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Virome-wide detection of natural infection
events and theassociatedantibodydynamics
using longitudinal highly-multiplexed
serology

Erin J. Kelley 1, Sierra N. Henson 1, Fatima Rahee1, Annalee S. Boyle1,
AnnaL. Engelbrektson1,GeorgiaA.Nelson1,HeatherL.Mead1,N. LeighAnderson2,
Morteza Razavi2, Richard Yip2, Jason T. Ladner 3, Thomas J. Scriba 4 &
John A. Altin 1

Current methods for detecting infections either require a sample collected
from an actively infected site, are limited in the number of agents they can
query, and/or yield no information on the immune response. Here we present
an approach that uses temporally coordinated changes in highly-multiplexed
antibodymeasurements from longitudinal blood samples tomonitor infection
events at sub-species resolution across the human virome. In a longitudinally-
sampled cohort of South African adolescents representing >100 person-years,
we identify >650 events across 48 virus species and observe strong epidemic
effects, including high-incidence waves of Aichivirus A and the D68 subtype of
Enterovirus D earlier than their widespread circulation was appreciated. In
separate cohorts of adults who were sampled at higher frequency using self-
collected dried blood spots, we show that such events temporally correlate
with symptoms and transient inflammatory biomarker elevations, and observe
the responding antibodies to persist for periods ranging from ≤1 week to >5
years. Our approach generates a rich view of viral/host dynamics, supporting
novel studies in immunology and epidemiology.

Hundreds of species of viruses infect humans (‘human virome’)1,2,
with consequences ranging from asymptomatic seroconversion to
severe disease, which can include respiratory failure, neurological
damage or hemorrhage. During a typical year, the average person
becomes naturally infected with multiple species3, some
asymptomatically4, but most leaving an immunological footprint that
can continue to evolve months after the infection5. In addition to
their pathogenic properties, naturally-infecting viruses can be con-
sidered as a set of natural perturbations to the immune system; and

the responses against them as reporters of the host’s current
‘immunological state’.

The most common approaches for detecting viral infections,
particularly in clinical settings, rely on the direct detection of proteins
or nucleic acid sequences of the infecting agent. Measurements of this
type can be extended to multiple simultaneous targets (e.g. multi-
plexed PCR)6, or implemented in a target-agnostic mode using deep
DNA/RNA sequencing and metagenomic analysis7,8. While such direct
approaches can detect pathogens early in the course of infection, they
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are fundamentally limited by a requirement that the sample contain
the infectious agent—substantially constraining the body site and
timing at which sensitive detection can be performed. Serological
approaches, by contrast, rely on an immune response whose effect is
to amplify, sustain anddisseminate the signal, allowing infections to be
inferred from blood samples collected months after the event. Epi-
demiological studies have leveraged these properties to great effect,
for example in the estimation of incidences of particular viral infec-
tions within populations9, or of the duration of protection from re-
infection10. Relative to direct detection by metagenomics, however,
serological assays have traditionally been limited in the number of
agents they can query simultaneously, as well as their ability to resolve
between closely-related pathogens.

Assays that measure antibodies against single targets (e.g. ELISA)
are incommensurate with the vast antigenic space encountered by the
human immune system. This limitation is being surmounted by high-
dimensional approaches based on arrays of proteins/peptides11, or
libraries of DNA-associated peptides, either displayed on phage par-
ticles (PhiP-Seq12,13), or in the form of direct peptide:DNA conjugates
(PepSeq14–16). Although these assays have enabled reactivity to be
profiled across broad target spaces—including the complete human
virome—important challenges remain, including resolving con-
temporary from historical infection events, and accurately distin-
guishing signal from noise in high-dimensional datasets. The analysis
of temporally-separated samples from the same donor has the
potential to address these challenges, by enabling normalization to
participant-specific baselines against which responses can be more
confidently detected and localized in time.

Recent studies have begun to apply highly-multiplexed antibody
assays to longitudinally-sampled cohorts17, including studies that have
identified changing viral reactivity profiles following kidney18 and
hematopoietic cell19 transplantation, as well as a striking association
between Epstein-Barr Virus seroconversion and the development of
Multiple Sclerosis20. However, methods for identifying time-resolved
species-level infection events across the virome are needed.Moreover,
virome-wide assays have not been used to follow the dynamics of
antibody responses to natural infections or to determine how such
signals associate with independent indicators of infection such as
inflammatory or epidemic events. In this study, we combine a highly-
multiplexed virome-wide antibody assay (using the PepSeq platform)
with an innovative approach for the detection andmonitoring of virus-
specific temporal changes across the resulting high-dimensional, time-
resolved data. We apply these methods to study antibody responses
across several longitudinally-sampled cohorts, including: (i) a
spatiotemporally-linked cohort of South African adolescents spanning
>100 person-years in which we study population-level effects, and (ii)
separate, smaller cohorts of more frequently-sampled participants in
which we track antibody dynamics alongside orthogonal markers of
infection in individual participants.

Results
Quantifying species-specific temporal changes in virome-wide
PepSeq data
To study the dynamics of antibody responses at high-resolution
across the virome, we used the PepSeq platform (assay scheme
outlined in Supplementary Fig. 1) in which 1000s–100,000s of DNA-
barcoded peptides are prepared from fully-programmable oligonu-
cleotide templates using bulk enzymatic reactions, and then used to
measure antibody reactivity in polyclonal serum samples at high
multiplexity14–16. The HV1 PepSeq library has been previously
described14 and consists of 244,000 30mer peptides representing
the proteomes of several hundred human-infecting viral species. In
addition to HV1, we used empirically-refined libraries (‘HV2’, ‘HV2T’)
each comprising 15,000 peptides representing 80 common human-
infecting virus species (Supplementary Data 1), and selected on the

basis of previous assays with HV1 (see Methods). Consistent with our
previous studies, we found PepSeq to recapitulate the expected
reactivities for viral species at single timepoints in control samples
with known historical exposure status, and to yield consistent pep-
tide signals across runs (Supplementary Fig. 2).

To resolve new viral infections from historical exposures, and
identify the peptides bound by the responding antibodies, we devel-
oped a method for quantifying changes in the reactivity towards each
viral species in consecutive longitudinal samples from the same par-
ticipant (Fig. 1). Peptide-level enrichment signals were strongly corre-
lated between timepoints for the same participant, dominated by a
majority of peptides that were unenriched at both timepoints (Fig. 1b:
lower-left region) and a subset of peptides with various degrees of
enrichment that were consistent between timepoints (Fig. 1b: upper-
right region). In some cases, however, we observed additional subsets
of peptides with differential reactivity between timepoints (Fig. 1b:
upper-left/lower-right regions): in contrast to the time-invariant enri-
ched peptides, these time-variant enriched peptides were typically
strongly concentrated in a single or small number of viral species.

