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Pan-cancer classification of single cells in the
tumour microenvironment

Ido Nofech-Mozes 1,2, David Soave1,3, Philip Awadalla 1,2,4,5 &
Sagi Abelson 1,2,5

Single-cell RNA sequencing can reveal valuable insights into cellular hetero-
geneity within tumour microenvironments (TMEs), paving the way for a deep
understanding of cellular mechanisms contributing to cancer. However, high
heterogeneity among the same cancer types and low transcriptomic variation
in immune cell subsets present challenges for accurate, high-resolution con-
firmation of cells’ identities. Herewepresent scATOMIC; amodular annotation
tool for malignant and non-malignant cells. We trained scATOMIC on
>300,000 cancer, immune, and stromal cells defining a pan-cancer reference
across 19 common cancers and employ a hierarchical approach, out-
performing current classification methods. We extensively confirm scA-
TOMIC’s accuracy on 225 tumour biopsies encompassing >350,000 cancer
and a variety of TME cells. Lastly, we demonstrate scATOMIC’s practical sig-
nificance to accurately subset breast cancers into clinically relevant subtypes
and predict tumours’ primary origin across metastatic cancers. Our approach
represents a broadly applicable strategy to analyse multicellular cancer TMEs.

Tumour microenvironments (TMEs) are highly complex. Various
immune and stromal cells within the TME interact with cancer cells to
regulate processes such as angiogenesis, tumour proliferation, inva-
sion, and metastasis, as well as mediate mechanisms of therapeutic
resistance1–4. Single-cell RNA sequencing (scRNA-seq) techniques are
explicitly suitable to disentangle complex systems as they provide
transcriptome information for every cell within a sample, enabling the
study of subtle transcriptomic changes reflecting different cell types
and their functional states5.

Cell-type annotation is arguably the most critical step to derive
biological insight from scRNA-seq experiments and can be per-
formedmanually or using automatic classifiers6,7. Manual annotation
is often unfavourable as it is subjective to user definition of non-
parametric clustering of cells, conducted under the assumption that
all the cells within a defined cluster are identical, and depends on pre-
existing knowledge of canonical genes. Although expression of
canonical markers has been used to characterise some cell types,
definitive markers are not always available8. Moreover, due to their

relatively low number and the possibility of incomplete detection
due to technical variation, the sole use of canonical gene expression
is not ideal.

Given these limitations, there has been a shift towards automatic
methods for cell classification, with over 100 classifiers described in a
recent census of available scRNA tools9. To date, most automated
annotators are focused on classification of blood or subsets of cells
from other specialised tissues, thus having limited capabilities in
deciphering complex TMEs across diverse human cancers. Indeed,
using single-cell transcriptomics to predict cancer types and differ-
entiate between cancer and related normal tissue cells while also
classifying the large number of immune cells and stroma, is not a
straightforward task10. In the context of TMEs, cell type predictions are
challenged by high inter-patient tumour cell heterogeneity among
cancers of the same tissue11–13 and low transcriptomic variation among
related, yet different specialised immune cells14. Since cancer samples
tend to cluster by patient11–13 and transcriptional variation is often
driven by genomic instability, existing cell type classification methods
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which rely on distance correlations to a reference15–17 are expected
to fail.

The current standard for the identification of malignant cells in
scRNA-seq data relies on copy number variation (CNV) inference
methods18,19. Nevertheless, these methods are incapable of providing
definitive information concerning the cancer’s tissue of origin. Fur-
thermore, CNV inference necessitates the presence of genetically
unstable cells, and its accuracy may suffer when lacking a sizeable,
distinctive normal cell reference within the sequenced specimen.
Solely relying on the presence of inferred CNVs to annotate malignant
cells may lead to false negatives or undefined cells in cancers with
minimal genomic structural variation or nearly diploid genomes. Thus,
a limitation in scRNA-seq analysis of tumour ecosystems is that there is
no universal method for effective, detailed classification of hetero-
genous non-malignant TME cell types and subtypes, and cancer cells.

Clearly, a fully automated, pan cancer classification scheme that
can easily be updated to capture additional subsets of normal cells and
clinically relevant molecular subtypes of cancer, holds promise
towards a better understanding of cancer ontogenies and the mole-
cular interaction of diverse tumour tissues with their
microenvironments.

In this work, we present single cell annotation of tumour micro-
environments in pan-cancer settings (scATOMIC), a comprehensive,
pan cancer, TME cell type classifier. We devise a structured scheme
that uses hierarchically organized models and elimination processes,
reducing the transcriptomic complexity of the TME multi-cellular
system to improve cell classification.

Results
An overview of scATOMIC
We postulated that the sheer number of publicly available single-cell
transcriptomic datasets will enable the development of a highly
accurate and thorough classifier for cancer, blood, and stromal cells.
To define a pan cancer reference, we interrogated cancer patient data,
augmented by two additional comprehensive data sources containing
transcriptomic-independent confirmation of cell identities. These
include scRNA-seq of cancer cell lines representing 19 common cancer
types20 and a CITE-seq dataset (proteomics and transcriptomics) of
diverse peripheral blood cells16. scRNA-seq of stromal cells was gath-
ered from several tumour and normal tissue sources21–28 (Supplemen-
tary Data 1, 2). Overall, 301,662 cells were included in the training
reference dataset of scATOMIC.

Obtaining an accurate set of differentiating features is critical to
successful classification. Nonetheless, significant differentially
expressed genes (DEG) concerning non-malignant cell types are often
expressed in other related cells that are functionally distinct14,29,30

(Supplementary Fig. 1). On the other hand, inter-patient heterogeneity
among malignant cells has been repeatedly observed with different
patients forming unique clusters11–13 (Supplementary Fig. 2). To
improve cell identity predictions, we developed a method, termed
reversed hierarchical classification and repetitive elimination of par-
ental nodes (RHC-REP) which reduces the breadth of cell types in an
ensemble of classification tasks. As compared with top-down local
hierarchical methods, here, predictions of terminal classes are
repeatedly being evaluated to infer the cells’ broader parental nodes.
During this process terminal cell classes are investigated iteratively
using multiple sets of refined differentiating features until confident
terminal annotations are achieved.

