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ADNA tumor virus globally reprograms host
3D genome architecture to achieve immortal
growth

Chong Wang1,7,9, Xiang Liu 2,9, Jun Liang1,9, Yohei Narita 1,9, Weiyue Ding1,9,
Difei Li1, Luyao Zhang1, Hongbo Wang1, Merrin Man Long Leong1, Isabella Hou1,
Catherine Gerdt1, Chang Jiang1,8, Qian Zhong 3, Zhonghui Tang4,
Carmy Forney5, Leah Kottyan 5, Matthew T. Weirauch 5,
Benjamin E. Gewurz 1, Mu-sheng Zeng 3, Sizun Jiang 6,10 ,
Mingxiang Teng 2,10 & Bo Zhao 1,10

Epstein-Barr virus (EBV) immortalization of resting B lymphocytes (RBLs) to
lymphoblastoid cell lines (LCLs)models humanDNA tumor virus oncogenesis.
RBL and LCL chromatin interaction maps are compared to identify the spatial
and temporal genome architectural changes during EBV B cell transformation.
EBV induces global genome reorganization where contact domains frequently
merge or subdivide during transformation. Repressed B compartments in
RBLs frequently switch to active A compartments in LCLs. LCLs gain 40% new
contact domain boundaries. Newly gained LCL boundaries have strong CTCF
binding at their borders while in RBLs, the same sites have much less CTCF
binding. Some LCL CTCF sites also have EBV nuclear antigen (EBNA) leader
protein EBNALP binding. LCLs have more local interactions than RBLs at LCL
dependency factors and super-enhancer targets. RNA Pol II HiChIP and FISH of
RBL and LCL further validate the Hi-C results. EBNA3A inactivation globally
alters LCLgenome interactions. EBNA3A inactivation reducesCTCF andRAD21
DNA binding. EBNA3C inactivation rewires the looping at the CDKN2A/B and
AICDA loci. Disruption of a CTCF site at AICDA locus increases AICDA expres-
sion. These data suggest that EBV controls lymphocyte growth by globally
reorganizing host genome architecture to facilitate the expression of key
oncogenes.

Human tumor viruses and other microbes cause approximately 20% of
humancancers each year1. DNA tumor viruses include Epstein-Barr virus
EBV, humanpapillomaviruses (HPV), hepatitis B virus, andmanyothers.
These DNA tumor viruses cause a wide variety of different cancers,
includingBcell lymphomas, cervical cancer, headandneckcancers, and
liver cancers, through expression of viral proteins or RNAs. Viral pro-
teins activate or repress host transcription, leading to increased onco-
gene expression or reduced tumor suppressor expression2.

EBV is the first human DNA tumor virus discovered more than 50
years ago3 and causes ~200,000 cases of cancers every year4. EBV
causes Burkitt’s lymphoma, Hodgkin’s lymphoma, post transplanta-
tion lymphoproliferative disease (PTLD), AIDS CNS lymphoma, naso-
pharyngeal carcinoma, and 10% gastric cancers5. These EBV-associated
cancers express different latent viral transcription programs that
include EBV nuclear antigens (EBNAs) and latent membrane pro-
teins (LMPs)6.
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EBV transforms short-lived primary human resting B lymphocytes
(RBLs) into continuously proliferating lymphoblastoid cell lines (LCLs),
in vitro7. These cells express the same viral latency genes as some EBV-
associated cancers, including PTLD and AIDS CNS lymphomas. LCLs
are therefore the ideal model system to study the molecular patho-
genesis of EBV-associated cancers. 10 EBV encoded proteins are
expressed in LCLs. EBNA1, EBNA2, LP, 3A, 3C, and LMP1 are required
for EBV transformation5. After EBV infection, EBNA2 and EBNALP are
the first EBV proteins expressed. EBNA2 is the major EBV transcription
factor (TF) that activates the expression of other viral latency genes
and many host genes8–13. EBNALP strongly co-activates EBNA2, partly
through removal of transcription repressors and activation of
EP30014–17. In addition, EBNA2 can also modulate the host TF DNA
binding, such as RBPJ and EBF1, to enable combinatory TF
interactions15,18. EBNA3A and EBNA3C repress CDKN2A/B expression to
overcome virus-induced senescence19–24. EBNA3C also promotes cell
cycle progression25–27. LMP1 activates the NF-κB transcriptional pro-
gram through both the canonical and non-canonical pathways28–31.

Genome-wide analyses of EBV TFs using chromatin immune pre-
cipitation (ChIP) followed by deep sequencing (ChIP-seq) find EBV TFs
and NF-κB subunits mostly bind to enhancer sites8,16,19,21,31–33. These
enhancers are sometimes >500 kb away from the transcription start
site (TSS), suggesting that a portion of viral-mediated chromatin
interactions occur through long-range looping interactions8,10,13,33.
Inactivation of the viral TFs EBNA2, EBNA3A, or EBNA3C can affect the
looping at a number of host loci, mainly exemplified byMYC, CDKN2A/
B, and BCL2L118,10,13. However, it is not known if EBV infection of B cells
causes global genome reorganization. Using POLR2A Chromatin
interaction analysis followedbypaired-end tag sequencing (ChIA-PET),
we previously linked EBV enhancers to their direct target genes13,
building the first virus-host 3D genome organization map. Deletion of
MYC EBV enhancer sites by clustered regularly interspaced short
palindromic repeats (CRISPR) lead to reduced MYC expression,
showing the essential nature of many of these regulatory elements
targeted by EBV13. An alternative silencing method using CRISPR
interference (CRISPRi) also downregulated the expression of EBNALP
enhancer targets17. Previous work characterizing EBV encoded TFs and
LMP1-activated NF-κB subunits also show that they assemble EBV
super-enhancers (ESEs)34. ESEs are also co-occupied by many host TFs
and have extraordinary broad and high ChIP-seq signals for active
enhancermarks, including the histonemodification H3K27ac. ESEs are
more sensitive to perturbation than typical enhancers, through both
genetic and chemical means34. Combinatory analysis of ChIA-PET and
CRISPR screen data in EBV-transformed LCLs also shows that ESEs
control host genes that are important for LCL growth and survival13,35.

To accommodate the small size of the nucleus, the host genome is
packaged in extremely complex, yet ordered patterns36. Host DNA is
packaged in a way that remote enhancers and their direct target genes
can communicate rapidly and efficiently, looping out many kilobases
of DNAbetween them37. 3D genome interactions canbe assessed using
chromatin conformation capture followed by deep sequencing (Hi-C),
and subsequently identifying the interaction frequencies between
genomic loci36,38–41. Initial Hi-C studies indicate that the human genome
is partitioned into A and B compartments. Genes within A compart-
ment are frequently actively transcribed whereas genes within B
compartment are generally repressed40,42. DNA tumor virus such as
hepatitis B virus can preferentially position its genome at the active
host chromatin, likely to be in the A compartments43. We investigated
the effect of EBV infection on host genome organization to determine
if EBV infection causes global genome architectural changes.

