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Sleep fMRI with simultaneous
electrophysiology at 9.4T in male mice

Yalin Yu1,2,9, Yue Qiu 3,9, Gen Li4, Kaiwei Zhang1, Binshi Bo1, Mengchao Pei1,
Jingjing Ye5, Garth J. Thompson 5, Jing Cang3, Fang Fang3,6, Yanqiu Feng 7,
Xiaojie Duan 4 , Chuanjun Tong 1,7 & Zhifeng Liang 1,8

Sleep is ubiquitous and essential, but its mechanisms remain unclear. Studies
in animals and humans have provided insights of sleep at vastly different
spatiotemporal scales. However, challenges remain to integrate local and
global information of sleep. Therefore, we developed sleep fMRI based on
simultaneous electrophysiology at 9.4 T in male mice. Optimized un-
anesthetized mouse fMRI setup allowed manifestation of NREM and REM
sleep, and a large sleep fMRI dataset was collected and openly accessible. State
dependent global patterns were revealed, and state transitions were found to
be global, asymmetrical and sequential, which can be predicted up to 17.8 s
using LSTM models. Importantly, sleep fMRI with hippocampal recording
revealedpotentiated sharp-wave ripple triggeredglobal patterns duringNREM
than awake state, potentially attributable to co-occurrence of spindle events.
To conclude, we established mouse sleep fMRI with simultaneous electro-
physiology, and demonstrated its capability by revealing global dynamics of
state transitions and neural events.

Sleep is generally considered a tightly regulated whole-brain phenom-
enon, and its role for our cognition and heath is, from our own daily
experience, of great significance. In recent years, studies have identified
neural circuits regulating transition and stability of awake-sleep cycle1,2.
The ascending arousal system3, including monoaminergic, cholinergic,
and peptidergic systems, are involved in promoting or sustaining
wakefulness. Genetically defined cell populations in the preoptic area
(POA), basal forebrain (BF), brainstem, and cortex, have been identified
as non-rapid eye movement (NREM) promoting cells2. And neurons in
pedunculopontine tegmentum (PPT) and laterodorsal tegmentum
(LDT) are involved in rapid eye movement (REM) sleep generation2. In
addition, the sleep/wake states are usually accompanied by distinct
neural events which result from the synchronous activities of neural

circuits, for example, spindles or slowwaves inNREM sleep4,5 and sharp
wave ripples (SWRs)6 in both quiet wakefulness and NREM sleep.
Previous studies have shown that these events play important roles in
sleep architecture, synaptic plasticity and memory consolidation6,7,
among many others. Circuitry level approaches in animals have
provided detailed understanding of neural mechanisms during awake-
sleep cycle, but techniques providing macroscopic view are also
needed for systematical examination of sleep, a fundamentally global
phenomenon.

Non-invasive brain mapping tools such as functional magnetic
resonance imaging (fMRI), electroencephalogram (EEG), positron
emission computed tomography (PET) have provided the whole
brain insights into sleep. Previous PET studies showed that the
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descent fromwakefulness to NREM sleep was accompanied by global
or regional reductions in cerebral blood flow (CBF), oxygen meta-
bolism and glucose metabolism8,9. Blood-oxygen-level-dependent
(BOLD) fMRI studies also demonstrated widespread hemodynamic
alterations during awake-NREM cycle10. Coherent patterns of
slow and large-amplitude oscillating electrophysiological, hemody-
namic, and cerebral-spinal fluid (CSF) dynamics were found during
NREM sleep11, and BOLD signals further exhibited distinct frequency
patterns from wakefulness to NREM sleep12. Furthermore, the pro-
gression from wakefulness to NREM sleep was accompanied by
the gradual breakdown of inter-regional fMRI based functional
connectivity13 and arousal dependent Hidden Markov Model (HMM)
states14. In addition, the brain state dynamics, as broadly defined, has
been widely investigated and implicated in cognitive processes and
brain disorders15–18.

More broadly, fMRI based resting-state functional connectivity
has been increasingly recognized to be influenced by arousal
fluctuations19, as human subjects often exhibit notable arousal fluc-
tuations or even sleep during resting-state fMRI. However, the BOLD
signal is a hemodynamic signal and thus is also influenced by non-
neural physiological factors (e.g., respiratory and cardiac signals)
that may co-vary with arousal state changes20. Limited by the avail-
able neural recording and manipulation tools in humans, an animal
sleep fMRI method is much needed as a platform to thoroughly
disentangle arousal related neural and non-neural contributions to
BOLD signals.

Clearly the macroscopic observations using non-invasive imaging
techniques in humans and microscopic, circuitry level knowledge in
animals are difficult to integrate, due to the vast gaps of spatio-
temporal scales and species. Simultaneous electrophysiology and fMRI
could potentially bridge the gap. However, most simultaneous elec-
trophysiology and fMRI sleep studieswere scalp EEG-fMRI inhumans21,
which provided limited electrophysiological information due to the
intrinsic limitation of scalp EEG. Meanwhile, invasive simultaneous
electrophysiology and fMRI have been developed mostly in anesthe-
tized animals22 andnot yet utilized in sleep research so far. Therefore, a
sleep fMRI method based on simultaneously acquired invasive elec-
trophysiology inmice could provide both local and global information
and bridge the spatiotemporal and species gaps. Two major technical
obstacles need to be overcome to achievemouse sleep fMRI. First, it is
difficult to perform un-anesthetized mouse fMRI because of the high
stress level, due to the head restraining and loud noise of the fMRI
environment, led alone to make mouse fall asleep. Second, it is well
known that simultaneously electrophysiology and fMRI is highly
challenging due to the mutual electromagnetic interference between
electrophysiology and fMRI, which is more so in un-anesthetized
animals.

To this end, we developed a mouse sleep fMRI method based on
simultaneously electrophysiological recording at 9.4 T. To achieve
this goal, we first established a highly MR-compatible electro-
physiological recording setup in un-anesthetized mice at 9.4 T.
Through further optimization on awakemouse fMRI, we achieved the
recording of whole awake-sleep cycle from awake to NREM and REM
states during fMRI. Importantly, using MR-compatible graphene fiber
(GF) electrodes, hippocampal local field potential (LFP) signal were
recorded and characteristic events such as spindle and SWR were
extracted during sleep fMRI. With this mouse sleep fMRI method, we
revealed global patterns of NREM and REM sleep, and more impor-
tantly, the global, asymmetric and sequential dynamics of state
transitions, which was also evident in their trajectories in the low-
dimensional manifold. Furthermore, utilizing long short-term mem-
ory (LSTM) recurrent neural network (RNN) modeling, we found that
BOLD signals could predict state transitions, up to 17.8 s, prior
to electrophysiological defined transition time point. Using the
neural-event-triggered (NET) fMRI approach, we found SWRs had a

significantly higher BOLD responses in NREM state than in AW state,
which could attribute to the co-occurrence of spindle events. In
conclusion, this mouse sleep fMRI method will further advance
mouse sleep research by providing both local and global view. Fur-
thermore, it provides an accessible platform for elucidating the
neural basis of arousal related BOLD signals. Combined with rich
resources and tools in mice, the current method will help to establish
a general multiscale framework of sleep.

Results
Sleep fMRI usingMR-compatible electrophysiology recording in
un-anesthetized mice
To investigate how arousal fluctuation contributes to the global
dynamics, we established the mouse sleep fMRI setup using the
simultaneous electrophysiology and fMRI. MR-compatible electro-
corticography (ECoG) and depth electrodes were custom designed
and fabricated for high MR-compatibility at 9.4 T, while maintaining
good electrophysiological recording quality (Fig. 1a, b). Double-sided
flexible printed circuit (FPC) with polyimide film as base substrate was
used to minimize the thickness and width, and to maximize the flex-
ibility of the array. Copper layer was used for its similar magnetic
susceptibility to the brain (thus minimal MRI artefact), and gold was
plated over copper layer in each recording site to avoid biological
toxicity of copper. The 16-Channels ECoG electrodes covered a large
portion of the cerebral cortex, including retrosplenial area (RSP),
motor area, somatosensory area and posterior parietal association
area (Fig. 1a and Supplementary Data 1). To record subcortical activity,
we further fabricated a graphene fiber based depth electrodes. Gra-
phene fiber was shown to be highly MR-compatible in our previous
deep brain stimulation (DBS) study23 at 9.4T, and was repurposed for
LFP recording in the hippocampus (Fig. 1b). The pipeline of electrode
implantation surgery, habituation training and data acquisition was
shown in Fig. 1c and described in Method. Both electrodes produced
minimal MRI artifacts in T2 weighted anatomical images and T2*
weighted functional images (Fig. 1d, e) of the relatively small sized
mouse brain at 9.4 T.

