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Lacking mechanistic disease definitions and
corresponding association data hamper
progress in network medicine and beyond

Sepideh Sadegh 1,2, James Skelton3, Elisa Anastasi3, Andreas Maier 2,
Klaudia Adamowicz2, Anna Möller 4, Nils M. Kriege 5,6, Jaanika Kronberg 7,
Toomas Haller7, Tim Kacprowski 8,9, Anil Wipat3,11, Jan Baumbach 2,10,11 &
David B. Blumenthal 4,11

A long-term objective of network medicine is to replace our current, mainly
phenotype-based disease definitions by subtypes of health conditions corre-
sponding to distinct pathomechanisms. For this,molecular and healthdata are
modeled as networks and are mined for pathomechanisms. However, many
such studies rely on large-scale disease association data where diseases are
annotated using the very phenotype-based disease definitions the network
medicine field aims to overcome. This raises the question to which extent the
biases mechanistically inadequate disease annotations introduce in disease
association data distort the results of studies which use such data for patho-
mechanism mining. We address this question using global- and local-scale
analyses of networks constructed from disease association data of various
types. Our results indicate that large-scale disease association data should be
used with care for pathomechanism mining and that analyses of such data
should be accompanied by close-up analyses of molecular data for well-
characterized patient cohorts.

Since the seminal articles by Goh et al. 1 and Barabási et al. 2, network
medicine has developed into an increasingly mature and diverse
research field with its own dedicated journals3, associations4, and
subfields. One of the network medicine field’s long-term objectives is
to replace our current mainly phenotype-based disease classification
systems by amechanistically grounded disease vocabulary5–7. In such a
vocabulary, phenotype-based disease definitions are replaced by so-
called endotypes, i.e., distinct molecular mechanisms underlying the
disease phenotypes. Once properly disentangled into disjoint,

individually targetable endotypes5, disease-modifying treatment stra-
tegies might become available for diseases which, at the moment, can
be treated only symptomatically.

Two clarifications are required to define the scope of this paper:
Firstly, we use the term “endotype” to denote molecular endotypes as
explained by Anderson8, Lötvall et al. 9, and Nogales et al. 5 – i.e., the
underlying molecular mechanisms driving disease phenotypes. There
are other works where the term “endo(patho)phenotype” denotes
common intermediate phenotypes6 such as inflammation, fibrosis, or
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thrombosis which drive phenotypic disease manifestations10,11. Sec-
ondly, wewould like to stress that compiling a endotype-based disease
vocabulary is a genuinely biomedical rather than a semantic endeavor:
It does not consist in redefining semantic relationships between
existing disease terms but in uncovering currently unknownmolecular
disease mechanisms and dissecting umbrella diseases such as Alzhei-
mer’s disease or coronary artery disease into endotypes which are
clearly characterized at a molecular level5.

In order to reach the objective of an endotype-based disease
vocabulary, network medicine approaches aim at uncovering patho-
mechanisms driving diseases. Here, we broadly distinguish between
close-up and bird’s-eye-view (BEV) network medicine approaches,
depending on the data used as primary input towards this task (this
distinction is of course an idealized binarization of a continuous
spectrum, but serves as a conceptual framework for this article). Close-
up networkmedicine studies focus on a specific disease and start their
analyses with molecular data for well-characterized patient cohorts.
Such studies are typically carried out as close collaborations between
bioinformaticians and domain experts from the biomedical sciences.
They tend to be time- and labor-intensive and often involve the
development or customization of data analysis methods for specific
datasets. The most impressive translational results of the network
medicine field have been reached via such close-up studies. For
instance, close-up studies have led to novel mechanistic insights into
type 2 diabetes12, liver fibrosis13, pulmonary arterial hypertension14,
asthma15, hypertrophic cardiomyopathy16, pre-eclampsia17, chronic
obstructive pulmonary disease, and idiopathic pulmonary fibrosis18.

In contrast to that, BEV approaches use large-scale disease asso-
ciation data that are typically gathered from several data sources.
Various studies have generated evidence for the validity of this overall
approach: For instance, Menche et al. 19 demonstrated that disease-
associated genes form so-called disease modules, i.e., highly con-
nected subnetworks within protein-protein interaction (PPI) networks,
and that biological and clinical similarity of two diseases results in
significant topological proximity of these modules. In a similar vein,
Iida et al. 20 showed that shared therapeutic targets or shared drug
indications are correlated with high topological module proximity.
Guney et al. 21 and Cheng et al. 22 showed that the network-based
separation between drug targets and disease modules is indicative of
drug efficacy. Cheng et al. 23 and Zhou et al. 24 found that FDA-
approved drug combinations are proximal to each other and to the
modules of the targeted diseases in the interactome.

Despite thepromisingfindings summarized above, several studies
have pointedout important biases in the data usedby BEV approaches.
Menche et al. 19 have studied the effect of incompleteness of disease-
gene association and protein-protein interaction (PPI) data on network
medicine. Schaefer et al. 25 have shown that the previously
observed26–28 high node degree of cancer-associated proteins in PPI
networks can largely be explained by the fact that cancer-associated
proteins are tested more often for interaction than others. Lazareva
et al. 29 found that widely used methods to mine PPI networks for
pathomechanisms inherit this bias in that they mainly learn from the
node degrees instead of exploiting the biological knowledge encoded
in the edges of the PPI networks. Haynes et al. 30 showed that study bias
also distorts functional gene annotation resources such as the Gene
Ontology (GO)31. Kustatcher et al. 32 made a similar point for functional
protein annotations and sketched a roadmap for systematically
exploring the understudied part of the proteome. Stoeger et al. 33 and
Rodriguez-Esteban34 looked into reasons that might lead to the
emergence of gene study bias and identified, respectively, a limited
number of biological characteristics33 and speed of information pro-
pagation between scientific communities as potential drivers34.

While the aforementioned studies have analyzed the impact of
various types of data biases related to genes and proteins (and, to a
lesser extent, also variants), the disease part of disease-gene and other

disease association data introduces another, so far unstudied type of
data bias: In currently available large-scale disease association data,
diseases are annotated with the very phenotype-based disease defini-
tions the network medicine field aims to overcome. BEV approaches
hence risk to systematically reproduce the biases introduced by these
disease definitions. Consequently, BEV approaches make the implicit
assumption that the biases introduced by phenotype-based disease
definitions even out and that, despite those biases, disease association
data using these definitions still contain useful information about the
pathomechanism that are to be uncovered.