In this manuscript, we seek to unravel the effects of EBV, and its
viral TFs, on the host genome organization during infection and pro-
liferation, in both space (3D) and time (4D). We generate RBL and LCL
Hi-Cmaps, perform integrative analysis to compile the 4Dnucleomeof
EBV infection of B cells39. We validate the Hi-C findings using POLR2A

HiChIP in an EBV transformation time course experiment. We next
extend our 4D studies by testing if specific EBV protein contributed to
global host genome reorganization, using H3K27ac HiChIP in LCLs
conditional for EBNA3A expression. In addition, we uncover a role for
EBNA3C as a modulator of host genome organization. This represents
a comprehensive study into how a DNA tumor virus rewires the host
genome during infection, through viral transcription factors, to
achieve immortal growth.

Results
EBV infection globally changes the host cell 3D genome
organization
LCL 3D genome organization is well studied. GM12878 LCL Hi-C, ChIA-
PET, and HiChIP data all documented the high-resolution 3D genome
architecture of these cells41,44,45. However, little is known about the
human RBL genome organization and how does it differ from LCL. To
understand the dynamic and temporal changes in 3D genome orga-
nization between RBL and LCL, we generated Hi-C maps of healthy
donor RBL and LCL from the same donor. Primary human B lympho-
cytes were purified through negative selection. LCLs were generated
from these cells 4 weeks after EBV infection. RBLs and LCLs were
crosslinked and DNA was cut by HindIII. The DNA ends were filled in
with biotinylated dCTP and other nucleotides and ligated. After
reverse crosslinking, purified DNA was sonicated. Streptavidin beads
captured the ligation products. Purified DNA was paired-end
sequenced to generate the Hi-C maps.

Incorporating Hi-C data and H3K4me3 ChIP-seq, the genome can
be divided into transcriptionally active A (red) and transcriptionally
repressedB (blue) compartments (Fig. 1a, b, toppanels)40. Hi-C contact
frequency matrices of 100 kb chromosome bins were converted into
eigenvectors for both RBL and LCL through eigenvector
decomposition46,47. The signs of eigenvector values were determined
based on Pearson correlation between the eigenvector and
H3K4me3 signals. Positive eigenvector represents active chromatin (A
compartment). Negative eigenvector represents repressed chromatin
(B compartment). A and B compartment switch were evident com-
paring RBL with LCL (Fig. 1a, b top and c). Similar numbers of com-
partment flipping events were seen (Fig. 1c, left), indicating global
changes with EBV infection. More compartments were flipped from B
to A than A to B (Fig. 1c, right). However, the events of deactivation
were much weaker compared to the activation, as the range of eigen
vector increase was larger than decrease (Fig. 1c, right). Further,
genome-wide scanning of 100 kb bins indicated a global increase of
eigenvector values (Fig. 1c, right), suggesting chromatin activation
happened globally.

Enhancer interactions with specific enhancers or promoters
mostly occur within the same higher order genome organization unit,
known as contact domains41,48. Genomic regions have much higher
contact frequencies within the contact domains, than between contact
domains. To investigate this in the context of viral infection, Pearson
correlation of RBL and LCL contact matrixes were compared at the
chromosome level. The comparison between RBL and LCL identified
changes in contact domains within the same chromosomes. Small
contact domains in RBLsmerged into a big contactdomainas shownat
chromosome 3, between ~120 and 144Mb (Fig. 1a, yellow box). Within
this region, many B compartments in RBLs were converted to A com-
partments in LCLs, representing a chromosome with abundant B to A
conversion (Fig. 1a). Conversely, a large RBL contact domain was
converted into three small contact domains in LCLs at chromosome 17
between ~33.5 and 49MB (Fig. 1b, yellow box). Even though this region
was defined as A compartment, junctions at LCL contact domains had
lower Eigenvector values than RBLs (Fig. 1b). 3D structural changes
also correlated with chromatin status changes along the genome
(Fig. 1a, b). For example, active histone marks H3K4me1 signals were
significantly higher in regions shifted from B compartment to A
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Fig. 1 | RBL and LCL Hi-C interaction maps. Hi-C correlation maps of resting B
lymphocytes (RBL, orange triangle) compared to LCLs (LCL, teal triangle). Pearson
correlation (red as high; blue as low) based on normalized interaction frequencies
at 500 kb resolution are on the left. Eigenvector values for calling A (red) and B
compartments (blue) are shown on top, while the ChIP-seq tracks of histone
modifications, CTCF, and RNA-seq in RBLs and LCLs are shown at the bottom for
the regions outlined in yellow. aChromosome3, 120Mb to 144Mb.bChromosome
17, 33.5Mb to 49Mb. Benjamini-Hochberg adjusted p-values are 9.3e-57 and 1.5e-22

for the highlighted chr3 and chr17 regions, respectively, based on differential
compartment analysis of 100kb genomic regions using tool dcHiC96. c. Frequency
of eigenvector differences for 100kb genomic bins that have difference signs
of eigenvector values between RBL and LCL (left). Frequency of eigenvector dif-
ferences for all genome-wide 100kb bins (right). Here, positive difference/change
indicates increased eigenvector by EBV infection while negative difference repre-
sentsdecreasing. Numbers in thefigure legends indicate the total numberof 100kb
bins in the displayed group. d 3D genome structure inference of RBL and LCL.
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compartment at chromosome 3 (Supplementary Fig. 1a) while
H3K4me1 signals were significantly lower at chromosome 17 (Supple-
mentary Fig. 1b).

The 3D genome illustrations inferred from the Hi-C data using
miniMDS package based on amultidimensional scaling (MDS)method
at 10 kb resolution were compared between RBL and LCL (Fig. 1d)49. In
RBL, A and B compartments tend to be more evenly distributed at the
nuclear periphery. In contrast, LCL B compartments tend to con-
gregate on the nuclear periphery (Fig. 1d).