With highlyMR-compatible electrodes providing the feasibility of
monitoring animal’s arousal states, it remained challenging to record
mouse sleep in theMRI environment. Based on our extensive previous
experiences on awake mouse fMRI24,25 and systematical optimization
of stress level reduction26, the current un-anesthetized mouse fMRI
setup allowed simultaneous electrophysiological recording while
minimizing animal’s stress and thus facilitating sleep (Fig. 1f). In par-
ticular, the mouse’s head was tilted for 30 degree and its forelimbs
were allowed tomove freely, both specifically designed forminimizing
stress level26.

It is well known that the simultaneously acquired electro-
physiological signal suffers from severe MRI artifacts. Thus, we
established and evaluated an off-line de-noising preprocessing pipe-
line (Supplementary Fig. 1), which greatly suppressed MRI artifacts to
the extent that they no longer affected further analysis (Fig. 2a, b).
Meanwhile, we alsodeveloped an fMRIpreprocessingpipeline thatwas
optimized for 4-hour sleep fMRI data. Raw fMRI data exhibited good
(temporal) signal-noise-ratio (Fig. 2c) with small head motion and the
“6 rp+ 6 Δrp + 40 PCs” regression approach was modified from our
previous studies25,27 to minimize the effects of scanner drift, motion
and other non-neural physiological noises (Fig. 2d and Supplementary
Fig. 2). The 40 PCs were derived from fMRI signals outside the mouse
brain (Supplementary Fig. 2c, d), largely capturing the non-neuronal
signals28, such as head motion (Supplementary Fig. 2e), physiological
effects (Supplementary Fig. 2f–h) and infra-slow drift (Supplementary
Fig. 2f, and i, j). Thus, using the “6 rp+ 6 Δrp + 40 PCs” regression
approach, arousal induced non-neuronal nuisance effects on fMRI
signals wereminimized. With this simultaneous electrophysiology and
fMRI recording setup, a representative session of mouse sleep fMRI
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with awake (AW), NREMandREMsleep stateswas shown in Fig. 2ewith
denoised ECoG, electromyography (EMG) and fMRI signals. Sleep
states were conventionally classified using electrophysiological signals
(see Methods for details, Supplementary Fig. 3). Similar to previous
optical imaging studies of mouse sleep29, we utilized a 4-hour long
fMRI acquisition scheme. Mice exhibited notable and increasing por-
tion of NREM sleep as the scan progressed, and REM sleep was also
observed during the 4-hour scan (Fig. 2f). In total, 46 4-hour sessions
(184 h) simultaneous ECoG/LFP-fMRI recordings from 24 mice (27
ECoG-fMRI sessions from 14 mice and 19 LFP-fMRI sessions from 10
mice) were acquired in our dataset, including 3588min of NREM sleep
and 342min of REM sleep (Fig. 2g). The above dataset with both raw
and preprocessed data is openly accessible at https://doi.org/10.12412/
BSDC.1668502646.20001.

State dependent whole brain BOLD patterns and their neuro-
physiological correlates
Human sleep is characterized by long state durations, e.g., eachNREM-
REM cycle is approximately 90min30, which prevents conventional
general linear model (GLM) analysis due to its low frequency beyond
the detection limit of fMRI. However, mouse sleep is fragmented with
short state durations31 (Supplementary Fig. 4, median duration of AW:
46.0 s, NREM: 41.0 s and REM: 121.5 s in our data), thus is convenient
for analyzing state dependent activations.Using the conventional GLM
analysis, we mapped the brain-wide BOLD activations of NREM and
REM sleep, relative to the AW state (Fig. 3). For the NREM state, a large
part of cerebral cortex and hippocampus were activated, while sub-
cortical regions, such as thalamus and part of midbrain, were deacti-
vated compared to the AW state (Fig. 3a–c).
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Fig. 1 | Mouse sleep fMRI using MR-compatible electrophysiology recording in
un-anesthetized mice. a Design and location of MR-compatible ECoG array. The
array was placed above the dura and centered on bregma (length, ~4mm; width,
~6mm) for electrocorticogram (ECoG) recording with two gold wires (orange)
inserted in nuchalmuscles for electromyography (EMG) recording. Right panel, the
diagram of multi-electrode ECoG array and its layered construction. FPC, flexible
printedcircuit.bDesign and locationof depth electrode.Graphenefiber (GF) based
MR-compatible depthelectrodewas implanted into thedorsalCA1 regionof the left
hippocampus with gold wires (orange) placed on dura and nuchal muscles for

medial prefrontal cortex (mPFC) intracranial electroencephalography (iEEG) and
EMG recordings, respectively. c The pipeline of animal surgery, recovery, habi-
tuation training and mouse sleep fMRI data acquisition with details described in
Method. The cartoon mouse image was drawn by Figdraw. d Illustration of field of
view (FOV) during simultaneously electrophysiological and fMRI recording.
e Minimal MRI artifacts of ECoG arrays (upper) or GF depth electrodes (lower) on
T2weighted structural (left panel) andT2*weighted functional images (right panel)
of the mouse brain. f Schematic illustration of the mouse sleep fMRI setup with
details described in Method.
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Importantly, using the simultaneously acquired ECoG or LFP sig-
nals, we explored the potential relationship between sleep state
dependent BOLD and electrophysiological signals. We calculated
hemodynamic response function (HRF) -convolved ECoG/LFP band-
limited power and its correlation with BOLD changes (Supplementary
Fig. 5). The relative changes of ECoG or hippocampal LFP were in
generally consistent with current understanding of NREM and REM
sleep29,31 (Fig. 3d, e, left panels). Importantly, we found a significant
broadband (1–100Hz) correlation between the relative ECoG power
and relative cortical BOLD signal changes (Fig. 3d, right panel) during

NREM state, which was also evident in hippocampal CA1 recordings
(Fig. 3e, right panel). For REM state, significant correlation between
theta band-limited power and BOLD changes was observed (Fig. 3d, e,
right panels), suggesting the potential relationship of theta band and
BOLD changes.

Low dimensional dynamics within and between brain states
The above NREM and REM activation patterns were state-dependent
features. However, previous studies indicated that sleep archi-
tectures are dynamic2. Taking advantages of whole-brain mouse
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sleep fMRI data, we investigated the low dimensional dynamics
within and between brain states. First, we conducted group principal
component analysis (PCA) to BOLD signals for dimensional reduc-
tion. The −100th PC accounted for at least 0.3% explained variances
and accumulatively the first 100 PCs resolved greater than 78%
explained variances of BOLD signals. (Fig. 4a, Supplementary Fig. 6
and Supplementary Data 2).

The first four PCs were shown in Fig. 4a, b. Each PC exhibited non-
stationary temporal weights from the start to the end of each state
(Fig. 4c), suggesting dynamic involvements of different functional
networks within brain states. Further dynamics were expected across
brain states, thus we characterized the state transition probabilities
(Fig. 4d). Electrophysiological and whole brain BOLD features were
shown in Fig. 4e (upper panel) and Supplementary Fig. 7–13 for four
state transitions, respectively. For each state transition, we observed
sequential BOLD signal fluctuations traversing the mouse brain
(Supplementary Fig. 7 and Supplementary Data 3). Further global
spatiotemporal patterns of all four state transitions were shown in

Supplementary Fig. 8–11. Importantly, the temporal weights of PCs
(tPCs) also exhibited diverse characteristics across state transitions
(Fig. 4e, lower panel, and Supplementary Fig. 13), suggesting dynamic
involvements of different functional networks across brain states.
Moreover, in the lowdimensional spaces spanned byBOLD PCs (Fig. 4f
and Supplementary Fig. 14) and electrophysiological band-limited
power ratios (Fig. 4g), activity flows of the manifolds exhibited
dynamic properties within and across brain states. Interestingly,
we found the separated trajectories between “AW to NREM” and
“NREM to AW” transitions (Fig. 4f, g). And we further quantified such
phenomenon and the significant asymmetry were observed around
state transitions in bothBOLDand electrophysiological space (Fig. 4h),
suggesting “AW to NREM” and “NREM to AW” transitions were asym-
metric processes.