We found that threshold-based approaches were often unable to
detect, without substantial loss of specificity, subsets of peptides that
clearly appeared to be part of virus-specific time-variant responses,
and therefore we developed an approach that could more compre-
hensively integrate both the number and magnitudes of changing
peptide signals for each virus (Fig. 1c, d). Gene Set Enrichment Analysis
(GSEA) is a widely-used method for differential gene expression ana-
lysis in which themagnitude and ranks of a functionally-related subset
of genes are integrated (against a background of non-focal genes) to
derive scores reflecting the statistical confidence and magnitude with
which the focal gene set is enriched21. For example, GSEA has been
used to associate p53 deficiency with transcriptional upregulation of a
gene module within the mitogen-activated protein kinase pathway in
tumor cell lines21. We developed ‘PSEA’, an implementation of GSEA in
which we analyze peptide sets designed from particular viral species
(in the place of gene sets corresponding to particular pathways or
functions). In place of the log2 fold change scores typically used in
GSEA, we used log2 spline-adjusted changes in PepSeq-based peptide
enrichments between consecutive timepoints from the same partici-
pant. PSEA outputs p values and Enrichment Scores that quantify the
differential antibody reactivity to a particular virus species across a
focal time interval, as well as a “leading-edge” subset that can be
interpreted as the core set of peptides that are recognized by the
changing antibody response.

We benchmarked the performance of PSEA for accurately
detecting virus-specific responses in longitudinal PepSeq data in a
controlled setting by studying a COVID-19 vaccination cohort15.
Plasma samples were collected from 21 participants at days 0, 8, ~28
and ~140 relative to the first dose of the mRNA-1273 vaccine (Sup-
plementary Data 2) and assayed in duplicate for virome-wide reac-
tivity using the HV2 PepSeq library. On the resulting data, we used
PSEA to perform two categories of comparisons: (i) as ‘expected
negatives’, we compared reactivity to all 80 species between pairs of
replicate assays from the same participant/timepoint and (ii) as
‘expected positives’, we compared reactivity to SARS-CoV-2 (one of
the 80 species in the library) between the samples collected on day
0 v day 140 for each participant. At an adjusted p value threshold of
0.01, PSEA-detected significant changes in 20/21 (95.2%) of the
‘expected positive’ comparisons, and 12/5360 (0.2%) of the ‘expected
negative’ comparisons. As expected, leading-edge peptides for each
of the 20 significant ‘expected positive’ comparisons were exclu-
sively derived from the Spike protein, corresponding to the vaccine
immunogen. Analysis across the full p value range using Receiver-
Operating Characteristic analysis yielded an area under the curve of
0.997 (Supplementary Fig. 3). These data indicate that analysis of
virome-wide PepSeq data using PSEA enables sensitive and specific
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detection of a virus-specific antibody response induced by
vaccination.

Virome-wide antibody dynamics in a large, longitudinally-
sampled cohort
The Adolescent Cohort Study (ACS) was conducted during
2006–2008 and has been described previously22. The ACS enrolled
and followed 12–18-year-old Mycobacterium tuberculosis-infected par-
ticipants who attended high schools in the town of Worcester, in the
Western Cape of South Africa for a total of 24 months, and included
the collection of blood samples at 6-monthly intervals spanning up to
18 months (i.e., four longitudinal samples). For this study, we focused
on a subset of 65 participants for whom the full set of 4 × 6-monthly
blood samples were available, which includes 8 participants who
progressed to active tuberculosis disease during the study period
(sampling scheme shown inSupplementary Fig. 4a and Supplementary
Data 3). We performed assays using the HV2T PepSeq library, and by
applying unsupervised clustering, found that global patterns of signal
across the 260 samples were strongly driven by participant of origin—
such that all timepoints from a given participant were tightly co-clus-
tered—but without any grouping by timepoint, sex, age or disease
progression status (Supplementary Fig. 5).

We next used PSEA to compare all pairs of consecutive samples
for all 80 viral species covered—a total of 15,600 temporal species
comparisons (65 participants X 3 consecutive sample pairs or “inter-
vals” X 80 viral species). Of these, we found 941 (~6%) to be significant
by PSEA, comprising 509 in which species-specific antibodies
increasedover time and432 inwhich theydecreased. Inmany cases, an

interval of significantly increasing reactivity within a participant was
followed in the one or two subsequent intervals by significantly
decreasing reactivity for the same species, consistent with the expec-
ted kinetics of an antibody response to infection. To restrict our ana-
lysis to unique viral episodes, we therefore focused only on
observations of significantly increasing reactivity in intervals 1 (time-
points 1–2), 2 (timepoints 2–3) or 3 (timepoints 3–4), or significantly
decreasing reactivity in interval 1.We refer to suchobservations as ‘viral
antibody events’ (VAEs), and localize them to the intervals inwhich the
reactivity is increasing, or in the case of observations of decreasing
reactivity in interval 1 — to a time preceding interval 1 (“interval 0”).

Enumerated in this way, a total of 659 VAEs were detected across
48 viral species (1–63 events total per species) and in all 65 participants
(4–19 events per participant) (Fig. 2a). Overall, this represents an
average of ~5 VAEs per person-year, which we expect to be a lower
bound estimate for the true number of events, as our sampling scheme
would be insensitive to cases where reactivity rises and falls back to
baseline within a single 6-month interval. We detected a number of
cases where ≥2 VAEs from the same viruswere detected sequentially in
the sameparticipant (black cells in Fig. 2a), particularly for specieswith
large numbers of VAEs. For several species, these ‘repeat VAEs’
occurred less often than expected by chance, which may reflect
immune-mediated protection (Supplementary Fig. 6). Across all
observed VAEs, we detected 2–190 (median = 31) leading-edge pep-
tides (defined as described above) to which antibody reactivity chan-
ged, and these typically represented at least twodistinct epitopes from
the focal species (studied further below). Leading-edge peptides (lis-
ted in Supplementary Data 4) showed a similar amino acid

Fig. 1 | Virus-specific events inferred from co-ordinated temporal changes in
highly-multiplexed antibody reactivity data. a Conceptual figure showing how
viral events—corresponding to infections or reactivations—appear in a longitudinal
series of multiplexed antibody reactivity data. b, c Example plots showing the
transformation of peptide-level signals (b) into species-level signals (c) from two
consecutive timepoints from an individual participant, separated by 180 days: (b)
shows themagnitudeof reactivity at each timepoint against 15,00030merpeptides
in the HV2T human virome library, each peptide is represented by a dot whose
color and shape reflect its species of origin, while (c) shows the change in species-
level reactivity to each of the 80 virus species covered in HV2T, expressed as an
Enrichment Score (x-axis: positive=increasingover time, negative = decreasingover
time) and adjusted p value (y-axis). The data shown in (c) were calculated using the
algorithm described in (d). Species with adjusted p <0.01 are highlighted, using
symbolsmatching (b).dTodetect viral events, our algorithmconsiders eachpair of

consecutive samples (“a” and “b”) in a longitudinal series and tests for evidence of
differential signal for each virus across that interval (i). First, a spline (green line) is
fitted to peptide-level data from the focal timepoints to regress out global differ-
ences (assumed to be technical rather than biological (ii)). For the subset of pep-
tides (P, blue shading) whosemaximum signal across the two timepoints exceeds a
threshold (vertical line in (iii)), spline residuals (representing the magnitude of the
change) are fed into the Gene Set Enrichment Analysis (21), which we here refer to
as Peptide Set Enrichment Analysis ‘PSEA’. For each species, PSEA iterates down the
ordered list of residuals for P and increments a walk function according to the
magnitude of the residual—up if the peptide corresponds to the focal species, and
down if not (iv—adapted from (21)). Maximum deviation of the walk from zero is
used to determine significance, the Enrichment Score, as well as a “leading-edge”
subset of peptides that can be used to visualize response dynamics across the time
series (v).
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composition to unselected viral proteomes (Supplementary Fig. 7a),
and included both known and novel epitope sequences (Supplemen-
tary Fig. 7b).