To develop this approach, we structured a pan cancer TME cel-
lular hierarchy where each parent node represents a group of related
cells, and each terminal node represents a single-cell class of interest.
Overall, we trained 24 random forest models corresponding to the
total number of parent nodes (Fig. 1a). For every model, we selected
DEGs that distinguish each cell type from all other terminal classes
nested within the same parent. RHC-REP will then prioritise the

features with the highest specificity to the interrogated cell
types (Fig. 1b).

During each classification task, every cell receives a vector of
prediction scores (PS) corresponding to the percentage of trees voting
for each terminal class in the parent node (Fig. 1c). This cell by PS
matrix is then used to calculate intermediate group scores (IGS), to
subsequently link cells to their next parental node in the hierarchy
(Fig. 1d, Supplementary Fig. 3). At each classification task, the dis-
tribution of IGSs obtained from all the cells interrogated in the model
is used to automatically define prediction cut-offs (Supplementary
Fig. 4). Each cell is then interrogated by its next associated model,
defined by a more discriminative set of features and fewer potential
terminal classes (Fig. 1e). Cells that do not pass the IGS thresholds are
given their previous parent classification and withheld from further
subclassification (Supplementary Note 1).

Given that non-malignant cells that share the cancer’s tissue of
origin can be found in cancer biospecimens (for example, normal
alveolar cells in a lung biopsy) we embedded a cancer signature
scoring and cell differentiating module in scATOMIC. Using an estab-
lished transcriptional program scoring method11,16, cancer-type-
specific up and down-regulated programs31 are evaluated in cells
receiving anoriginal annotation of a cancer type by scATOMIC (Fig. 1f).

Performance evaluation and validation across internal and
external datasets
To evaluate scATOMIC’s performance, we first conducted fivefold
cross validation using the training reference dataset (Supplementary
Data 1) while keeping equal proportions of cell types in each of the five
folds. scATOMIC achievedmedian F1 scores ranging from0.90 to 0.99
across all the tested cell types (Fig. 2a), implying great accuracy in
classifying the breadth of cells in the settings of pan cancer TMEs. To
ensure scATOMIC was not heavily impacted by batch effects, we also
trained 4 scATOMIC iterations, where all cells from intact technical
batches were held out from training. We found no significant differ-
ence in the performance of the models on the held out batches
(Supplementary Fig. 5a, Kruskal–Wallis rank sum test: H statistic(de-
grees of freedom= 3) = 6.12, P value = 0.106). We further tested scA-
TOMIC performance across different scRNA platforms using external
melanoma datasets29,32–34 and again, found no significant difference in
F1 scores (Supplementary Fig. 5b, Kruskal–Wallis rank sum test: H
statistic(degrees of freedom= 3) = 2.18, P value = 0.537).

We next aimed to conduct a comprehensive external, training-
independent validation of scATOMIC performance. To build a valida-
tion dataset with high-confidence cell annotations, we mined publicly
available scRNA-seq data from primary tumour biopsies and blood
samples. Overall, the curated set used for validation contained
228,460 cancer, 82,976 stroma and 46,090 blood cells from 225 pri-
mary biopsies spanning 13 cancer types (Supplementary Data 3).
Importantly, these ground truth sets include cancer cells supported by
abnormal CNV profiles, and immune cells with transcriptomic-
independent identity supported by cell surface protein markers via
CITE-seq. Similar to the results obtained from internal validation, in
this independent validation process, scATOMIC achieved a median
F1 score of 0.99 (Fig. 2b).

Overall, these results demonstrate the broad abilities of scA-
TOMICʼs core algorithm to detect cancer cells and their type, aswell as
predicting non-malignant cell types and subtype.

Comparison with other cell-type classification methods
We compared scATOMIC’s performance to six commonly used scRNA-
seq classifiers (SingleR15, Seurat16,35, SingleCellNet36, scmap-cell17,
CHETAH37, and scType38). These annotators encompass a variety of
methods including reference correlation, label transfer using integra-
tion to a reference, random forest algorithm, flat and hierarchical
models, and marker-based classification methods making their
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comparison with scATOMIC’s underlying RHC-REP approach highly
suitable. Each tool was provided with the same reference and external
validation dataset as scATOMIC for training and testing (Supplemen-
tary Data 1–3). All classifiers were highly accurate in classifying non-
malignant cells (median F1 > 0.85, Fig. 2c). However, for cancer cells in
particular, F1-scores were significantly lower as compared with scA-
TOMIC (two-sidedWilcoxon rank sum tests, allP values < 2 × 10−16). The

next best performing classifier following scATOMIC was SingleR15 with
median F1 scores of 0.92, 0.97 and 0.76, for blood, stromal, and cancer
cells, respectively (Fig. 2c). Using scATOMIC, we obtained median
F1 scores of 0.95 0.99, and 0.99 in each of these respective categories.
As existing cell type classification tools were not designed to annotate
malignant cells, this comparison highlights scATOMIC’s ability to
overcome the complexity presented in pan cancer settings to
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accurately identify cancer cells while also having comparable or sig-
nificantly better performance in annotating stroma and blood. Lastly,
with the exception of CHETAH37,mostly comparable time andmemory
usages were measured for all the methods (Supplementary Fig. 6).