Predictions of state transitions using the LSTM RNN model
The dynamic characteristics of PCs across state transitions promoted
us to investigate whether such transitions could be predicted by BOLD
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Fig. 3 | Brain-wide BOLD activations of NREM and REM sleep and their elec-
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b Region-of-interest (ROI) definitions for extracting the BOLD changes in (c).
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data are provided as a Source Data file.
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signals prior to electrophysiology defined transition time, and if so,
which functional networks contributed to such predictions. Thus, we
established a LSTM RNN model for state transition prediction, with
BOLD signals (tPCs) preceding state transitions as model input and
the brain state after such transition as model output (Fig. 5a). We
systematically evaluated the model parameters, and the resulting
optimized parameter set was 1 hidden LSTM layer with 50 hidden units

(Fig. 5b). Prediction accuracy on the validation dataset was primarily
related to the gap times preceding state transitions (Fig. 5c). Using the
optimized parameter set, we found high prediction accuracy (Fig. 5d)
of more than 85% across all seven prediction categories.

The high prediction accuracy gradually decreased as the gap time
increased (Fig. 5e–h, upper panel), and the mean discriminate times
were 10.55 s for “AW to NREM”, 3.28 s for “NREM to AW”, 17.84 s for
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“NREM toREM”, and 3.45 s for “REM toAW” state transitions (Fig. 5e–h,
middle panel). The null dataset was constructed by shuffling predic-
tion categories. Correspondingly, sensitivity results of the LSTM RNN
model revealed several regions significantly contributed to the pre-
diction of state transitions (Fig. 5e–h, lower panel, and Supplementary
Fig. 15), including (1) ventral thalamus (vThal), medial mammillary
nucleus (MM), RSP, ventral tegmental area (VTA), median raphe
nucleus (MnR), globus pallidus (external segment, GPe) and inter-
posed cerebellar nucleus (Int) for “AW to NREM” state; (2) anterior
cingulate area (ACA), agranular insular area (AI), visual areas (VIS),
pontine reticular nucleus (ventral part, PnV), hippocampal formation
(HPF) and primary somatosensory area (SSp) for “NREM to AW” state;
(3) paragigantocellular reticular nucleus (PGRN), periaqueductal
gray (PAG), HPF, VIS, medial preoptic area (MPO), supplemental
somatosensory areas (SSs) and amygdala areas (AMY) for “NREM to
REM” state; and (4) MM and pontine central gray (PCG) for “REM to
AW” state.

Interestingly, we foundHPF exhibited significant contributions on
the prediction of state transitions from NREM to AW and REM states.
Utilizing the GF electrode placed in hippocampus CA1 region of our
LFP-fMRI dataset, we compared the LFP power spectrum between
“NREM to AW” and “NREM only” states, and found significantly higher
power in three frequency bands, including (1) 7-37 Hz from −14 to −2 s,
(2) 44-95Hz from −12 to −1 s, and (3) 119-205Hz from −11 to −3 s before
state transitions (Fig. 6a). Also, we conducted same analysis between
“NREM to REM” and “NREMonly” states, and found significantly higher
power in two frequencybands, including (1) 1-34Hz from (beyond)−30
to −3 s, and (2) 128-141Hz from (beyond) −30 to −13 s before state
transitions (Fig. 6a). These “NREM only” epochs were randomly
selected from the sleep fMRI dataset, and epochs of “NREM to AW”,
“NREM to REM” and “NREM only” with short durations (<60 s) were
excluded. Then, two sample t-test was conducted with threshold of
p <0.05. Furthermore, we isolated SWR and spindle events, among
other events, based on LFP dataset (Fig. 6b). Altogether, SWR and
spindle events showed a pronounced decrease of their occurrence
probability before “NREM to AW (or REM)” state transition (Fig. 6c, d).
To be note, the preceding time of SWR event changes (Fig. 6c) was
similar to the mean discriminate time of “NREM to AW (or REM)” state
transition (Fig. 5f, g, middle panel) upon LSTM RNN predictions, fur-
ther suggesting the validity of the above LSTM RNN prediction.

State dependent global spatiotemporal pattern of SWRs
Different arousal states are characterized by various neurophysiolo-
gical events, such as abovementioned spindle and SWR in NREM sleep,
sawtooth wave and pontine-geniculo-occipital wave in REM sleep.
SWRs during AWorNREM state have been shown to play an important
role in memory consolidation6, but SWRs related global spatio-
temporal pattern has not been fully explored, especially in different
arousal states. Spindle and SWRs events were identified (Supplemen-
tary Fig. 16) based on previous studies5,7. Using the neural-event-
triggered (NET) fMRI approach22, we observed SWRs evoked BOLD
activations inHPF, RSP and ventral sensorimotor cortex (vSMC) during
NREM state (Fig. 7a, Supplementary Fig. 17–18 and Supplementary

Data 4). Interestingly, we also found significant deactivations in sub-
cortical regions such as thalamus, hypothalamus andmidbrain regions
(Fig. 7a and Supplementary Fig. 18). In AW state, we obtained similar
but much weaker spatiotemporal profiles (Fig. 7a, b and Supplemen-
tary Fig. 17), suggesting state dependency of SWRs evoked global
patterns. Thus, we quantified above differences of SWRs evoked BOLD
responses in medial prefrontal cortex (mPFC) and HPF (Fig. 7c and
Supplementary Fig. 19) and found significantly higher BOLD responses
in NREM state than those in AW state. Such difference of BOLD
responses inmPFCwas also significantly correlatedwith the difference
of electrophysiological power in 3-45Hz (Fig. 7d).

In agreementwithprevious studies5, SWRs exhibited a strong co-
occurrence with spindle events (10-16Hz) in our data (Fig. 7e and
Supplementary Fig. 20). Thus, we explored whether the state
dependent SWRs evoked BOLD response could attribute to the co-
occurrence of spindle events. Using the same NET fMRI approach, we
revealed that the spatiotemporal pattern of spindle-uncoupled SWRs
in NREM state (Fig. 7f, upper panel, Supplementary Fig. 21 and Sup-
plementary Data 4) resembled the pattern of SWRs in AW state. And
spindle-coupled SWRs exhibited similar spatiotemporal pattern but
higher cortical activations, compared to the spindle-uncoupled
SWRs (Fig. 7f, lower panel, and Supplementary Fig. 22). Difference
of spindle-coupled and -uncoupled SWRs evoked BOLD responses
(Fig. 7g) was significant and highly correlated with the difference of
electrophysiological power in 4-42Hz (Fig. 7h). Moreover, there was
no significant difference of BOLD responses between SWRs in AW
state and spindle-uncoupled SWRs in NREM state (Fig. 7i and Sup-
plementary Fig. 19). The above results suggested that spindle co-
occurrence enhanced the global activations of SWRs evoked
BOLD responses, which was consistent with global positive BOLD
responses of SWR-uncoupled spindle (Supplementary Fig. 23).
Therefore, the above results suggested that the co-occurrence of
spindle events contributed to the enhanced SWRs evoked BOLD
responses in NREM state.

To investigate whether there were any synergistic effects of the
SWRs and spindles triggered BOLD responses, we firstly summed the
BOLD responses of solitary spindles (Fig. 8a and Supplementary
Fig. 23–24) and SWRs in each session (“summed responses”), as well
as those of spindle coupled SWRs (“coupled responses”). Then, we
conducted paired t-test across sessions between the above coupled
and summed responses at regional (Fig. 8b–d) andwhole brain levels
(Fig. 8e). We found a “coupled > summed” response across cortical
regions and “coupled <summed” response in thalamus (Fig. 8b–e),
suggesting synergistic effects of the SWRs and spindles triggered
BOLD responses. Slow waves are thought to participate in the
regulation of NREM sleep process. Using the same NET-fMRI
approach, we also calculated the slow wave triggered spatio-
temporal map and found the BOLD activations in RSP and thalamus
(Supplementary Fig. 25).

