained variance for gene

panels with the 10X M1 cells. D Expressed gene prediction accuracy for panels
with the 10X M1 cells. E Explained variance for gene panels with the SSv4 V1/ALM
Sst cells. F, Expressed gene prediction accuracy for panels with the SSv4 V1/ALM
Sst cells. The results were calculated using a set of held-out cells from each
dataset, with n = 2216 for the SSv4 neuronal cells (A, B), n = 7262 for the 10X cells
(C, D), and n = 270 for the SSv4 Sst cells (E, F). All error bars represent 95%
confidence intervals determined by training with five bootstrapped datasets.
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for technologies that assay large numbers of genes (e.g., multiplexed
methods like MERFISH4).

PERSIST enables accurate cell type classification
As another evaluation metric, we tested how accurately the gene
panels selected by each method can classify cell types, which is a
common goal of spatial transcriptomics studies3,5,7,9. We utilized tran-
scriptomic cell types defined via the original SSv4 and 10X datasets for
our evaluation, and the classification accuracy with binarized input
data simulates the accuracy in a subsequent FISH experiment. In
addition to the various gene selection methods, we also consider a
panel of marker genes identified by Tasic et al.46 for cell types in the

SSv4 dataset. For all gene selection approaches, larger panels enabled
increasingly accurate cell type classification (Fig. 3). As expected,
supervised methods that use cell type annotations during their selec-
tion procedure (e.g., MutInfo) perform better than unsupervised
methods that use only unlabeled scRNA-seq data (e.g., Seurat). To
emphasize this distinction between methods, we present results
separately for unsupervised (Fig. 3A, C) and supervised methods
(Fig. 3B, D).

Among the unsupervised approaches, PERSIST outperforms
Seurat, Cell Ranger and GeneBasis for panels of all sizes. For example,
when using 64 genes, PERSIST reaches 74% accuracy with the SSv4
data and 78% with the 10X data considering a total of 113 and 117 cell

Fig. 3 | Evaluating gene panels based on their ability to classify cell types. The
selected genes are used to classify scRNA-seq cell types, and PERSIST achieves
strong performance despite not using cell type labels during the selection process.
PERSIST-Classification, a version modified to distinguish cell types, matches the
best existing supervised approaches. A Cell type classification accuracy for gene
panels selected by unsupervised methods with the SSv4 dataset (higher is better).
B Accuracy for gene panels selected by supervised methods with the SSv4 dataset.
C Accuracy for unsupervised methods with the 10X dataset. D Accuracy for

supervisedmethods with the 10X dataset. E Accuracy for cell subtypes obtained by
merging the SSv4 dataset’s transcriptomic hierarchy, for panels of 16 genes.
F, Accuracy with merged SSv4 cell subtypes for panels of 64 genes. The results for
each dataset were calculated using a set of held-out cells, with n = 2216 for the SSv4
cells (A, B, E, F) and n = 7262 for the 10X cells (C, D). All error bars represent 95%
confidence intervals from training with five bootstrapped datasets, and E, F show
results from the five runs.
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types, respectively. GeneBasis is the most competitive unsupervised
baseline with the 10X data, and either GeneBasis or Seurat are most
competitive with the SSv4 data. The gap in performance is largest for
small panels, and the various methods roughly converge in accuracy
for panels of 128 genes. As additional results, Supp. Figs. 7, 8 show
confusion matrices that represent how cells of each type are most
often classified, and Supp. Fig. 9 shows that distinct expression pat-
terns for the selected genes are visible within each cell type.

PERSIST is an unsupervised selection algorithm by default, but we
can also adapt it to cell type classification by using cell type labels as
the prediction target during training (Fig. 1). This supervised version of
our approach, termed PERSIST-Classification, matches or exceeds the
performance of the other supervised approaches. For example, it
reaches 81% accuracy in the SSv4 dataset and 82% accuracy in the 10X
dataset using panels with 64 genes—a significant improvement over
the unsupervised version. This illustrates the flexibility of our deep
learning-based selection approach, and that PERSIST can be adapted
to specific experimental objectives by simply adjusting its prediction
target. The peak accuracy we observe with 128 genes is 85%, so our
results also suggest thatpanels of these small sizesmaybe incapable of
perfectly distinguishingfine-grained cell types, and therefore that FISH
studies may benefit from analyzing more coarse clusterings.

Prior work suggests that the highly similar terminal nodes of the
classification hierarchy may not all correspond to distinct cell types,
but may instead reflect cell states or spatial gradients in gene
expression49.We thereforedividedcells intobroader subclasses,which
leads to greater classification accuracy because the groupings are
more distinct and, trivially, there are fewer of them. For the SSv4
dataset, if we classify cells into 25 subclasses rather than the full 113
types, PERSIST-Classification reaches 84% accuracy using 16 genes (vs.
59% for 113 types) and 96% accuracy using 64 genes (vs. 81% for 113
types). In comparison, the unsupervised version of PERSIST provides
accuracy just 3% and 1% worse, respectively (Fig. 3E–F). The results are
similar but slightly less accurate when we classify into 50 subclasses.
With a reduced number of cell type subclasses, Seurat, Cell Ranger,
and GeneBasis are still not competitive with PERSIST, and PERSIST-
Classification remains on par with the supervised procedures.