Distinguishing between non-malignant, tissue-specific cells and
cancer
Aneuploid CNV profiles are highly associated with the development
and progression of numerous cancers by impacting gene expression
levels39. We assessed scATOMIC’s ability to distinguish malignant cells
from other normal cells of the TME, sharing the same cell-of-origin, by
comparing scATOMIC’s final cancer predictions (Fig. 1f) to their
inferred CNV-based ploidy status19. We observed strong agreement in
cells predicted as malignant and aneuploid-inferred CNV profiles
across biopsies, as well as between non-malignant detected cells and
diploid inferred profiles, with a median agreement rate of 85.9%
(Fig. 3). In addition, in silico serial dilution analysis of cancer cells inour
external dataset collection revealed that decreasing number of
malignant cells can be appropriately annotated, with scATOMIC also
providing cancer type notations (Supplementary Fig. 7). Discordant
cases, defined as cases with an agreement rate below the 1st quartile
(Q1 ≤ 63.2%), were typically attributed to tumours with low CNV levels,
intra-tumoural malignant subclones, low number of cancer cells har-
bouring the CNV, or low number of reference cells (Supplementary
Fig. 8). In only 7% of discordant cases more cells were inferred as
aneuploid than cells annotated as malignant by scATOMIC (Fig. 3b).
These results suggest that cancer and related normal tissue cells are
efficiently classified by their transcriptomic profiles using scRNA-seq
data, independent of their ploidy status.

scATOMIC annotations increase cellular resolution in tumour
biopsies
To further demonstrate the benefits of scATOMIC in annotatingmulti-
cellular TMEs, we analysed several datasets, including scRNA-seq of
lung cancer29. Original annotations for this datasetweredeterminedby
the authors using SingleR15 with its default references in combination
with cell type signatures and the useof canonicalmarker genes. Similar
to our observations (Supplementary Fig. 1) Slyper et al.29, noted over-
lapping expression programs between T cells and NK cells which
makes high resolution single-cell discrimination among these cell
types challenging. scATOMIC resolved NK cells and T cells, and further
subclassified the latter into fine grained subtypes including T reg-
ulatory cells, naive CD4 + T cells, CD4 +T follicular helper cells, effec-
tor/memory CD4+, effector/memory CD8+ T cells, and exhausted
CD8 + T cells (Fig. 4a). In addition, in this lung dataset, scATOMIC
identified other distinct cell types including plasma cells, and plas-
macytoid dendritic cells (pDCs) which scATOMIC separated from B
cells. Unsupervised clustering and expression of cell specificmarkers34

supported the existence of these separated cell identities (Supple-
mentary Fig. 9). Of note, this biopsy included two more small clusters

of “epithelial cells” (Supplementary Fig. 9a), suggesting tissue-specific
cell classes that are not represented in the current scATOMIC training
reference. Using scATOMIC’s automatic approach to set confidence
IGS cut-offs (Supplementary Fig. 4) these cells were abstained from
being falsely annotated and correctly assigned with the lower-level
annotation of non-blood cells. scATOMIC resolved the remaining
epithelial cells into lung cancer and normal tissue cells by evaluating
lung cancer associated transcriptional signatures (Fig. 1f).

Increased cellular resolution across the cell types of the TME was
also observed in other recent datasets of different cancer types
including bladder4, breast40, liver41, ovarian40, prostate42, and skin
cancer33 (Fig. 4b–g). In addition, scATOMIC identified hematopoietic
stem/progenitor cells (HSPCs) in glioblastoma43 (Supplementary
Fig. 10); a population which was shown to promote tumour cell
proliferation43.

Collectively, this analysis demonstrates the ability of scATOMIC’s
core hierarchical algorithm to resolve cell identities at high resolution,
label fine grained T cell states, identify rare cell types, abstain from
falsely classifying unknown cells, and determine cancer types.

Extending the core scATOMIC hierarchy for novel applications
By leveraging RHC-REP, one can easily deploy new scRNA-seq data to
train extensions at any terminal branch of the hierarchy. We thought
that extending the breast cancer classification node would provide a
practical example of utilising modularity (Fig. 5a). Two sizable scRNA-
seq breast cancer atlases were used to train, and independently test
(Supplementary Data 4, 5) a classification model that resolves breast
cancer cells into the major ER + , HER2 + and triple negative breast
cancer (TN) histological subtypes. We applied scATOMIC to the
training-independent validation dataset containing 38 tumours span-
ning ER + , HER2+ , and TN breast cancer, and 2 HER2 + /ER + double
positive tumours, a class not represented in the current reference of
scATOMIC’s breast mode due to a lack of data. scATOMIC correctly
subtyped 37 of the 38 (97.4%) training-independent breast cancer
biopsies, as determined by immune-staining21,44 (Fig. 5b, Supplemen-
tary Data 5). In the two HER2 + /ER + double positive samples, scA-
TOMIC assigned mixed annotations of HER2 + and ER + cells (Fig. 5b).

We observed different degrees of tumour cellularity, with 6
biopsies (15%) having more predicted normal breast cells than cancer
cells. In another tumour reported as ERlow (that is, <10% ER + cancer
cells by immunostaining), scATOMIC identified 8% ER + breast cancer
cells (Fig. 5c, Supplementary Data 5). Of note, scATOMIC identified
these ER + cells asmalignant, in linewith the histology report, however
CNV inference predicted a diploid profile (Fig. 5d). This example
highlights a distinct subpopulationof cancer cells that couldhavebeen
misinterpreted as normal tissue by strictly relying on CNV inference,
thus suggesting integrative approach for best results.

Overall, these data demonstrate scATOMIC’s practical and mod-
ular framework to further subset primary tumour classes into their
clinically relevant subtypes.