Discussion
In the current study we developed the mouse sleep fMRI method
based on simultaneous electrophysiological and fMRI recording in un-

Fig. 4 | Low dimensional dynamic signature across brain states. a Spatial maps
for the first four principal components (PCs) of BOLD signals. b Major brain divi-
sions on 3D surface viewing as in (a). Abbreviations of ROI names were listed in
Supplementary Data 1. c Circular distribution of temporal weights of PCs (tPCs)
from the start to the end of each brain state: AW (left, n = 2703 epochs), NREM
(middle, n = 2498 epochs) and REM (right, n = 165 epochs). Epochs with short
durations (<60 s) were excluded and further applied to the following analysis.
Radius of radar plots, tPCs; Color line,mean tPCs; gray shadow, the 95% confidence
interval (CI) of null control (1000 shuffling).dTransition probability of brain states.
e Averaged electrophysiological power spectrogram (upper panel) and mean (+/−
SEM) tPCs of BOLD signals (lower panel) relative to brain state transitions (“AW to

NREM”, n = 1803 epochs; “NREM to AW”, n = 1720 epochs; “NREM to REM”, n = 140
epochs; “REM to AW”, n = 128 epochs). Gray shadow, the 95% CI of null control.
f Lowdimensionalmanifold of BOLDsignals traversed by the brain state across first
three PCs, with arrows depicting the directions offlowalong themanifold.g Similar
to (f) but in two-dimensional electrophysiological space. Color dots, states
per second. h Asymmetric trajectories of brain state transitions between AW and
NREM states. Large distance of low dimensional manifolds in electrophysiological
(f) and BOLD (g) spaces between “AW to NREM” and reversed “NREM to AW”

transitions. Statistical significance was calculated by one-tailed t-test. Colored
shadow, SEM. a.u. arbitrary unit. Source data are provided as a Source Data file.
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anesthetized mouse at 9.4 T. Our method provided the global view
of sleep state-dependent patterns and state-transition dynamics. Fur-
thermore, we revealed the potentiated SWR-evoked BOLD response
in NREM state compared to that in AW state, largely attributed to

the co-occurrence of spindle events. Therefore, our method demon-
strated the unique capability of revealing the global sleep dependent
features, and provides an accessible platform for sleep research and
investigation of neural basis of the arousal related fMRI signal.
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Fig. 5 | LSTM RNN Prediction of state transitions based on large-scale BOLD
signatures. a Computational pipeline of the LSTM RNNmodel for state transition
prediction. The model input was the BOLD signals (tPCs) preceding state transi-
tions, and the output was the brain state after state transitions. Details were
described in Methods part. bMean (+/− SEM, n = 500 bootstrap sampling, same in
all further analysis) prediction accuracy (ACC) of the LSTM RNN model on the
validation dataset with different numbers of layers and hidden units. c Prediction
accuracy on the validation dataset was primarily related to the gap times preceding
state transitions. Results were based on the LSTM RNN model with 1 hidden layer
and 50 hidden units. Gray dot and colored shade represented an individual result
and the corresponding best quadratic fitting. d Confusion matrix between
empirical and predicted seven categories showed high prediction accuracy on the
testing dataset based on 10 s input length, 0 s gap times, 1 hidden layer and 50

hidden units (used in all further analysis, except the gap time). e–h Gap time
dependent test accuracy and regional sensitivity on brain state predictions: AW to
NREM (e), NREM toAW (f), NREM to REM (g) and REM to AW (h). Upper panel, high
prediction accuracy of state transition preceding electrophysiology defined tran-
sition time. Note the null dataset was constructed by shuffling categories. Gray
shadows: 95% confidence intervals on the null control dataset. Middle panel, dis-
tributions of discriminate times of brain state prediction compared to null dataset.
Lower panel, sensitive regions of LSTMRNNmodel on brain state predictions (FDR
corrected p <0.05 and Cohen’s d >0.3). Results in the axial view were shown in
Supplementary Fig. 15. Font sizes of sensitive regions were scaled according to the
changes of prediction accuracy. Abbreviations of these regions were listed in
Supplementary Data 1. Source data are provided as a Source Data file.
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It is well known that simultaneous recording of electro-
physiological and fMRI signals is technically challenging, particularly in
un-anesthetized animals. Such difficulty mainly arises from themutual
electromagnetic interference and head motion related complications
in awake animals. To achieve high MR-compatibility, our 16-Channel
ECoG electrodes and GF depth electrodes were specially designed to
achieve minimal MRI distortions and high-quality electrophysiological
recordings. Such good compatibility is important for simultaneous
electrophysiological fMRI recording in mice, as the mouse brain is
much smaller than brains of human andmonkey, thus it is more prone
to imaging artifacts of electrodes. With these developed electrodes,
after de-noising procedures (Fig. 2a, Supplementary Fig. 1 and Sup-
plementary Data 5), the characteristics of electrophysiological signals
were in line with those outside the MRI environment, such as ampli-
tude and power spectrum29,31.

Interestingly, we did not observe typical pulse artifact from
the ECoG and LFP power spectrums (Fig. 2e and Fig. 4e), which is

often problematic in human EEG-fMRI studies32. After our electro-
physiological denoising procedure, no notable ballistocardiogram
artifact was observed in 5–10Hz frequencyband, corresponding to the
unanesthetized mouse heart rate between 300 and 600 beats per
minute. This phenomenon might attribute to our intracranial place-
ment of electrodes and the stable electrode fixation. In human EEG-
fMRI studies, pulse artifact occurs when an EEG electrode is placed
over a pulsating vessel32. The pulsation can cause slow electrode
movements that contaminate EEG activities. Our intracranial electro-
des were tightly fixed on the mouse skull by dental cement. Thus,
scalp pulse and cardiac-related motion were less likely to impact the
electrode movement and further influence our electrophysiological
signals.

However, previous studies combined electrophysiology and fMRI
weremainly conducted in anesthetized animals, e.g., rat andmacaque,
which prevented the utilization in sleep research. Based on our
extensive experience on awakemouse fMRI24,25, in the current studywe
further demonstrated that mouse could sleep in the noisy MRI envir-
onment. This critical improvement paved way for multimodal fMRI
research in mice, and would also be highly meaningful for other sleep
related MRI investigation such as diffusion MRI33.

Mouse fMRI is uniquely suited to reveal the state dependent
global patterns and state transition dynamics, as its sleep is frag-
mented with short state duration and thus frequent state transitions31.
In contrast, the long sleep state durations of human and monkey
prevent the conventional GLM analysis to map the state dependent
activations, due to its low frequency beyond the detection limit of
fMRI. For example, each NREM-REM cycle is approximately 90min
in humans30. Such long cycles also prevent fMRI analysis of state
transitions as there would be so few transitions in each scan. For
comparison, our 184 h mouse sleep fMRI data included 3851 “AW to
NREM”, 3683 “NREM to AW”, 168 “NREM to REM” and 168 “REM to AW”

transitions (Fig. 2g), which enabled further detailed analysis of state
transitions. The dynamics of broadly defined state transition and
fluctuations in resting-state fMRI is now widely investigated, and has
been implicated in cognitive processes15,16 and brain disorders, e.g.
Alzheimer’s disease (AD)17 and obsessive–compulsive disorder
(OCD)18. The functional network of those patients with brain disorders
exhibited abnormal dynamic rhythms17,18, indicating potential clinical
relevance. And also, consciousness has been shown to modulate
the diversity of the state dynamics across different sedation levels34.
Utilizing the rich transgenic mouse disease models, e.g., various AD
mousemodels, future research can be conducted based on ourmouse
sleep fMRI setup to further investigate the mechanisms of state tran-
sition dynamics and its role in brain disorders.

The abundant sleep transitions in mouse sleep fMRI greatly
facilitated the investigation of themacroscopic cerebral dynamics, for
which we utilized group PCA. A major advantage of PCA over other
analytic approaches is that it imposes orthogonality onto the com-
ponents, which is crucial for providing a low-dimensional subspace to
embed the state space manifold. Other dimension reduction methods
(such as independent component analysis) find a different set of
optimal solutions (such as maximal statistical independence), but
these are not, in general, linearly independent. Notably, state space
attractors (Fig. 4f, g) are invariant to linear transformations of their
embedding phase space as long as the dimensions remain orthogonal.
Hence, PCA enables analysis of the state space trajectory (or flow),
which reflects the temporal evolution of the global brain state35.
Combined with rich resources and tools in mice, more features of
dynamic microstructure within mouse sleep states can be explored in
future studies. Particularly, the asymmetrical trajectories in both
electrophysiological and BOLD spaces indicated the asymmetry
between “AWtoNREM” and “NREMtoAW” transitions (Fig. 4h), further
suggesting different neural circuits for awake-promoting and NREM
sleep-promoting processes. Our results provided a framework for
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sleep research through the lens of complex dynamical systems, linking
the flow of electrophysiological signatures to the dynamic reconfi-
guration of functional networks in the low-dimensional state space.