Although PERSIST does notmatch PERSIST-Classification in terms
of classification accuracy, it is notable that PERSIST remains compe-
titive despite not having access to cell-type labels. This indicates that
PERSIST successfully captures cell-type information in an unsu-
pervised manner. We attribute the strong cell type classification per-
formance to our deep learning-based selection mechanism, which
identifies non-redundant genes that help reconstruct the full expres-
sion profile, and to our use of gene expression binarization. In an
ablation study, we also find that PERSIST’s hurdle loss function is an
important design choice, because it leads to better cell type

classification accuracy than training with mean squared error loss
(Supp. Fig. 2). These results are promising because a consensus defi-
nition of cell types, and their continuous versus discrete nature, are far
from settled15,46,50. Moreover, reference label information is currently
available for only a handful of mouse and human tissues, and PERSIST
canbeused in anunsupervisedmanner in settings that lack established
cell type hierarchies.

PERSIST can be adapted to predict electrophysiological
properties
As a further demonstration of our method’s flexibility, we developed a
specialized variant of PERSIST to identify marker genes that predict
each cell’s electrophysiological properties. For this purpose, we used a
multi-modal Patch-seq dataset14,51 containing transcriptomic and elec-
trophysiological information from 3411 GABAergic neurons across 53
cell types in the mouse visual cortex. Specifically, the transcriptomic
profile consists of the scRNA-seq counts for 1,252 curated genes, and
the electrophysiological profile consists of a set of 44 sparse principal
components (sPCs) summarizing different portions of the measure-
ment protocol, as well as 24 biologically relevant features51.

To select gene panels using the Patch-seq dataset, we used base-
line methods that require only unlabeled expression data (Seurat, Cell
Ranger, and GeneBasis) because the dataset lacks cell type annota-
tions. For PERSIST, we first ran it in an unsupervised manner by
selecting genes that can optimally reconstruct the full expression
profile. Next, we also ran PERSIST in a supervised manner by using the
vector of electrophysiological features as the prediction target, yield-
ing a variant of our approach that we refer to as PERSIST-Ephys. We
then investigated how well each gene panel represents a cell’s elec-
trophysiological profile.

As an evaluation metric, we attempted to predict the electro-
physiological features of each neuron using the expression levels of
the genes in each panel. Similar to previous experiments, we binarized
gene expression levels to simulate applicability in a subsequent FISH
study. We find that PERSIST-Ephys achieves the highest predictive
accuracy, reaching a higher portion of explained variance with panels
of all sizes (Fig. 4A). The unsupervised version of PERSIST is the second
most accurate method, achieving comparable explained variance for
larger panels, and Cell Ranger performs similarly in this case.

The strong performance of PERSIST-Ephys is primarily due to it
being tailored to electrophysiological characterization. PERSIST-Ephys
is designed to address this specific predictive task, but the other
methods rely on selection criteria that are not explicitly related to
electrophysiology. As a result, these methods picked distinct genes
(Supp Fig. 12) and PERSIST-Ephys is roughly as accurate with a panel of
8 genes as the other methods are with 64 genes. None of the gene
panels we tested exceed 35% explained variance, but notably, we find

Fig. 4 | Using PERSIST to predict electrophysiological properties. PERSIST is
adapted to this specific experimental goal by using electrophsyiological char-
acteristics as its prediction target. The resulting version of our approach, PERSIST-
Ephys, yields gene panels can predict cells' electrophysiological properties more
accurately than other methods. A Explained variance in the electrophysiological
properties for gene panels selected by each method. Results were calculated using

a set of n=341 held-out cells, and error bars represent 95% confidence intervals
determined by training with five bootstrapped datasets. B Low-dimensional
embedding for the PERSIST-Ephys panel containing 64 genes, colorized according
to the cells' electrophysiological properties (using the first principal component);
the cells are effectively clustered according to their properties, with similar cells
appearing nearby in the embedding space.
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that even the full set of 1252 genes does not exceed this level of
accuracy; this suggests that the unexplained variance represents noise
in the experimental results, or factors that are not captured by gene
expression.

As an exploratory analysis, we also examined a low-dimensional
embedding of the PERSIST-Ephys gene panel to understand the rela-
tionship between cells that are nearby in expression space. Our plot
displays individual cells using thefirst twoprincipal components of the
panel containing 64 genes (Fig. 4B). To assess whether nearby cells
have similar electrophysiological profiles, we colorized the cells by a
scalar summary of the profile – the first principal component of the
electrophysiological feature vector.The resultingplot reveals naturally
occurring clusters of similar cells, which may be expected because
PERSIST-Ephys selects genes whose expression is maximally indicative
of the neuron’s electrophysiological profile.