Species with themost frequently-occurring VAEs (Fig. 2a, upper
rows) were strongly enriched in two categories: (i) widely-
circulating acutely-infecting viruses—including Norwalk virus (Nor-
ovirus) (63 VAEs), Influenza A virus (22 VAEs), multiple species of
Rhinoviruses (58, 34, and 29 VAEs for Rhinovirus A, C and B,
respectively), Enteroviruses (51, 31, 22, and 15 for Enterovirus C, B, A
and D respectively) and Adenoviruses (25, 24, 20, and 5 for Human
Mastadenovirus C, B, D and A, respectively); and (ii) latently-
infecting Human Herpesviruses (HHVs)—namely, the Herpes Sim-
plex Viruses (49 and 30 VAEs for Human alphaherpesviruses 1 and 2,
respectively) and Cytomegalovirus (28 VAEs for Human beta-
herpesvirus 5). Since near-universal reactivity was detected for these
3 HHV species at baseline across the cohort, this latter category of
events is likely predominantly explained by viral reactivations,
which can occur frequently and subclinically, and are often
accompanied by elevations in virus-specific antibodies23. We also
detected VAEs for 4 other HHVs, although at lower rates: 15 for
Human gammaherpesvirus 4/Epstein-Barr Virus, 11 for Human
alphaherpesvirus 3/Varicella Zoster Virus, 4 for Human beta-
herpesvirus 6, and 1 for Human betaherpesvirus 7, indicating that
such events are a common feature of this viral family.

We also observed VAEs for other common respiratory viruses,
including the remaining Influenza species (7 for Influenza B virus, 3
for Influenza C virus), the 4 Parainfluenza species (16 and 4 for
Human Respirovirus 3 and 1; 6 and 3 forHuman Rubulavirus 2 and 4),
the 4 endemic coronaviruses (8 for Betacoronavirus 1/HCoV-OC43, 1
for HCoV-HKU1, 1 for HCoV-229E, 1 for HCoV-NL63), Human metap-
neumovirus (3), and Human orthopneumovirus (4). A single VAE was
called for Severe acute respiratory syndrome coronavirus, a species
included in the library but whose major human spillover in 2019
post-dates this cohort. However, this event exclusively involved an
epitope known to be cross-reactive with HCoV-OC4314 and was
observed to precisely coincide with a HCoV-OC43 VAE that included
additional OC43-specific reactivities. Beyond Norwalk virus, VAEs
for a number of agents of acute gastroenteritis were also detected,
including 29 for Aichivirus A, 10 for Sapporo virus, and 3 for the
Rotavirus species. Also notable is the observation of sporadic VAEs
for viruses that are usually targeted by childhood vaccination (8 for
Rubivirus rubellae, 2 for Measles morbillivirus), as well as 1 for
Zika Virus.

Comparisons of the overall numbers of VAEs across participant
covariate categories (Supplementary Fig. 8) revealed significantly
fewer VAEs among participants who progressed to active tuberculosis
(median 5.5, compared to 10 in non-progressors). We also observed
more VAEs inmales (median 13 VAEs per participant, compared to 9 in

Fig. 2 | Detection of events across the virome in a cohort spanning ~100 total
person-years. a For all 65 participants (columns) in the ACS cohort for whom data
on 4 × 6-monthly timepoints were available, PSEA analysis was applied to each of
the 3 pairs of consecutive timepoints across all 80 viral species represented in the
HV2T library. Shown in rows are the 48 species for which ≥1 significant viral event
(adjusted p value < 0.01) was observed across the cohort. Significant events are
colored by the interval(s) in which they were detected. b Example peptide-level
scatterplots for 6 of the (659 total) viral events identified in (a). Each plot shows
signals from the 15,000 HV2T peptides (1 dot per peptide) at the 2 timepoints

spanning the focal event (x and y-axes), with all peptides from the focal species
highlighted in red. c Shown for each of the example events in (b) is the baseline-
subtracted reactivity signal (y-axis) across all 4 timepoints (x-axis) of the leading-
edge peptides from the focal virus (each peptide represented as a gray line). Black
arrows highlight the interval in which PSEA-detected the significant VAE (from
which the leading-edge peptides were identified), and the bolded green line shows
the median signal across all leading-edge peptides. Numbers of peptides in each
leading-edge set are indicated in the upper right of each plot. Source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-37378-z

Nature Communications |         (2023) 14:1783 4



females). The absence of corresponding deviations in the number of
leading-edge peptides per VAE across these categories indicates that
the VAE count differences are unlikely to reflect biases in antibody-
based detection, and instead suggests differential rates of exposure/
susceptibility to infection, which in the case of sex, is consistent with
previous reports for particular species24.

In addition to pairwise comparisons of consecutive timepoints, we
studied species-specificdynamics across all 4 timepoints (Fig. 2b, c). To
accomplish this, we began with VAEs detected using pairwise PSEA
comparisons as above (Fig. 2b shows 6 examples), and then tracked the
reactivity signals of the leading-edge peptides across the full time
series (Fig. 2c). To avoid the subtle but global sample-to-sample signal
differences mentioned earlier, we generalized the spline approach to
adjust data from each timepoint against the peptide-wise median sig-
nals across all timepoints. We then focused the visualization on chan-
ging reactivities, as opposed to absolute values, by normalizing each
peptide against its minimal value across the time series. The dynamics
of leading-edge peptide reactivities typically comprised sharp single-
interval increases followed by more gradual declines, matching the
expected kinetics of an immune response. For most VAEs, antibodies
remained elevated above baseline for the remainder of the sampling
period – often ≥6–12months after the VAE interval. The observation of
these classic response kinetics beyond the intervals with increasing
reactivity lends further support to our interpretation of PSEA-detected
VAEs as viral infection or reactivation events.

To compare our PepSeq-based PSEA analysis against a more tra-
ditional serological approach, we selected two species for which we
detected frequent VAEs and where commercial ELISA assays are
available: Influenza A virus and Human betaherpesvirus 5 (CMV). For
each,we selectedpairsof consecutive samples that either containedor
did not contain a VAE and assayed each using the corresponding ELI-
SAs. The magnitudes of temporal changes in ELISA reactivity across
each time interval were strongly correlated with PepSeq VAE status for
both of the viral species studied (Supplementary Fig. 9), indicating a
high degree of concordance between our multiplexed peptide-based
approach and traditional singleplex assays based on native viruses that
contain full-length proteins.

Detection of epidemiological effects for a subset of viruses
Because the ACS cohort comprises participants sampled approxi-
mately synchronously (with their 4-sample series beginning over a
5 month window from July–November 2006) and who reside in the
same geographic region, we reasoned that naturally-occuring epi-
demic waves may be detectable in our viral antibody analysis as clus-
ters of temporally-related VAEs. To test this hypothesis, we focused on
the 25 species for which we detected ≥5 VAEs across the cohort,
localized these events into one of the 4 intervals described above
(interval0, interval 1, interval 2, interval 3; corresponding, respectively,
to pre-Aug 2006, Aug 2006–Feb 2007, Feb 2007–Aug 2007, and Aug
2007–Feb 2008) and used a nullmodel in which events are distributed
across intervals with equal probability to estimate the significance of
the observed patterns. Applying this approach, we observed strong
evidence of epidemic effects across the dataset (Fig. 3a): 6 of 25 (24%)
species yielded p values < 0.05, of which 5 remained significant after
adjusting for multiple testing at FDR <0.1 (Fig. 3a: highlighted data-
points, colored by season). Influenza A virus showed the strongest
evidence of an epidemic effect, with 16 of 22 total VAEs clustered in
interval 2, which spans the Southern Hemisphere winter season of
2007. Other significant epidemic waves included Aichivirus A (19 of 29
VAEs observed in interval 4) and Enterovirus D (11 of 15 VAEs observed
in interval 0).