Fig. 1 | Overview of scATOMIC training and classification. a Hierarchical struc-
ture of the pan-cancer tumour microenvironment. The cellular hierarchies in the
pan-cancer tumour microenvironment are organized into a flow chart with
increasing cell type resolution. Parent nodes represent broad classification bran-
ches, and terminal nodes represent specialised cell classes of interest. b Training of
classification branches for each parent node (n = 24). The reference datasets are
filtered based on transcriptomic-independent information to only include terminal
cell types that are found within a particular parental node. Genes that significantly
differentiate one cell type from all the others are gathered. Differentially expressed
genes (DEGs) with greater specificity to each terminal class, determined by differ-
ential expression score (DES), are kept (Methods). A random forest classifier is
trained on filtered, library size normalised count matrices to derive a model that
provides prediction scores corresponding to the proportion of trees voting for
each terminal class within the parental node. Colours on the top of the heatmap

illustrate different cell types. c–fClassification of query datasets. cGene expression
count matrices from query tumour biopsies are inputted into the first scATOMIC
classification branch model, outputting a cell-by-prediction scores matrix.
dPrediction scores (PS) fromall blood andnon-blood cell subtypes are respectively
summed to derive intermediate group score (IGS) distributions associating single
cells with their appropriate parental class. e Cells are iteratively interrogated at
their next parent nodes’ corresponding models until terminal classification are
obtained. Broad classifications occur if the IGS for a cell is lower than the con-
fidence cut-off. In this example, cell 10 is subclassified until a terminal B cell des-
ignation is derived. f Differentiating between cancer and tissue-specific non-
malignant cells through scoring of bulk RNA-seq derived differentiating gene
expression programs (Methods). scATOMIC automatically annotates population 2
as cancer cells, and population 1 as non-malignant. Heatmaps and cell illustrations
were created with BioRender.com.
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scATOMIC identifies the tumour of origin across metastatic
cancers
Given that existing single-cell annotation tools are not designed to
provide information regarding the originating tissue of a cancer cell,
we applied scATOMIC to predict the tumour origin in settings where it
may be unknown. We curated a dataset of 62 metastatic biopsies from
breast, kidney, lung, ovarian, and skin cancers fromdiverse anatomical

sites (Supplementary Data 6). In 52 of the 62 samples (83.9%), the
primary tissue of origin was correctly predicted by scATOMIC (Fig. 6),
demonstrating its robustness at distant sites, in cells that may have
undergone transcriptional changes associated with metastasis. In 1
kidney and 2 lung samples (additional 4.9%) scATOMIC abstained from
giving a terminal classification yet focused the prediction on the cor-
rect intermediate class. In 2 lower throughput melanoma scRNA-seq,
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only 5 and 6 cancer cells were reported11 yet scATOMIC found none.
We considered these as false predictions. In 4 of the 5 remaining
samples that received incorrect terminal classifications, the predicted
cancer type and the reported primary were related cancers falling
under the same immediate parent node. For example, a mixed serous/
clear-cell ovarian carcinoma was predicted to be endometrial cancer,
with relatively low classification scores (Supplementary Fig. 11). Over-
all, these results show that accurate detection of metastatic cancers’
tissue of origin using single-cell transcriptomics is feasible and that
scATOMIC can aid in identifying cancers’ primary sites across a variety
of solid human tumours.

Discussion
The rate of scRNA-seq publications reporting major scientific insights
concerning the function of various immune and stromal cells in cancer
has increased steadily over the years40,45,46. However, the lack of
automated methods that can also standardise the identification of
singlemalignant cells is becoming amajor obstacle to accurately study
tumour-microenvironment interactions across various cancer types.

We developed scATOMIC to effectively annotate the TME in pan-
cancer settings. scATOMIC overcomes several classification chal-
lenges, including high inter-patient heterogeneity and highly over-
lapping expression profiling among specificized immune cells. By
using stably expressed transcripts as features, structured classifica-
tion, and models trained using reliable and large datasets, scATOMIC
has proven to accurately identify cancer cells and their origin. More-
over, scATOMIC is comparable to or outperforms other existing
automatic cell type annotators when classifying blood and stromal
cells using our training reference. In samples with genome instability
and an appropriate reference of normal cells, we found high agree-
ment between scATOMIC and CNV inference to pinpoint malignant
cells in scRNA-seq data. However, in samples with cancer sub-clones
defined by variable CNV burdens, cancer cells with near diploid
genomic profiles, or few normal cells to serve as controls, CNV infer-
ence may fall short. Since information concerning CNV may be useful
for cancer prognostication, and a degree of discordancy still exists,
using scATOMIC in conjunctionwith CNV inference to annotate cancer
cells and their type is recommended.

We designed the core, ploidy-neutral scATOMIC algorithm to
accurately identify cancer and normal tissue cells across 19 common
cancer types, including key rare populations such as plasmacytoid
dendritic cell and hematopoietic stem and progenitor cells that were
reported in cancer tissues and are associatedwith immunosuppressive
phenotypes29,43. To ensure that scATOMIC remains powerful, we
designed it in a way that new data can be easily interrogated to extend
the core hierarchy by adding new terminal cell classes. We demon-
strated this modularity by further classifying breast cancers into their
clinically relevant molecular subtypes achieving high agreement
between transcriptomics and immunostaining. With the progressive
accumulation of high quality publicly available scRNA-seq data, future
extensions of the core hierarchy to further subclassify the other 18
cancer types and the various core, non-malignant cell types to their
more resolved classes or states will become simple.

As molecular classification of cancers by tissue-of-origin is fun-
damental to diagnostic pathology we demonstrated scATOMIC’s
ability and high accuracy in predicting the primary origin ofmetastatic
tumours. Additional work is required to evaluate the limits of single-
cell transcriptomics to predict cancer origin, specifically in cancers of
unknown primary and other contexts where distinguishing primary
frommetastatic tumours is not trivial, such as in the case of mucinous
ovarian carcinoma47.

