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White matter disconnection of left multiple
demand network is associated with post-
lesion deficits in cognitive control

Jiefeng Jiang 1,2,3 , Joel Bruss4,5, Woo-Tek Lee1,2,6, Daniel Tranel1,3,4 &
Aaron D. Boes 3,4,5,7

Cognitive control modulates other cognitive functions to achieve internal
goals and is important for adaptive behavior. Cognitive control is enabled by
the neural computations distributed over cortical and subcortical areas.
However, due to technical challenges in recording neural activity from the
white matter, little is known about the anatomy of white matter tracts that
coordinate the distributed neural computations that support cognitive con-
trol. Here, we leverage a large sample of human patients with focal brain
lesions (n = 643) and investigate how lesion location and connectivity profiles
account for variance in cognitive control performance. We find that lesions in
white matter connecting left frontoparietal regions of the multiple demand
network reliably predict deficits in cognitive control performance. These
findings advanceour understandingof thewhitematter correlates of cognitive
control and provide an approach for incorporating network disconnection to
predict deficits following lesions.

Cognitive control refers to a set of cognitive functions that align neural
processing with internal goals1,2. Cognitive control is crucial in every-
day behaviors such as switching between tasks3, suppressing habitual
but goal-irrelevant responses4, and canceling potent or initiated
actions5. There has been extensive cognitive neuroscience research
investigating the grey matter (GM) substrates of cognitive control6,7. It
has been shown that cognitive control is supported by distributed
cortical and subcortical areas8,9 with key cortical regions often
grouped together as a brain network (e.g., the ‘multiple demand’ net-
work MDN8,10,11). Lesions in these areas are followed by deficits in
cognitive control12,13. A more complete understanding of cognitive
control and its role in adaptive behavior requires that we understand
not only these GM regions that have been extensively investigated but
also the white matter (WM) tracts that connect them to coordinate
neural computations in the distributed GM regions. However, due to
the technical difficulties in recording neural activity from the WM,

there has been limited empirical evidence of the WM substrates
underlying cognitive control. Although WM structural measures are
correlatedwith cognitive control performance14–17, evidence showing a
causal role of these WM regions in cognitive control is lacking and
requires further investigation.

In this study, we investigate the WM correlates of cognitive con-
trol in a large sample of 643 individuals with focal brain lesions that
underwent neuropsychological testing of tasks requiring cognitive
control. In light of the aforementioned research on cognitive control in
the GM and recent studies showing that WM disconnection outper-
forms GM measures in predicting post-lesion behavioral outcomes18,
we hypothesize that WM disconnection of tracts connecting the cog-
nitive control network will be associated with impaired cognitive
control performance. Here, we are interested in domain-general cog-
nitive control, or the cognitive control processes shared among dif-
ferent tasks19–21. To measure domain-general cognitive control in
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behavior, we used two neuropsychological tests: the trail-making test
(TMT) that requires flexible switching between two tasks (i.e., linking
letters/numbers in ascending order), and the Stroop task that requires
inhibition of a habitual response (i.e., reading a word) and strength-
ening a novel but task-relevant response (i.e., naming the ink color of a
word). We used a cognitive control network in the hypothesis as an a
priori network of interest. Out of the many networks involved in cog-
nitive control, we used the MDN8 as an operationalization of the cog-
nitive control network. The MDN is defined based on multiple tasks
that rely on different aspects of cognitive control. The tasks defining
the MDN are also different from the neuropsychological tests used in
this study, thus further ensuring the test of domain-general cognitive
control.

To test our hypothesis, we performed both data-driven and
hypothesis-driven analyses. In the data-driven analyses,we employed a
machine learning approach to identify patterns of cerebral cortex
disconnection that maximally predict cognitive control performance.
In the hypothesis-driven analyses, we used the samemethods as in the
data-driven analyses but limited the analyses toWM tracts of theMDN,
in accordance with the hypothesized importance of the WM tracts
connecting the MDN in cognitive control. We then tested the
hypothesis by evaluating the predictive performance of the
hypothesis-driven analyses relative to the data-driven analyses (i.e., if
the hypothesizedMDN regions explain the same amount of variance in
cognitive control performance as the data-driven analyses spanning
the whole cerebral cortex, this would support the notion that MDN is
critical in cognitive control). In the analyses, the machine learning
approachfirst learned the predictivemodel from the training data. The
model was then subjected to out-of-sample, within- and between-task
cross-validation analyses to ensure external validity and general-
izability. To preview the results, we find that lesions involving WM
tracts connecting left frontoparietal regions of the MDN are reliably
associated with cognitive control impairment. Moreover, cognitive
control performance is better predicted using disconnection in WM
anatomical connectivity compared to disconnection in GM functional
connectivity, and by left hemisphere (LH) than right hemisphere (RH)
lesions.