To visualize cohort-wide virus-specific antibody changes in both
directions and more continuously over the sampling period, we
quantified aggregate changes in reactivity (increasing and decreas-
ing) across the cohort for each of the viruses exhibiting significant
epidemic effects. For each calendar day, we enumerated participants
with increasing v decreasing reactivity (measured by PSEA) to the
focal virus in samples spanning that day and normalized to the total
number of individuals with spanning samples, thereby estimating the
fraction of the cohort with increasing or decreasing reactivity to the
virus at each point in time (Fig. 3b). On this view, the epidemic
viruses generally conformed to a stereotypical pattern consisting of a
wave of increasing reactivity, followed by an approximately sym-
metric wave of decreasing reactivity, offset by 1 sampling interval
(equivalent to ~6 months). For Aichivirus A, the wave of increasing

Fig. 3 | Seasonality analysis reveals epidemicwaves for a subsetof viral species.
a For each species, the viral events detected across the cohort described in Fig. 2
were localized to one of the sampling 6-monthly intervals, and seasonal effects
were quantified by comparing the observed distributions against a one-sided
multinomial model in which events were distributed across intervals with equal
probability. Shown is a quantile-quantile plot of unadjusted −log10(probabilities)
for each of 25 species for which ≥5 total events were observed across the cohort.
The five species with FDR-adjusted p values < 0.1 are highlighted and colored
according to the interval in which their event count is maximum. b For the five
significant species identified in (a), and Rhinovirus B as a negative control, profiles

of cohort-wide reactivity dynamics were generated by assigning to each day in the
sampling period (Jul 12 2006–May 26 2008) scores representing the number of
participants for whom reactivity was significantly increasing (red) or decreasing
(blue), normalized to the total number of participants with samples spanning that
day. Increasing/decreasing reactivity assignments were based on significant PSEA
values and applied in each case to every day between the 2 relevant consecutive
sampling dates. Each plot is annotated with the species name, the total number of
VAEs detected (inparentheses), and theu\nadjusted one-sidedmultinomialp value
calculated in (a). Source data are provided as a Source Data file.
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reactivity occurred at the end of the overall sampling period,
meaning that the predicted subsequent wave of decreasing reactivity
was not captured in the sampling window. Similarly, the strong wave
of decreasing reactivity to Enterovirus D (peaking ~Aug 2006–Feb
2007) was preceded by a smaller degree of increasing reactivity
(peaking ~July 2006), likely representing a truncation of a wave
predicted to localize prior to the beginning of the study in July 2006
(“interval 0”). At their peak, the biggest waves—Influenza A virus,
Aichivirus A and Enterovirus D—affected 20–30% of the cohort, indi-
cating relatively high incidences of infection. Together, these results
demonstrate virome-wide detection of epidemic waves, manifesting
as species-specific seasonally-correlated antibody dynamics within a
spatiotemporally-localized cohort.

Sub-species resolution of viral antibody events using epitope-
level analysis
One of the strengths of direct sequence-based viral detection is the
ability to resolve between closely-related subtypes by means of
sequence polymorphisms. Serological approaches, by contrast, pro-
vide an indirect link to viral sequences and are complicated by the
potential for cross-reactive antibody responses against (often immu-
nodominant) regions conserved between members of the same spe-
cies. We reasoned that our peptide-resolved approach may
nonetheless be capable of sub-species resolution, insofar as it enables
responses against subtype-specific epitopes to be dissected from
confounding species-wide responses against conserved epitopes. We
set out to test this hypothesis using epitope-level characterization of

the antibody responses to several of the epidemic viral waves
identified above.

We selected Influenza A virus and Enterovirus D as two clinically-
significant virus species with well-described circulating subtypes, and
as the agents of two of the three largest epidemic waves observed in
this cohort. We began our analysis by mapping all 7mer amino acid
substrings of leading-edge peptides in the VAEs for each species to any
identical substrings within representative proteomes of the dominant
circulating subtypes: H1N1 and H3N2 for Influenza A virus, and D68,
D70 and D94 for Enterovirus D (Fig. 4a). Using this approach, we
mapped reactivity to linear epitopes across 5 of the 11 proteins of
Influenza A virus: Hemagglutinin (HA), Neuraminidase (NA), Matrix 1
(M1), Nucleoprotein (NP) and Non-structural protein 1 (NS1) (Fig. 4a,
upper panels). This included prevalent (65-70% of VAEs) but non-
subtype-resolving responses against highly-conserved regions of M1
and NS1. Reactivity to NS1, a non-structural component absent from
available influenza vaccine preparations25,26, confirms the origin of
these responses to be natural infection rather than vaccination.
Importantly, we also observed responses (albeit less prevalent: each
ranging from ~5–25% of VAEs) against 12 highly-divergent epitope
regions in thenon-conservedHAandNAproteins, providing a basis for
subtype discrimination. A similar overall phenomenon was observed
for Enterovirus D: most epitopes resided in conserved regions across
the Polyprotein whose reactivity profiles were correlated across the
D68, D70 and D94 subtypes (Fig. 4a, lower panels), but a subset of
subtype-specific epitopesweredetectable in the region corresponding
to the variable surface protein VP1. Notably, we detected a highly-

Fig. 4 | Epitope-level analysis resolves Influenza A virus and Enterovirus D epi-
demic waves to the sub-species level. a Leading-edge peptides from the events
detected in Fig. 2 for Influenza A virus (upper) and Enterovirus D (lower) were
mapped onto representative viral proteomes of the dominant respective circulat-
ing subtypes (Influenza A virus—H1N1, H3N2; Enterovirus D—D68, D70, D94). Shown
in the upper rows of each panel are multiple sequence alignments for the reactive
proteins of eachvirus, colored at eachposition by the fraction of total eventswhose
leading-edge peptides contain the 7mer at that position for each subtype. The
lower row of each panel shows average amino acid identity between the subtype
representatives across a sliding window of 9 amino acids centered at each amino
acid position in the alignment. The dotted box in the Enterovirus D panel shows the
position of the surface protein VP1, and the star indicates a frequently-recognized

variable region containingD68-specific reactivity.bTo resolve the subtype identity
of each Influenza A virus and Enterovirus D event, sets of subtype-specific 7mers
were quantified for each virus/subtype—both in the total library (topof eachpanel),
and in the leading-edge set of peptides for each event (body of each panel).
Subtype-specific 7mers were present for 13/20 Influenza A virus events and 11/11
Enterovirus D events; for the remaining events leading-edge peptides contained
only 7mers shared between subtypes. For each event, the significanceof its subtype
assignment was determined by calculating the deviation of the event’s subtype-
specific 7mer distribution from the subtype-specific 7mer distribution in the total
library (using two-sided Fisher’s exact test): stars indicate events with p <0.01. The
season corresponding to each event is indicated on the far-right. Source data are
provided as a Source Data file.
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prevalent epitope (82% of VAEs) at the C-terminus of VP1 (marked by a
star above the lower panels of Fig. 4a), corresponding to a previously-
described D68-specific reactive region27.