In summary, we have described, benchmarked, and validated a
highly accurate single-cell annotation tool across TMEs of common,
deadly cancer types. The RHC-REP classification approach underlying
scATOMIC used here to tackle the complexity associated with multi-
cellular TMEs might be of interest in areas outside the cancer field
entailingmulti-class structured systems. We highlight the benefits that
scATOMICholds in cancer settings compared to other tools, providing
a method to standardise single-cell cancer transcriptomic studies. We
expect that scATOMIC’s abilities to accurately identify TME resident
cells with high resolution, separate between cancer and normal tissue
cells, and determine tumours’ origin will enrich and expedite broad
cancer studies seeking to refine prognostication or cell–cell commu-
nication from single-cell transcriptomes.

Methods
Defining the pan-cancer tumour microenvironment cell type
hierarchy
We defined a structured hierarchy where cell types with tran-
scriptomic similarities are grouped into nodes (Fig. 1a). We first
grouped blood cells based on existing relationships that correspond
to the hematopoietic hierarchy48, and kept stromal cells together. For
cancer cells, we derived putative groups where transcriptomic simi-
larities are expected based on the cancers’ shared organ system,
histological subtype, hormonal tissue, or germ layer. These included
carcinomas of the digestive system (group 1: colorectal, gastric,
esophageal, liver, gallbladder, bile duct, and pancreas), carcinomas
not of the digestive system (group 2: lung, breast, prostate, endo-
metrial, and ovarian), and non-carcinomas including soft tissue,
neuroendocrine, and nervous system cancers (group 3 cancers:
bone, sarcoma, brain, melanoma, and neuroblastoma). We then used
a subset of our data, corresponding to one patient sample from each
cancer type to evaluate random forest models. Evaluating the pro-
portion of trees voting for each cancer type helped refine the groups
and provided guidelines concerning what the subsequent nodes
might be.

For example, for the less trivial grouping of kidney cancer, a
classification model including all cancers assigned 42.3% of tree votes
for kidney, while the majority of the remaining trees voted for various
group 2 cancers thus, suggesting linking kidney cancerwith group 2. In
the other case of lung cancer, we decided to include it in both groups 2
and 3, as separate cancers from both these groups obtained a high
number of trees voting for lung. In this case, no clear distinction was
observed. In a different case concerning CD8 +T cells, we included
CD8 + T cells in both child nodes of the parent node T/NK as different
CD8 + T cell populations show more transcriptomic similarities to NK

Fig. 2 | scATOMIC performs accurately in internal and external validation
experiments. a k-fold cross validation. The reference dataset was randomly split
into 5 sub-samples containing equal numbers of each cell type. F1 scores are shown
for each cell type in each of the 5 replicates (jitter points). Each fold contained
overall ~61,100 cells. Boxplot colours represent the major cell type classes.
b External validation in datasets not used for training. scATOMIC was validated on
CITE-seq datasets of tumour derived blood cells, datasets of aneuploid cancer cells
and stromal cells from primary tumour biopsies. F1 scores are shown for each cell
type within individual samples (jitter points). The plot represents n = 357,526 cells
from 225 samples. Red dots indicate low-confidence cell type classifications
(Methods). Boxplot colours represent the major cell type classes. c scATOMIC

outperforms other existing automatic cell type annotators, particularly when
applied to identify cancer cells and determine their type. Six existing classifiers
were provided the same training/reference and training-independent validation
datasets as scATOMIC. Combined F1 scores for each of the three major cell class,
blood, cancer, and stromaare shown (jitter points). The plot representsn = 337,790
cells from221 samples thatweregiven a classificationoutput by all tools. (two-sided
Wilcoxon rank sum test comparing scATOMIC to each tool *P <0.05, **P < 1.1 × 10−6,
***P < 2 × 10−16, are shown). Boxplot colours represent the different tools. For all
plots, boxes and whiskers represent the lower fence, first quartile (Q1), median
(Q2), third quartile (Q3), and upper fence. Source data are provided as a Source
Data file.
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Fig. 3 | scATOMICeffectively distinguishesbetweenmalignant cells andnormal
tissue specific cells. a scATOMIC predictions and inferred ploidy in breast cancer
patient CID406621. Cells are coloured by scATOMIC predictions and copy number
variation (CNV)-based inferred ploidy. scATOMIC-predicted malignant cells are
inferred as aneuploid cells while normal tissue cells are inferred as diploid.
b Comparison of scATOMIC cancer predictions and inferred ploidy statues across
the training-independent, external validation datasets. Blue bars represent the

number of cells predicted asmalignant (solidblue) andnon-malignant (transparent
blue) by scATOMIC. Red bars represent the number of cells inferred as aneuploid
(solid red) and diploid (transparent red). Green bars represent agreement rate in
each biopsy. Rates do not include cells without a confident ploidy status (that is
received an “NA” annotation by CopyKAT). Source data are provided as a Source
Data file.
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Source data are provided as a Source Data file.
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(i.e. cytotoxic T cells) while others resemble CD4 +T cells more (Sup-
plementary Fig. 1). We found that this structure yields stronger per-
formance as compared to only having CD8+ cells in one of the
branches or generating a single model to differentiate between CD4+,
CD8+andNKall at once.Overall, given that a small randomdata subset
was utilised to infer transcriptomic similarities among classes of cells,
it is possible that other hierarchical structures might also be
appropriate.

Feature selection
For every classification branchwithin the core scATOMIChierarchywe
selected features as a training input of a random forest model. Raw
gene by cell count matrices derived from scRNA-seq analysis were
gathered from multiple sources (Supplementary Data 1) and were
organized into 24 parent groups (Supplementary Fig. 3). To merge
matrices into a particular parent dataset, we removed genes that are
not represented in all of the data sources. In each parent dataset we
removed cells with <500 expressed genes (as defined by non-zero

counts) or with more than 25% of their reads being mapped to
mitochondrial genes.