EBV infection causes dramatic changes in contact domain
boundaries
To further illustrate the mechanism through which EBV contributes to
3D genome structure changes, we focused on contact domain

boundaries that reside between contact domains. We calculated con-
tact domain boundaries at 25 kb bin resolution with +/− 1 bin
flexibility48. RBLs had 4187 contact domain boundaries while LCLs had
4915 contact domain boundaries (Fig. 2a). During EBV-mediated B cell
transformation, over ~8% of RBL contact domain boundaries were
eliminated, while LCLs gained ~21% new contact domain boundaries
(Fig. 2a). These data further support a dramatic and global 3D genome
reorganization during EBV mediated growth transformation.

CTCF is a key player in contact domain insulation and main-
tenance of global genome structure50. CTCF forms insulators at the
boundaries between neighboring chromatin domains, often with
opposite transcription activity51. To further characterize the properties
of contact domain boundaries lost or gained during transformation,
ENCODE RBL and LCL CTCF ChIP-seq data were re-evaluated. CTCF
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due to EBV transformation at chromosome 2, 153Mb– 159Mb. Top:ChIP-seq tracks

and contact frequencies of interactions in LCLs. Bottom: ChIP-seq tracks and
contact frequencies of interactions in RBLs. Highlighted in red squares are CTCF
profiles that changed at contact domain boundaries between the two conditions.
Heatmaps are colored based on normalized interaction frequencies at 25 kb reso-
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LCLs (teal).
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signals aroundCTCF sites and their neighboring +/− 2 kb regions at the
edges of contact domain boundaries were compared. For domain
boundaries only present in LCL, CTCF signalswere evident at the edges
of theboundaries in LCLs. At the same sites inRBLs,manyhadnoCTCF
signals (Fig. 2b). Interestingly, a portionof LCLgainedboundarieswere
also bound by EBNALP, as EBNALP is known to co-localizewith looping
factors in LCLs16. No evident EBNA3A binding was found at the same
boundary sites (Fig. 2b). For domain boundaries only present in RBLs,
CTCF signals were evident at the boundary edges in RBLs while at the
same sites in LCLs, CTCF signals were present only at ~50% of the
sites (Fig. 2c).

As an example, we focused on a new contact domain boundary
formed in LCLs at a 6Mb region on chromosome 2 (Fig. 2d). A cluster
of newly formed CTCF sites were evident at the LCL unique boundary
(Fig. 2d, top left red square). At the same position in RBLs, weaker
CTCF peaks were present inside a contact domain (Fig. 2d, bottom left
red square). A prominent CTCF peak at the edge of RBL contact
domain (Fig. 2d, bottom right red square) became greatlyweakened in
LCLs and was confined within the newly formed LCL contact domain
(Fig. 2d, top right red square). CTCF binding sites on both sides of the
altered contact domains remained mostly unchanged.

To determine if the genome reorganization occurred at genes
essential for LCL growth and survival identified by a genome-wide
CRISPR screen32, distal to local interaction ratio (DLR) was evaluated
at these genes35,42. Local interactions are defined as interactions
between a genomic region and other genomic regions within a 3Mb
window. Distal interactions are defined as those between the same
genomic region and other genomic regions outside the 3Mb win-
dow. A negative DLR indicated more local interaction compared to
distal interaction and enrichment in local looping. Cumulative DLR
values at 25 kb resolution near TSSs were determined for LCL
dependency factors in both RBLs and LCLs (Fig. 2e, solid lines).
Baseline DLR values, across all annotated genes were also plotted
(Fig. 2e, dotted lines). LCLs had more local interactions at TSS for
genes essential for LCL, while the rest of the genes had similar local
and distal interactions. Comparing with LCLs, RBLs had less local
interactions at TSS (Fig. 2e). The regions upstream of TSS had more
distal interactions in LCLs than RBLs (Fig. 2e). These data indicated
that the genomic loci that harbor genes essential for LCL growth and
survival undergo global genome reorganization during EBV trans-
formation to ensure the optimal expression of these LCL depen-
dency factors. The dip in DLR for RBLs at essential LCL genes,
although smaller than that in LCLs, represents a pre-existing local
interactions present at these genes (Fig. 2e, orange and teal solid
lines). Together, these data suggested that these essential gene
promoters are “primed” in B cells for a growth and proliferation
program (such as in the event of B cell activation by T cells), which is
usurped by the oncogenic EBV during transformation.

99% of LCL ubique domain boundaries are enriched with CTCF
binding in LCL, but only ~47.5%of themare also boundbyCTCF in RBL.
Similarly, ~98.3% of RBL unique domain boundaries are enriched with
CTCFbinding in RBL, but only ~22.2% are enrichedwith CTCF in LCL. In
addition, about 20.3% of LCL CTCF bound domain boundaries are
enriched with EBNALP binding in LCL, among which 76% are sites also
bound by CTCF in RBL.

Genome reorganization at ESEs
Since ESEs are important for LCLs growth13,34, we examined the gen-
omereorganization around ESEs during EBV transformation. Increased
genomic interactions in LCLs were evident around ESEs comparing
with RBLs (Fig. 3a, b).

Two ESEs located at the ATP1A1-CD58 loci, spanning a ~ 300 kb
genomic region (Fig. 3a, left). ATP1A1 is aNa+/K+ pumpand is important
for tumormetastasis52. CD58 signaling can cause isotype switching and
cytokine production53,54. Expression levels of ATP1A1 and CD58(LFA3)

correlated with poor prognosis in liver cancers55. During EBV trans-
formation of RBL into LCLs, ATP1A1 and CD58 expression greatly
increased by RNA-seq analyses (Fig. 3a, left). In LCLs, these genes and
their neighboring regions hadhigher interaction frequencies inHi-C. In
contrast, RBLs had much less interactions within the loci (Fig. 3a, left).
These changes were accompanied by the dramatic increase in gene
expression at these loci.

At the BUB3 locus, one ESE is linked to BUB3 (Fig. 3a, right). BUB3
is a spindle checkpoint protein that is important for cell cycle pro-
gression. BUB3 is frequently implicated in cancer for causing genome
instability56. In LCLs. The genomic regions within this locus had high
genomic interaction frequencies. However, much less genome inter-
actions were found within this locus in RBLs (Fig. 3a, right). The
chromatin reorganization at the locus was accompanied by increased
BUB3 expression (Fig. 3a, right).

To determine the global effect of EBV infection on genome
interactions at ESE associated genes13, DLRs were also determined at
the genes linked to ESEs by POLR2AChIA-PE in RBLs and LCLs. In LCLs,
these TSSs had more local interactions than distal interactions. In
comparison, RBLs had slightly less local interaction between TSSs and
their immediate neighboring regions (Fig. 3b).