To integrate epitope signals into sub-species-level calls, we
enumerated 7mers specific for each subtype from the leading-edge of
each VAE and compared these counts to the subtype-specific 7mer
distribution from the overall 15,000-member library (Fig. 4b). For
Influenza A virus and Enterovirus D, totals of 423 and 769 subtype-
specific 7mers were present in the overall library, and these were dis-
tributed approximately uniformly across the respective subtypes:
H1N1 v H3N2 or D68 v D70 v D94 (Fig. 4b, top of each panel). Subtype-
specific 7mers were also present (but at lower counts: ranging from 8-
116) in the leading-edgepeptide sets for 13 of 20 InfluenzaA virus and 11
of 11 Enterovirus D events. However, in contrast to their uniform
representations in the overall library, these leading-edge 7mers
exhibited strongly-skewed distributions in 22 of these 24 VAEs (stars in
Fig. 4b indicate p <0.01 by Fisher’s exact test), revealing subtype-
specific responses. Of the Influenza A virus VAEs, 4 and 7were assigned
to H1N1 and H3N2, respectively, and these exhibited a strong seasonal
effect: 3 of 3 subtype-assignable VAEs in interval 1mapped toH1N1, and
7 of 8 in interval 2 mapped to H3N2. In contrast, all 11 of the subtype-
assignable VAEs for Enterovirus D in interval 0 mapped to the
D68 subtype.

Correlation between viral antibody events and orthogonal
indicators of infection
The VAEs that we describe here consist of temporally co-ordinated,
species-specific patterns of peptide-resolved antibody reactivity that
are best explained by contemporary exposures to specific viral anti-
gens, resulting fromnew infectionsor reactivations. This interpretation
is reinforced by the dynamics of these responses over time (Fig. 2c), as
well as the strong epidemic effects that we observe (Figs. 3, 4), attri-
butable to the circulation of viruses in the population. To further test
this interpretation, and to chart the evolving antibody responses at
finer temporal resolution, we applied PepSeq/PSEA analysis to two
additional longitudinal cohorts containing more frequent and con-
tinuous longitudinal sampling than the ACS cohort, and also capturing
orthogonal time-resolved information about infection events. In both
cohorts, high-frequency tracking was enabled using self-collected
dried blood spot (DBS) samples and electronic symptom logging (see
Methods). To assay this new sample type, we developed an adapted
protocol (see Methods), and used it to compare DBS and plasma
samples collected at the same time from the same participants. These
analyses revealed a highly-significant correlation between the PepSeq
assay data on the different sample types, but with a global signal
reduction in DBS relative to plasma (most evident at the lower end of
the Z-score range) (Supplementary Fig. 2).

The ‘SISCAPA cohort’ has been described28 and comprises
volunteers fromNorthAmericawho collectedblood spot sampleswith
symptom logs over periods spanning 3-8 years, at variable frequencies
up to daily during symptomatic periods. We focused our analysis here
on a single healthy participant (“S-18”) with the longest series:
379 samples, collected over a span of ~7 years (Supplementary Fig. 4b
and Supplementary Data 5). Inflammatory markers were quantified
from theDBS samples using the previously-described SISCAPA assay in
which monoclonal antibodies are used to enrich defined peptide
fragments of analytes of interest from trypsinized samples, prior to
peptide quantification by Mass Spectrometry and normalization
against isotopically-labeled control peptides29. This analysis revealed a
total of 9 ‘inflammatory events’ involving C-reactive protein (CRP) ±
Serum Amyloid A (SAA), Myeloperoxidase (MPO) and/or total Immu-
noglobulinM (IgM),whichwedefinehere as protein elevations above a
threshold for ≥2 consecutive timepoints (Fig. 5a, red dots in upper 4
panels).

We next selected 23 of the 379 samples, distributed across the
time-series, for antibody analysis by PepSeq (Fig. 5a, lower 4 panels).
We applied PSEA to the resulting data and identified 4 strong VAEs
corresponding to human Respirovirus C, Norwalk virus, Enterovirus C
and Influenza A virus (Fig. 5a, vertical shaded regions). These VAEs
overlapped 4 of the 9 inflammatory events, and noVAEsweredetected
in the 13 antibody sampling windows that lacked an inflammatory
event, revealing a significant overall correlation between antibody and
inflammatory events (p = 0.017 by Fisher’s exact test). The leading-
edges for the 4 VAEs comprised 24-73 peptides, whose kinetics uni-
formly consisted of a rapid increase during the sampling window that
overlapped the inflammatory event, followed by a slower but pro-
gressive decline. For the 3 VAEs with >1month of post-event sampling,
antibody responses against leading-edge peptides remained sig-
nificantly elevated for years after the event (~4 years, >5 years, >4 years
for Respirovirus C, Norwalk virus, Rhinovirus C, respectively). For the
Influenza A virus event, which was also accompanied by the symptoms
of a cold, we fine-mapped the temporal association between the anti-
body and inflammatory signals by performing PepSeq analysis on
additional samples collected at days −11, 0, 2, 3, 4, 5, 7, 14 and 27
relative to the onset of the inflammatory event (Fig. 5b). Compared to
the pre-event baseline, antibodies became significantly elevated
beginning on day 3 and increased sharply until day 5, with continued
increases up to day 27 but at a slower rate. The response was domi-
nated by reactivities against the conserved M1 and NP proteins, and is
consistentwith the kinetics of a recall antibody response, likely primed
by previous Influenza A vaccinations/infections.

The ‘MyImmunity’ cohort comprises 30 healthy adult volunteers
residing in Arizona who each collected 5–20 (median 10 per partici-
pant, total 358) DBS samples and associated symptom logs each on a
weekly-monthly basis during June–December 2019 (Supplementary
Fig. 4c and Supplementary Data 6). In total, 4 participants reported
febrile episodes, 2 of which coincided with VAEs, corresponding to
Enterovirus A andNorwalk virus, respectively (Fig. 5c, upper two rows).
In addition to fever, each episode included classic symptoms of each
virus: sore throat for Enterovirus A and diarrhea for Norwalk virus. In
this frequently-sampled cohort, we also observed examples of a
unique type of VAE not seen in the previous cohorts: events with
rapidly-declining kinetics in which reactivity returned to baseline
within periods of 1–3weeks following theVAE (Fig. 5c, lower two rows).
These events were restricted to Rhinovirus species and EBV, repre-
senting viruses againstwhichwedetected someof the highest levels of
overall baseline reactivity. Such kinetics may result from abortive
infections/reactivations that cause transient waves of plasmablast
activity recruited from the memory B cell pool, but without triggering
extensive new affinity maturation or formation of new long-lived
plasma cells.