The within- and between-state dynamics was also clearly demon-
strated by prediction of state transitions prior to electrophysiology
defined transition time point using LSTM RNN models36 on BOLD
signals. The long preceding discriminate times (AW to NREM: 10.55 s,

and NREM to REM: 17.84 s) were significantly longer than previous
reported neurophysiological results and considering the hemody-
namic delay of 1.5–2 s inmice25, itmaybe slightly longer if direct neural
signals were used. For example, the firing rate of sleep-promoting
neurons in the POA and wake-promoting neurons in the Locus Coer-
uleus (LC), tuberomammillary nucleus (TMN), and BF altered before
the transition for less than 1 s37, and thefiring rate ofGABAergic neuron
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in ventral medulla (vM) increased precede the NREM-REM transition
less than 15 s38. Key regions contributing to the prediction accuracy of
state transitions (Fig. 5e–h) in our LSTM RNN model may also be
interesting for further research. Part of these regions have already
been implicated in sleep modulation, such as ventrolateral

periaqueductal gray (vlPAG)39, PGRN39 and AMY40 in promoting REM
sleep, and GPe41 and thalamus nucleus42 in promoting NREM sleep.
Other sensitive regions might also play vital roles in modulating the
awake-sleep cycle, e.g., VTA, MnR. Previous studies have shown that a
subset cells of VTA drive NREM and REM sleep through the lateral
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Fig. 7 | State dependent global spatiotemporal patterns of SWRs in AW and
NREM states using neural-event-triggered (NET) fMRI. a SWR-triggered BOLD
responses in AW (12732 epochs) and NREM (10953 epochs) states. The number of
event epochs were counted under the sampling rate of 0.5 Hz (fMRI repetition
time) in the following analysis. Results in the axial view were shown in Supple-
mentary Fig. 17, 18. b Major brain divisions on 3D surface viewing as in (a).
Abbreviations of ROIs were listed in Supplementary Data 1. c, d Significant differ-
ence of SWR-triggered BOLD responses in mPFC between AW and NREM states (c)
and its corresponding electrophysiological correlates (d). Gray lines (or shadows),
mean (+/− SEM.) correlation. Sample size: n = 16 sessions. e Overlap of SWRs and
spindle events in NREM state. f Spindle-uncoupled (4682 epochs) and coupled
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view were shown in Supplementary Fig. 21, 22. g, h Significant difference of BOLD
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shadows),mean (+/− SEM.) correlation. Sample size: n = 16 sessions. iNo significant
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spindle-uncoupled SWRs. Each dot represented an individual session. mPFC,
medial prefrontal cortex. Error bars, standard errors of the mean. Statistical sig-
nificance was calculated by two-tailed t-test. Source data are provided as a Source
Data file.
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hypothalamus43 and fatal insomnia diseases are associated with raphe
nuclei degeneration44. The remaining sensitive regions provide more
candidates for further sleep research. Such long discriminate times
and region-specific contribution demonstrated the global and
sequential nature of sleep transitions, which further emphasized the
need for a systematic whole-brain view to understand its fundamental
mechanism.

Sleep-wake cycle is believed to be tightly regulated by a dis-
tributed network of sleep and wake promoting neurons1,2, primarily
located in subcortical regions. Recently, cortical regulation of sleep
transition and maintenance has also been reported. Silencing neo-
cortical layer 5 pyramidal neurons using SNAP25 knockout mouse
decreased the cortico-subcortical communication and further mark-
edly increased wakefulness45. In our study, we found widespread
changes of cortical activities during “AW to NREM” and “NREM to AW”

state transitions (Supplementary Fig. 7a, b), and some changes
occurred earlier than those in subcortical regions, highlighting the
important role of the cortex. Another notable example of cortical
involvement in sleep regulation is retrosplenial cortex (RSP). Two
recent studies in mice both showed that RSP was critically involved in
REM sleep initiation and progression46,47. The current study also found
RSP was highly activated during both NREM and REM state, and the
activity of posterior DMN-like network (PC4 in Fig. 4a, e), largely
overlapping with RSP, apparently preceded the “NREM to REM” state
transition. Therefore, our study agreeswellwith recent progresson the
cortical involvement in sleep-wake transitions.

Our MR-compatible LFP-fMRI setup enabled us to simultaneously
record CA1 LFP signals and obtain good BOLD signals around the
electrodes, including CA1 and RSP. As a characteristic event in hippo-
campus, SWRs have been shown to play an important role in memory
consolidation6 and coordinated hippocampal-thalamic-cortical
communication48. Using NET fMRI approach, we provided the global
view of SWR-evoked BOLD spatiotemporal pattern in NREM and AW
states. Activation in RSP and hippocampus and deactivations in tha-
lamus were consistent with previous results in macaque22. And optical
imaging during natural sleep and anesthesia in mice also showed sig-
nificant activation of RSP during SWRs49. Converging evidence,
including the current results, clearly suggests the important role of
RSP during SWRs, which may be related to the critical role of
subiculum-retrosplenial pathway for SWR propagation from hippo-
campus to neocortex50. Interestingly, larger SWR-evoked BOLD
responses in NREM state might attribute to the co-occurrence of
spindle events (Fig. 7), as the spindle events showed whole-brain
positive BOLD responses51 (Fig. 8a and Supplementary Fig. 23, 24). In
addition, we found the co-occurrence of SWRs and spindles elicited
enhanced BOLD responses, compared to the sum of the responses of
two solitary events (Fig. 8). Such effect was most notable in hippo-
campus, RSP and thalamus. Previous studies have shown that the
interaction between thalamocortical spindles andhippocampal ripples
promoted memory consolidation4. Interruption of the synchroniza-
tion between ripple and spindle events appeared to interfere the effi-
ciency of memory consolidation52. Thus, we speculate that the
synergistic effects of SWRs and spindles might be related to the
memory consolidation process, and further research is needed to
examine the functional relevance of such phenomenon. Moreover,
slowwaves are thought to be critical for initiating information transfer
between hippocampus and neocortex5. A previous human EEG-fMRI
study53 showed significant slow wave evoked activations in right
parahippocampal gyrus, precuneus and posterior cingulate cortex,
which were in good accordance with our results (Supplementary
Fig. 25). It is known that the relationship among slow waves, spindles
and SWRs is complex and may contribute to many cognition
processes54, especially memory consolidation4,52. Thus, the relation-
ship among these events can be further explored, potentially using the
current dataset. Our mouse sleep fMRI setup provides a tool for

investigating global spatiotemporalpatterns of state dependent neural
events and the mutual relationship of those events.

It is known that arousal may contribute to neuronal dynamics55

and non-neuronal variations56, e.g., vascular effects, head motion, and
physiology, and they both contributed to fMRI dynamics. Various
studies investigated the methods to remove arousal related non-
neuronal variations, including global signal regression56, data-driven
approaches, e.g., ICA-FIX57 and model based approaches, e.g.,
RETROICOR58. In our study, we applied a regression-based de-noising
method modified from our previous studies24,27, in which the “6 rp + 6
Δrp + 40 PCs” nuisance signals were used as regressors. The 40 PCs
were derived from fMRI signals of non-brain tissues, largely capturing
the non-neuronal signals28, such as head motion, scanner drift, and
physiological effects (Supplementary Fig. 2). Using the above regres-
sion approach, we believed that arousal induced non-neuronal nui-
sance effects on fMRI signals were largely suppressed.

