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Polarmeron-antimeron networks in strained
and twisted bilayers

Daniel Bennett 1,2,3 , Gaurav Chaudhary2, Robert-Jan Slager 2,
Eric Bousquet 1 & Philippe Ghosez 1

Out-of-plane polar domain structures have recently been discovered in
strained and twisted bilayers of inversion symmetry broken systems such as
hexagonal boron nitride. Here we show that this symmetry breaking also gives
rise to an in-plane component of polarization, and the form of the total
polarization is determined purely from symmetry considerations. The in-plane
component of the polarization makes the polar domains in strained and
twisted bilayers topologically non-trivial, forming a network of merons and
antimerons (half-skyrmions and half-antiskyrmions). For twisted systems, the
merons are of Bloch type whereas for strained systems they are of Néel type.
Wepropose that the polar domains in strained or twisted bilayersmay serve as
a platform for exploring topological physics in layered materials and discuss
how control over topological phases and phase transitionsmay be achieved in
such systems.

Recently it has been realized that ferroelectricity can occur in layered
systems comprisedof stacks of two-dimensional (2D)materials such as
hexagonal boron nitride (hBN) (see Fig. 1a), provided the stack of
layers does not have inversion symmetry1. In an aligned stack of hBN
(3R stacking), which has four non-orthogonal mirror planes and is
therefore non-centrosymmetric but still non-polar, sliding one layer
over the other breaks the mirror symmetry about the plane which is
parallel to and half-way between the layers, resulting in an interlayer
transfer of electronic charge and an out-of-plane polarization1–3 (see
Fig. 1b). For anti-aligned hBN (2H stacking), there is an inversion center
for every stacking, and the system is nonpolar. Applying an electric
field to aligned hBN, the polarization can be inverted via a relative
slidingbetween the layers (vanderWaals sliding)4,5 inorder to align the
polarization with the field (see Fig. 1c). This mechanism is highly
unconventional when compared to the ferroelectricity observed in
ABO3 oxide perovskites, in particular, because the polarization gen-
erated is perpendicular to the atomic motion.

In a twisted bilayer, two layers are twisted with respect to one
another, forming a supercell known as a moiré superlattice (see
Fig. 1d–f). A moiré superlattice can also be generated by introducing a
small relative strain or lattice mismatch between the layers. Twisting

has been shown to result in novel phenomena such as
superconducting6 and insulating7 behavior in bilayer ‘magic angle
graphene’, and recently ferroelectricity in hBN5,8,9. A small lattice mis-
match moiré superlattice formed between non-Bravais lattice mono-
layers has local regions with different stacking configurations, which
may locally break mirror symmetry. This symmetry breaking in con-
jugationwith the absenceof an inversion center in themonolayer leads
to local out-of-plane polarizationwith stacking-dependent direction2,3.
Thus, the stacking domains in strained and twisted bilayers can be
identified as out-of-plane ‘moiré polar domains’ (MPDs). The experi-
mentallyobserved ferroelectricity hasbeen attributed to themotionof
thedomainwalls separating theMPDs in response to anapplied out-of-
plane electric field. As a result, the MPDs with polarization (anti-)
aligned to the field (shrink) grow in size.

Something which to our knowledge has not been considered is
the possibility of an in-plane polarization, both in moiré superlattices
and commensurate layered systems. Because layered systems are
periodic in the in-plane directions, the in-plane polarization is a lattice-
valued quantity, and only changes in the in-plane polarization are well
defined, modulo a quantum of polarization10. 2D honeycomb com-
pounds with an AB sublattice structure have a triangular in-plane
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polarization lattice11, and it is natural to expect that changing the
stacking configuration in a bilayermay result in a continuous change in
the in-plane polarization.

We show with first-principles calculations of bilayer hBN that an
in-plane polarization is indeed generated in the layered system when
one layer slides over the other. As a consequence, theMPDsdonot just
point in the out-of-plane direction, but also have an intricate in-plane
component, such that the polarization vector has topologically non-
trivial winding, and the MPDs form a network of merons and anti-
merons (winding numbers ± 1

2). This indicates that thepolar properties
of layered systems can have rich topological structures. Topological
polar structures such as skyrmions12,13 and merons14 have been
observed in ferroelectricmaterials such as oxide perovskites, and have
been shown to result in novel physicsof interest for future applications
in nanotechnology, such as negative capacitance15 and high-density
information processing13. So far, band topology in the moiré systems
has appeared in the electronic structure of magic angle graphene16,17,
Chern bands in twisted topological insulators18, and topological
superconductivity in twisted cuprates19. The polar meron–antimeron
network suggests that moiré materials also exhibit real space topol-
ogy, echoing recent similar discoveries of topologically nontrivial
strain fields in twisted bilayers20 and magnetic textures in moiré pat-
terned topological insulators21.