Binarization enables gene expression prediction with MER-
FISH data
PERSIST can identify informative marker genes for a variety of
experimental objectives, but our previous evaluations used only
scRNA-seq data due to the challenge of providing an unbiased com-
parison via FISH studies conductedwithmultiple panels. Nevertheless,
suchcross-modal experiments represent an essential use case, which is
applying predictive models trained using scRNA-seq to data collected
from spatial transcriptomics studies. Here, it is important to verify that
binarizing expression levels enables such models to transfer

successfully between technologies, which is difficult to ascertain
because accompanying annotations are seldom available for FISH
datasets (e.g., ground truth cell type labels, or expression levels of
genes that are not part of the FISH panel). To investigate this question,
we therefore devised a multi-step in silico experiment using the SSv4
scRNA-seq dataset in combination with data from a recent, large-scale
MERFISH study9.

In the MERFISH dataset, 258 genes were probed across 280,327
cells from the mouse primary motor cortex (MOp). Because ground
truth cell type labels are not available, we instead chose to evaluate
performance in the expressed gene prediction task (similar to
Fig. 2D, F), where our goal is to predict which individual genes are
detected in each cell. To do so, we first used the V1 and ALM SSv4
scRNA-seq datasets to select panels of 8-32 markers from within the
Zhang et al.9 MERFISH gene set. Then, an imputation model was
trained—using only the scRNA-seq data—to predict which of the
remaining genes are detected. Finally, using the resulting model, we
predicted the set of detected genes in the MERFISH dataset (Fig. 5A).
As in our previous experiments, we binarized both the scRNA-seq
and MERFISH gene expression levels so the model trained with
scRNA-seq data could transfer despite the measurement differences.

Encouragingly, we find that the scRNA-seq-trained models can
predict expressed genes in the MERFISH data with high accuracy
(Fig. 5B, C). The prediction accuracy tends to improve with larger
panels; for example, PERSIST reached 86.5%with a 32-genepanelwhen
trained on the V1 dataset. PERSIST in most cases achieves the highest

Fig. 5 | PredictingMERFISHgeneexpressionafter trainingwith scRNA-seqdata.
To test whether models trained on scRNA-seq data can transfer to FISH despite the
domain shift between technologies, we design an experiment combining SSv4 and
MERFISH measurements. We find that binarizing gene expression levels enables
accurate predictions in MERFISH cells, and that PERSIST outperforms prior gene
selection approaches.A In this multi-step experiment, a gene panel is first selected
using scRNA-seq restricted to the genes profiled in the MERFISH data. Next, an
imputationmodel is trained to predict whether the remaining genes are expressed,
again using scRNA-seq data. Finally, the imputation model’s accuracy is tested on

MERFISH data, using the small gene panel to predict the remaining genes. The
imputation model’s accuracy demonstrates that binarization enables successful
transfer from scRNA-seq to FISH. B Expressed gene prediction accuracy for panels
selectedby eachmethodwhenusing the V1 SSv4 data.C Expressed gene prediction
accuracy for panels selected by each method when using the ALM SSv4 data. The
results were calculated using all cells from the MERFISH dataset (n = 280,327), and
error bars represent 95% confidence intervals determined by training with five
bootstrapped datasets.
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accuracy, with GeneBasis being the most competitive baseline
method. We also find that the prediction accuracy with the V1 cells is
slightly higher than with the ALM cells. PERSIST not only outperforms
other unsupervised methods that can operate with only unlabeled
scRNA-seq data (Fig. 5), but also the approaches that leverage cell type
labels when performing gene selection (Supp. Fig. 10). Crucially, the
panels selected by all methods benefit from expression binarization to
enable the imputation models to transfer across technologies.

In these experiments, we carefully determined the thresholds for
binarizing theMERFISH expression counts bymatching the quantile of
the zero-threshold used with the scRNA-seq data. This procedure
enables us to account for the zero-inflation present in scRNA-seq
datasets. When we instead binarized the MERFISH data using a
threshold value of zero, the prediction accuracy decreased for all gene
panels (Supp. Fig. 10). Finally, because we have access to cells profiled
usingMERFISHwith all genes in this case, we are able to determine that
training the imputation model with MERFISH rather than scRNA-seq
data results in an accuracy improvement of roughly 4–6% (see Sup-
plementary Note 1). The gap is non-negligible, but itmay bedue in part
to differences in the brain regions profiled in the reference dataset.

This evaluation approach does not represent a practical work-
flow for a real experiment, because the genes we predict are present
in the panel; however, the fact that the model transferred success-
fully suggests that binarization can allowmodels for other predictive
tasks to transfer from scRNA-seq to FISH data, including models for
cell type classification or characterizing electrophysiological prop-
erties. This represents the first quantitative evidence, to our knowl-
edge, that a predictive model trained exclusively with scRNA-seq

data can be transferred successfully to a subsequent spatial
transcriptomics study.