In this work, we quantify to which extent this implicit assumption
is indeed backed by data. Towards this end, we construct disease-
disease networks (called “diseasomes” in the remainder of this article)
basedon (1) disease-gene associations, (2) disease-variant associations,
(3) comorbidity data, (4) symptom data, and (5) drug-indication data,
as well as drug-disease and drug-drug networks (called “drugomes”)
based on drug-indication and drug-target data.We then formulate two
testable hypotheses that follow from the implicit assumption of BEV
network medicine: The global-scale hypothesis states that, globally,
networks constructed from twodifferent types of associationdata that
both contain useful information about endotypes should be pairwise
more similar than expected by chance. The local-scale hypothesis
states that this should hold not only globally but also for the neigh-
borhoods of the individual diseases and drugs represented by nodes in
the constructed networks.

In line with the findings of prior studies20–24, our analyses provide
solid evidence for the global-scale hypothesis. However, they only
partially support the local-scale hypothesis. Figuratively speaking, BEV
networkmedicine henceonly allows a distal view at the endotypes that
are to be discovered. When zooming in on individual diseases, the
picture becomes blurred and less reliable (see Fig. 1 for a conceptual
visualization and Fig. 2 for a concrete exemplification of this phe-
nomenon in the context of neurodegenerative diseases). This implies
that, in order to yield translational results, BEV approaches need to be
supplemented with additional layers of molecular data for well-
characterized patient cohorts and a dedicated focus on the specific
diseases which are being investigated. In particular, fine-grained
molecular patient data are crucial for implementing network medi-
cine’s long-term objective to replace current phenotype- or organ-
based disease definitions bymechanistically grounded endotypes. The
main finding of this study is hence that the biases current disease
definitions introduce in large-scale disease association databases such
as OMIM and DisGeNET do not even out and that such databases
should be used with care in all fields of data-centric biomedicine:
Instead of blindly using public disease association data out of con-
venience for pathomechanism mining, we strongly recommend bio-
medical researchers to always consciously ponder to which extent
biases in these data introduced by phenotype-based disease terms
threaten to distort their potential findings.

Results
Neurodegenerative diseases as case example
Before presenting the comprehensive results of our analyses, we
visualize the phenomenon of local blurriness in BEV networkmedicine
with a small example. We compiled a list of diseases that fall under the
parent term “neurodegenerative disease” in the MONDO disease
hierarchy. Fromthose,wekept diseases forwhichwehave nodes in the
alignedgene- anddrug-baseddiseasomes. This led to a cluster of seven
neurodegenerative diseases which are highly connected in both dis-
easomes. Figure 2 shows this cluster, together with the contained
diseases’ local empirical P-values obtained from the comparison of
gene- and drug-based diseasomes in MONDO space, the global
empiricalP-value, aswell as the cluster-level empiricalP-value (see next
subsection and Methods for explanations on how we obtained the
P-values).While only two local empirical P-values are significant at 0.05
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level, the cluster-level and global empirical P-values are significant at
levels 0.01 and 0.001, respectively.

Overview of analyses
Let D be disease association data of some data type T commonly used
by BEV approaches (e.g., disease-gene associations). Further assume
that D contains entries Dðd1Þ and Dðd2Þ for two diseases d1 and d2 that

share an unknown molecular disease mechanism. Then this shared
mechanism should lead to similarities between Dðd1Þ and Dðd2Þ, given
that D indeed contains useful information about disease
mechanisms35. For instance, we would expect that the diseases d1 and
d2 have similar profiles of disease-associated genes, that they exhibit
high comorbidity, that they lead to similar symptoms, and that they
can be treated by similar drugs. We can capture such similarities in

Fig. 2 | Locally blurred results for neurodegenerative diseases. The color gra-
dient visualizes local-, global-, and cluster-level empirical P-values (one-sided,
unadjusted) obtained from the comparison of gene- and drug-based diseasomes in
MONDOvocabulary. The gene-based diseasomewas constructed based ondisease-
gene association data integrated from DisGeNET36 and OMIM43 and two diseases

were connected by an edge if they share at least one disease associated gene. The
drug-based diseasome was constructed based on drug-indication data integrated
from CTD48 and DrugCentral37 and two diseases were connected by an edge if they
share at least one indicated drug.

Fig. 1 | BEV vs. close-up network medicine. a BEV network medicine mainly uti-
lizes large-scale disease association data where diseases are annotated with
phenotype-based disease definitions (b, bottom). BEV network medicine inherits
the bias introducedby these definitions, which leads to a blurred view on individual

pathomechanisms (b, top). c Close-up network medicine uses patient-level mole-
cular data and is hence less dependent on the phenotype-based disease definitions
that network medicine aims to replace by mechanism-based endotypes.
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diseasomes,wherediseasesd1 andd2 are connectedby anedge ifDðd1Þ
and Dðd2Þ are sufficiently similar. In order to assess the implicit
assumption of BEV network medicine approaches with quantitative
means, we hence formulate the following testable hypotheses (see
Methods for an argument to support these hypotheses):

• Global-scale hypothesis: For all disease association data D1 and
D2 that are assumed to contain useful information about
endotypes (e.g., disease-gene association and drug-indication
data from databases such as DisGeNET36 and DrugCentral37),
diseasomesG1 andG2 constructed based onD1 andD2 should be
pairwise more similar than expected by chance.

• Local-scale hypothesis: For all disease association dataD1 andD2

that are assumed to contain useful information about endotypes
and any disease term d that appear in D1 and D2, the direct
neighborhood of d in the diseasomes G1 and G2 constructed
based on D1 and D2 should be pairwise more similar than
expected by chance. For example, under the assumption that
disease-gene and drug-indication databases such as DisGeNET
and DrugCentral contain useful information about Alzheimer’s
disease (AD) mechanisms, there should be a significant overlap
between the set of diseaseswhose associated genes overlapwith
AD-associatedgenes and the set ofdiseaseswhichcanbe treated
with drugs also indicated for AD.

To test these two hypotheses, we constructed various disea-
somes, drugomes, and drug-disease networks based on different data
types. An overview of the used data types and derived networks is
shown in Fig. 3a. Using customized versions of the graph edit distance
(GED)38,39, we then compared these networks in a pairwise manner
both on a local scale, i.e. zoomed-in on individual disease or drug
nodes, and on a global scale. More precisely, we generated 1000 per-
muted networks as randomized counterparts for each network. Sub-
sequently, we compared the distributions of local and global GEDs
obtained for the original networks to GED distributions obtained for
randomized counterparts. Network randomization and computation
of local and global GED are illustrated in Fig. 3b, c. While local GED
measures the dissimilarity between the individual nodes’ neighbor-
hoods in the compared networks, global GED is a measure for the
overall dissimilarity of the networks.