Results
We first calculate the out-of-plane and in-plane polarization of 3R-
stacked bilayer hBN, using the SIESTA

22 and ABINIT
23
first-principles codes

(see the “Methods” section). The polarization is calculated in com-
mensurate 3R-stacked bilayer hBN as a function of relative displace-
ment s between the layers, i.e. in configuration space24, which can be
used to estimate the polarization in real space for arbitrary strains and
twist angles, provided the mismatch is small enough that the local
stackings are well approximated by a commensurate bilayer plus a
relative translation (see SupplementaryMaterial, Section I). A changing
in-plane polarizationwas found, of the same order ofmagnitude as the
out-of-plane polarization (see Fig. 2a and b).

The shape of the polarization field as a function of relative
stacking is determined purely from symmetry considerations,
although the magnitude is material specific. The aligned AA stacking
with space group P�6m2 (#187) has three out-of-plane mirror planes
running through C3 rotations of the x̂ + ŷ unit cell diagonal, where

x̂ =
1
0

� �
and ŷ=

1=2ffiffiffi
3

p
=2

� �
, and an in-plane mirror plane halfway

between the layers. The bilayer is therefore non-polar for this stacking,
but because the mirror planes are not orthogonal, it is not cen-
trosymmetric. Sliding one layer over the other by 1

3 or
2
3 along the x̂ + ŷ

unit cell diagonal (or one of its C3 rotations), the energetically favor-
able AB and BA stackings are realized, both with the polar space group
P3m1 (#156). The three mirror symmetries through C3 rotations of the
unit cell diagonal are preserved, but the in-plane mirror symmetry is
broken, allowing for polarization only in the out-of-plane direction.
Halfway between the AB and BA stacking configurations, at the saddle
point (SP, x = 1

2), the Abm2 (#39) space group is realized, which only
has an out-of-plane mirror symmetry through the x̂ + ŷ unit cell diag-
onal, assuming the relative translation of the layers is along this diag-
onal. Additionally, the system is left invariant aftermirroring about the
plane half-way between the layers plus a non-symmorphic translation
of 1

2 x̂ + ŷ
� �

, preventing any out-of-plane polarization. Thus, only an in-
plane polarization along the x̂ + ŷ unit cell diagonal is allowed. For any
other translation along the x̂ + ŷ unit cell diagonal or one of its C3
rotations, thebilayer has theCm (#8) space group,with only themirror
plane running through that diagonal. The polarization is then confined
to that mirror plane but can have both in-plane and out-of-plane
components. Finally, for a translation not along the unit cell diagonal,
theP1 (#1) spacegroup is realized, and thepolarization canpoint in any
direction.

Using the in-plane mirror symmetry of the AA stacking config-
uration, we can further deduce that the out-of-plane polarization P⊥
must be an odd function of in-plane translations (see Supplementary
Material, Section I). Requiring also that P⊥ transforms as a scalar field
with respect to C3 rotations about the out-of-plane axes through AA,

Fig. 1 | Ferroelectricity in twisted bilayers. a Sketch of a monolayer of hBN.
b Illustration of the interlayer charge transfer Δq(x) and resulting polarization
arising from relative sliding x in bilayer hBN, where qB and qN are the charges of the
B and N atoms, respectively, and d0(x) is the equilibrium layer separation. cOut-of-
plane polarization P⊥ and d stacking energy Vstack in bilayer hBN as a function of
relative stacking x along the unit cell diagonal, from first-principles calculations in

ref. 3. The stacking configurations at the extrema, AA,AB, SP, andBAare labeled and
sketched above the plots, and their stacking energies VAA, VSP, and VAB =VBA are
marked on the vertical axis of (d). Changing between the energetically stable AB
andBA stacking configurations via vdWsliding inverts the polarization between the
minimum and maximum values Pmin and Pmax. e–g Sketch of red and blue hex-
agonal bilayers with relative twist angles of, θ =0°, 5°, 10°, respectively.
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AB, and BA, it can be shown to be of the form