Variability in gene panel selections across algorithms
Because the gene selection algorithms tested here rely on diverse
selection criteria, they produce different gene panels given the same
reference scRNA-seq data. Here, we examine the overlap in gene
panels selected by each algorithm, and we do so by calculating the
proportion of overlapping genes within 32-gene panels chosen from
among the 10,000 candidates in the SSv4 and 10X datasets. As
expected, no two methods select the exact same gene set (Fig. 6A, B),
but there is overlap among many pairs of methods. The probability of
two random 32-gene panels sharing more than one gene is just
4.6 × 10−3, so the overlap we observe suggests a shared reliance on a
relatively small number of informative genes. The strongest similarity
is between Seurat and Cell Ranger on the 10X dataset, at 53% overlap
(17/32 genes); their overlap is lower with the SSv4 dataset, at just 22%
(7/32 genes), and their similarity is perhaps due to the fact that both
methods are based on per-gene variance levels. Another pair of similar
methods is scGeneFit andGeneBasis, which have anoverlap of 41% and
47% for the SSv4 and 10X datasets, respectively.

In comparison, we find that PERSIST has a relatively low overlap
with other methods. The highest overlap for PERSIST is with PERSIST-
Classification andMutInfo: PERSIST shares 19% of genes with PERSIST-
Classificationon the 10X dataset and 16% on the SSv4 dataset, andwith
MutInfo it shares 16% on the 10X dataset and 19% on the SSv4 dataset.
Meanwhile, PERSIST-Classification and MutInfo achieve higher levels
of overlap, at 31% for the SSv4 dataset and 38% for the 10X dataset;

Fig. 6 | Diversity in genepanels selectedby eachmethod.Using the SSv4 and 10X
datasets, we find that PERSIST and PERSIST-Classification select distinct gene
panels from prior methods. Additionally, because PERSIST is non-deterministic
across trials, we examine the frequency of its gene selections across multiple trials.

A Portion of overlapping genes between panels of 32 genes for the SSv4 cells.
B Portion of overlapping genes between panels of 32 genes for the 10X cells.
C Frequency of gene selections within PERSIST panels containing 16 genes,
aggregated across 32 independent trials.

Article https://doi.org/10.1038/s41467-023-37392-1

Nature Communications |         (2023) 14:2091 8



similarly, PERSIST-Classification and SMaSH have 19% overlap on the
SSv4 dataset and 28% overlap on the 10X dataset. For these three
supervised methods, their similarity is likely due to their selection
criteria that all aim to distinguish cell types. For panels containing
either 16 or 128 genes, PERSIST’s selections remain distinct from other
methods, and they are still somewhat similar to those from PERSIST-
Classification and MutInfo (Supp. Fig. 11). Overall, these results reflect
that the various gene selection methods select distinct gene panels,
and that PERSIST and PERSIST-Classification’s improved performance
across various metrics is enabled by the selection of substantially dif-
ferent panels.

Finally, we examined a somewhat unique characteristic of PER-
SIST: the stochasticity of its selections across runs. Because we
implemented a deep learning model that is trained using stochastic
gradient descent, the results from PERSIST and its supervised variants
(PERSIST-Classification, PERSIST-Ephys) can differ across trials. This
variability is somewhat unusual for a gene selection method, but this
property is shared by other state-of-the-art feature selection
techniques20 and by the UMAP embedding method52. To examine the
variability in the individual genes selected and the performance of the
selected gene panels, we ran 32 independent trials of PERSIST with the
SSv4 dataset.

For panels containing 16 genes, four genes were selected in at
least half of the trials, with a single gene, Bmp3, being selected in 30 of
32 trials (Fig. 6C). The remaining ones were selected less consistently;
the sixteenth most frequently selected gene was chosen in just over a
third of trials, and 38 genes were selected just once. Reassuringly,
differences in the composition between the gene panels had little
impact on cell type classification accuracy or expression profile
reconstruction (Supp. Fig. 13). The stability in performance despite
changes in the genepanel composition is not surprising, becausemany
genes have highly correlated expression patterns and thus can be
readily substituted. In practice, we suggest running a small number of
trials and then selecting the best trial using the validation loss achieved
by the PERSIST deep learning model.

Discussion
Identifying an effective gene panel is a pre-requisite for successful
spatial transcriptomics studies. This work introduces PERSIST, which
uses deep learning to select genes that are highly predictive either for
the genome-wide expression profile or for a specific experimental
objective. Our experiments with several datasets show that PERSIST
selects more informative targets than existing algorithms, generally
providing better predictive accuracy and/or enabling the use of fewer
genes. In addition to our deep learning-based selection mechanism, a
key contribution of this work is PERSIST’s robust inference ability,
which is achieved by using binarized gene expression levels: this helps
mitigate the complex relationship between scRNA-seq and FISH mea-
surements, andwe find that it allowsmodels to transfer to FISH studies
despite the challenging domain shift. We also note that while our
explicit demonstration is based on a recent MERFISH dataset, the
problems addressed here are common to a broader class of spatial
transcriptomicmethods8,10. Therefore, ourmethod is likely to improve
target gene selection in a broader class of studies where genes are
selected using surrogate data from a different technology.