We also evaluated how annotating the data using disease voca-
bularies of different granularity affect the results, by carrying out the

analyses using MONDO IDs40 and UMLS CUIs41 (finer granularity) and
ICD-1042 three-character codes (coarser granularity) as node IDs in the
constructed networks, respectively. To this end, where possible, we
constructed the networks in MONDO, UMLS CUI, and in ICD-10 voca-
bulary (using three-character level codes). Note that analyses involving
comorbidity data were carried out only in ICD-10 and the comparison
between target- and indication-based drugomes only in MONDO
vocabulary (see Methods for an explanation). Moreover, neither the
semantic layers of the MONDO disease ontology nor the hierarchy of
the UMLSCUI and ICD-10 classification systemwere used to add edges
to our diseasomes. MONDO, UMLS CUI, and ICD-10 were only used as
vocabularies, i.e., to provide the node IDs in our networks. Whether
two disease nodes are connected by an edge exclusively depends on
the primary databases containing the association data (uponmapping
to MONDO, UMLS CUI, or ICD-10). For instance, two diseases are
connected in the gene-based diseasome in MONDO vocabulary if the
intersection of the sets of genes associated with their MONDO IDs is
non-empty, where disease-gene associations were obtained from
OMIM43 and DisGeNET36.

GED quantifies the dissimilarity between two networks as the
minimumcost of an edit path transforming onenetwork into the other.
Edit paths are sequences of elementary edit operations (node and edge
insertions, substitutions, and deletions), all of which come with asso-
ciated edit costs. Hence, the GED is a distance measure between two
networks.We computed three different versions ofGEDusing uniform,
weight-based, and rank-based edge editing costs, respectively.Uniform
edit costs discard the association strengths of the edges in the com-
parednetworks;weight- and rank-based edit costs incorporate themby
making it more expensive to delete or insert edges with strong asso-
ciations or to substitute them by edges with weak associations. Cor-
roborating the robustness of our analysis method, we obtained similar
results for all three versions of GED. In the following, only the results of
uniformedit costs are reported. Results for rank- andweight-based edit
costs can be found in Supplementary Figs. 1–4 and 9–12, respectively.
More details on disease vocabulary mapping, network construction,
and GED computation can be found in Methods.

Results of global-scale analyses
To test the global-scale hypothesis, we computed empirical P-values
for each pair of networks based on global GEDs (Fig. 4a, left panel). For
all evaluated pairs of networks (in MONDO, UMLS CUI, and ICD-10

Fig. 3 | Overview of compared networks and graph edit distance computation.
aWe compared five different types of disease-disease networks (diseasomes), two
different types of drug-drug networks (drugomes), and two different types of drug-
disease networks. Pairwise comparisons between those networks were carried out
using local and global graph edit distance (GED). b Local GED was used to quantify

the dissimilarities of the individual nodes’ neighborhoods across different net-
works in comparison to pairs of randomly rewired networks. c Global network
dissimilarities were computed using global GED, obtained by summing up the local
GEDs of the individual nodes.
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vocabularies), we obtained smaller global GEDs for the original dis-
easeomes, drugomes, or drug-disease networks than for randomized
counterparts, leading to empirical P-values which are significant at
0.001 level. Differences between GEDs obtained for permuted and a
selection of original networks are shown in Fig. 4b. For the full results
of our global-scale analyses, see Supplementary Fig. 5.

Moreover, we performed analyses based on shortest path dis-
tances between disease-disease, drug-drug, and drug-disease pairs in
disease-gene-gene-disease, drug-protein-protein-drug, and disease-
protein-protein-drug networks, where protein-protein and gene-gene
links were obtained from PPIs. We then compared shortest path dis-
tances for node pairs which do and node pairswhich do not have a link
in different reference networks, using theMann-WhitneyU (MWU) test
(Fig. 4a, right panel).

For all shortest path analyses, we observed that shortest path
distances are significantly shorter for node pairs that are connected by
a link in the reference networks (see Fig. 4c for a selection of the
results). In particular, the results show (1) that distances between dis-
eases that are connectedby edges in diseasomes constructedbasedon

comorbidities, shared drugs, shared symptoms, or shared genetic
variants are significantly shorter than distances between diseases
without such edges (Supplementary Fig. 6a–d); (2) that distances of
disease-drug pairs with shared indication edges are significantly
shorter than distances of disease-drug pairs without such edges
(Supplementary Fig. 6e); and (3) that distances between drug pairs
with shared indication are significantly shorter than distances for drug
pairs without shared indications (Supplementary Fig. 6f). In sum, our
global analyses hence provide solid evidence for the global validity of
the BEV network medicine paradigm and hence further corroborate
the findings of previous studies19–24.

Results of local-scale analyses
To test the local-scale hypothesis, we computed P-values using the
one-sidedMWU test based on local GEDs to evaluate whether the local
distances for the original networks are significantly smaller than the
local distances for the permuted counterparts (Fig. 5a, left panel).
Local GEDs of nodes obtained for the permuted and a selection of
original networks and the corresponding MWU P-values are shown in

Fig. 4 | Global-scale analyses. a Illustration of global-scale analysis methods. Left
panel: Statistical analyses based on global GED via empirical P-values. Right panel:
Statistical analyses based on shortest path distances via MWU test. bDifferences of
global GEDs (based on uniform edge edit costs) between a selection of original
networks and their counterpart permuted networks, and corresponding global
empirical P-values (one-sided, unadjusted) in MONDO, UMLS, and ICD-10 voca-
bularies. All obtained global empirical P-values are at the lower resolution limit of
our permutation tests with 1000 randomized network pairs. c Selected results of

shortest path analyses and the corresponding MWU P-values (one-sided, unad-
justed). Left: Disease distances in gene-based disease-disease network vs.
comorbidity-based diseasome as the reference network. Middle: Drug-disease
distances in protein-based drug-disease network vs. drug-indication network as the
reference network. Right: Drug distances in protein-based drug-drug network vs.
indication-based drugome as the reference network. All networks underlying the
results shown in (c) are constructed in the MONDO vocabulary.
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Fig. 5b (for the full results of the local-scale analyses, see Supplemen-
tary Fig. 7). The overview of the results of the local GED analyses in
different vocabularies shows that the comparisons performed in ICD-
10 vocabulary (at three-character level) led to more significant simi-
larities than the ones performed in MONDO or UMLS CUI vocabulary
(Fig. 6a and Supplementary Fig. 4a). As an example, the P-value com-
puted from the local GEDs of drug-based vs. gene-based diseasomes in
ICD-10 vocabulary is significant at 0.0001 level (P≈7:1 × 10�7), while it
is not significant in the MONDO and UMLS CUI vocabularies (P≈0:071
for MONDO, P≈0:079 for UMLS CUI).

The results of the MWU test for local GED analyses point out that
wehavemore significant similarities in ICD-10 (8 out of 10 significant at
0.05 level) than in MONDO vocabulary (2 out of 6 significant at 0.05
level) or UMLS CUI vocabulary (1 out of 6 significant at 0.05 level). The
results also suggest that variant-based diseasomes have higher simi-
larities with other diseasomes (7 out of 10 comparisons significant at
0.05 level) than gene-based diseasomes (5 out of 10 comparisons
significant at 0.05 level), considering all three vocabularies. By
inspecting the P-values of drug nodes (3 out of 3 comparisons sig-
nificant at 0.05 level) against disease nodes (0 out of 3 comparisons
significant at 0.05 level) obtained from local-similarity analyses of
indication- versus protein-based drug-disease network as well as
P-values obtained from target- and indication-based drugome (sig-
nificant at 0.001 level), we discovered that, in general, drug neigh-
borhoods are better preserved across the compared networks than
disease neighborhoods (Fig. 6a, bottom right panel).