Discussion
In this study, we have developed an approach for the virome-wide
detection of infection events within longitudinal high-dimensional
antibody measurements and used this system to study viral and host
dynamics in individuals and populations over timescales ranging from
days to years. Our approachcombines a highly-multiplexed serological
assay platformwith a repurposed statistical tool for the analysis of the
resulting time-resolved, high-dimensional reactivity data (Fig. 1). In our
analysis of longitudinally-sampled cohorts, we identified 100s of
species-specific ‘viral antibody events’ (VAEs) that consist of
temporally-co-ordinated changes in reactivity to epitopes across the
respective proteomes (Fig. 2). We ascribe these serological events to
co-incident viral infections or reactivations, an interpretation sup-
ported by the temporal association between VAEs and orthogonal
markers of infection (Fig. 5), as well as the strong epidemic effects that
we observe in a synchronously-sampled cohort (Fig. 3).
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Like all serological assays for infection, our approach is limited by
the kinetics of the antibody response, and so becomes sensitive later
during the course of infection than direct viral detection. Nonetheless,
our detection of significant species-specific signal within as few as
3 days after symptom onset (Fig. 5b, c) suggests that longitudinal
sampling in the early symptomatic period may be diagnostic in the
setting of a recall response, which likely applies to the majority of
natural human infection events. Nonetheless, the advantages of the
longitudinal, highly-multiplexed approach are likely strongest in the
context of population-level surveillance or retrospective correlative
studies that do not require the timely detection of individual cases.
While low-dimensional serology has alsobeen used effectively for such
purposes, the highly-multiplexed peptide-based approach offers a
number of important advantages, including: (i) an ability to simulta-
neously query many infectious agents, (ii) increased statistical power
resulting from the detection of correlated signals across many pro-
teins/epitopes per species target, (iii) increased taxonomic dis-
crimination resulting from epitope-level resolution, and (iv) the

generation of rich background distributions that allow more accurate
normalization across samples with global differences in signal quality.
The latter considerationmay beparticularly important for cohorts that
would otherwise be confounded by sample-to-sample variability due
to differences in storage/degradation (e.g. dried blood samples),
which may pose particular challenges in longitudinal studies.

While the statistical approach that we describe allows viral events
to be inferred with high-confidence and specificity, the natural history
cohorts studied here do not allow a precise quantification of the sen-
sitivity with which it detects true infection events. There are, however,
several observations that suggest a relatively low false negative rate.
First, theoverall frequencyof events detected in theACS cohort (~5 per
person-year, ~50% of which correspond to respiratory viruses), is
broadly consistentwith published estimates3,30,31. Second, the fractions
of inflammatory or febrile episodes in the SISCAPA and MyImmunity
cohorts for which we detect a VAE—4/9 and 2/4 respectively—is rela-
tively high, particularly in light of the potential for such episodes to
have non-viral causes. Third, we detect epidemic waves affecting large

Fig. 5 | Correlateddynamics of inflammatoryproteins, symptomsandanti-viral
antibodiesmeasured in longitudinaldriedbloodspot sample series. a 379 serial
dried blood spot samples collected from a participant over a ~7 year span were
evaluated for abundance of 4 inflammatory proteins—C-reactive protein (CRP),
Serum Amyloid A (SAA), Myeloperoxidase (MPO), and total Immunoglobulin M
(IgM)—using the SISCAPA assay (upper four panels). Cases where measurements
exceeded a threshold (dashed red horizontal lines) at ≥2 consecutive timepoints
are highlighted (red dots). A subset of 23 samples across the timespan were also
evaluated for anti-viral antibody abundance using PepSeq (lower four panels) in
which PSEA detected four significant VAEs (asterisks and vertical shading). The red
‡ indicates the timing of an antibiotic-responsive pneumonia. For each VAE, med-
ians of the leading-edge peptide Z-scores are plotted across all 23 timepoints.
Horizontal lines show the median Z-scores of leading-edge peptides at the time-
point immediately prior to the corresponding VAE, and the overlaid asterisks
indicate subsequent timepoints whose leading-edge peptide signals are

significantly elevated over this baseline (p <0.01 by one-tailed paired t test). b For
the VAE corresponding to Influenza A virus [shown in (a)], PepSeq assays were
conducted on samples from additional timepoints to fine-map the association
between symptoms, inflammatory proteins and virus-specific antibodies. Shown
are the PepSeq signals for leading-edgepeptides (coloredby their proteinof origin)
across the time series, relative to inflammatory marker elevations and symptoms
(upper red bar). Timepoints with significantly elevated antibodies are marked
(* indicatesp <0.05byone-tailed t-test). c Examples of antibodydynamics detected
from serial dried blood spot samples in the ‘MyImmunity’ cohort. Each plot shows
the signal across time for VAE leading-edge peptides (gray lines, medians in green)
for a species of interest in a different participant. The upper two plots show cases
where a VAEcoincidedwith a febrile episode (vertical redbars). The lower twoplots
show VAEs characterized by rapidly-declining reactivity that returned to baseline
within ≤10 days. Tick marks at the top of each plot indicate sampled timepoints.
Source data are provided as a Source Data file.
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subsets (5-30%) of the cohort, including one for Influenza A virus
encompassing ~20% of participants, a value that is consistent with
estimates for the annual incidence in the United States of this well-
studied virus32,33. Future studies in which the approach described here
is paired with the direct detection of viral nucleic acids or proteins will
be useful to compare the sensitivities of these approaches, although
such studies will need to be designed to account for the transient and
often site-specific appearanceof viral components during an infection.

The observation that all four VAEs that we detected in the SIS-
CAPA cohort are associated with elevations of both CRP and SAA
(Fig. 5) suggests that time-densemeasurements of these inflammatory
markers can provide a sensitive measure of viral infection. It is notable
that the strongest inflammatory event detected here (which also
includes elevations in MPO and IgM; marked by red vertical stripe in
Fig. 5a) did not associate with an inferred viral event, but instead
coincides with an episode of X-ray-confirmed antibiotic-responsive
pneumonia. We hypothesize that some or all of the four other
inflammatory events that lack a co-incident VAE could likewise be
explained by infectionswith non-viral agents, butwithout being severe
enough to reach clinical attention and involve MPO/IgM elevations.
Alternatively, a subset of these events may be attributable to viral
infections to which our approach is insensitive, potentially related to
the signal loss we observed in DBS samples (Supplementary Fig. 2).
These hypotheses should be testable in future studies that apply
highly-multiplexed serology, such as PepSeq, to measure antibody
reactivity to bacterial and/or fungal antigens in longitudinal series of
this type. Future studies in larger cohorts will also be important to
determine how the overall association between viral antibody and
inflammatory profiles described in Fig. 5 generalizes beyond the single
participant shown here.