From a computational perspective, PERSIST benefits from several
aspects of deep learning that make it increasingly popular for data
analysis in single-cell genomics28,29,53. These include the simplicity of
gradient-based optimization, the scalability to large datasets enabled
byminibatched training, and the flexibility of the prediction target and
loss function. We profiled PERSIST’s computational cost and found
that both the running time and memory usage remain manageable
when using 10,000 candidate genes and selecting a relatively large
panel of 256 genes (Supp. Fig. 14). When using even larger datasets,
PERSIST’s computational cost can be managed by maintaining a

smaller minibatch size, or by performing an initial filtering step to
reduce the number of candidate genes. Finally, PERSIST does not
require extensive tuning of parameters, andwe used identical network
architectures across all experiments (Supp. Table 1); however, future
improvements may involve automatically setting all parameters to
ensure maximum ease-of-use for both computational and
biological users.

PERSIST is by default an unsupervised method that aims to
reconstruct the genome-wide expression profile. Running it in an
unsupervised fashion yields genes that are informative in general, but
some information is necessarily sacrificed, because reconstructing the
full expression profile using a small number of genes remains chal-
lenging. One interesting finding of our study is that while stochasticity
in gene expression and detection limits the variance explained by the
cell identity according to the reference clustering, relatively small
PERSIST panels can explain more variance than the discrete cell type
identity. Thismay suggest imperfections in the reference clustering, or
biologically meaningful variability that lies in a continuum that is not
captured by a discrete cell type label54.

PERSIST can be tailored to arbitrary experimental goals by simply
modifying the prediction target, thus enabling FISH studies to use
gene expression as a bridge to other data modalities. Because alter-
native prediction tasks can be simpler than reconstructing many
thousands of genes, using PERSIST in this fashion can enable the use of
small gene panels that sacrifice minimal accuracy. Our experiments
show examples with transcriptomic cell type classification and elec-
trophysiological profile prediction, but other focused prediction tasks
may include identifying disease properties or bridging with epigenetic
information such as chromatin accessibility and methylation. Overall,
PERSIST represents a powerful general-purpose solution for marker
gene selection, and our design choices make it an effective tool for
selecting small gene panels that can be used for FISH studies, and for
spatial transcriptomics studies more generally.

Methods
Predictive and robust gene selection for spatial transcriptomics
(PERSIST)
PERSIST aims to capture as much information as possible in a small
gene panel, and it does so by selecting genes that can predict the
genome-wide scRNA-seq expression profile. It relies on a deep learning
model that reconstructs all the genes while using only a subset of the
inputs, similar to an autoencoder but with a learned sparsity pattern.
Deep learning-based reconstruction models have become popular for
extracting low-dimensional embeddings in single-cell genomics28,29,53,
but PERSIST is designed to select a precise number of genes rather
than fitting a general non-linear embedding. During the model’s
training, the input genes are selected by a custom network layer that
enables trainingwith stochastic gradient descent– a binarymask layer,
which we describe below.

Deep learning is well suited to datasets with very large cell counts,
and PERSIST’s memory usage can be managed via the minibatch size
used during training. In cases where memory usage is an issue, for
example because the number of gene candidates and the intended
panel size are both large, PERSIST can perform an initial filtering step
using the binary gates layer, an alternative selection layer that we
describe below. In addition to reducing memory usage, we find that
such a two-stage approach provides minor performance improve-
ments (Supp. Fig. 2), and we use this approach for the majority of our
experiments.

Hurdle loss function
Gene dropouts represent a significant source of noise in scRNA-seq
data, and because PERSIST relies on scRNA-seq as a surrogate for FISH
data, we must model gene dropouts appropriately when reconstruct-
ing the genome-wide expression profile. Recent computational tools
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for scRNA-seq data have shifted away from using mean squared error
loss53,55 and towards zero-inflated models to account for this key
source of noise28,29,31,56,57. In line with these works, we propose a loss
function that can be applied to zero-inflated and continuous-valued
measurements, which arise from common normalization approaches
like as counts per million (CPM) normalization58. A zero-inflated
negative binomial (ZINB) loss can instead be used if CPM normal-
ization is not applied, but variability in the totalUMI counts per cell can
make integer transcript counts difficult to predict.

When reconstructing the genome-wide scRNA-seq expression
profile, PERSIST trains amodel that outputs predictions for each target
gene i = 1,…,d. The predictions consist of a point prediction ŷi aswell as
a probability p̂i of the gene having non-zero expression. Given a fixed
weighting parameter γ > 0, the hurdle loss ‘ðiÞγ for gene iwith observed
expression level yi is defined as

‘ðiÞγ ðp̂i,ŷi,yiÞ=
1
γ ðŷi � yiÞ2 � log p̂i yi >0

� logð1� p̂iÞ yi =0:

(
ð1Þ

The loss has a cross-entropy component for predicting whether
the gene is expressed or not, as well as a mean squared error com-
ponent that is incorporated only when the gene is expressed (yi >0).
Because we use log-normalized gene counts yi, the loss ‘ðiÞγ can be
understood as the negative log-likelihood for a log-normal hurdle
distribution30,59, where we implicitly simplify the log-normal compo-
nent by assuming fixed standard deviations for each gene, and the
weighting parameter γ >0 controls the trade-off between predicting
whether a gene is expressed and predicting its expression level. The
total loss ℓγ for the full expression profile is the following, where ŷ,p̂
and y represent vectors of predictions and expression levels for all
genes:

‘γðp̂,ŷ,yÞ=
Xm
i= 1

‘ðiÞγ p̂i,ŷi,yi
� �

: ð2Þ

In practice, we fix γ = 10 so the mean squared error and cross-entropy
components of the loss have similar scale, but this parameter can also
be tuned.