Furthermore, we computed local empirical P-values individually
for nodes based on local GEDs (Fig. 5a, right panel). The local empirical
P-values for all network comparisons are shown in Supplementary
Fig. 8. The fractions of significant local empirical P-values at 0.05 level
are shown in Fig. 6b and Supplementary Figs. 4b and 12b. Our results
show that, for a substantial fraction of disease nodes, local neighbor-
hoods are preserved not only not significantly better but worse than
expected by chance across the different diseasomes (compare sig-
moidal shape of curves in Supplementary Fig. 8). The local-scale
hypothesis hence seems to hold for some diseases, but does not hold
at all for others.

In follow-up analyses, we tried to identify patterns explaining
these results, e.g., by assessing whether there are certain chapters of
the ICD-10 disease vocabulary which are enriched with diseases with
very small or very large empirical P-values. However, no clear patterns
could be discovered, indicating that it is very hard to predict for which
concrete diseases BEV network medicine approaches can be expected
to yield robust and reliable results. Our local analyses hence only
provide weak evidence for the local-scale hypothesis, indicating the
BEV network medicine tends to produce locally blurred results.

Web tool for interactive exploration of results
In order to make our results explorable and actionable, we developed
the GraphSimViz (graph similarity visualizer) web interface, which is
freely available at https://graphsimviz.net. GraphSimViz allows bio-
medical researchers to query and visualize our findings for user-
selected drugs, diseases, network types, and disease vocabularies.
UsingGraphSimViz, biomedical researchers can assess if a specific type
of disease association data is likely to contain reliable information
about pathomechanisms underlying their diseases of interest. Below,
we illustrate how GraphSimViz can be employed for interactive
exploration of our results, using neurodegenerative diseases as a case
example. To enable quantification of the effect of biases introduced by
mechanistically ungrounded disease definitions in data sources not
covered by our study, we provide the GraphSimQT (graph similarity
quantification tool) Python package, which is freely available on
GitHub (https://github.com/repotrial/graphsimqt).

Discussion
Our results strongly support the global-scale hypothesis and, in line
with previous studies19–24, provide solid evidence for the overall
validity of the BEV network medicine paradigm. However, they also
indicate that results generated via BEV network medicine approa-
ches become less reliable when zooming-in on individual diseases.
Our results hence confirm that it is problematic to exclusively rely
on data annotated with phenotype-based definitions if the objective
is to uncover molecular pathomechanisms. As long as phenotype-
based disease definitions have not been replaced by endotypes,

Fig. 5 | Local-scale analyses:methods and local GEDs. a Illustration of local-scale
analysis methods. Left panel: Statistical analyses based on local GED viaMWU test.
Right panel: Computation of empirical P-values (one-sided, unadjusted) of each
node based on local GEDs. b Local GEDs (of all nodes) between a selection of
original networks vs. their permuted counterpart networks and corresponding

MWU P-values. Left: Similarities betweengene- and drug-based diseasome.Middle:
Similarities between indication- and protein-based drug-disease network (for
drugs). Right: Similarities between indication- and protein-based drug-disease
network (for diseases). Results shown in (b) are based on uniform edge edit cost.
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large-scale disease association databases should therefore be used
with care in network medicine and should be combined with addi-
tional layers of disease-specific omics data. In the following, we
further speculate on issues that might play a role in the local

blurriness of BEV network medicine and sketch a roadmap to
overcome this problem.

While there are vast amounts of datasets online that contain
useful information about diseases such as genetic associations,

Fig. 6 | Local-scale analyses: MWU P-values and local empirical P-values.
a Overview of MWU P-values (one-sided, unadjusted) computed from local GEDs
with levels of significance. b Fraction of significant local empirical P-values (one-

sided, unadjusted) at0.05 level computed from localGEDsonapair of networks for
the original vs. permuted network. All results are based on uniform edge edit cost.
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comorbidities, and symptoms, each of these datasets may use differ-
ent disease vocabularies to describe their associations. The vocabul-
aries have different degrees of granularity and are generated in
different ways and for different purposes. However, for downstream
(BEV) network medicine analyses, in order to jointly leverage the dis-
ease association fromvarious data sources that use disease terms from
different vocabularies as disease identifiers, we have to map data to a
joint target vocabulary. This is amammoth task that inevitably involves
losing some data due to unmappable terms (see Fig. 7 for the levels of
completeness of disease vocabulary mappings underlying this study).

The choice of the disease vocabulary has the potential to dra-
matically affect the results of downstream analyses (see discordant
results of local-scale analyses carried out using ICD-10 three-character
codes, on the one hand, and UMLS CUIs or MONDO IDs, on the other
hand, shown in Fig. 6a and Supplementary Fig. 4a). At the same time,
formost analysis tasks, the choice of the disease vocabulary is dictated
by the formatof thedata and, thus, often impossible to changewithout
losing information at the time of analysis. The vocabularies used to
annotate disease-associated data must hence be viewed as con-
founders which are very difficult if not impossible to control for.

Currently used disease vocabularies are not only used dis-
cordantly, but alsomechanistically inadequate: Since causalmolecular
disease mechanisms are often unknown, disease names often do not

denote suchmechanisms but rather reflect the person who coined the
disease term (e.g., “Alzheimer’s disease”), areas in the body that are
affected (e.g., “kidney stones”) or symptoms of the disease (e.g., “irri-
table bowel syndrome”). ICD-10 codes are considered inadequate due
to their overly inclusive designations, ranging from symptoms (e.g.,
cough) over syndromes (e.g., cachexia) to true endotypes with defin-
able molecular determinants (e.g., Mendelian disorders). This leads to
data that is blurred, as diseases with distinct pathomechanisms are
being aggregated together, e.g., due to symptom or organ common-
ality. This blurriness not only has severe clinical consequences
(patients with mechanistically distinct diseases receive the same
untargeted treatment), but also makes it very challenging to mine
disease-associated data for pathomechanisms via BEV network medi-
cine approaches44. Since such analyses often require case-versus-
control or subtype annotations as input, it is very difficult to obtain
meaningful results if the employed disease definitions are too
unspecific.