Naturally, arousal fluctuations also modulate large scale brain
activities59, whichhasbeen shown to further contribute to resting-state
fMRI dynamics56. Across different brain states in human, the network
structure of spontaneous BOLD fluctuations was associated with that
of slow electrophysiological activities60. Furthermore, arousal fluc-
tuation synchronized the brain’s functional systems through global
wave propagations based onhuman fMRI andmacaque ECoG61. Similar
global wave propagation of infra-slow activity was shown in mouse
based on the calcium and hemodynamic imaging in anesthetized and
awake states62. Meanwhile, another human fMRI study showed differ-
ent infra-slow propagation patterns between slow wave sleep and
wakefulness63. Therefore, infra-slow brain activity across arousal states
may orchestrate a wide range of interrelated neurophysiological and
autonomic processes, and thus serve as a neural basis of low frequency
spontaneous BOLD activity64. As arousal fluctuations are intricately
linked to both neural and non-neural components in BOLD signals, the
current mouse sleep fMRI setup may be advantageous to further
investigate the neural basis of arousal related BOLD activity, with the
simultaneous recording of electrophysiological and BOLD signals. Our
current method of mouse sleep fMRI, and the open source data
acquired using this method, features substantial arousal fluctuations
fromawake toREMsleepwith simultaneously acquired cortical (ECoG)
and hippocampus (LFP) signals. Therefore, our method and dataset
provide an avenue to investigate the neural basis of arousal related
fMRI dynamics.

In our study, there are several important limitations that need
further improvement in the future. First, imaging coverage of deep
brain regions was limited by the single loop receive coil used in our
imaging setup. The signal-to-noise ratio can be further improved in
deep brain regions, such as midbrain and pons, which are important
for awake/sleep modulation1. Then, the sleep scoring criteria
employed in the current study (Supplementary Fig. 3 and Supple-
mentary Data 6) was largely adopted from previous mouse sleep
studies65 in the free-moving state. As no prior knowledge about ECoG/
LFP and EMG signal characteristics during mouse sleep fMRI was
known, the semi-automated sleep scoring approach developed here
may be further refined. While we designed the 30° head holder to
mimic the natural posture, sleep in the natural free-moving state may
still be different from that in the head fixed state, which may result in
different ECoG/LFP and EMG signal characteristics. Although other
optical imaging studies of mouse sleep conducted in the head fixed
condition also employed similar sleep scoring criteria47,66, further
detailed examination is much needed for improving sleep scoring in
the head fixed state. Thus, optimization of receive coils is expected in
the future forwider andbetter coverageof brain. In addition, the BOLD
signal is the indirect measurement of neural activities based on neu-
rovascular coupling56. Arousal fluctuation introduces physiological
changes, e.g. respiration and heart rate, which could affect BOLD sig-
nal. In our fMRI preprocessing, the physiological nuisance could be
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largely captured by PCs of the signals from the outside brain (Sup-
plementary Fig. 2), in which the first 40 PCs showed significant cor-
relation with respiration rate changes and were subsequently
regressed out from fMRI data. Moreover, the significant correlation
between electrophysiological and BOLD signals (Fig. 3d, e) indicated
the potential neurophysiological relevance of NREM and REM state
dependent BOLD activations. Nevertheless, as discussed above,
such complex relationship between arousal related BOLD signal and
neural activity is an important research direction itself, for better
preprocessing strategies and more precise dissection of neural
and non-neural contributions. Furthermore, recent advances in non-
hemodynamic based fMRI such as direct imaging of neuronal activity
(DIANA) methods67, might eventually overcome such limitation.

In conclusion, we developed the mouse sleep fMRImethod in un-
anesthetized mice based on highly MR-compatible simultaneous
electrophysiology at 9.4 T. For sleep research, thismethodprovides an
important avenue to investigate sleep dynamics at a global scale, and
has great potential to integrate local and global view of sleep when
further combined with other circuitry level tools in mice. For fMRI
research, our method provides a convenient platform to examine the
neural basis of the arousal related fMRI signal. Furthermore, our open
source dataset of mouse sleep fMRI would provide a valuable source
for both experimental and theoretical neuroscientists, andmayhelp to
establish a general multiscale framework of sleep from molecular,
neuronal, circuitry and whole-brain levels.

Methods
Animals
Male wide type C57BL/6 J mice were obtained from Shanghai Labora-
tory Animal Center (Shanghai, China) at 8–10 weeks of age, weighted
20–30 g. Animals were group housed (5–6/cage) in the standard
laboratory condition (temperature: 23 ± 1 °C; humidity: 50–70%)
under a 12 h light/dark cycle (light on from 7 a.m. to 7 p.m.) with food
and water ad libitum. All animal experiments were approved by the
Animal Care and Use Committee of the Institute of Neuroscience,
Chinese Academy of Sciences, Shanghai, China.

MR-compatible electrodes
Two types of MR-compatible electrodes were developed. First, an 18-
contacts MR-compatible surface electrode was custom designed and
manufactured for recording electrocorticogram (ECoG) and electro-
myography (EMG) signals (Fig. 1a). The array wasmade up of a flexible
printed circuit (FPC) and two insulated gold wires, all soldered to an
Omnetics 18-pin MR-compatible connector (A70242-001, Omnetics,
USA, Minneapolis). The FPC was consisted of a 30μm thin polyimide
film, a 12μm copper film, and a 3 µm gold-plated layer, with 14 ECoG
recording site and two recording reference/ground (100 µmdiameter;
impedance, ~150 kOhm at 1KHz). Two insulated gold wires were used
for EMG recording (50 µm diameter; impedance ~500 kOhm at 1 KHz).

Secondly, a MR-compatible depth electrode (Fig. 1b) was devel-
oped with 3 insulated gold wires, 2 bare silver wires and 1 graphene
fiber (GF) electrode soldered to a flexible flat cable. One of three
insulated gold wires (50 µm diameter; impedance, ~500 kOhm at 1
KHz) was used for recording ECoG, and the rest two for recording
EMG.Twobare silverwires (100 µmdiameter; impedance, ~60 kOhmat
1 kHz) were used as reference and ground. To record the hippocampal
LFP signal, GF electrodes (impedance, ~60kOhmat 1 kHz)were custom
designed. GFs were fabricated through a one-step dimensionally con-
fined hydrothermal process using suspensions of graphene oxide (GO)
(monolayer, thickness: 0.8–1.2 nm; sheet diameter: 0.5–5 µm; #XF002-
2, Nanjing/Jiangsu XFNANO Materials Technology, China). In a typical
preparation, an 8mgmL−1 aqueous GO suspension was injected into a
glass pipeline with a 0.9mm inner diameter using a syringe. After
being baked at 230 °C for 2 hwith the two ends of the pipeline sealed, a
GFmatching the pipe geometrywas produced. This preformedGFwas

then released from the pipeline by flowofN2 anddried in air. The dried
GF had a reduction in diameter to ~75 µmdue to water loss and drying-
induced alignment of the GO sheets. A GFwith diameter of ~75 µmand
length of 3mm was connected to a bare copper wire with diameter of
100 µmusing elargol. Parylene-C film of ~5 µm thicknesswas deposited
onto the fibers in a custommade low-pressure coating system to finish
the GF electrodes fabrication. Thus, the GF electrodes enabled
unbiased fMRI mapping and excellent electrochemical performance,
including low impedance and high electrical conductivity, which were
not achievable by other electrodes.

Surgical procedures
All surgical procedures were conducted under the standard aseptic
condition. Mice were pretreated with 5mgkg−1 dexamethasone intra-
peritoneally 1 h before surgery to prevent brain edema. After anes-
thetized with isoflurane, mice were secured in a stereotaxic apparatus
with a heating mat (mouseSTAT, Kent scientific cooperation). A mid-
line sagittal incision wasmade along the scalp to expose the skull. The
periosteum from the skull was removed by saline with cotton-tip
applicator. After skull was dried out, a coat of self-etch adhesive (3M
ESPE Adper Easy One) was applied followed by light curing.

For MR-compatible ECoG electrode implantation, a sterile dental
drill was used to drill off the surface of bone in the shape shown in
Fig. 1a (length ~4mm; width, ~6mm; centered on bregma), with the
bone around raphe retained. The window area was kept wet with sal-
ine, and the skull was slowly detached from the dura and raised at
about 30° using a nasal stripper and tip tweezers. Gelatin sponge was
applied to stop bleeding and keep the duramoist. Afterwards, the FPC
part of the ECoG electrode was implanted epidurally with reference
and ground sites attached on the bone of raphe. 2% sterilized agarose
saline solution was filled between the skull and FPC. After the agarose
was solidified, the window area was covered with light curing flowable
dental resin to fix the FPC. Later, the two gold wires were implanted
into posterior neck muscles for recording EMG. A head holder for
awake imaging26 was then attached on the skull above the cerebellum.
Finally, dental cement was applied to smooth the surface of exposed
skull.Micewere injectedwithmeloxicam0.5mgkg−1 (Baoding sunlight
herb medicament, CN) subcutaneously for seven consecutive days
post-surgery.