To further validate the genome organizational changes found
comparing RBL and LCL Hi-Cs, POLR2A HiChIP was used to evaluate
differential looping patterns during RBLs to LCLs transition in an EBV
transformation time course45. Purified RBLs were infected with wild-
type EBV andgrown in culturemedia for 4weeks to establishLCLs. RBL
and LCL cells were crosslinked and DNA was cut by MboI. DNA ends
were filled with biotinylated dATP and other nucleotides and then
ligated in situ. The ligated DNA linked by POLR2A were enriched by
ChIP. Reverse crosslinked DNA was selected with avidin beads and
paired-end deep sequenced. In LCLs, abundant interactions were evi-
dent between ESEs and their direct target genes, or ESE first interacted
with neighboring regions and then looped to direct target genes
(Fig. 4a, b). Frequent interactions were also evident between ESE. In
contrast, little interactions were observed between ESEs and their
direct targets in RBLs (Fig. 4a, b). These data further illustrated the
spatial and temporal genome reorganization during EBV
transformation.

To estimate the frequency of interactions between ESE and BUB3
in RBL and LCL population, fluorescence in situ hybridization (FISH)
was used. RBLs and 4week LCLs from the samedonor were hybridized
with BACmids targeting BUB3 and ESE. In RBLs, ~50% of the cells had
monoallele colocalization and ~50% biallele non-colocaliztion. In LCLs,
~50% of the cells had biallele colocalization and ~50% monoallele
colocalization (Fig. 4c). These data further support the increased
interactions between ESE and BUB3 in LCLs identified by Hi-C and
HiChIP.

EBNA3A changes global 3D genome reorganization
EBNA3A is essential for EBV transformation of RBLs into LCLs.
Recombinant EBVdeleted for EBNA3A fails to immortalize RBLs57. LCLs
expressing a conditional EBNA3A fused tomodified estrogen hormone
binding domain (EBNA3AHT) grow normally in the presence of
4-hydroxytamoxifen (4HT). In the absence of 4HT, LCLs enter growth
arrest with increased p14ARF and p16 INK4A expression20,22,58. EBNA3A is
tethered to DNA through interactions with host TFs21,33 and regulates
host gene expression59–62. EBNA3A can bind to RBPJ, a Notch pathway
protein, andUSP46/USP12 or CtBP63–65. EBNA3A is also involved in long
range enhancer-promoter interaction13. However, it is not known if
EBNA3A can affect the global host 3D genome organization.

To evaluate the genome-wide effect of EBNA3A on host 3D gen-
ome organization, H3K27ac enriched enhancer interactions with their
direct targets were analyzed using HiChIP assay. Conditional
EBNA3AHT LCLs were grown under permissive or non-permissive
conditions for 14 days followed by H3K27ac HiChIP.
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In LCLs grown under permissive condition for EBNA3A expres-
sion, HiChIP identified 7429 significant H3K27ac loops between
enhancer-enhancer, enhancer-promoter, CTCF-CTCF, promoter-
promoter, or enhancer-unannotated sites (FDR < 0.01 and p < 0.05).
In LCLs grown under non-permissive conditions, HiChIP identified
much less loops, with 2508 significant H3K27ac loops between
enhancer-enhancer, enhancer-promoter, CTCF site, enhancer-
unannotated site, or promoter-promoter were identified (p < 0.05).
In the EBNA3A on condition, 2.4% of the loops were between CTCF
sites, 35.5% of the loops were enhancer-enhancer, 52% of the loops
were enhancer-promoter, and 10% of the loops were enhancer-
unannotated site. EBNA3A inactivation slightly increased the frac-
tions of loops between CTCF site (5%) and greatly increased
enhancer-unannotated site (40.7%), but greatly decreased enhancer-
promoter loops (20.5%), while enhancer-enhancer interactions
remained similar (33.5%) (Fig. 5a).

EBNA3A inactivation caused significant reductions in enhancer-
promoter loops. Many of these loops linked to genes essential for LCL
growth and survival, these include RBPJ and CCND2 (Fig. 5b). EBNA3A
inactivation greatly reduced the enhancer-promoter loops regulating
RBPJ. RBPJ is essential for LCL growth and survival. EBNA2, 3A, 3B, and
3C all bind to RBPJ. EBNA2, 3A, and 3C with mutations in their RBPJ
binding sites cannot support LCL growth. EBNA3A and 3C can block
RBPJ DNA binding in vitro. EBNA3A inactivation also decreased RAD21,
CTCF, and H3K27ac signals at these loci (Fig. 5b).

Some genes gained loops upon EBNA3A inactivation, these
included CCR2 and CCR5 (Supplementary Fig. 2a–d). ChIP-seq signal
enrichment analysis at differentially looped anchors identified a
number of host TFs that were either enriched or depleted, including
ETS1, MEF2C, and BATF (Supplementary Fig. 3).

H3K27ac Cut & Run was used to evaluate the effect of EBNA3A
inactivation on active enhancer mark. EBNA3A inactivation
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significantly reduced theH3K27ac signals at the sites that lost loopings
after EBNA3A inactivation (Wilcoxon Rank Test, P = 1.10E−37, Fig. 5c).
The effect of EBNA3A inactivation on CTCF DNA binding was also
evaluated by CTCF Cut & Run. The CTCF signals at the sites lost
looping after EBNA3A inactivation also were significantly reduced
(Wilcoxon Rank Test, P = 1.47E−35, Fig. 5c). Cohesin family members
RAD21, SMC1A, and SMC3 are essential for host genome organization.
RAD21, SMC1, and SMC3 form ring like structure and wrap around
DNA, allowing chromatin loops to extrude through the ring, therefore
bringing distant enhancer-promoter into close proximity with each
other66. As part of the loop extrusion model, cohesin rings are locked
in place by strong CTCF homodimerization as part of the way chro-
matin intearctions are regulated. RAD21 ChIP-seq was used to evlaue-
ate the effect of EBNA3A inactivation on RAD21 DNA binding. EBNA3A
inactivation also significantly reduced RAD21DNAbind at the genomic

loci that lost looping upon EBNA3A inactivation (Wilcoxon Rank Test,
P = 3.24E−73, Fig. 5c).