The results presented in this study, where drugome comparisons
have led to more significant results on a local level than diseasome
comparisons, are evidence that network-based analyses yield more
targeted and reliable results when the underlying annotations arewell-
defined (such as in drug vocabularies). Comparing the results of the
GED-based analyses for full diseasomes (global analyses) with those
obtained for analyses based on local GEDs in diseasomes with ICD-10
three-character codes, UMLS CUIs, and MONDO terms as nodes,
respectively, further highlights the detrimental effect of local blurri-
ness in currently used disease definitions: The higher the resolution of
the analysis, the less significant theobtainedP-values (see Fig. 8).When
using MONDO or UMLS CUI terms (fine granularity) as nodes in the
diseasomes, only the comparisons between gene- and variant-based
diseasomes consistently (with respect to uniform, weight-based, and
rank-based edit costs) led to smaller local distances in the original
networks than in their randomized counterparts. No other network
comparisons in the MONDO or UMLS vocabularies yielded significant
P-values for all three types of edit costs. When using ICD-10 three-
character codes (which denote disease clusters rather than individual
diseases), around 50% of all computedMWU P-values are significant at
0.001 level.When comparing the entirediseasomes via globalGEDs, all
empirical P-values are significant.

The fact that we could not identify any clear patterns among dis-
eases with small or large empirical P-values computed based on local
GEDs may be a consequence of some of the current phenotype-based
disease entities already corresponding to true endotypes.We speculate
that, for diseases where our current definitions already have a one-to-
one mapping to true endotypes, the local-scale hypothesis holds.

Fig. 7 | Levels of completeness of disease vocabularymappings underlying this
article. For each source-target vocabulary pair, mappability is computed as the
percentage of terms in the source vocabulary used in this study that could be
mapped to a term in the target vocabulary.

Fig. 8 | Effect of disease term granularity on results of GED-based analyses. For the individual P-values summarized in this figure, see Fig. 6a, as well as Supplementary
Figs. 1, 4a, 5, 9, and 12a.

Article https://doi.org/10.1038/s41467-023-37349-4

Nature Communications |         (2023) 14:1662 8



Even though we expected to obtain similar results for variant-
based and gene-based diseasomes, the local-similarity analyses show
that variant-based diseasomes have higher similarities with other dis-
easomes compared to gene-based diseasomes. This indicates that the
disease-gene associations underlying the gene-based diseasomes
contain less targeted information than the disease-variant associations
underlying the variant-based diseasomes. Hence, using disease-variant
data might yield more reliable results in the context of BEV network
medicine applications.

To seek a possible explanation for this difference, we had a closer
look at the associations underlying these two types of diseasomes. In
our study, as well as in many other network medicine studies1,2,22,45,46,
disease-gene associations were taken from OMIM and DisGeNET
curated databases. The latter collates disease-gene associations from
different databases: UniProt47, CTD48, Orphanet49, ClinGen50, Genomics
England51, CGI52, and PsyGeNET53. These constituent databases com-
prise multiple types of disease-gene associations such as causal
mutations (mutations known to cause the disease), modifying muta-
tions (mutations known to modify the clinical presentation of the
disease), or merely statistical associations without evidence of caus-
ality. Disease-variant associations used in our study were extracted
from DisGeNET, which itself integrates various databases: GWASdb54,
ClinVar55, GWAS Catalog56, UniProt, and BeFree57. Like for disease-gene
associations, there are different types of disease-variant associations,
ranging from known causal variants to variants with merely statistical
evidence. However, the heterogeneity of the association types is
higher for disease-gene associations than for disease-variant associa-
tions. Moreover, the genetic variation data from the constituent
disease-variant databases of DisGeNET is mainly taken from genome-
wide association studies (GWAS), which identify associations between
common genetic variants and phenotypic traits via hypothesis-free,
genome-wide scans. In contrast, in the disease-gene databases used by
DisGeNET, parts of the data are curated from studies where evidence
for disease-gene associations stems from a very limited number of
patients or where hypothesis-driven approaches were used (i.e. the
analyzed genetic variants were limited to those contained in candidate
genes selected a priori).

Another reason for the difference in results between gene-based
and variant-baseddiseasomesmay consist in the loss ofdetail resulting
from mapping variants to genes. Distinct mutations in one gene may
cause different phenotypes, but this information cannot be captured
at the level of disease-gene associations and is better conserved at
disease-variant level. A very good example is the LMNA gene, where
different mutations can cause 13 different diseases such as
Hutchinson-Gilfordprogeria syndrome and theDunnigan-type familial
partial lipodystrophy58. Finally, the difference in results between gene-
and variant-based diseasomes may also partly be due to loss of infor-
mation introduced when aggregating P-values for disease-variant
associations at gene level59.

A limitation of our study is that our results do not rule out the
possibility that confounders other than mechanistically inadequate
disease definitions lead to the observed local blurriness of BEV net-
work medicine. For instance, off-target effects might introduce biases
in our analyses using drug association data, while the known biases in
gene association data discussed above might explain the results
obtained for analyses involving gene association data. However, we
would like to stress that the obtained results are remarkably stable
across all employed data modalities (see distributions of the obtained
local empirical P-values in Supplementary Figs. 3, 8, and 11). Since
phenotype-based disease definitions are the only confounders that
affect all data types, this is strong (but of course not conclusive) evi-
dence that the observed local blurriness can indeed mainly be attrib-
uted to them.

We started our investigation with the question of whether biases
introduced by phenotype- and organ-based disease mechanisms even

out when mining large-scale disease association data for disease
mechanisms – an assumption implicitlymade by BEVmedical research
approaches. Our results indicate that this question has to be answered
negatively, which has several consequences for the network medicine
field and beyond.

Firstly, our findings imply that uncritical use of databases such as
DisGeNET orOMIMwhich rely onphenotype-based disease definitions
is problematic. Instead, we emphasize that close-up approaches
remain the gold standard in network medicine, where data scientists
collaborate with researchers from the biomedical sciences and jointly
analyze molecular as well as deep phenotype data for the same
patients. In such a collaborative setup, a positive feedback loop can
emerge, where initial hypotheses about disease subtypes and their
underlying pathomechanisms are formulated based on the analysis of
molecular data, further refined using deep phenotyping (e.g., histo-
logical images, blood-derived biomarkers, etc.) and expert knowledge
of the clinicians, and finally validated in preclinical studies (e.g., gain-
or loss-of-function studies). As mentioned above, such approaches
have already led to various important insights into specific disease
mechanisms.

Secondly, unsupervised network medicine methods are needed,
which not only return candidate pathomechanisms but at the same
time de novo stratify patients into mechanistically distinct subgroups
and hence do not rely on potentially misleading priorly available
phenotypically defined subtype annotations. While few such approa-
ches exist60–62, most existing pathomechanism mining methods still
rely onphenotypic case-versus-control annotations63,64 or lists of genes
associated with a (potentially ill-defined) disease term65–67.