P?ðx,yÞ=Podd
1 sinð2πxÞ+ sinð2πyÞ � sinð2πðx + yÞÞ½ � ð1Þ

in fractional coordinates x in configuration space, where (x, y) ≡ x are
fractions of the lattice vectors x̂ and ŷ; the fractional and Cartesian
coordinates in configuration space are related via s = gx, where

g =
1 1=2
0

ffiffiffi
3

p
=2

� �
. We can also show that the in-plane polarization P∥,

must be even with respect to in-plane translations. Additionally, it
should transform like a vector with respect to C3 rotations about the
out-of-plane axes, and therefore must be of the form

ΔPkðx,yÞ= Peven
1

cosð2πxÞ � cosð2πðx + yÞÞ
cosð2πyÞ � cosð2πðx + yÞÞ

� �
ð2Þ

Eqs. (1) and (2) were fit to the 1D data along the x̂ + ŷ unit cell diagonal
in Fig. 2a and b. The 1D data were sufficient to obtain a good fit for
the 2D functions, which was verified by fitting to a larger set of
displacements parametrizing the entire unit cell in configuration
space. The out-of-plane and in-plane polarization in Cartesian
coordinates, are obtained by the transformations P⊥(s) = P⊥(g−1x) and
ΔPkðsÞ= g�1TΔPkðg�1xÞ and are shown in Fig. 2c and d, respectively.
The shape of the out-of-plane polarization in bilayer hBN as a function
of relative stacking is well known2,3: P⊥(s) forms a triangular domain
structure, with each domain having three neighboring domains of
opposite polarization. The in-plane polarization has a remarkable
structure: ΔP∥(s) flows into and out of the centers of the AB and BA
domains, at which it is zero. Themagnitude of ΔP∥(s) is maximal along
the lines joining the centers of the AB and BA domains. A six-pointed
star forms around the AA stacking configuration, at which both in-
plane and out-of-plane components of the polarization are zero,
modulo a quantum of polarization. Also, we note from symmetry that
ΔP∥(s)∝∇sP⊥(s).

Mapping from configuration space to real space, we see that the
total polarization has a different form, depending on whether the
moiré superlattice is induced via relative straining or twisting. For a
relative strain η between the layers, the mapping between configura-
tion space and real space is s = ηr. In this case, configuration space and
real space are related via a simple scaling by η. In Fig. 3a and bwe show
the out-of-plane and in-plane polarization in a strained bilayer, which is
identical to the polarization in configuration space. For a relative twist

θ, the mapping between configuration space and real space is

s≈θ
0 �1
1 0

� �
r, for θ≪ 1, (see Supplementary Material, Section I). For

scalar fields, the quantities are related via scaling by θ and a reor-
ientation of the cell vectors. For vector fields, the general form is dif-
ferent in both spaces. In Fig. 3d and e we show the out-of-plane and in-
plane polarization in a twisted bilayer.We can see that the out-of-plane
polarization has the same form, but the in-plane polarization curls in a
clockwise manner around the centers of the AB/BA domains.

The components of polarization in Fig. 2a and b were reproduced

by integrating the dynamical charges, Z *
κ,αβ =V

∂Pα
∂sκ,β

25 (see Supplemen-

tary Material, Section V). This further allows the decomposition of the
polarization into the contributions from thedisplacements of different
atoms and in different directions. The polarization ismostly generated
by in-plane sliding, with negligible contributions from the out-of-plane
displacements, i.e. the rippling of the interlayer separation as one layer
slides over the other. As a result, the antisymmetric part of Z*(s) makes
a significant contribution to the polarization, which is highly unusual
for a ferroelectricmaterial. The in-plane component suggests that the
polarization field in twisted bilayers does not just point in the out-of-
plane direction, but exhibits intricate winding which is topologically
nontrivial. Topology has played a manifest role in 2D materials,
ranging from band theory to skymrions in magnetic systems. Such
skymrions arise due to a mapping from a periodic unit cell to a
classifying space that is topologically a sphere, as quantified via a

homotopy π2ðS2Þ=Z winding.