Feature selection layers
We introduce the binary mask layer as a tool to select a user-specified
number of inputs within a deep learningmodel. Our approach is based
on the Concrete distribution34 (also known as the Gumbel-Softmax35),
which lets us optimize discrete probability distributions using sto-
chastic gradient descent. To select exactly k genes from d candidates,
we multiply the model input by a binary mask generated using the
element-wise maximum of k Concrete random variables, which are
denoted as Ai ~ Concrete(αi, τ) for i = 1,…,k (Supp. Fig. 1A). Each Con-
crete distribution is parameterized by unnormalized probabilities αi 2
Rd

+ and a temperature value τ >0, and each one converges to a mul-
tinomial distribution with probabilities given by αi

1>αi
as τ→034.

The binary mask layer’s input is a vector of binarized gene
expression levels x 2 Rd , and its output is given by the element-wise
product a⊙ x, where a= max

i
2:22144ptai 2 Rd is the element-wise

max of samples ai from each Concrete random variable. The layer is
followed by a neural network fθ that predicts the label y given a⊙ x,
and we train the model by optimizing the following objective:

min
θ,α

Ex,y,a ‘γ f θða� xÞ,y� �h i
: ð3Þ

To select a specific number of genes, we need only ensure that the
temperature parameter τ is sufficiently low at the end of training. In
practice, we find that each Concrete random variable concentrates its
probability mass on a single input, yielding a set of exactly k-selected

genes. The binary mask layer is similar to the CAE approach20, but we
find that our parameterization,which uses element-wisemultiplication
rather than a matrix multiplication, provides slightly better results
(Supp. Fig. 2).

We also introduce the binary gates layer as a memory-efficient
alternative to the binary mask layer. Similar to previous work36, we
learn a Binary Concrete random variable for each input feature,
denoted as Bi ~ BinConcrete(βi, τ), and we use these gate variables to
perform element-wise multiplication with the corresponding genes
(Supp. Fig. 1B). In the Binary Concrete distribution, each parameter
βi > 0 represents an unnormalized probability, τ >0 represents a tem-
perature value, and each random variable Bi converges to a Bernoulli
random variable with probability parameter βi

1 +βi
as τ→034.

The binary gates layer output is given by the element-wise pro-
duct b⊙ x, where x is the input and b= ½b1, . . . ,bd � 2 Rd is a vector of
samples bi from each random variable Bi ~ BinConcrete(βi, τ). The layer
is followed by a neural network fθ that predicts the label y given b⊙ x.
Genes are eliminated when we learn low βi values, and we encourage
this by augmenting the loss functionwith a penalty on the BinConcrete
samples:

min
θ,β

Ex,y,b ‘γ f θðb� xÞ,y� �
+ λ1>b

h i
: ð4Þ

The regularization term penalizes the number of selected genes,
and the hyperparameter λ >0 controls the trade-off between predic-
tion accuracy and the number of genes used. Determining a specific
number of genes requires choosing the correct λ value, and our
implementation finds this value automatically by iteratively adjusting λ
using the secant algorithm60. Briefly, given a desired number of can-
didate genes d0<d, ourmethod iteratively updates the λ value based on
the number of genes yielded by previous λ values. In our experiments
with the SSv4 and 10X datasets, we initially narrow the set of candi-
dates to roughly 500 genes. For the experiments involving Patch-seq
and MERFISH data, which involve fewer candidate genes, we directly
select gene panels using the binary mask layer.

Training
When training our deep learning models, we perform optimization
using Adam with the standard learning rate (10−3)61. Over the course of
training, the temperature parameter τ is geometrically annealed froma
high value to a low value to encourage discrete feature selection,
similar to previous work20. For both input layers, we use an initial
temperature τ = 10.0 and a final temperature of τ =0.01. After training,
the parameters for the Concrete random variables are naturally
learned such that the same genes are selected at every forward pass.
That is,most Binary Concrete variables are deterministically equal to 0
or 1, and the Concrete variables are one-hot at the same entry in every
sample. As a selection criterion for the binary gates layer, we retain all
genes i such that βi

1 +βi
> 1

2. For the binary mask layer, we select k genes
using the maximum index of each vector of unnormalized prob-
abilities αi for i = 1,…,k.