EBNA3A inactivation alters ESE-target gene connections
EBNA3A inactivation reduced MYC ESEs looping to MYC TSS by 3C-
qPCR13. H3K27ac HiChIPs were used to evaluate the genome-wide
effect of EBNA3A inactivation on ESE loopings. EBNA3A inactivation
significant reduced H3K27ac loops at the ATP1A1-CD58 loci (Fig. 6a).
EBNA3A binding sites were evident at the ESEs together with high
H3K27ac signals. In the presence of EBNA3A, abundant interactions
looped between ESE located near CD58 and ESE near ATP1A1. EBNA3A
inactivation greatly reduced the looping between the two ESEs. The
only remaining loopings were limited around CD58 in EBNA3A off
condition (Fig. 6a).MultipleCTCF sites andRAD21 siteswereevident at
the loci. EBNA3A inactivation also greatly reduced H3K27ac
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interactions between ESEs and BUB3 (Fig. 6a). An ESE was located
>200 kb downstream from BUB3 TSS. Strong EBNA3A peaks were
evident at the ESE while no EBNA3A peak was near BUB3. We also
observed an increase of the loopings at these two loci in the EBV
infection time-course HiChIP experiment (Fig. 4a, b).

Some ESEs link to multiple targets genes13. To understand the
effects of EBNA3A on ESE looping, we focused on two ESEs with the
greatest number of cis-interactions. EBNA3A inactivation reduced
H3K27ac looping from ESEs to multiple direct target genes (Fig. 6b).

EBNA3C inactivation reorganizes the CDKN2A/B locus
EBNA3C can regulate long-range looping at several genes essential for
LCL growth, including MYC and CDKN2A/B13. EBNA3C repression of
CDKN2A/B gene expression is essential for LCL to escape senescence20.
EBNA3Cdecreases the interactions betweenp16INK4A, p14ARF, andp15INK4B

promoters13. EBNA3C binds to the p14ARF promoter and recruits tran-
scription repressor SIN3A to this locus19. To further determine the
effect of EBNA3C on the local chromatin interactions at the CDKN2A/N
locus, circular chromatin conformation capture followed by deep
sequencing (4C-seq) was performed in EBNA3C conditional LCLs.
Conditional EBNA3C LCLs grown under permissive or nonpermissive
conditions were crosslinked and lyzed. DNA was first cut with HindIII
and ligated. DNA was purified after reverse crosslinking and cut again
with Dpn II. The DNA fragments were circularized by ligation and
inversePCRwasdone to amplify theDNA ligated to viewpoint followed
by deep sequencing. The viewpoint (Fig. 7a, anchor as indicated by
yellow vertical bar) was determined through an assessment of suitable
restriction enzyme fragmentswhich encompassed a keydistal EBNA3C
peak. We found that under EBNA3C permissive conditions, the distal
EBNA3C peak interacted with multiple genomic regions across this
locus (Fig. 6a, teal lines, EBNA3C On). Previous CTCF and POL2RA
ChIA-PET interactions in LCLs corroborated the 4C-seq interactions
(Fig. 6a, green and purple loops). When EBNA3C was inactivated, the
interaction frequencies increased in the regions across the locus,
including the senescence genes p15INK4B, p14ARF, and p16INK4A (Fig. 7a,
orange lines and redbars,p <0.05). These results suggest to amodel in
which EBNA3C represses local chromatin interactions, particularly
enhancer-promoter interactions, at the CDKN2A/B locus to repress
genes activated as part of the cellular senescence during EBV infection
and LCL establishment.

Loss of a CTCF site downstream of AICDA up-regulates AICDA
expression
AICDA encodes for a vital B cell protein, AID, which is important in
regulating class switch recombination and somatic hypermutation67.
AID-induced chromatin breaks at the MYC locus are required for
chromosome translocations that result in the MYC and immunoglo-
bulin enhancer fusions prevalent in Burkitt’s lymphomas68. Interest-
ingly, EBNA3C up-regulates AICDA expression, which plays a role in
increasing global mutational burdens in LCLs69. A detailed analysis of
the AICDA locus identified a key CTCF site downstream of AICDA,
looped towardsmultiple sites upstream shown by LCL CTCF ChIA-PET
(Fig. 7b, CTCFmotif in purple). The directionality of theCTCFmotif is a
key determinant of its insulator function44, and this particular motif
was oriented towards the upstream direction, insulating all its local
interactions in that directionality (Fig. 7b, green loops). During our
analysis, we observed that EBNA3C was bound near a CTCF site at the
AICDA promoter, which was looped to another CTCF site downstream
(Fig. 7b). To understand how EBNA3C controls looping around this
locus, we identified a suitable 4C-seq viewpoint that encompasses the
keyCTCFmotif (Fig. 7b, anchor as indicated by yellow vertical bar). Nla
III and Csp 6I were used in 4C-seq. Inactivation of EBNA3C resulted in a
significant increase in interactions originating from this CTCF anchor,
notably with the multiple other CTCF peaks in this locus (Fig. 7b,
orange/teal lines and red bars). EBNA3C can therefore reduce CTCF

insulator contacts at this locus (p <0.05). With 4C-seq analysis, we
speculate that the local chromatin conformation maybe accessible
upon EBNA3C activation and condensed upon EBNA3C inactivation.

CRISPR/Cas9 deletions was performed find a causal role of the
CTCFmotif onAICDA expression. To reducepotential off-target effects
through long-termed expression of the Cas9protein and its associated
sgRNAs, we nucleofected LCLs with ribonucleoprotein (RNP) com-
plexes of Cas9 and sgRNAs (see Material and Methods). Single cells
were cloned out from nucleofected LCLs through serial dilution, and
the expression of AICDA quantified for clones that successfully
underwent deletion (100% of motif deleted), or clones that received
RNPs but did not have an observable deletion (0% of motif deleted)
(Fig. 7c). Disruption of this CTCF motif resulted in a visible increase in
AICDA expression (Fig. 7c, p <0.05). Taken together, EBNA3C disrupts
local CTCF interactions at the AICDA locus to increase the expression
of this key B cell protein, thereby increasing the mutational burden
of LCLs.

Discussion
Herewe report that the host genome undergoes global reorganization
during a prototypical human DNA tumor virus infection and trans-
formation of host cells into cancer-like cells. Defining the nuclear
spatial and temporal changes during viral infection is a crucial dis-
covery step towards understanding the molecular pathogenesis of
virus infection. Understanding how these changes occur during
immortalization will not only provide insight into EBV oncogenesis,
but also elucidate transcriptional regulation during normal B cell
activation.

Previous incorporation of LCL POLR2A ChIA-PET data with viral
and host TF ChIP-seq data allowed the generation of the LCL 3D gen-
ome landscape, linking LCL enhancers to their direct target genes13.
This map highlighted the key components governing the regulation of
key oncogene expression, through validation studies using CRISPR
deletion of enhancers, or via essential genes identified through a
companion CRISPR screen in LCLs13,35. However, little is known about
the temporal genomeorganizational changes during EBV infection and
subsequent growth transformation, and how these changes drive gene
expression. Therefore, it is important to track the 3D genome orga-
nizational changes between RBLs and LCLs systematically.