In Fig. 3c and f, we show the local topological charge of
strained and twisted bilayer hBN, respectively (see the “Methods”
section). The AB and BA MPDs have equal and opposite winding.
The total winding in each moiré cell is zero, but individually the
AB and BA domains have winding numbers of ± 1

2, meaning the
MPDs form a triangular network of merons and antimerons. The
winding is concentrated at the domain centers and along the lines
joining the AB/BA domain centers to the AA stacking configura-
tions, and is zero along the domain walls. The magnitude of the
winding is the same for strained and twisted bilayers apart from a
reorientation of the axes, but the type of winding is different in
each case. For strained bilayers, the merons are of Néel type,
where the polarization flows into and out of the domain centers.
For twisted bilayers, the merons are of Bloch type, where the
polarization curls around the domain centers.

Fig. 2 | Total polarization in bilayer hBN. a Out-of-plane polarization P⊥ and
b change in in-plane polarization ΔP∥ in fractional coordinates along the config-
uration space diagonal, calculated with SIESTA (black) and ABINIT (red), where x̂ and ŷ
are the normalized lattice vectors of the bilayer, and ẑ is the unit vector normal to
the bilayer. The hollow points are first-principles measurements and the solid lines

are fitting to C3 symmetric basis functions. The winding of the total polarization
along the configuration space diagonal is sketched above. 2D plot of c out-of-plane
and d in-plane polarization ΔP∥ in configuration space, in Cartesian coordinates
s = (sx, sy) and ∣a∣ is the bilayer lattice constant. The black arrows represent the
commensurate bilayer lattice vectors.
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Discussion
In this work, we illustrate that, in addition to the out-of-plane polar-
ization in layered systems like bilayer hBN, there is also an in-plane
polarization as a result of a relative displacement between the layers.
This phenomenon is general to all layered systems, provided that the
bilayer lacks inversion symmetry. For the case of 3R-stacked hBN and
similar materials (MoS2, etc.), there are three out-of-plane mirror
planes related by C3 rotations plus an in-plane mirror plane half-way
between the layers, various combinations of which are broken as one
layer slides over the other.

Our findings indicate that the polar properties of layered systems
are much richer than previously thought. For untwisted bilayer hBN,
the energetically favorable AB and BA stackings have zero in-plane
polarization. However, knowledge of how the in-plane polarization
changes during the process of vdW sliding may prove useful. For
example, by measuring the change in out-of-plane polarization,
through a change in out-of-plane current, it is possible to determine
when vdW sliding occurs between AB and BA domains, but it is not

possible to determine in which direction the sliding occurs, i.e. to
which of the three neighboring domains. By measuring the change in
in-plane polarization, it may be possible to distinguish between these
three sliding processes, which may enhance the capacity for informa-
tion processing in ferroelectric layered systems.

Ferroelectric materials have been fabricated in many different
geometries, from 2D thin films and FE/PE superlattices to 1D
nanowires26,27 and nanotubes28,29 (in fact, all nanotubes are inherently
polar via flexoelectricity30–32), and 0D quantum dots33,34. Lower-
dimensional ferroelectric systems typically exhibit size-dependent
transitions in which the local polarization is more complex and can
exhibit vortices before the polarization eventually vanishes
completely35–38. Soon after, it was realized these polar structures with
vortices were topologically nontrivial39, and skyrmion-like polarization
structures were then identified, for example in barium titanate
(BaTiO3) nanowires embedded in a matrix of strontium titanate
(SrTiO3)

40. It has also been proposed that skymrionsmaybe created by
controlling domains and domain walls in ferroelectrics, where at low

Fig. 3 | Polar topology in bilayer hBN. aOut-of-plane polarization P⊥(r), b change
in in-plane polarization P∥(r) and c local topological charge q(r) for biaxially
strained hBN. d out-of-plane polarization, e change in in-plane polarization, and
f local topological charge for twisted hBN. Plots are shown in real space r = (rx, ry),
withwith length scales of the bilayer lattice constant ∣a∣dividedby strainη and twist
angle θ for strained and twisted bilayers, respectively. The black arrows represent
theMoiré superlattice vectors in each case. g–i Proposal of a system inwhich polar
topological phase transitions may be driven by an applied electric field E. A single

cell of a moiré superlattice is embedded in a dielectric medium. g At zero electric
field, a meron–antimeron pair forms, i.e. the topological charges in the individual
domains are Q= ± 1

2. h When a positive electric field is applied, the dielectric
medium has normalized polarization Pz = +1, changing the winding around the
boundary of the cell. As a result, the antimeron turns into an antiskyrmion (Q→ −1),
and the meron vanishes (Q→0). i When a negative field is applied, the reverse
occurs: the meron turns into a skyrmion (Q→ +1), and the antimeron van-
ishes (Q→0).
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temperatures the domain walls are of Bloch type and contain an in-
plane polarization41. Ferroelectric skyrmions have recently been
experimentally observed in ferroelectric/paraelectric superlattices12,13.
In addition to skyrmions, polar merons have also been considered
theoretically and signaled experimentally14.