The binarymask layer is necessary for selecting a specific number
of genes, but the binary gates layer is preferable for eliminating a large
number of genes. The binarymask layer has k × d learnable parameters
when selecting k genes, whereas the binary gates layer has only d. The
binary mask layer can therefore be difficult to apply directly in sce-
narios where d and k are both large, and the binary gates layer is useful
for our datasets with d = 10, 000 total candidate genes (SSv4 and 10X).
In practice, the outcome from running PERSISTmay differ across runs
when the random seed is not fixed. For our experiments, we run five
trials and use the gene panel that achieves the best validation loss.
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Ablation experiments
We tested several variants of PERSIST to validate our design choices.
First, we compared PERSIST to a version that skips the initial step of
narrowing the set of candidate genes and proceeds directly to training
with the binarymask layer. The results are slightly worse (Supp. Fig. 2),
which we attribute to the beneficial effect of iteratively reducing the
number of genes. Next, we compared PERSIST to the CAE approach20,
which is closely related but differs in its choice of loss function (mean
squared error) and feature selection layer. We find that the CAE
underperforms PERSIST across our three evaluation metrics. Most
noticeably, the CAE underperforms at cell type classification (Supp.
Fig. 2C), which is consistent with recent work that highlights the
importance of modeling gene dropouts28,29. Finally, we observe that
binarizing gene expression counts improves theCAE’s performance on
our metrics, but a small gap remains for expressed gene prediction,
that the binarized CAE still does not match PERSIST’s performance for
cell type classification.

Memory and running time
To benchmark PERSIST’s computational cost, we ran it across a variety
of parameter settings and measured the running time and GPU
memory usage. For simplicity, we used the SSv4 training set with
17,728 cells, we fixed theminibatch size to 128, and we selected panels
by training directly with the binary mask layer for 500 epochs. Our
modelswere all trainedon a singleNVIDIAGeForceRTX2080Ti. Supp.
Fig. 14 shows the results from varying two key parameters related to
the dataset size. First, after fixing the panel size to 32, we varied the
number of candidate genes from 2000 to 10,000. The results show
that the memory scales linearly, and the run-time scales sublinearly in
the number of candidates. Next, after fixing the number of candidate
genes to 10,000, we varied the panel size from 32 to 256. The results
show that the memory scales linearly, and that the run-time scales
roughly linearly.Wedidnot test different numbers of cells because this
does not affectmemory usage, and the run-time would simply depend
on how the number of epochs is tuned to each dataset size.

Across all the settings tested, PERSIST’s run-time is not prohibi-
tive. The GPUmemory usage can become high when both the number
of candidates and the panel size are large (e.g., 10,000 candidates and
panel size of 256), but memory issues can be mitigated by either
reducing theminibatch size or performing an initial filtering step using
the binary gates layer. Compared to other gene selection methods,
certain methods are faster than PERSIST because they do not require
training a model (Seurat, Cell Ranger) or involve a simpler model that
does not perform gene selection (SMaSH), but other methods can be
slower, particularlywith largedatasets, because they involveexpensive
greedy heuristics (MutInfo, GeneBasis).

Expert knowledge and supervision
PERSIST can be used in a purely data-driven fashion, or it can be used
while incorporating expert knowledge. For example, the candidate
genes can be restricted to those with known biological function or
other desirable properties, or the gene panel can be forced to include
certain hand-selected genes. When such expert knowledge is applied
to the set of candidate genes, PERSIST finds the best available panel
among the current candidates and while accounting for any pre-
selected genes.

For example, when working with specimens of lower RNA quality
(e.g., post-mortem human samples), it can be useful to consider only
highly expressed genes that can be readily detected. Supp. Fig. 15
shows that when PERSIST is restricted to using only genes whose
maximumexpression level is higher than themedian value, we achieve
roughly the same performance as when choosing from among all
10,000 candidate genes in the SSv4 dataset. In general, filtering steps
that preserve a large number of gene candidates should not prevent
PERSIST from finding highly informative panels.

Rather than using PERSIST in an unsupervised manner, we can
also incorporate supervision to align the gene panel with specific
experimental aims. If the spatial transcriptomics study has a specific
prediction objective, such as characterizing electrophysiological
properties, and accompanying labels are available for the reference
scRNA-seq data, PERSIST can incorporate this information into the
selection procedure. Adapting PERSIST is straightforward, requiring
only a change in the prediction target and loss function, as we
demonstrate with PERSIST-Classification (multiclass cross entropy
loss, see Fig. 3) and PERSIST-Ephys (mean squared error loss,
see Fig. 4).

Models and hyperparameters
Each dataset is split into training, validation and test sets. The training
and validation sets are used to select gene panels and train predictive
models, and the test set is used only to evaluate the performance of
trained models. Our hyperparameter choices were all made using the
validation set, including for early stopping. For PERSIST and its
supervised variants, we used identical neural network architectures
across all datasets, and the only hyperparameters we adjusted are the
number of training epochs and theminibatch size (Supp. Table 1). Our
model choices for the various downstream tasks are shown in Supp.
Table 2, where we use multi-layer perceptron (MLP) models for most
tasks, and LightGBM models62 for cell type classification. Confidence
intervals for the downstream tasks were determined by training
models with five bootstrapped training sets andmeasuring the test set
performance across these models.

When using PERSIST, overfitting can be avoided by using net-
work architectures that are not too large and performing early
stopping during training. If overfitting is a significant concern,
additional regularization techniques are straightforward to incor-
porate, including dropout, batch norm and L1/L2 regularization.
Finally, when fitting models for the downstream predictive tasks,
such as cell type classification, one can further mitigate overfitting
by using a non-neural network model with fewer learnable
parameters63.