For MR-compatible depth electrode implantation, four 0.1mm
diameter holes were drilled in the skull. GF electrode was implanted
into the dorsal CA1 region of the left hippocampus at stereotaxic
coordinates AP = − 1.94mm, ML = − 1.7mm and DV= − 1.15mm. One
gold wire was inserted epidurally at AP = + 1mm, ML= − 1mm to
record ECoG, and the other two gold wire were implanted into pos-
terior neckmuscles to record EMG. Two bare silver wires were used as
reference and ground, and inserted epidurally atML =0, AP = − 5.5mm
and −6.5mm, respectively. Light curing flowable dental resin was used
for fixation of electrodes and head holder. Other procedures were
identical as described above.

Habituation
After seven-day recovery, mice were then habituated for fMRI for
another seven days. Mice were head fixed on the animal bed with the
recorded acoustic MRI scanning noise based on previous work26.
Optical imaging studies usually record 3–5 h to obtainmice sleepmore
efficiently29,46, as head fixed mice frequently fall asleep after 1.5 h and
REM sleep frequently occurs after 2.5 h46. Therefore, 4 h head
restraining was also utilized in our mouse sleep fMRI. The 30° head
holder was designed to fit the natural sleep gesture of mice29. The
animal bed was modified to allow more space for forelimbmovement
to reduce stress level26. The habituations were all carried out during
9a.m.−15p.m.with a fixed durationof 4 h and gradually increased noise
levels. The detailed schedule was listed in Table 1. No rewardwas given
during or after the habituation training.
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Simultaneous neurophysiological recording and MRI
acquisition
Neurophysiological signals were fed through a ZIF-CLIP anaglog
headstage transmitter, PZ5 amplifier, RZ2 BioAmp processer, and
finally recorded by the WS-8 workstation with Synapse software (all
from Tucker-Davis Technologies, USA, Alachua). Neurophysiological
signals were recorded at a sampling rate of 24414Hz, high-passfiltered
at 0.1Hz and notch filtered at 50, 100 and 150Hz, except for LFP
signals, which were recorded without notch filter. PZ5 was connected
to the external ground (waveguide tube of MRI) for stabilizing the
signals. Respiration signal and MRI trigger signal were recorded at a
sampling rate of 1024Hz.

All MRI data were acquired with a Bruker BioSpec 9.4 T scanner
(Software: ParaVision 6.0.1). An 86mm volume coil was used for
transmission and a single loopmouseheadcoil (Bruker, 1 cmdiameter)
was used for receiving. Mouse was head-fixed as described in previous
section without using any anesthesia. A T2 weighted RARE anatomical
image (TR: 3200ms; TE: 34ms;matrix size: 256× 128; FOV: 18 × 9mm2;
slice thickness: 400μm; resolution: 70 × 70μm2) was acquired for
coregistration purpose. After local shimming using Mapshim, func-
tional images were acquired using single-shot echo planar imaging
(EPI) with the following parameters: TR 2000 ms, TE 14ms, FA 70°,
matrix size 90 × 45, nominal in-plane resolution 200 × 200μm2, slice
thickness 400μm, slices number 22, 7200 EPI volumes (4h). All 7200
volumeswere acquired in a single EPI scan. Triggerswere sent fromthe
MRI console for each slice acquisition and recorded along with the
electrophysiological signal.

Electrophysiological signal processing
The off-line correction of MRI gradient artifacts in the electro-
physiological signals was conducted using the fMRI Artifact Slice
Template Removal algorithm (FASTR)68 (Supplementary Fig. 1). Briefly,
the imaging artifact waveforms were segmented, averaged and itera-
tively subtracted from the raw electrophysiological signals, according
to the concurrently acquired trigger signal from theMRI scanner. This
procedurewasperformed through FMRIB in EEGLAB (https://fsl.fmrib.
ox.ac.uk/eeglab/fmribplugin/). After careful visual inspection, we
found a few noisy ECoG channels in a small number of scans. Thus, we
interpolated the noisy ECoG signal by weighted averaging signals from
other good ones, similar to the previous study69 using the neighbor
interpolation method (Supplementary Fig. 1 and Supplementary
Data 5). Considering there were k (k < 4) bad channels in 14 channels,
the weighted averaging method could be simply formulated as

Ski =
1

14� k

X14�k

j =0

Diski�good

� �λ
�S j

good ð1Þ

where Ski , Sgood and Diski�good were the ECoG signals of the kith
interpolated channel, all good channels and the corresponding Eucli-
dean distance, and λ represented the exponential constraints (λ <0)
using the weighted averaging method. Parameter λ was estimated
using other scans without noisy ECoG channels based on the least
square fitting. Negative λ indicated farther good channels contributed
lower weights on the interpolation of kith noisy channel. The denoised

electrophysiological signalswere further down-sampled to 1024Hz for
subsequent analysis.

For brain state classification65, one channel within each session
was selected for further analysis, and the selected channels were listed
in the Supplementary Data 6. Then, we calculated the power spectrum
for the ECoG/iEEG and EMG (160–250Hz) datawith 3 s slidingwindows
and 1 s step size, using the multi-taper method implemented in
Chronux (http://chronux.org/). Next, we computed the theta (6–12 Hz)
and delta (1–4Hz) power and theta/delta power ratio, which were
further smoothed using “medfilt1” (20 points) in MATLAB. For each
session, we used the following criteria for tentatively defining brain
states: (1) a time point was classified as NREM sleep if the smoothed
delta power was higher than its mean; (2) a time point was assigned as
REM sleep if the smoothed theta/delta power ratio was two standard
deviations higher than its mean and the EMG power was one standard
deviation lower than its mean; and (3) all remaining time points were
classified as AW state. Then, we further manually adjusted the classi-
fication of brain states as following: (1) For NREM state, according to
the ECoG power spectrum, we adjusted the start or end point to the
point with the greatest ascent or descent speed of smoothed delta
power. For REM state, the start point was adjusted to the end point of
the previous NREM, and the end point was adjusted to the point with
the greatest descent speed of smoothed theta power. If the greatest
ascent or descent point of EMGpowerwasdifferent fromthatof ECoG/
iEEG signals, the midpoint between the two was defined as the tran-
sition point; (2) For sessions with noisy EMG recordings, we used the
head motion (framewise displacement) estimated from fMRI data as
substitute for EMG power; and (3) epochs with short durations (<5 s)
were manually merged to the nearest sleep stage. An example of the
above classification procedure (session 1: channel 10, 11500–13000 s)
was shown in Supplementary Fig. 3.

Spindle and SWRs events were identified in the LFP dataset based
on previous studies5,7. To identify the spindle events, raw iEEG signals in
mPFC were bandpass filtered (10–16Hz) with Butterworth filter. A
spindle event was identified if the envelope of the filtered iEEG signal
was larger than itsmean + 1.5 s.d. inNREMstate (Supplementary Fig. 16).
To identify the SWRs events, raw LFP signals in CA1 of hippocampus
were bandpass filtered (120–250Hz) with Butterworth filter. A SWRs
event was detected if (1) the envelope of the filtered LFP signal larger
than its mean + 3 s.d. and (2) the power of the filtered LFP signal larger
than its temporal mean. The center of spindle or SWRs event was
definedas the timeofmaximumpeakof the threshold-passedenvelope.
The beginning and the end (i.e., event duration) was measured before
and after this maximum peak when the amplitude dropped below the
mean value of the corresponding envelope (Supplementary Fig. 16).
Only spindles with 0.4–3 s durations were included. Slow waves were
identified based on the procedures described previously5. The raw
signal was first down-sampled to 1024 kHz. Then, for slow waves
detection, mPFC iEEG signals were filtered between 0.3 and 4.5Hz with
a two-order Butterworth bandpass filter. A slow wave was detected in
NREMstate if the following three criteriawere all fulfilled: (1) the interval
(T) of negative wave between 0.4 and 2.0 s; (2) top 35% negative
amplitude (N) and (3) top 45% negative-to-positive peak-to-peak
amplitude (M). Slow wave onset and offset was defined by the time of
the first and third zero crossing, respectively (Supplementary Fig. 25).