To find DEGs between each terminal cell type and all other
terminal cell types present in the same parent node we used the
‘Seurat’ R package v4.0.116. Raw gene by cell count matrices were
normalised and variance stabilised using the SCTransform function to
remove technical variability. Principle components were found using
the RunPCA function, on the “SCT” assay. Louvain clustering was
performed by first applying the FindNeighbors function on the top 50
PCs, followed by the FindClusters function with a resolution of 2. The
identity of the resulting cell clusters was determined by the
transcriptomic-independent ground truth associated with the training
datasets. For each model, DEGs were found using the FindMarkers
function (two-sidedWilcoxon rank sum test) with ident.1 set to include
all clusters containing a particular terminal cell type and ident.2 being
all other cells in the parent node. The function returned a list of DEGs
per class that passed default Seurat filtering settings: a log2 fold-
change of at least 0.25, and at least 10% of the cells in ident.1 or ident.2
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expressing the respective gene. We defined a differential expression
score (DES) as the difference of the fraction of cells expressing a non-
zero value for a respective DEG in ident.1 and ident.2 (DES =
pct_expr_ident.1 – pct_expr_ident.2) to capture DEGs more specifically
expressed in any particular cell type. For each terminal cell type, we
kept genes with a DES greater than the mean DES of all DEGs for that
cell type.We removed all ribosomal genes.We also removedDEGs that
had a pct_expr_ident.2 >40% to ensure high performance when inter-
rogating datasets with large technical variation. For the same reason,
we set a minimum andmaximum number of DEGs for each cell type at
50 and 200. Specifically, a minimum number of features was set to
mitigate potential issues in classifying cells with high levels of technical
dropout. In the case where there are fewer than 50 DEGs with DES
higher than the mean, we kept the top 50 DEGs ranked by DES. Fea-
tures that were used for each cell class at each classification layer are
provided in Supplementary Data 7.

Random forest modeling
For each classification branchwithin the core scATOMIC hierarchy, we
trained a random forest model on cells within a respective parental
node and features selected as described above. To minimise bias

associated with imbalanced classification towards majority classes49,
we randomly sampled an equal number of cells from each terminal
class, with replacement. Library size of each single cell was normalised
by using the library.size.normalise function from the ‘Rmagic’ v2.0.3
package50. Prior to training each model, normalised counts were fil-
tered to include selected features and cells within the corresponding
parental node. Read count valueswere transformed to a fraction of the
total filtered counts. A random forest classifier was trained on the
transformed matrix using the ‘randomForest’ R package v4.6–14 with
500 trees and default parameters51. Each random forest was trained to
classify the terminal nodes present within the corresponding parental
node. The specific cell type organization of the 24 classifiers is detailed
in Supplementary Fig. 3.

Applying scATOMIC to query datasets
Before using scATOMIC on query datasets, the interrogated data was
processed as follows. Raw gene by cell count matrices were filtered to
remove cells with non-zero counts for <500 genes or with more than
25% of their reads being mapped to mitochondrial genes. We imputed
missing values in DEG using the magic function from the ‘Rmagic’
package50, where all the cells within the query dataset act as a
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reference. In datasets where there were no reported values across all
the samples for specific selected features, we assigned a value of zero
before imputation. Following each classification task, every cell
received a vector of prediction scores corresponding to the percen-
tage of trees voting for each terminal class in the random forestmodel.
The values in each vector within the next immediate parent node were
then summed to generate IGSs. For example, when the first model
interrogating all the terminal classes in the hierarchy ran (i.e. the par-
ent model “Any Cell”), the output for each cell was composed of two
intermediate group scores. The first corresponded to the sum of trees
voting to all the terminal cell classes belonging to the “Blood Cell”
parent node and the second IGS for the “Non-Blood Cells” parent node
(Fig. 1d). Data from all the cells in the interrogated sample was used to
derive IGS parent distributions. Cells which received an IGS greater
than the defined parent threshold continued down the classification
hierarchy until theywere terminally classified (Fig. 1e). At any stage, if a
cell received an IGS lower than the calculated threshold it was anno-
tated based on the previous parental node (a less specific classifica-
tion). An IGS threshold for a classification to be deemed confident was
automatically determined (Supplementary Fig. 4). Using the ajus
function from the ‘agrmt’ package v1.42.452, IGS distributions for each
IGS calculated among all cells within a parental node are classified as
either unimodal or bimodal. Unimodal distributions suggest a layer
includes one subtype, while bimodal distributions indicate there is
likely more than one subtype. For unimodal distributions we set the
IGS threshold to be the mean IGS (µ) – 3 standard deviations (σ). For
bimodal distributions, using the em function from the ‘Cutoff’ R
package53 v0.1.0, we fit a mixture model for the distributions and
predicted estimates of mean and standard deviations for both dis-
tributions using the expectation maximation algorithm. We selected a
conservative approach when a mixed cell type population exists in a
layer by setting the IGS threshold in bimodal distributions to be the
meanof the higher scoremodality (µ2) – 2 standarddeviations (σ2).We
set the maximum IGS threshold to be 0.7, as in some distributions,
such as when a single pure population remained for classification,
unreasonably high thresholds may be obtained.

A schematic and description of the main functions is detailed in
Supplementary Note 2.