A full characterization of topological polarization also provides
for an interesting avenue to explore. Onemajor conceptual problem is
that, unlike other topological invariants, the description of polariza-
tion in terms of exponentially localized Wannier functions requires
topologically trivial electronic bands. It may be that topological
polarization is a real space analog to the topology of electronic bands
in momentum space, with inversion symmetry and electric fields
playing the role of time-reversal symmetry and magnetic fields. How-
ever, there is much work to be done in order to obtain a better
understanding of topological polarization, and its relation to topolo-
gical insulators in the presence of symmetries42–45 as well as recently
discovered multi-gap topological states due to the natural reality
condition46,47. Nonetheless, it is evident that the topological polariza-
tion inmoiré superlatticesmay serve as a newplatform for topological
physics in real materials, with great potential for the observation and
control of topological phases in 2D materials.

We propose that it may be possible to drive a topological phase
transition using a single moiré supercell embedded in a dielectric
medium, from a single meron–antimeron pair into a skyrmion or
antiskyrmion, for a fixed applied electric field (see Fig. 3g–i). Such a
setup may be possible by embedding a moiré quantum dot in a
dielectric material, or in an aligned bilayer in which there is a local
strain or twisting around a defect, such that the bilayer is strained/
twisted inside a domain and unstrained/untwisted outside. At zero
electric field, a meron–antimeron pair forms in the supercell, and the
polarization in the dielectric medium is zero. When an electric field is
applied, the normalized polarization in the dielectric medium is ± ẑ,
which changes the winding along the boundary of the cell, adding to
the winding in one domain, turning the meron/antimeron into a sky-
rmion/antiskyrmion, and canceling the winding in the other domain,
making it topologically trivial, reminiscent of a bulk–boundary corre-
spondence. A similar effect was also observed in periodic superlattices
when the dielectric response of the system was taken into considera-
tion. As a result, the polarization field has an in-plane component
ϵ0ϵ?E: everywhere in the moiré superlattice, including the domain
walls. This leads to an induced winding along the domain walls, sug-
gesting that even in periodic moiré systems, the merons/antimerons
can be promoted to skyrmions/antiskyrmions, making the others
topologically trivial, with an applied electric field.

It may also be possible to manipulate the meron–antimeron
domain network via lattice reconstruction at different strains or twist
angles. For small strains or twist angles, significant lattice relaxation
can occur in order to increase the area of themore energetically stable
stacking domains24, making the polar domains sharper2,3. At zero
electric field, the AB and BA domains in 3R-stacked hBN relax evenly,
leading to sharp triangular polar domains. However, the positions of
the AA, AB, BA, and SP stackings are all preserved. As a function of
strain or twist angle, this is a continuous deformation that does not
break any symmetries, and the meron–antimeron network should
therefore be robust against lattice relaxation at zero electric fields.
When a field is applied, one type of domainwill grow and the other will
shrink, bending the polar domain walls. The robustness/fragility of the
meron–antimeron network in response to the motion of the domain
walls is not immediately clear. This goes beyond the scopeof thiswork,
however, and we leave it as a direction for future research.

In summary, we have illustrated that electronic out-of-plane and
in-plane charge transfer and polarization are fundamental properties
of layered systems without inversion symmetry. This will have far-
reaching consequences both in terms of fundamental physics in
strained/twisted and commensurate layered systems, such as

ferroelectricity and topology, as well as potential applications for
ferroelectric-based nanodevices comprised of layers of 2D materials.