fMRI data preprocessing
All subsequent procedures were performed using custom scripts in
MATLAB 2020a (MathWorks, Natick, MA) and SPM12 (http://www.fil.
ion.ucl.ac.uk/spm/). Themousebrainwas extractedmanually using ITK-
SNAP (http://www.itksnap.org/). First, each fMRI scan was slice-timing
corrected and registered to the scan-specific structural image using
rigid body transformation and the scan-specific structure image was
then nonlinearly transformed to a study-specific mouse template
(https://atlas.brain-map.org/) for group analysis. Then, a light spatial

Table 1 | Summary of habituation schedules for awake
mouse fMRI

day1 day2 day3 day4 day5 day6 day7

Duration of
Habituation

240min 240min 240min 240min 240min 240min 240min

Acoustic Noise - 60dB 60dB 90dB 90dB 110dB 110dB

Ear plugs - - - - - + +

“−/+” denote absence or presence.
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smoothing (0.4mm isotropic Gaussian kernel) was performed but no
band-pass filter was applied to the BOLD time series. Furthermore, to
minimize the effects of scanner drift, motion and other non-neural
physiological noises, BOLD signals were regressed by “6 rp + 6 Δrp + 40
PCs” nuisance signals24,25 (Supplementary Fig. 2a–h). “6 rp + 6 Δrp” nui-
sance signals represented 6 headmotion parameters and their 1st order
first derivatives, and “40 PCs” were the first 40 principal components
from the BOLD signals of non-brain tissue, e.g., the muscles. The
regression-based denoising strategy was adopted from a previous
study25, in which the PCs estimated from tissues outside the brain were
used to model non-neural signal variations and produced a moderate
improvement in specificity. The Pearson’s correlation coefficients
between the frame-wise displacement (FD) and DVARS (D referring to
temporal derivative of time courses, VARS referring to RMS variance
over voxels)were calculated toquantitatively reflect the extent towhich
the motion related signal was reduced by given regressors (Fig. 2d).

General linear model of brain state activation and electro-
physiological validation
GLMbased statistical analysis was conducted using themouse-specific
HRF fromourprevious study25, inwhichNREMandREMstateswere set
as the predictors and thus the AW state was used implicitly as the
baseline. Standard first level analysis was done for individual EPI scans.
For second level analysis, flexible factorial model (brain states and
mouse individuals) was conducted to generate the activation maps
with FDR corrected p < 0.05. Furthermore, to investigate the electro-
physiological relevance of BOLD signal variations in NREM and REM
states, we estimated the Pearson’s correlation coefficients between
relative ECoG (or LFP) powers (vs. AW state) and corresponding rela-
tive BOLD amplitudes.

Group principal component analysis (PCA) of BOLD fMRI signal
Each individual EPI scan comprising t time points and v voxels couldbe
represented as a 2-dimensional time-space matrix (St × v). In the initial
scan-level PCA step, fMRI data of each scan was reduced to p com-
ponents of dimension (Wp × v, p « t). In the second PCA step, group PCA
was performed on the concatenated data (WpN × v) from all scans, in
which data from N scans were stacked along the reduce dimension.
Then, the group spatial PCs (Wp0 × v) were back-projected to raw data
(St × v) to reconstruct the time courses of each component (tPCs: St ×p0

)
for each individual EPI scan.

Brain state prediction using LSTM RNNs
The long short-term memory (LSTM) recurrent neural networks
(RNNs) model was built to predict the brain state based on its func-
tional profile, i.e., tPCs, and their temporal dependency of BOLD sig-
nals on its preceding time points. Given the L most recent timesteps
Xt�L+ 1,Xt�L+ 2, . . . ,Xt

� �
, the goal at timestep t was to predict the state

of M timesteps into the future, X̂ t +M . The architecture of the LSTM
RNNs used in this study was illustrated in Fig. 5a, including one (or two
or three) hidden LSTM layer(s) and one fully connected layer. Multiple
hidden LSTM layers could be used to encode the functional informa-
tion with temporal dependency for each time point, and the fully
connected layer was used to learn a mapping between the learned
feature representation and brain states. The functional representation
encoded in each LSTM layer was calculated as

f lt = σ Wl
f � hl

t�1, x
l
t

h i
+ bl

f

� �
ð2Þ
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where f lt , i
l
t ,C

l
t , h

l
t and xl

t denoted the output of forget gate, input gate,
cell state, hidden state and the input feature vector of the l-th LSTM
layer (l = 1, 2 or 3) at the t-th time point, respectively. In addition, σ
represented the sigmoid function and Wl and bl denoted the gates
weights and biases of the l-th LSTM layer. A fully connected layer with s
output nodes was utilized for predicting the brain state as

st = sof tmax Ws � h2
t +bs

� �
ð8Þ

where s was the number of brain state to be predicted, and h2
t was the

hidden state output of the last LSTM layer which encoded the input
functional signature at the t-th timepoint and the temporal dependency
information encoded in the cell state from its preceding time points.
Softmax cross-entropy between empirical and predicted brain states
was used as the objective function to optimize the LSTM RNNs model.

Based on the abovementioned group PCA results, the time series
of each principal component (tPCs) were normalized to z scores, and
then used as the input of the LSTM RNNs model to predict their cor-
responding brain states.We chose the first 100 tPCs for characterizing
the functional profiles of BOLD signal dynamics along with brain state
changes. Firstly, we divided the mouse brain states into 7 prediction
categories, including (1) AW only, (2) NREM only, (3) REM only, (4) AW
to NREM, (5) NREM to AW, (6) NREM to REM and (7) REM to AW state.
Then, we utilized the bootstrap method to avoid the prediction bias
from highly unbalanced samples of brain states, e.g., a low percentage
of REM state and REM related state transitions. Thus, we randomly
selected the BOLD clips (100 tPCs × 120 s) with same sample sizes for 7
categories, which was the minimum number of BOLD clips among 7
prediction categories. The resulting clips were used as the input fea-
tures of our LSTMRNNsmodel. Finally, tominimize the prediction bias
underlying the sampling procedure, we conducted the bootstrap
method for 500 times and repeated the predictions using the corre-
spondingly 500 groups of BOLD clips. For each group of BOLD clips, a
10-fold cross-validation was carried out to improve the robustness of
the prediction performance.

Particularly, we adopted the “adaptive moment estimation
(ADAM)” optimizer with a learning rate of 0.01, which was updated
every 1000 training steps with a decay rate of 0.5, and the total number
or training steps was set to 8000. Batch size was set to 128 during the
training procedure. Parameters including number of hidden layers
(1, 2 and 3) and number of nodes in hidden layers (25, 50,…, 200) were
selected based on their prediction performance on the validation
dataset. The parameter selection was performed on empirical dataset,
and the selected parameters were used for the null dataset without
further optimization. The null dataset was constructed by randomly
shuffling the predicted categories for each group of BOLD clips. Thus,
thediscriminate timeof brain state transitionwasdefinedas the farthest
timepointwhenprediction accuracy from the empirical datasetwas out
of the 95% confidence interval (CI) of that from the null dataset.

To further reveal which brain region(s) contributed to the pre-
diction most, we carried out a sensitivity analysis based on our 500
times bootstrap sampled dataset. The sensitivity analysis was con-
ducted by evaluating how changes of the 100 tPCs affected the pre-
diction accuracy. Briefly,with the trained LSTMRNNsmodel remaining
unchanged, time courses of 100 PCs were set to 0 one by one from the
model input. Changes (4ACCp0

) in the prediction accuracy were then

Article https://doi.org/10.1038/s41467-023-37352-9

Nature Communications |         (2023) 14:1651 15



reconstructed by multiplying the spatial weights matrix (Wp0 × v) of
group PCA. The resulting spatial weighted accuracy (4ACCp0

�Wp0 × v)
was defined as the sensitivities of LSTM RNNs model on brain state
prediction.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The manuscript released a simultaneous electrophysiological-fMRI
dataset, which is available at https://doi.org/10.12412/BSDC.
1668502646.20001. The source data underlying Figs. 2–8 and Sup-
plementary Figs. 3–5, 13 and 20 are provided as a Source Data
file. Source data are provided with this paper.

Code availability
Codes used in this study are available at https://github.com/
TrangeTung/Mouse_Sleep_fMRI.
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