Flagging cells with lower confidence annotations
To provide a way for scATOMIC users to evaluate the confidence of
their cell annotationoutput,wedevised a secondary post-classification
flag to warn about low-confidence annotations. To define low-
confidence annotations, we used the results obtained by external
validation (Fig. 2b). For every model throughout the hierarchy, we
determined themedian IGSs (or PS for terminal nodes) across samples
for correctly annotated cells (X) and incorrectly annotated cells (Y).
Correct versus incorrect status was defined by the terminal annotation
of single cells. For example, in terminally annotatedbreast cancer cells,
median IGSnon-blood, IGSnon-stromal, IGSgroup2-cancer, IGSbreast/lung/prostate,
PSbreast for all the correctly and incorrectly annotated cells in the
validation data were recorded. We derived confidence thresholds
based on the overlap between the distributions of X and Y using their
quartiles (Q).When there was low overlap (defined asminimum X >Q3
Y), the threshold was set to the minimum X. When there was inter-
mediate overlap (defined as minimum X <Q3 Y, yet Q1 X >Q3 Y), the
threshold was set to Q3 Y. In all remaining cases where there was high
overlap (defined as Q1 X <Q3 Y), segregation could not be made and
the classifications of query cells in such cases were deemed confident.
For example, all CD4 + T cells that aremisclassified asCD8+ T cells will
still obtain comparable IGSblood with respect to correctly classified
CD8 + T cells, both being subtypes of blood cells. If at any model
throughout the hierarchy a low-confident IGS is observed, a flag is
applied. In addition, we assigned a sample-level confidence metric
derived from the proportion of cells receiving a confident annotation

based on this flag. To maximise identification of potentially poor-
quality samples, in any new interrogated sample, if <75% of cells
receive confident annotations, a warning will be issued (Supplemen-
tary Fig. 12).

Scoring cancer signatures to refine cancer cell predictions and
identity of normal tissue-specific cells
To identify potential normal tissue specific cells that are not defined in
the core scATOMIC TME hierarchy, we employed a post classification
method for scoring cancer specificmodules in each cell. Lists of genes
differentially expressed between different cancer types and their
matched normal tissues were obtained from OncoDB31. We selected
DEGs fromOncoDB31 with a reported log2 fold change >1 or <−1 and an
adjusted P value <0.01. Since OncoDB31 is based on bulk RNA-seq, we
further filtered the DEG list to only include those with reported
expression values in the query scRNA-seq dataset. Upregulated gene
programs and downregulated gene programs31 were scored using the
AddModuleScore function from Seurat11,16 in each cell predicted as
cancer by random forests. Ward.D2 hierarchical clustering was then
performed on a Euclidean distance matrix of each cell’s upregulated
and downregulated cancer programs. Two groups were derived using
the cutree function. At this stage, scATOMIC evaluates the percentage
of normal cells in each group corresponding to those cells annotated
as either blood, stromaor cancer cellswith lowerupregulatedprogram
scores compared to downregulated program scores. As the AddMo-
duleScore function uses average expression of control feature sets
across all cells in the dataset, the calculated scores are affected by the
proportion of normal cells present. Thus, we filtered out all confident
normal cells in the cluster with a greater percentage of normal cells
and repeated the AddModuleScore pipeline to identify additional
normal cells that were overlooked in the first iteration. We repeated
scoring of cancer programs, hierarchical clustering, calculating the
percentage of normal cells and filtering until both clusters contained
no more than 20% normal cells. Cells that were initially classified as
cancer which were scored as normal cells were given a normal tissue
cell label.

Benchmarking scATOMIC
We validated scATOMIC’s performance using internal cross validation
and external validation datasets. Internal validation was performed by
splitting the training dataset (Supplementary Data 1) into five subsets
containing equal proportions of each cell type. For each iteration we
used4 subsets as scATOMIC training dataset and applied scATOMIC to
the held out independent test subset. F1 scores were calculated for
each terminal cell type at each iteration (Supplementary Data 1). AXL+

dendritic cells (ASDC) represent a rare, recently discovered, transi-
tional state between cDCs and pDCs54. Due to their small numbers in
the training data, these cells were omitted from the internal validation
procedure.

For external validation of scATOMIC we used 424,534 cancer,
blood and stromal cells gathered from various sources (Supplemen-
tary Data 3). For ground truth, we relied on the authors’ annotations of
stromal cells. To improve reliability, cells that were annotated as can-
cer by the authors were subjected to additional validation by CNV
inferenceusingCopyKAT19. For blood cells, weusedCITE-seqdatawith
protein surface markers supporting the author derived cell type
annotations. We excluded cell types from individual samples if their
number was <30. Per sample F1 scores were calculated for each
terminal cell type. During both scATOMIC’s internal and external
validation processes (Fig. 2a, b), we considered correct intermediate
classifications as true positives.

Comparison between scATOMIC and other tools
We compared scATOMIC’s performance to existing scRNA-seq classi-
fiers. In this comparison only, we bypassed the use of IGS cut-offs in
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scATOMIC to enable comparison to other tools that cannot output
intermediate cell classes. Of note, a separate analysis evaluating scA-
TOMIC’s performance under this forced mode against its default
(unforced mode) favoured the latter by indicating that the use of
intermediate annotations more frequently avoids derivation of incor-
rect terminal annotations than restricting the output of correct term-
inal classes. The same training and validation datasets provided to
scATOMIC were also used to provide a comparison of scATOMIC with
the performance of all the other tested tools. A SingleCellNet36 random
forest model was trained on a balanced reference of 2500 random
samples of each cell type, using default parameters. SingleCellNet
expects a class-balanced matrix as input. We provided the same class-
balanced matrix used in scATOMIC’s first classification model, repre-
senting all the cell classes.CHETAH37 is using an alternativehierarchical
classification approach.We usedCHETAHwith its default settings with
the exception of the ‘thresh’ parameter that was set to zero to enforce
terminal annotations, similar to scATOMIC. Scmap-cell17 classification
was performed using default parameters. To enable SingleR proces-
sing of the large reference dataset, we applied its pseudobulk imple-
mentation by setting ‘aggr.ref’ to TRUE15. For the comparison with
Seurat16,35, we partitioned the pan-cancer TME training reference
according to batch and applied the reciprocal PCA workflow. We
transferred labels to query samples using the TransferData function.
For the comparison with scType38, we provided scType with the list of
features corresponding to each terminal class in scATOMIC’s reference
which were derived in the first classification node (Supplementary
Data 7). Otherwise, default parameters were used. To compare scA-
TOMIC’s final cancer cell prediction with the CNV inference approach
of detecting malignant cells we used CopyKAT19 with its default set-
tings (Fig. 3). Both aneuploid and diploid cells from the external vali-
dation biopsies were included in this analysis. Agreement rate was
defined as the simple percentage agreement using the agree function
from the irr55 R package. Cells which received an NA ploidy annotation
were omitted from the calculation.