The potential of our approach to yield valuable epidemiological
insights is exemplified by the detection of high-prevalence epidemic
waves for Aichivirus A and the D68 subtype of Enterovirus Din the ACS
cohort (Fig. 3). The observation of 11 synchronous Enterovirus D68
events in the Western Cape province of South Africa during 2006 is
striking and would represent the largest known cluster of infections of
its time for this virus34. Enterovirus D68 came to prominence in the
autumn of 2014 when it was associated with a large outbreak of
pediatric lower-respiratory disease in North America and Europe,
alongwith >100 cases of acute flaccid paralysis in the United States35. It
has since caused smaller, biennial outbreaks in the summer-to-autumn
season. Although the peak of the wave in our cohort appears to have
preceded our sampling window (which began mid-2006), extrapola-
tion from the timing of decreasing reactivity (Fig. 3b) suggests a peak
of infections ~April of 2006, coinciding with the Southern Hemisphere
autumn season. Our observation of a high-incidence (20%) outbreak in
this adolescent surveillance cohort that was unselected for active
respiratory disease or symptoms is consistent with the model that
Enterovirus D68 is a widely-circulating virus that only comes to clinical
attention in a small minority of cases36. Significant circulation in South
Africa in 2006, despite the absence of a recognized major clinical
outbreak until 2014, might be explained by geographically-related
differences in host susceptibility, evolution of the virus during the
intervening years, and/or limitations in the available surveillance tools.
Similarly, our detection of a wave of Aichivirus A infections affecting
~30% of participants over the Southern Hemisphere summer of 2007-
2008 (Fig. 3b) to our knowledge represents the highest incidencewave
ever detected for this virus in a general cohort and the earliest docu-
mented evidence of its widespread circulation on the African
continent37,38.

Also notable is our detection of (non-epidemically-clustered)
VAEs across 7 members of the Human Herpesvirus (HHV) family
(Fig. 2a). The HHVs establish life-long infections characterized by long
periods of latency, but are known to sometimes reactivate, typically in
conditions of stress or immunosuppression, and sometimes with

important clinical consequences39. The fact thatwe detect pre-existing
reactivity prior to each HHV event indicates that these VAEs are best
explained as viral reactivations, as opposed to primary infections,
although re-infections are also possible. Moreover, although the ACS
cohort lacks the clinical records necessary to track individual out-
comes, the frequencies of these events (e.g. 28 and 11 for Human
betaherpesvirus 5 and Human alphaherpesvirus 3, respectively) far
exceed the expected incidences of their respective diseases (CMV
reactivation disease and Herpes Zoster), indicating that most were
subclinical or asymptomatic40,41. The possibility that serological pro-
filing of frequent, subclinical HHV reactivations could serve as a sen-
sitive and dynamic reporter of a person’s immunological health is an
intriguing area for future study. Also remarkable is the detection of
VAEs forMeaslesmorbillivirus andRubivirus rubellae in the ACS cohort,
representing species whose circulation is increasingly curtailed by
highly-effective childhood vaccination. The detection of 8 Rubella
events (1 per ~15 person-years) is particularly notable as it reveals sig-
nificant circulation in this population, likely reflecting the absence of
Rubella in the standard childhood vaccination schedule in South
Africa42.

We expect the approach developed here to find application in
future studies of epidemiological patterns in cohorts sampled long-
itudinally over timescales of months-years, or more fine-level immune
dynamics in individuals sampled over days-weeks. Our adaptation of
the PepSeq assay to self-collected dried blood spot samples (Fig. 5) will
also enable new, scalable study designs with temporal resolution not
readily achieved with traditional clinical collections. Moreover, since
highly-multiplexed peptide-based serology platforms like PepSeq are
fully-customizable in their antigen content, it should be possible to
directly extend the experimental and analytic approaches described
here to other areas of epidemiological or clinical interest: for example
to enable the broad identification of bacterial infection or allergen
exposure events.

Methods
Cohorts
The COVID-19 vaccine cohort has been previously described15 and
comprises 21 participants aged 18–60+with no known historyof SARS-
CoV-2 exposure who received 2 doses of the mRNA-1273 vaccine and
from whom plasma was collected at days 0, 8, 28 and ~140 following
the first dose. The Adolescent Cohort Study (ACS) was conducted
during 2006–2008 and consists of 12–18 year-old Mycobacterium
Tuberculosis-infected participants residing in the Western Cape of
South Africa, as described previously22. We focused here on a subset of
260 samples from 65 participants with evidence of Mycobacterium
tuberculosis infection based on a positive tuberculin skin test or
interferon-gamma release assay43, for whom the complete time-series
of 4 × 6-monthly samples were available. Blood samples were pro-
cessed to generate plasma and stored at −20 °C prior to their evalua-
tion by PepSeq. The ‘SISCAPA cohort’ has also been described28 and
comprises volunteer participants from North America who collected
blood spot samples with symptom logs over periods spanning 3-8
years, at variable frequencies up to daily during symptomatic periods.
We focused our analysis here on a single 60+ year-old healthy male
participant (“S-18”) with the longest series: 379 samples, collected over
a span of ~7 years. The ‘MyImmunity cohort’ comprises 30 healthy
adult volunteers aged 18–58+ residing in Arizona who each collected
5–20 (median 10 per participant, total 358) dried blood samples and
associated symptom logs each on a weekly-monthly basis during
June–December 2019. The COVID-19 vaccine andMyImmunity cohorts
were collected under IRB-approved protocols (Western IRB
#20191236). The ACS study was approved by the Faculty of Health
Sciences, Human Research Ethics Committee of the University of Cape
Town. The SISCAPA study was approved by Advarra under
IRB#00000971. All cohorts gave written informed consent: in the case
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of the ACS study, written informed consent was obtained from the
parents of the adolescents and assent was obtained from the
adolescents.

Dried blood spot collection and processing
For the SISCAPA cohort, dried blood spotswerecollectedonWhatman
903 Protein Saver cards and stored at 4 °C (for 4–10 years depending
on the collection date) under low humidity conditions. For the
MyImmunity cohort, dried blood samples were collected onto What-
man 903 Protein Saver cards and stored under ambient conditions for
0–80 (mean ~20) days prior to reconstitution. To generate input
material for PepSeq assays, 6mm punches were collected from the
cards and antibodies were resolubilized in 100 µL of PBS at room
temperature for 1 h. After removal of the filter paper, reconstituted
blood spot solution was stored at −20 °C prior to assays.

PepSeq assays
Highly-multiplexed, epitope-resolved IgG reactivity analysis across the
human virome was performed on plasma (ACS cohort) or recon-
stituted dried blood (SISCAPA and MyImmunity cohorts) using DNA-
barcoded peptide (“PepSeq”) assays. The COVID-19 vaccination cohort
was assayed using the ‘HV2’ library, which has been previously
described15 and consists of 15,000 30mer peptides covering 80 viral
species and selected based on prior evidence of reactivity in other
cohorts (sequences available in Supplementary Data). The ACS and
SISCAPA cohorts were assayed using the ‘HV2T’ library, which consists
of 15,000 64mer peptides covering the same 80 viral species (see
Supplementary Data 1). The HV2T peptide content overlaps with that
ofHV2but using64mer sequences configured as tandem30mers, each
separated by a 4-amino acid spacer (“SGSG”). Samples from the
MyImmunity cohort were assayed using a 244,000-member 30mer
human virome-wide library (‘HV1’; the precursor to HV2 and HV2T)
designed to cover maximum 9mer amino acid sequence diversity
across the proteins of all viruses annotated to have human tropism, as
previously described14.

PepSeq libraries were synthesized and used to profile IgG binding
as previously described14,16. Briefly, DNA-barcoded peptide libraries
were generated using bulk in vitro enzymatic reactions, starting with
the PCR amplification of oligonucleotide templates and their tran-
scription to generate mRNA. The product was ligated to a hairpin oli-
gonucleotide adaptor bearing a puromycin molecule tethered by a
PEG spacer and used as a template in an in vitro translation reaction.
Finally, a reverse transcription reaction, primedby the adaptor hairpin,
was used to generate cDNA, and the originalmRNAwas removed using
RNAse. To perform serological assays, 0.1 pmol of the resulting DNA-
barcoded peptide library (5 uL) was added to 5 uL of sample (either
plasma diluted 1/10, or neat reconstituted blood spot solution) and
incubated overnight. The binding reaction was applied to pre-washed
protein G-bearing beads, washed, eluted, and indexed using barcoded
DNA oligos. Following PCR cleanup, products were pooled, quantified
and sequenced using an Illumina NextSeq instrument.