Finally, we would like to point out that the current lack of
mechanistic disease definitions not only hampers progress in (BEV)
network medicine, but also has a detrimental effect on virtually all
other data-centric approaches to, e.g., treatment design or diagnosis
which rely on disease association data that utilize phenotype-based
disease definitions. For instance, an artificial intelligence model for
diagnosis assistance trained on genetic disease signatures will sys-
tematically produce unreliable results if the disease annotations used
for training do not correspond to true endotypes. While we here
quantified the effect of this problem in the context of BEV medicine,
overcoming it would hence be beneficial for a large fraction of the
biomedical research community.

Methods
Compliance with ethical regulations
Our research complies with all relevant ethical regulations. The only
non-public dataused for this study is the comorbidity dataweobtained
fromthe EstonianBiobank. TheEstonianBiobank is a population-based
biobank managed by the Institute of Genomics at the University of
Tartu. All participants have signed a broad consent upon joining the
biobank, allowing their sample and data to be used for further
research. ICD-10 diagnoses are obtained from epicrises, prescriptions
and bills to the Health Insurance Fund. The work in this article was
covered by the ethics approval “234T-12 Omics for Health” (March 19,
2014) by the Estonian Committee of Bioethics and Human Research.
Data was released by the Estonian Biobank (releaseM11, July 24, 2019).

Data integration
As shown in Table 1, the data sources used to create the different
networks use a range of competing disease vocabularies to refer to
diseases. We hence had to map these vocabularies to a common
vocabulary to be able to investigate network (dis-)similarities. The
similarity analyses were performed in MONDO (Monarch Disease
Ontology), UMLS CUI, and ICD-10 vocabularies. Disease IDmapping to
MONDO and ICD-10 was carried out via the two-step approach
implemented in the NeDRex platform68: First, MONDO contains map-
pings between its own disease vocabulary and various other
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vocabularies, including OMIM, MeSH69, and ICD-10. Then, mappings
between several vocabularies and ICD-10 could be achieved by map-
ping disease terms to MONDO, followed by mapping MONDO to ICD-
10. Mapping to UMLS CUI was carried out using the mappings
provided in the UMLS Metathesaurus 2022AA full release. For all
pairwise analyses, the two compared networks were aligned before
computing GEDs, i.e., only the nodes contained in both of them were
taken into account.

The comorbidity data was obtained from the Estonian Biobank,
which uses originally ICD-10 codes. In order to carry out analyses
involving comorbidity data in MONDO or UMLS CUI vocabulary, the
comorbidity data needed to be mapped from a coarser-grained (ICD-
10) to a finer-grained disease vocabulary (MONDO and UMLS CUI).
Although this is possible from a technical point of view, it would have
introduced a lot of noise in the obtained comorbidity networks. To
avoid overshadowing all other effects by the introduced noise, we
decided to carry out analyses involving comorbidity data only in ICD-
10 vocabulary. Consequently, all analyses involving comorbidity data
were carried out only in ICD-10 vocabulary. On the other hand, the
comparison between the target- and the indication-based drugomes
was carried out only in MONDO vocabulary. In these networks,
nodes are drugs and not diseases and using different disease voca-
bularies leaves the nodes of thenetworks unchanged. In the indication-
based drogomes, the choice of the disease vocabulary can change the
edges of the networks, but, in practice, we observed that the differ-
ences are small. Target-based drugomes are not affected at all by the
choice of the disease ontology. Therefore, we only useMONDO for the
comparison of drugomes.

Additionally, further data harmonization steps were carried out:
Since HPO contains both general and specific terms, we pruned the
data by removing very general symptom terms, using the existing
hierarchy in HPO. More specifically, we decomposed the generated
hierarchical phenotype network into its levels and removed the terms
from the top three levels.

The diagnoses in around 140K patients records available in the
Estonian Biobank (April 2020 version used for this study) are encoded
in ICD-10 vocabulary, and the records contain both three- and four-
character ICD-10 codes. In order to generate uniform data, we there-
fore truncated all four-character codes to three-character level.
Moreover, we removed diseases with incidence below five from the
data, as well as the codes from the ICD-10 chapters XV (“Pregnancy,
childbirth and the puerperium”), XVI (“Certain conditions originating
in theperinatal period”), XVIII (“Symptoms, signs and abnormal clinical
and laboratory findings, not elsewhere classified”), XIX (“Injury,

poisoning and certain other consequences of external causes”), XX
(“External causes of morbidity and mortality”), XXI (“Factors influen-
cing health status and contact with health services”), and XXII (“Codes
for special purposes”).

Network construction
For network construction, some part of the data such as disease-gene,
drug-indication, drug-target, gene-encoding-protein, and PPI data
were obtained from the databases shown in Table 1, using the data
access and mapping provided by the NeDRex platform68. Disease-
variant and disease-symptomassociationswere directly obtained from
DisGeNET and HPO, respectively.

Supplementary Table 1 shows themost important properties of all
constructed networks. The comorbidity-based diseasome was con-
structed via ϕ-correlation. Let Ii denote the incidence of disease i and
Cij be the number of patients whowere simultaneously diagnosedwith
diseases i and j. The comorbidity between the two diseases can be
measured by

ϕij =
CijN � IiIjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IiIjðN � IiÞðN � IjÞ
q , ð1Þ

where N is the total number of patient records (N = 139,065 for the
Estonian Biobank data). When two diseases co-occur more frequently
than expected by chance, we have ϕij>0. We used one-tailed Fisher’s
exact test followed by Benjamini-Hochberg correction for multiple
testing to determine the significance of comorbidity associations and
connected two diseases by an edge if adjusted P ≤0:05. Edge weights
were definedusing theϕ-correlation, i.e., we setwij =ϕij for all diseases
i and j with significant comorbidity association.

The indication- and target-based drugomes as well as the gene-,
variant-, symptom-, and indication-based diseasomes were con-
structed based on the Jaccard index of the respective annotations. Ai

denotes the set of annotations for a disease or drug i used as node in
the network under construction (e.g., when constructing the gene-
baseddiseasome,Ai is the set of all genes associatedwith disease i).We
connected diseases i and j by an edge if ∣Ai \ Aj ∣≥ 1 and defined the
edgeweights aswij = ∣Ai \ Aj ∣=∣Ai ∪Aj ∣. Disease nodeswith ∣Ai∣=0 were
removed from the networks, i.e., empty annotation sets were treated
as missing data.