Methods
First-principles calculations
First-principles density functional theory (DFT) calculations were
performed using the SIESTA

22 and ABINIT
23 codes, using PSML

48 norm-
conserving pseudopotentials49, obtained from Pseudo-Dojo50. SIESTA

employs a basis set of numerical atomicorbitals (NAOs)22, anddouble-ζ
polarized (DZP) orbitals were used for all calculations. The basis sets in
SIESTA were optimized by hand, following the methodology in ref. 51.
ABINIT employs a plane wave basis set, which was determined using a
kinetic energy cutoff of 1000 eV. Amesh cutoff of 1200Rywas used for
the real space grid in all SIESTA calculations. A Monkhorst–Pack k-point
grid52 of 12 × 12 × 1 was used for the initial geometry relaxations, and a
mesh of 18 × 18 × 1 was used to calculate the polarization. Calculations
were converged until the relative changes in the Hamiltonian and
density matrix were both <10−6. In both codes, the revPBE exchange-
correlation functionalwasused53. TheC0954,55 van derWaals correction
was used in the SIESTA calculations and the vdw-DFT-D3(BJ)56 correction
was used in ABINIT. In SIESTA, when an out-of-plane electric field was
applied, a dipole correction57,58 was used in the vacuum region to
prevent dipole–dipole interactions between periodic images. A dipole
cutoff in slab-like systems has not been implemented in ABINIT, so
although a vacuum space of 50Å was used to separate the periodic
images, the polarization is still slightly enhanced due to dipole–dipole
interactions.

The top layer was translated along the unit cell diagonal over the
bottom layer, which was held fixed. At each point, a geometry
relaxation was performed to obtain the equilibrium layer separation,
while keeping the in-plane lattice vectors fixed. The out-of-plane and
in-plane polarization were then obtained by calculating the Berry
phases of the Bloch states. The data were fitted to Fourier expansions
which respect the C3 rotation symmetry of bilayer hBN. It was found
that both the out-of-plane and in-plane polarization were well descri-
bed by the first order in the expansions, i.e. Eqs. (1) and (2). At each
point along the unit cell diagonal, DFPT calculations were performed
using ABINIT to calculate the dynamical charges.

Topological charge
Thewinding number, or topological charge, of the polarization field in
configuration space is

Q=
1
4π

Z
P � ∂sx

P× ∂syP
� �

ds ð3Þ

which can be mapped to real space in a strained or twisted bilayer as
mentioned in the main text. Calculating the topological charge of a
polarization field presents two additional complications when com-
paredwithmagneticfields. Firstly, the polarization is not of unit length
andmust be normalized. Secondly, there are regions in spacewith zero
polarization (moduloa quantumofpolarization), i.e. at theAA stacking
configurations, near which Eq. (3) diverges. This can be avoided by
calculating the topological charge following themethodology in ref. 59.

The polarization in the unit cell is discretized on a fine grid with
spacing Δ. A plaquette is constructed around each grid point (see
Fig. 4). Theplaquettes formagrid that is offset from theoriginal byhalf
a grid spacing (a similar technique is used in first-principles calcula-
tions for more efficient Brillouin zone integrations52). The zeros in
polarization at the AA stacking configurations are thus not included in
the offset grid. The local topological charge can then be defined as

qðsÞ= 1
4π

AðP1,P2,P3Þ+AðP1,P3,P4Þ
� � ð4Þ
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where A is the signed area spanned by three points on a sphere:

AðP1,P2,P3Þ=2 arg 1 +P1 � P2 +P2 � P3 +P3 � P1 + iP1 � ðP2 ×P3Þ
� � ð5Þ

The total charge is then

Q=
X
s

qðsÞ ð6Þ

The total Q in the configuration space unit cell sums to zero, with the
precision of around 10−12 even for relatively coarse grids. The winding
numbers of the MPDs converge to QAB = � QBA =

1
2 for grid spacings

below Δ = 10−4 (see Supplementary Fig. 5).
The meron–antimeron pair→ (anti)skyrmion transition driven by

an applied field was identified by calculating the topological charge
using fixed boundary conditions outside the moiré cell rather than
periodic boundary conditions. The normalized polarization in the cell
is the same, and the normalized polarization outside the cell is taken to
be sgn Eð Þ, where E is an applied field in the out-of-plane direction. The
winding in the interior of the cell is unaffected, but an additional
winding is induced along the boundary when a field is applied (see
Supplementary Fig. 6). The total winding along the boundary sums to
�sgnðEÞ. For sgnðEÞ= ± 1, the boundary contributes an additional
winding of ∓ 1

2 each to the meron/antimeron, promoting one to a sky-
mrion/antiskyrmion, and making the other topologically trivial.

Data availability
The data presented in this study were generated using free and open-
source first-principles packages as described in the “Methods” section.
The datasets generated during and/or analyzed during this study are
available from the corresponding author upon request.

Code availability
Code used to generate the plotted polarization structures is available
from the corresponding author upon request.
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