Evaluation metrics
The variance explained by a gene panel is measured by training a
neural network to predict the full expression profile, measuring the
mean squared error on the test set, and subtracting this quantity
from the total variance. We provide results on an intuitive scale by
calculating explained variance as a portion of total variance. For this
metric, we used CPM normalized and logarithmized expression
counts as the prediction target. The portion of explained variance
does not approach 100% for anymethod, but this is in large part due
to the stochasticity of gene expression and measurement; as
described in the main text, the ground truth cell type labels explain
only 19% and 11% of the variance for the SSv4 and 10X datasets,
respectively.

The cell type classification performance is the accuracy of a
gradient-boosted decision tree (GBDT) model trained with a multi-
class cross-entropy loss. The cell type with the highest classification
probability is taken as the predicted class. To evaluate performance
with cell subclasses for the SSv4 dataset, we trained models with cell
types merged according to their order in the transcriptomic hierarchy
(Supp. Fig. 16).

Expressed gene prediction accuracy is measured using a neural
network trained to separately predict whether each gene is expres-
sed. Similar to a classifiermodel, the loss function is a per-gene cross-
entropy loss that is then added across genes. A gene is predicted to
be expressed if the network’s probability exceeds 0.5, and we cal-
culate the accuracy by calculating how often the predictions agree
with the true expression, and averaging the results across all
target genes.
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Data pre-processing
Due to technical noise in scRNA-seq data, we applied CPM
normalization58 to the raw measurements and then applied the log1p
operation. These values serve as prediction targets for PERSIST,
whereas the inputs to our various models are binarized expression
counts. For both the SSv4 and 10X datasets, we restricted our analysis
to the 10,000 transcripts with the highest variance. We used exon
counts for the high-resolution SSv4 dataset and the sum of intron and
exon counts for the lower-resolution 10X data. For the MERFISH
dataset, the only pre-processing we applied was gene expression
binarization. When working with the MERFISH data, we analyze 253
genes that appear in both the Zhang et al.9 and SSv4 datasets rather
than the 258 genes described in the original work.

Expression quantization
We quantized gene expression levels in order to train models using
scRNA-seq data that can transfer to FISH studies. There is a complex
domain shift between the two technologies, but their quantized gene
expression values should be similar if we assume that the transfor-
mation between measurements is monotonic. When applying models
trained with scRNA-seq on FISH data in practice, we recommend using
a threshold matching approach, i.e., finding the quantile that the
scRNA-seq threshold represents in the scRNA-seq measurements (we
use a threshold value of zero), and then identifying the matching
threshold in the FISH data. This approach is used for the results in
Fig. 5, and its utility is demonstrated in Supp. Fig. 10.

Baseline methods
For the Seurat and Cell Ranger gene selection protocols, we used the
implementations available in the Scanpy40 package: https://github.
com/theislab/scanpy. Seurat was run with raw gene expression counts
and Cell Ranger with logarithmized counts. For the scGeneFitmethod,
we used the authors’ implementation with logarithmized expression
counts, and we used the default hyperparameters: https://github.com/
solevillar/scGeneFit-python. For the GeneBasis method, we used
the authors’ R implementation: https://github.com/MarioniLab/
geneBasisR. For the SMaSH method, we used the authors’ Python
implementation with a neural network architecture identical to PER-
SIST, and with feature importance scores calculated using
DeepSHAP64: https://gitlab.com/cvejic-group/smash. Finally, for the
MutInfo method, we implemented the greedy forward selection
algorithm described in prior work42,65 using the hyperparameter β = 1
to account for gene correlations.

For the panel of marker genes used in Fig. 3B, we used a set of
genes identified in various tables of Tasic et al.46. The original work
listed 77 such markers, and we used the 59 that were represented in
our dataset after narrowing it to 10,000 high-variance genes.

Statistics & reproducibility
The samples from each data source were assigned at random to
training, validation, and test splits, and to obtain unbiased statisticswe
used the test data only when calculating evaluation metrics. No data
was excluded from the datasets. Uncertainty estimates were provided
throughout the experiments by fitting models with boostrapped
training sets. Code for running our method is available online (see
“Code availability”), and the various datasets are available to download
online (see “Data availability”).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in this work are summarized in Supp. Table 3,
including the species, brain regions, and annotations used for our

experiments. The V1/ALM SmartSeqmouse neocortex data is available
at https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-v1-
and-alm-smart-seq. The M1 10X data is available at https://portal.
brain-map.org/atlases-and-data/rnaseq/human-m1-10x. The Patch-seq
data is available at https://github.com/AllenInstitute/coupledAE-
patchseq. The MOp MERFISH data is available at https://download.
brainimagelibrary.org/02/26/02265ddb0dae51de/. Source data are
provided with this paper.

Code availability
Source code for PERSIST is provided at https://github.com/iancovert/
persist/, along with tutorial notebooks and examples of data pre-
processing code. The repository contains a list of software depen-
dencies, and PERSIST is implemented in PyTorch (version 1.13.1). The
code is also archived at https://doi.org/10.5281/zenodo.7714685.
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