POLR2AChIA-PET selectively enriches for enhancer-enhancer and
enhancer-promoter interactions linked by POLR2A44. However, the
large number of cell input required for a ChIA-PET experiment pre-
sented a technical hurdle to study primary RBLs, and the infection
process. The lower cell number input of the Hi-C assay also allows a
robust construction of a high resolution LCL 3D genome interaction
map, albeit at the cost of a higher depth of sequencing39. In this study,
we therefore first used Hi-C to define the RBL genome organization
map and compared it with LCLs, to delineate the temporal changes
following viral infection. We then used a combination of H3K27ac
HiChIP and 4C-seq to further determine the contributions of individual
EBV oncogenes on host 3D genome organization.

Mouse resting B cells undergo dramatic genome organizational
changes when stimulated by LPS and IL4, resulting in vastly increased
numbers in contact domains70. Similarly, we discovered that human
RBLs and LCLs also significantly differed in their chromatin contact
domain numbers. Furthermore, we found that in comparison to
uninfected RBLs, LCLs have increased local chromatin interactions at
ESEs and their associated genes, indicating that EBV is involved in SE
assembly to alter host genome organization. LPS and IL4 signaling
activate a cascade of transcription factors, such as NF-kB and STAT6;
similarly, LCLs have high NF-kB activity and express 4 essential EBNAs.
EBNAs can modulate host histone modifying enzymes to alter the
epigenetic landscape, which may lead to differential binding of host
TFs and looping factors on DNA17,71,72. In parallel, EBV infection can also
affect global host DNA methylation, which can affect the specific
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binding of specific TFs, notably CTCF73–75. CTCF can function as insu-
lator, blocking the spread of chromatinmodifications from one region
to the next region76, while cohesin subunits form rings to extrude out
DNAs between enhancers and their regulated genes. Activated mouse
B cells havemuch higher RAD21 ChIP-seq signals at the induced loops,
but onlymodestly higher CTCF ChIP-seq signals;70 further work will be
needed to understand how B cell activation can affect the DNA occu-
pancy of these looping factors. We elucidated in this study, that DNA
occupancy of looping factors CTCF, SMC1, and RAD21 can be affected
by EBNA2, 3A, and 3C in LCLs. Furthermore, EBNALP frequently co-
localizes with looping factors, although the EBNALP-specific interac-
tions may be difficult to tease out at the moment, due to the lack of a
conditional genetic system16. Future work should focus on the detailed
molecular mechanism through which EBV alters looping factor DNA
binding during infection and transformation.

SEs play critical roles in cell growth and differentiation77. Reduced
expressionof ESE key EBVcomponents (EBNA2, EBNA3A, andEBNA3C)
significantly reduced the looping. The assembly of ESEmay lead to the
formation of new contact domains, as ESEs can interact with multiple
downstreamtarget genes through long ranged chromatin interactions.
In addition to looping factors studied here, ZNF143 and YY1 are also
key factors whose roles are yet to be fully elucidated78,79. It has not
escaped our notice that previous EBNA ChIP-seq studies identified a
significantly enriched of these motifs near EBNA binding sites8,16,80. A
thorough, global analysis of how EBV usurps the B cell transcription
program through host TFs will be paramount to better understand the
intricacies of both viral and host processes.

Methods
Cell lines and antibodies
The GM12878, EBNA3A-HT, and EBNA3C-HT LCLs were previously
described12,24,58. All LCLs were grown in RPMI (Gibco) supplemented
with 1% L-glutamate, 1% Pen/Strep, and 10% FBS. B958 ZHT, P3HR1
ZHT cells, and virus induction were previously described81,82. 1 μg anti-
CTCF (Abcam Cat: #ab70303) antibody was used for CUT & Run; 1 μg
anti-H3K27ac (AbcamCat: #ab4729) antibodywas used for CUT&Run;
12 μg anti-RAD21 (Abcam Cat: #ab992) antibody was used for ChIP-
seq. 8 ug Anti-RNA Polymerase II RPB1 (Biolegend Cat: #664906)
antibody was used for HiChIP.

Primary human B cells and LCLs
De-identified blood cells were obtained from the Gulf Coast Regional
Blood Center, following institutional guidelines. The Epstein-Barr virus
studies described in this paper were approved by the Brigham &
Women’s Hospital Institutional Review Board. B cells were purified via
negative selection, with RosetteSepHuman BCell Enrichment Cocktail
and EasySep Human B Cell Enrichment Kits (StemCell Technologies),
according to the manufacturer protocols. LCLs were generated from
RBLs infected with B95.8 strain EBV for 28 days.

Hi-C
Hi-C was done following the Arima-HiC Kit protocol (Arima, A510008).
10 million cells were crosslinked with 2% formaldehyde for 10min at
room temperature. The reaction was quenched using 200mM glycine
for 5min. Samples were washed in PBS once, then resuspended in 1ml
of coldHi-C lysis buffer (10mMTris-HCL PH8.0, 10mMNaCl, 0.2%NP-
40,1x Protease inhibitors) and kept on ice for 15min. Nuclei were spun
down at 2500 x g for 5min and the supernatant were discarded. Pel-
leted Nuclei were washed once with 1ml of cold Hi-C lysis buffer then
resuspended in 450ul dH2O containing 15ul 10% SDS shaking at
900 rpm for 1 h in 37 °C. 75ul 20% Triton X-100 was added to quench
the SDS. The chromatin was digested with 600 units HindIII (New
England Biolabs) at 37 °C overnight with shaking. Restriction enzyme
was inactivated by incubating 30min at 65 °C. The single-strand
overhangs were filled in with 37.5 ul of 0.4mM biotin-14-dCTP (Life

Technologies) by 10ul of 5U/ul Klenow DNA polymerase (New England
Biolabs) for 1 h at 37 °C. The biotinylated DNAwas suspended in 6.6ml
ligation mix (5.4ml dH2O,700 ul 10xligase buffer,375ul 20%Triton X-
100, 80ul 10mg/ml BSA, 50ul 1U/ul T4 DNA ligase). DNA was ligated
overnight at 16 °C by slow rotating. Proteins were removed by adding
30ul of 10mg/ml proteinase K (New England Biolabs) and incubated at
55 °C for 30min. Crosslinking was reversed with incubation at 65 °C
overnight. DNA was purified with Phenol-Chloroform extraction and
followed by ethanol precipitation. Biotin dCTP at non-ligated DNAwas
removed with 5 units T4 DNA polymerase. 5ug of Hi-C DNA pellets
were dissolved in 130ul 1xTris buffer and sonicated. Covaris LE220with
parameter (Duty Cycle:15, Cycles/Burst:200, Time:1min) sheared DNA
to 300–700bp fragments. Hi-C library was prepared using size selec-
tionwith Ampure XP beads. BiotinylatedDNAwas recaptured by 100ul
Dynabeads MyOne C1 Streptavidin beads (Life Technologies).
Sequencing libraries were directly amplified on C1 beads with 8 cycles
of PCR using illumine primers and protocol. After PCR, solutions were
placed on a magnet and libraries were eluted into new tubes. The
libraries were then purifiedwithDNAClean andConcentrator columns
to a volume of 10ul. The sequencing libraries were checked using an
Agilent Bioanalyzer 2100 and quantified using a Qubit (Life Technol-
ogies). Libraries were sequenced on an Illumina NextSeq 500 with
75 cycles of paired-end reads.