The bipartite indication-based drug-disease network was directly
constructed from the data source, i.e., we connected a disease i with a
drug j if i is an indication for j. For the bipartite target-based drug-

Table 1 | Data sources used for network construction

Data source Used disease vocabularies Data type Networks constructed from data source

HPO86 OMIM, Orphanet (ORPHA) Disease-symptom Symptom-based diseasome

DisGeNET Concept Unique Identifiers of Unified
Medical Language System (UMLS CUI)

Disease-gene, disease-
variant

Gene-based diseasome, variant-based diseasome, disease-gene-
gene-disease network, drug-protein-protein-drug network, drug-
protein-protein-disease network

OMIM OMIM Disease-gene Gene-based diseasome, disease-gene-gene-disease network, drug-
protein-protein-disease network

DrugCentral37 SNOMED Clinical Terms87 (SNOMEDCT) Drug-target, drug-
indication

Target-baseddrugome, indication-baseddrugomeanddrug-disease
network, drug-protein-protein-drug network, drug-protein-protein-
disease network

DrugBank88 – Drug-target Target-based drugome, drug-protein-protein-drug network, drug-
protein-protein-disease network

CTD48 MeSH Drug-indication Drug-disease network, indication-based drugome

IID89 – Protein-protein interaction Disease-gene-gene-disease network, drug-protein-protein-drug
network, drug-protein-protein-disease network

UniProt – Gene-protein Drug-protein-protein-disease network

Estonian Biobank90 ICD-10 (mixed three- and four-
character codes)

Comorbidity data Comorbidity-based diseasome
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disease network, we connected a disease i with a drug j if j targets a
protein encoded by a gene associated to i. In both drug-disease net-
works, edges are unweighted. Finally, we constructed drug-protein-
protein-disease networks where drugs are connected to their targets,
experimentally validated PPIs from IID are used to connect proteins,
and diseases are connected to proteins encoded by disease-
associated genes.

Graph edit distance
GED is a widely used and generically applicable distance measure for
attributed graphs38,39,70. It is defined as the minimum cost of trans-
forming a source graph G1 = ðV 1,E1Þ into a target graph G2 = ðV2,E2Þ via
elementary edit operations, i.e., by deleting, inserting, and substituting
nodes and edges. Equivalently, GED can be defined as the minimum
edit cost induced by a node map π from G1 to G2, where nodes maps
π � ðV 1 ∪ fϵ1gÞ× ðV2 ∪ fϵ2gÞ are relations that cover all nodes u 2 V 1

and v 2 V 2 exactly once (ϵ1 and ϵ2 are dummy nodes that may be
covered multiple times or left uncovered)71.

We used a customized version of GED to compare the different
diseasomes, drugomes, and drug-disease networks constructed as
detailed in the previous section as well as their randomized counter-
parts. Since the networks were aligned before all pairwise compar-
isons, we hadV 1 =V2 =V (node sets are identical)whenever comparing
two networks. Consequently, we fixed π as the identity and computed
GED as the sum of edge edit costs induced by the identity (the edge
edit cost functions sub, del, and ins are explained below):

GED G1,G2

� �
=
X

uv2E1\E2
sub uvð Þ+

X
uv2E1nE2

delðuvÞ +
X

uv2E2nE1
insðuvÞ ð2Þ

GEDðG1,G2Þ quantifies the global distance between the graphs G1

andG2. Since the node sets ofG1 andG2 are identical in our analyses, it
can be decomposed as

GEDðG1,G2Þ=
X

u2VGEDðG1,G2,uÞ=2, ð3Þ

where GEDðG1,G2,uÞ is the local distance between the neighborhood
N1ðuÞ of node u in G1 and its neighborhood N2ðuÞ in G2. The local
distances are defined as follows:

GEDðG1,G2,uÞ=
X

v2N1ðuÞ\N2ðuÞ
subðuvÞ+

X
v2N1ðuÞN2ðuÞ

delðuvÞ+
X

v2N2ðuÞN1ðuÞ
insðuvÞ

ð4Þ

Based on the local distances, we also computed cluster-level dis-
tances for a cluster of nodes C � V as follows:

GEDðG1,G2,CÞ=
X

u2CGEDðG1,G2,uÞ=2 ð5Þ

We used three types of edge edit cost functions, namely, uniform
costs and costs based on normalized edge ranks or normalized edge
weights. The uniform costs are defined by simply setting subðuvÞ=0
and delðuvÞ= insðuvÞ= 1 for all edges uv. GED with uniform costs
quantifies topological (dis-)similarity between twographs but does not
consider edge weights. Since edges are weighted in all compared dis-
easomes, we additionally defined edge edit costs based on normalized
weights and normalized ranks. For the normalized weights, we scaled
all edge weights to the interval ½0,1� via division by the maximum. For
the normalized ranks, we sorted the diseasomes’ edges in increasing
order with respect to their weights and then again normalized the
obtained ranks to ½0, 1� via division by the maximum rank. Let x1ðuvÞ
be the normalized weight/rank of edge uv in diseasome G1 and x2ðuvÞ
be its normalizedweight/rank inG2. Thenwe defined theweight-/rank-
based edit costs as subðuvÞ= ∣x1ðuvÞ � x2ðuvÞ∣, delðuvÞ= x1ðuvÞ, and
insðuvÞ= x2ðuvÞ. That is, substitutions are expensive if the involved
edge’s normalized weight/rank differs a lot in the two graphs
and deletions and insertions are more expensive for high-weighed/

high-ranked than for low-weighed/low-ranked edges. Since uniform,
weight-based and rank-based edit costs led to similar results, we only
present the results for uniform costs in the main article. Results for
weight- and rank-based edit costs are shown in the supplement.

Statistical analyses based on graph edit distances
Using GED, we tested the local- and the global-scale hypotheses as
follows: For each pair G1, G2 of compared networks, we generated
1,000 randomized counterparts G1

1, . . . ,G
1000
1 and G1

2, . . . ,G
1000
2 . For

this, we used a random network generator which repeatedly swaps
edges and non-edges to obtain randomized counterparts which
exactly preserve the node degrees of the original networks72,73. For
eachnodeu, we then computedGEDðG1,G2,uÞ aswell as GEDðGi

1,G
i
2,uÞ

for each i= 1, . . . ,1000 and also computed the global distances
GEDðG1,G2Þ and GEDðGi

1,G
i
2Þ.

To test the global-scale hypothesis, we computed one-sided
empirical P-values as

P = 1 +
X1000

i= 1
GED G1,G2

� �
≥GED Gi

1,G
i
2

� �h i� �
=ð1 + 1000Þ, ð6Þ

where ½true�= 1 and ½false�=0. To test the local-scale hypothesis, we
used the one-sided MWU test to assess whether the local distances
fGEDðG1,G2,uÞ∣u 2 V g for the original networks are significantly
smaller than the local distances fGEDðGi

1,G
i
2,uÞ∣u 2 V ,i= 1, . . . ,1000g

for the randomized counterparts. Moreover, we computed node-
specific local empirical P-values as

PðuÞ= 1 +
X1000

i = 1
GED G1,G2,u

� �
≥GED Gi

1,G
i
2,u

� �h i� �
= 1 + 1000ð Þ ð7Þ

and cluster-level empirical P-values as

PðCÞ= 1 +
X1000

i= 1
GED G1,G2,C

� �
≥GED Gi

1,G
i
2,C

� �h i� �
= 1 + 1000ð Þ ð8Þ

where C � V is a cluster of nodes.
Note that we consciously refrained from adjusting P-values for

multiple testing. The reason for this choice is that the relevance of our
results stems from the non-significance of a large fraction of the
obtained P-values. If we had corrected for multiple testing, we would
have inflated this fraction.