Analysis of run time and memory usage
We applied each tool without parallel processing, as only some tools
(scATOMIC, Seurat, SingleR) provide that functionality.We considered
the time and memory usage for query datasets following model
training as some methods bypass this step and rely on a given cell
marker list (scType). Using the peakRAM56 R package we monitored
the time for classification and maximum RAM used. We compared the
time and RAM required for the classification of cell types prior to
cancer signature scoring by scATOMIC to SingleR, Seurat, scmap-cell,
SingleCellNet, CHETAH, and scType final classifications. As appro-
priate, we compared the time and memory for the cancer signature
scoring step that differentiates cancer from normal tissue cells to
CopyKAT.

In silico dilution assay
For each primary tumour sample in the external validation, we ran
scATOMIC and CopyKAT on all non-malignant cells while iteratively
reducing the number of malignant cells. Specifically, we sampled
10–100 malignant cells in increments of 10. Only cells that both scA-
TOMIC annotated as cancer cells and CopyKAT inferred as aneuploid
were sampled.

Breast cancer subclassification
We extended the core scATOMIC model to subclassify breast cancer
cells into their histological subtypes. The model extending breast
cancer into its molecular subtypes was trained using a combination of
two datasets. The first included the breast cancer cell lines data within
the core trainingdataset (SupplementaryData 1, 2),where the assigned
molecular subtypes were based on annotations found in the Cancer

Cell Line Encyclopedia DepMap portal57 and the second, primary
tumour data fromWu et al.21 with immunohistochemistry information
(Supplementary Data 4). We used the clinical molecular subtypes of
HER2 + , ER + and triple negative as classes. There was not sufficient
data available to train and test HER2 + /ER + and HER2-/ER+ as sepa-
rated classes. We evaluated this extension’s performance on an
external set of 40 tumours from Pal et al.44 (Supplementary Data 5).
One tumour containing fewer than 100 cancer cells was omitted from
this analysis. The ground truth of ER and HER2 status in the testing set
was received by correspondence with the authors.

Visualising inferred CNVs
To visualise the inferred CNV profile in the ER-low tumour we used the
‘inferCNV’58 package with the cutoff variable set to 0.1 and all other
variables set to default. We defined normal reference cells as cells
annotated by scATOMIC as blood or stromal cells.

Applying scATOMIC to metastatic tumours
scATOMICwas applied to predict the tumour of origin in 62metastatic
tumours. Individual samples used are described in detail in Supple-
mentaryData 6.Wedefined the scATOMIC tumour of origin prediction
by taking the cancer type called in the majority of cancer cells in the
sample.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the scRNA-seq data used in this work are publicly available. Datasets
retrieved fromtheGene ExpressionOmnibus canbedownloadedusing
the following accession numbers: GSE16437816, GSE11825724,
GSE11437425, GSE13589327, GSE14081929, GSE14867319, GSE17607821,
GSE13246522, GSE12544941, GSE13190723, GSE11597833, GSE13780459,
GSE14144542, GSE15482660, GSE12313934, GSE16152944. Datasets
retrieved from the Broad Institute Single Cell Portal are available
with the following accession numbers: SCP54220, SCP128861, SCP141532.
The remaining datasets were downloaded directly from links provided
in their corresponding publications: Madissoon et al.26 [https://data.
humancellatlas.org/explore/projects/c4077b3c-5c98-4d26-a614-
246d12c2e5d7], Chen et al.4 [https://static-content.springer.com/esm/
art%3A10.1038%2Fs41467-020-18916-5/MediaObjects/41467_2020_
18916_MOESM2_ESM.zip], Couturier et al.62 [https://datahub-262-c54.p.
genap.ca/GBM_paper_data/GBM_cellranger_matrix.tar.gz], Qian et al.40

[https://lambrechtslab.sites.vib.be/en/pan-cancer-blueprint-tumour-
microenvironment-0], Young et al.63 [https://www.science.org/doi/
suppl/10.1126/science.aat1699/suppl_file/aat1699_datas1.gz.zip], Peng
et al.64 [https://zenodo.org/record/3969339], Zheng et al.45 [https://
zenodo.org/record/5461803]. Additional descriptions of these data-
sets are provided in Supplementary Data 8. All re-processed data used
for training and validation have been deposited in Zenodo and are
available through the following link: https://doi.org/10.5281/zenodo.
741923665. Bulk RNA sequencing cancer specific signatures were
obtained from OncoDB31 [https://oncodb.org/data_download.html].
Subtypes of cancer cell lines were derived from the Cancer Cell Line
Encyclopedia in DepMap57 [https://depmap.org/portal/ccle/]. Source
data are provided with this paper.

Code availability
The scATOMIC R package, associated code and user manual are
available at the abelson-lab/scATOMIC GitHub repository: https://
github.com/abelson-lab/scATOMIC66. Additional scripts to reproduce
thefigures in themanuscript aredeposited inZenodo and are available
through the following link: https://doi.org/10.5281/zenodo.741923665.
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