ChIP-seq
ChIP-seq assays were done as previously described8. In brief, 1 × 107

cells were fixed with formaldehyde and lyzed. Cell lysates were soni-
cated and diluted. The lysates were precleared with protein A beads
and the incubated with antibody overnight at 4 °C, rotating. The
protein-DNA complexes were captured by protein A beads. After
extensive wash, the protein-DNA complexes were eluted and reverse
crosslinked. Qiagen PCR purification kits were used to purify the DNA.
Libraries were prepared using Illumina DNA library prep kit (E7645S).

Cut & run
Cut and run was done following the protocol from CUTANA™ ChIC/
CUT&RUN Kit (Epicypher, 14-1048). In brief, 0.5 million cells per
sample were harvested and washed with PBS once. Nuclei were iso-
lated with nuclear extraction buffer and then captured with activated
ConA beads. 1ug antibody targeting protein of interest was added to
nuclei solution and incubate at 4°C with shaking overnight. DNA was
cleaved with PAG-MNASE and released to solution. DNA was then
purified. The library was prepared using Illumina DNA library prep kit
(E7645S).

HiChIP
H3K27ac HiChIPs from LCLs conditional for EBNA3A expression were
performed aspreviouslydescribed45 usingH3K27acantibody (Abcam).
Briefly, 1 × 107 cells for each biological replicate were collected and
cross-linked by 1% formaldehyde for 10min. Chromatin was digested
using MboI restriction enzyme (New England Biolabs). DNA ends were
filled in with Biotin-14-dATP (Thermo Fisher) and other nucleotides
and then ligated. After sonication, sheared chromatin was pre-cleared
and 3-fold diluted as described in ChIP method and then incubated
with 4ug anti-H3K27ac antibody at 4 °C for overnight. Chromatin-
antibody complexwascapturedbyDynabeadProtein-Abead, followed
by capture with Streptavidin C-1 bead (Thermo Fisher). Libraries were
generated using Tn5 followed by PCR. HiChIP samples were size
selected by PAGE purification (300–700 bp). All libraries were
sequenced on the Illumina NextSeq 500. Each sample has an average
depth of ~20 million reads.

FISH
RBLs and4-week LCLs from the samedonorwere swelled in0.075MKCl
at room temperature for 20minutes and fixed with 3:1 Methanol: Acetic
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Acid. BACmids RP11-773A8 and CTD-2117B10 were labeled with green or
orange dUTP (Abbott Molecular). Fixed cells on the slides were hybri-
dizedwith the labeled BACmid probes. The nuclei were stained by DAPI.

Hi-C data analysis
Raw reads for LCLs and RBLs were processed with HiC-Pro pipeline
first (version v3.1.0)83 to obtain putative interactions with default
parameters under genome build hg19. Contact maps were generated
with bins under different resolutions (5k, 10k, 25 kb, 50k, 100 kb,
500 kb) in order to fit downstream analysis at different scales. Contact
maps were normalized with iterative correction and eigenvector
decomposition (ICE)47 using the version implemented within the HiC-
Pro pipeline. Normalized contact maps with necessary re-formatting
were then used to generate visualization files (.hic) and Pearson cor-
relation of contact matrix using Juicer tools (version 1.5)84 with ‘pre’
command.

Eigenvector (A/B compartments) of RBLs and LCLs was estimated
with 100 kb bin contact maps using ‘pca’ function implemented inside
R mixOmics package85. Eigenvector was then smoothed by a moving
average with a five-bin window. To correctly identify A from B com-
partments, Pearson correlation was calculated between Eigenvector
and H3K4Me3 ChIP-seq data signals downloaded from ENCODE pro-
ject (Supplementary Table 1, https://www.encodeproject.org/). For
each chromosome, positive correlation resulted no changes of
Eigenvector while negative correlation resulted sign flipping of the
whole Eigenvector.

Continuousputative contact domainboundaries inRBLs andLCLs
were identified using insulation score86 with parameters ‘-is 500000
-ids 200000 -im mean -bmoe 1 -nt 0.1’ based on normalized contact
matrix under 25 kb resolution. Overlaps of domain boundaries were
determined using ‘findOverlaps’ function in R GenomicRanges pack-
age. Starting from the first boundary on every chromosome, regions
between two consecutive boundaries after merging of overlapped
boundaries were defined as contact domains.

Estimation of distal to local ratios (DLR) of genome-wide 25 kb
bins were accepted from recently reported protocol42 with minor
changes to avoid infinities:DLR = log 2 Distal interactions + 1

Local interactions + 1 . Local interac-
tions were set as those within 3Mb region centered by the examined
bin except the bin’s self-interactions, while distal interactions are those
between the bin and regions outside the 3MB region. DLR ratios reflect
the relative strength of local interactions by considering distal inter-
actions as background, thus provide robust estimation of local reg-
ulatory status. Smaller DLR indicates increased local interactions. For
each gene set selected from previous studies13,35, DLRs surrounding
transcription starting sites of genes were aggregated together to show
changes between RBLs and LCLs. DLR scores are zero center normal-
ized to avoid potential sequencing depth biases in comparison. DLR of
all genes were calculated as control.