Rationale for using the graph edit distance as a measure of
network dissimilarity
In addition to our version of GED, there are various other network
dissimilarity measures–most notably, embedding-based74,75, kernel-
based76, and message-passing-based77,78 approaches. We decided to
use GED because, to the best of our knowledge, it is the only distance
measure satisfying the following requirements necessary for our
analyses:
1. To allow testing both the global- and the local-scale hypothesis,

we need a graph distance measure dðG1,G2Þ which is decom-
posable into local node distances dðG1,G2,uÞ.

2. The local node distances dðG1,G2,uÞ should depend on u’s local
neighborhoods in G1 and G2 but not on the overall network
topologies (otherwise, we would not be testing the local-scale
hypothesis when comparing local node distances).

3. Since a node alignment between the compared networks is given
(disease and drug terms are aligned between the networks), both
the global network distance dðG1,G2Þ and the local distances
dðG1,G2,uÞ should be node-identity-aware rather than
permutation-invariant.

4. Thedistancesneed tobecomputable in linear timew.r.t. the sizeof
the networks in order to enable our large-scale permutation tests.

While most of the kernel-based methods already fall short of
requirement 1, popular node-embedding-based approaches (e.g.,
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node2vec74 with subsequent distance computation in embedding
space) typically do not satisfy requirements 2 through 4. Exceptions
we are aware of are DeltaCon79 (which satisfies requirements 1, 3, and 4
but not requirement 2) and the graphlet degree signature80 (which
satisfies requirements 1 and 2 but not requirements 3 and 4). Highly
successful techniques in graph learning follow a message passing
concept77,78. When restricted to a single hop (as needed to satisfy
requirement 2), these methods define node u’s embedding in the
graph G1 as x1ðuÞ= gðflðvÞ∣v 2 N1ðuÞgÞ, where lðvÞ is the label of node v
(its disease or drug term) and g is a permutation-invariant function77

mapping sets to vectors (e.g., indicator function). Here, using unique
node labels renders the method node-identity-aware and allows to
drop lð�Þ as a parameter of g. Such approaches fulfill all four require-
ments, but are essentially equivalent to GED with uniform edge costs:
By comparing u’s embeddings x1ðuÞ and x2ðuÞ, we compare the node
labels of its neighboring nodes in G1 and G2, which is exactly what we
do with uniform GED.

Statistical analyses based on shortest path distances
We carried out analyses based on shortest path distances between (1)
all disease-disease pairs in a disease-gene-gene-disease network, (2) all
drug-drug pairs in a drug-protein-protein-drug network, and (3) all
disease-drug pairs in a disease-protein-protein-drug network. For each
network, we split themulti-set of obtained distances intomulti-sets X0

and X 1, where X 1 contains the shortest path distances for all nodes
pairs contained as edge in a reference network and X0 contains all
other shortest path distances. As reference networks,weused (1) drug-
, symptom-, comorbidity-, and variant-based diseasomes, (2) a bipar-
tite drug-indication network, and (3) an indication-based drug-drug
network. We then used the one-sided MWU test to assess whether the
shortest path distances contained in X 1 are significantly smaller than
those contained in X0.

BEV networkmedicine is committed to the local- and the global-
scale hypotheses
Recall that we have introduced BEV network medicine as the subfield
of networkmedicinewhich aims at uncovering diseasemechanisms by
mining large-scale disease-association data. Let D1 be data used
towards this end by BEV network medicine approaches and let d1 and
d2 be two diseases sharing an (unknown) molecular mechanisms M
such that D1 contains entries D1ðd1Þ and D1ðd2Þ. If D1 contains any
useful information about disease mechanisms as assumed by BEV
network medicine, M should lead to significant similarities between
D1ðd1Þ and D1ðd2Þ. The same holds for any other data D2 used as input
by BEV network medicine. BEV network medicine is hence implicitly
committed to the claim that the edge distributions of diseasomes G1

and G2 constructed based on similarities in D1 and D2 exhibit a higher
correlation than expected by chance. This, in turn, implies both the
global- and the local-scale hypothesis.

Implementation
We have implemented all network analysis approaches underlying this
article in a Python package called GraphSimQT. GraphSimQT uses
graph-tool81 for network handling and Scipy82 for carrying out statis-
tical tests and comes with all networks and scripts to reproduce the
results reported in this paper. Moreover, GraphSimQT can be used to
compare user-provided networks, using the techniques presented in
this paper. Significance of comorbidity associations was evaluated
using the Scipy implementation of Fisher’s exact test and the
statsmodels83 implementation of Benjamini-Hochbergmultiple testing
correction. The GraphSimViz web tool (https://graphsimviz.net) was
implemented using Vue.js as a frontend framework, the Drugst.One
(https://drugst.one) plugin as network explorer and a Django backend
with a PostgreSQL database.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All networks underlying the findings of this study are available at
https://doi.org/10.5281/zenodo.7498864. The following public data-
bases were used to generate the networks: IID (http://iid.ophid.
utoronto.ca/), DrugBank (https://go.drugbank.com/), DrugCentral
(https://drugcentral.org/), CTD (http://ctdbase.org/), DisGeNET
(https://www.disgenet.org/), OMIM (https://omim.org/), UniProt
(https://www.uniprot.org/), MONDO (https://MONDO.
monarchinitiative.org/), NeDRex (https://nedrex.net/), and HPO
(https://hpo.jax.org/app/). Version numbers of all used databases can
be found in an AIMe report84 for our study (https://aime.report/
6bdnlg). The comorbidity-based diseasome was constructed based on
data provided by the Estonian Biobank (https://genomics.ut.ee/en/
content/estonian-biobank, available from the Estonian Biobank upon
request). The constructionof thenetworks is described in theMethods
sectionof this paper.Our study isbasedonpublic databases (including
DisGeNET, OMIM, DrugBank, HPO, and more) which do not contain
sex-specific information. Therefore, no sex-specific analyses could be
carried out. Source data are provided in this paper. They can also be
downloaded from https://api.graphsimviz.net/download_
results. Source data are provided with this paper.

Code availability
The GraphSimQT tool is available at https://github.com/repotrial/
graphsimqt, together with scripts to reproduce all results reported in
this article. A stable version is available fromZenodo85 (https://doi.org/
10.5281/zenodo.7498864). The source code of the frontend and the
backend of GraphSimViz is available at https://github.com/repotrial/
GraphSimViz-frontend and https://github.com/repotrial/
GraphSimViz-backend, respectively.
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