Longitudinal data analysis
Z-score enrichment signals for each sample-peptide combinationwere
generated from raw sequence reads in a 2-step process using PepSIRF
v1.4.0, an open-source software package thatwe previously developed
for this purpose16,44. First, reads were demultiplexed and mapped to
members of the respective HV2T, HV2 and HV1 libraries using the
demux module to generate integer counts values for each sample-
peptide. Next, peptides with similar abundances in the buffer-only
negative control samples were grouped into bins and used to generate
Z-scores for each datapoint, representing the distance (in standard
deviations) of each datapoint from its unenriched distribution mean.
In addition to buffer-only negative controls, a positive control plasma
sample with known reactivity status across a panel of viruses was

included on each assay plate and used to ensure plate-to-plate con-
sistency (Pearson’s R >0.95) in signal (Supplementary Fig. 2). Samples
were also clustered by pairwise similarity of their Z-scores (using the
cor function in R) to verify the expected co-clustering of samples by
participant identity and to exclude any non-clustering outliers (<1% of
samples, interpreted as mix-up/contamination events). Log2-
transformed offset-adjusted Z-scores (log2(Z + 8) − 3) (hereafter,
‘transformed Z-scores’) from all remaining samples were used for all
downstream analyses. To identify species-specific temporal changes,
we implemented Peptide Set Enrichment Analysis (PSEA) using the
GSEA function in the R clusterProfiler library v4.2.245—with peptides in
the place of genes, and species in the place of pathways/functional
groups. We first used the smooth.spline R function to fit a cubic spline
to the transformed Z-scores across the data from each focal pair of
timepoints (‘interval’). For each peptide, the residual between the
observed transformed Z-score at the later timepoint and its spline-
predicted value across the pair—reflecting the magnitude and direc-
tion of its temporal change across the interval—was used as input for
the GSEA function. Residuals for all peptides above a transformed
Z-score threshold of 0.75 at either timepointwere associatedwith their
respective viral species of design and passed into GSEA to calculate
adjusted p values, Normalized Enrichment Scores and leading-edge
subsets for each of species for which at least 3 peptides passed our
thresholds. Species-interval combinations with p values < 0.01 (adjus-
ted by theBenjamini &Hochbergmethod), and forwhich the strongest
peptide signal at either timepoint had a transformed Z-score≥1.5, were
classified as VAEs. These methods were applied uniformly (i.e., with
common thresholds) across all species.

To analyze peptide dynamics across >2 timepoints, leading-edge
peptides identified for a species of interest across a focal pair of
samples were displayed (as individual spline-normalized Z-score tra-
ces, or timepoint-wise medians) or compared to each other (using
Student’s t-test) following spline adjustment. For this purpose, the
timepoint-wise spline normalization approach described above was
generalized to >2 timepoints by fitting splines between each timepoint
and the peptide-wisemedian signals across all timepoints in the series,
and taking residuals.

For seasonality analysis, we used the rmultinom function from the
stats package (4.2.2) in R to perform random trials of a multinomial
model in which the total number of VAEs observed for each species of
interest was distributed across 4 intervals under null conditions of
uniform probability. P values were calculated as the frequency of such
trials in which the number of events assigned to the season with the
most events met or exceeded the corresponding observed value for
that virus.

For sub-species analysis of Influenza A virus and Enterovirus D, we
performed exact match alignment of all possible 7mers in the leading-
edge peptides for each VAE against the following reference protein
sequences (UniProt accessions): Influenza A H1N1 (Q6WG00, Q7TG96,
Q1K9M9, Q1K9N2, Q1K9M7), Influenza A H3N2 (W0RXT2, B4URC8,
Q0PEM7, C9S3S7, B2BUJ3), Enterovirus D68 (Q68T42), Enterovirus
D70 (P32537), Enterovirus D94 (ABL61316.1).

ELISA validation
ELISA kits for anti-Influenza A virus IgG (Alpha Diagnostic Interna-
tional, cat# 920-040-HAG) and anti-CMV IgG (Calbiotech, cat
#CM027G) were run according to the manufacturers’ instructions,
unless otherwise specified. Samples from timepoint pairs that either
spanned or did not span a PepSeqVAEwere assayed in duplicate (i.e., 4
assays per interval) at fixed sample dilutions determined to be optimal
in preliminary assays: 1:297 for Influenza virus and 1:63 dilution for
CMV (in each case, one-third of the manufacturer’s recommended
dilution). Duplicates were averaged and the difference in raw optical
density values between consecutive timepoints was taken and plotted
according to PepSeq VAE status.
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SISCAPA assays
For this study we used the ‘acute inflammatory response panel’ to
quantify the following proteins in longitudinal DBS samples: SAA, CRP,
LPSBP, Hp, Hx, FibG, MBL, A1AG, C3. Briefly, The DBS samples were
digested using trypsin as a protease before monoclonal antibody
reagents (SISCAPA Assay Technologies) were used to enrich proteo-
typic peptides unique to the proteins of interest from the digested
matrix. Stable isotope labeled internal standard peptides, corre-
sponding to each of the endogenous peptides being measured, were
spiked into the sample at known concentrations. The ratio of the
endogenous peptide to the internal standard was used to quantitate
the endogenous levels of the respective analyte. The identification and
quantitation of the peptides was performed using an LC-MS/MS con-
figuration consisting of an Eksigent nanoLC 425 system operating at
10 µL/min coupled to a QTRAP 6500 mass spectrometer (Sciex, USA).
The target peptides were separated using a 10-min analytical gradient
with 0.1% formic acid (FA)/5% DMSO in water as solvent A and 90%
acetonitrile/5% DMSO in 0.1% FA in water as solvent B. The peak area
ratios were analyzed using MultiQuantTM software (SCIEX).

Statistics and reproducibility
Viral Antibody Events were identified using Peptide Set Enrichment
Analysis, as described above (Longitudinal data analysis, Methods
section), at a threshold of adjusted p value < 0.01. For other compar-
isons, we applied t-tests, Fisher’s exact tests, Wilcoxon Rank Sum tests,
Pearson’s product-moment correlation tests or binomial/multinomial
models, as stated in each of the Results and Figure Legends sections.
The renv package (0.16.0) was used formanagement of the R packages
used in this study, and the associated R project and packages are
available in the Open Science Framework repository. All viral profiles
were generated blinded to the covariates (sex, age, disease status) and
then unblinded for covariate analysis. No statistical method was used
to predetermine sample size. No data were excluded from the ana-
lyses. The experiments were not randomized.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated in this study, including both raw and processed
matrices, have been deposited in the Open Science Framework data-
base under https://doi.org/10.17605/OSF.IO/6HT43 [https://osf.io/
6ht43/]46. Source data are provided with this paper.

Code availability
All code for this study is available in the Open Science Framework
database under https://doi.org/10.17605/OSF.IO/6HT43 [https://osf.
io/6ht43/]46.
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