ChIP-seq and RNA-seq data in Hi-C analysis was downloaded from
ENCODE project (Supplementary Table 1) or generated in our lab
previously8,16,19,21. For ENCODE ChIP-seq, proper datasets were selected
to minimize potential biases if multiple labs producing the same
sequencing library87. ChIP-seq data for histonemodification and CTCF
in RBLs and LCLs was used to visualize chromatin status changes
associated to Hi-C interaction changes in Fig. 1. ChIP-seq of CTCF and
EBNAs proteins was used to visualize protein binding signals at Hi-C
contact domain boundaries in Fig. 2. For each contact domain, if its left
and right boundaries have CTCF binding sites (downloaded from
ENCODE) enriched,we identified a4 kb sub-regionof theseboundaries
which are centered by closest CTCF binding sites to contact domains
to show potential protein binding status. For those boundaries that
don’t have enrichedCTCFbinding,we selected the closest 4 kb regions
to contact domains to show protein binding. We ranked all contact
domains by the sum of CTCF coverage from their left and right
selected regions in RBLs and LCLs, separately. Heatmaps of ChIP-seq

data (CTCF and EBNAs) at these regions were then plotted using
average coverage of 100 bp windows, and ordered based on corre-
sponding ranks of contact domains.

ChIP-seq signal enrichment analysis
We postulated that transcription factor (TF) occupancy, as quantified
by ChIP-seq reads, around the top 1000 statistically differential loops
identified from H3K27ac HiChIP in EBNA3A On and Off conditional
LCLs would allow us to infer potential TFs that play a role in loop
formation and transcriptional activation in each state of EBNA3A. Input
normalized TF ChIP-seq occupancy data was downloaded and pro-
cessed for GM12878 LCLs from ENCODE. The signal of each TF was
computed within +/−2kb around each of the top 1000 differential
HiChIP loops from (1) EBNA3AOn and (2) EBNA3AOff. AWilcoxon test
was performed to test the signal of each TF in the EBNA3A On versus
Off condition, and the log2 fold-enrichment of TF signal in On/Off was
plotted.

4C-seq
EBNA3C-HT growth, withdrawal, and formaldehyde crosslinking were
performed as described above. The 4C-seq was done as previously
described88. The CDKN2A 4C-seq library was prepared using HindIII as
the first restriction enzyme, followed by DpnII. The AICDA 4C-seq
library was prepared using NlaIII as the first restriction enzyme, fol-
lowed by Csp6I.

Ribonucleoprotein CRISPR deletion of CTCF motifs
sgRNAs against the CTCF motif at the AICDA loci were designed with
Benchling (https://benchling.com).

Purified Cas9 protein and sgRNAwere obtained from Synthego. A
detailed protocol for the assembly and nucleofection of ribonucleo-
protein RNP complexes was previously described89. In short, 2ul of
10uM sgRNA was mixed with 1ul of purified Cas9 in 1.5ml RNase-free
microcentrifuge tubes for 5minutes at room temperature. Nucleo-
fection ofGM12878 LCLswasperformed on a 4D-Nucleofector (Lonza)
in SF media (Lonza), using the DN-100 program. Cells were incubated
for 24–48hours at 37C, before dilution seeding into 96 well plates to
obtain cells from single deletion clones. An eGFP vector (Lonza) was
co-trans nucleofected to assess nucleofection efficiency.

TIDE analysis for CTCF motif deletion
Genomic DNA from Cas9 RNP nucleofected cells (pooled or
single-cell clones) was extracted and PCR was performed to
amplify the deletion, as previously described89. PCR sequencing
was performed (Eton Biosciences) for the PCR product from both
control or CTCF motif-targeted cells. The sequencing output was
parsed using the Tracking of Indels by Decomposition (TIDE)
software (https://tide-calculator.nki.nl/).

4C-seq data analysis
4C-seq data analysiswas performed as previously described90. In brief, a
reduced hg19 genome was first constructed with a in silico digestion
using HindIII or NlaIII. Illumina sequencing barcodes and primer
sequences are trimmed and the resulting reads mapped onto the
reduced hg19 genome with bowtie v2 (-N 0 −5 0)91. Self-ligated and
undigested fragments are removed, and subsequent differential 4C-seq
interactions identified using the 4C-ker package90. The cis-interacting
regions were determined by a Hidden Markov Model, using the “near-
BaitAnalysis” function. Differential interactions between the EBNA3C
On and Off conditions were determined using DESeq2 through the
“differentialAnalysis” function with a p-value cutoff of 0.05.

ChIP-seq and CUT&RUN data processing
Sequencing reads for H3K27Ac, CTCF and Rad21 in EBNA3A on and off
conditionswere aligned tohumangenomehg19 usingBowtie v2 (ChIP-
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seq: default settings except the parameter −kwas set to 1; CUT&RUN: -I
10 -X 700 --local --very-sensitive-local --no-discordant --no-mixed --no-
unal --phred33 -k 1). Uniquely aligned reads were merged from repli-
cate samples and filtered to remove those located in blacklist regions.
Peaks were called using MACS v2.2.792 with default settings and para-
meter --SPMR to generate sequencing coverage tracks.

All GM12878 ChIP-seq data sets were downloaded from the
ENCODE project portal (https://www.encodeproject.org) and all other
data were previously generated as described13.

HiChIP data analysis
HiChIP reads from biological replicates were pooled and processed
(together with individual replicates) with the HiC-Pro pipeline (version
v3.1.0) against a MboI digested hg19 genome build. Long-ranged
interactionswere identifiedwith hichipper v0.7.3 using the parameters
for peaks (COMBINED, ALL). Read depth normalization for long-
ranged interactions identified was performed based off the number of
valid PET counts per library, as determined by HiC-Pro, for visualiza-
tion purposes via the WashU Epigenome Browser93.

The diffloops R package was used to read in long-ranged
interactions called from above for downstream filtering and analysis
of loops. Loops with FDR < 0.01, width > 5 kb, and in addition did not
have more than 4 PETs in one biological replicates and 0 PETs in the
other, were retained. Differential loops were identified in diffloops
using edgeR (p < 0.05). Input normalized ChIP-seq reads were
identified +/− 2 kb around loop anchors to calculate TF occupancy
around anchors.

Hi-C data 3D structural inference
To illustrate the difference of LCL and RBL at a genome structure level.
A 3D genome structural visualization is generated based on Hi-C data
at a 100k resolution. Firstly, ICE normalizedmatrix and related bed file
generated fromHiC-Pro83 are converted to a bedpe file with R package
HiCcompare94. ThenminiMDS (default parameters) is used to inferring
genome 3D structure based on a multidimensional scaling method49.
Finally, the output structural files from miniMDS were converted to
g3d format with g3dtools95 and visualized using WashU genome
browser95.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon reasonable request. All sequencing data generated in
this study (HiChIP, Hi-C, 4C-seq, CUT&RUN, ChIP-seq) have been
deposited in Gene Expression Omnibus (GEO) under accession ID
GSE128952. All data used in the analyses including both in-house
generation and publicly downloaded are listed in the Supplementary
Table 1. Source data for Figs. 4c and 7c are provided as a supplemen-
tary Source Data file. Source data are provided with this paper.
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