Results
To investigate the lesion anatomy and disconnection patterns
predictive of impaired cognitive control, we acquired neu-
ropsychological test data and imaging scans from three samples
(total n = 643 unique subjects, Table 1) of patients with acquired
focal brain lesions. Lesions ofmultiple etiologieswere included and
are summarized in Supplementary Table 1. Behavioral performance
of cognitive control was measured using the TMT and Stroop tasks
(see Supplementary Note 1 for tests of construct validity). To better
capture cognitive control, analyses were conducted on test scores

that control for general processing performance (i.e., TMT: part B
score minus part A score; Stroop: interference score; see Methods
for detail). Behavioral performance was worse in test conditions
requiring more cognitive control (Supplementary Note 2) and was
not correlated with common co-occurring symptoms (Supple-
mentary Note 3). To ensure the external validity of the findings, we
split the sample into three groups (two groupswith TMT scores and
one with Stroop scores) prior to conducting analyses. This allowed
for three analyses with increasing levels of generalization (Fig. 1a):
within-sample (group 1), cross-sample (trained on group 1 and
tested on group 2) and cross-task validation (trained on TMT on
group 1 and tested on Stroop performance in group 3; neu-
ropsychological scores were standardized to allow for cross-task
prediction). Although some subjects with TMT data analyzed in
group 2 were also included in group 3 with Stroop scores, all ana-
lyses ensured that the training and test data used data from dif-
ferent participants. The duration between lesion onset and
behavioral testing was not correlated with cognitive control per-
formance (see below) in any of the three samples (TMT-1:
r = −0.007, p > 0.89; TMT-2: r = 0.054, p > 0.36; Stroop: r = −0.079,
p > 0.23), indicating that it is unlikely to be a confounding factor in
predicting cognitive control performance. The lesion distribution
of each participant group is shown in Table 1 and Fig. 1b.

Left prefrontal lesions correlate with cognitive control deficits
Prior to the disconnection analysis, we first identified lesion locations
associated with impaired cognitive control performance. Specifically,
individual structural brain scans weremanually traced to delineate the
location of the lesions. The lesion locationswere then transformed to a
template brain for cross-subject comparisons. Using these lesion
locations asmasks and behavioral data,weperformed lesion-symptom
mapping with multivariate sparse canonical correlations (LESYMAP22)
to identify lesion locations that predict behavioral scores (Fig. 2a). This
analysis demonstrated that cross-subject variance in the TMT scores
(combining TMT-1 and TMT-2 samples) can bemost reliably explained
by lesions of the left frontoparietal WM, with additional findings in
bilateral frontal, parietal, and posterior temporal areas (r =0.27,
p = 5 × 10−12; Fig. 2b). In comparison, lesions that involve the right and
left prefrontal cortex were associated with impaired Stroop scores
(r =0.30, p = 4 × 10−6, Fig. 2b, in red). Importantly, the supero-posterior
aspect of the left inferior frontal gyrus (area IFSp according to the HCP
atlas23) and the underlying WM of the frontal aslant tract is a region
included in both the TMT and Stroop lesion-symptom maps and a
latent variable derived from both assessments. As such, this region,
when lesioned, is associated with greater impairments in both TMT
and Stroop performance (Fig. 2b, in green, center MNI coordinates =
−44, 17, 22). To test if the amount of overlap between the TMT and
Stroop lesion-symptom map is significantly above chance, we con-
structed a null distribution by randomly permuting the locations of
clusters that survived multiple comparisons for each lesion-symptom
map within the brain mask and computed the amount of overlap over
1000 iterations. The observed overlap is significantly larger than the
median of the null distribution (p =0.005), suggesting that the shared
area is unlikely to be a coincidence. Next, we evaluated the location of
significant lesion-symptommap results relative to an a priori region of
interest (ROI) representing the WM tracts connecting the MDN
(Fig. 2c). To this end, we first derived individual streamline maps
representing WM connections from each cortical ROI of the MDN
using deterministic tractography in a normative diffusionMRI dataset.
The individual maps were combined using principal component ana-
lysis (PCA) to identify common regions ofWMconnectivity of theMDN
(n = 209, Fig. 2d). We found that the lesion-symptom maps overlap
with the WM connectivity of the MDN (Supplementary Note 4). In the
following analyses, we tested the hypothesis using measures of
disconnection.

Table 1 | Demographic information for each of the three
samples

Sample Group 1
(TMT-1)

Group 2
(TMT-2)

Group 3
(Stroop)

N 335 287 229

Age (SD) 54.54 (15.51) 51.71 (14.38) 51.09 (11.37)

Sex 149(F)/186(M) 139(F)/148(M) 117(F)/112(M)

Education, years (SD) 13.46 (2.82) 13.83 (2.69) 13.86 (2.69)

Handedness 300(R)/
26(L)/9(A)

256(R)/
24(L)/7(A)

207(R)/
17(L)/5(A)

Median (SD) time from
onset to scan, inmonths

13.3 (63.2) 10.1 (91.9) 18.5 (98.7)

Lesion laterality 115(R)/
157(L)/63(B)

110(R)/
110(L)/67(B)

85(R)/
83(L)/61(B)

R right-handed, L left-handed, A ambidextrous.
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Connectome-based predictive analysis overview
Next, weevaluated howdisruption of brain connectivity contributes to
cognitive control performance. In addition to the location of the WM
used in lesion-symptom mapping, we further leveraged the WM con-
nectivity to different cortical regions using AC maps seeded from
different cortical ROIs (Fig. 2c). The added information helps uncover
cognitive control-impairing disconnection patterns that lesion-
symptom mapping may be unable to identify. To identify disconnec-
tion patterns that predict cognitive control performance, we adopted
the connectome-based predictive modeling approach (CPM24,25). In
order to adapt this CPMmethod for a lesion analysis,we first estimated
the extent to which each individual lesion was connected to each
cortical ROI (Fig. 3; see the “Methods” section for detail). To this end,
each cortical ROI from the Human Connectome Project (HCP) atlas23

was used as a seed region to generate an AC and a functional con-
nectivity (FC)mapusing tractography and resting-state FC data. These
maps were derived from an independent dataset of healthy adults.
Next, each lesion mask was overlaid with the AC and FC maps derived
from each ROI to produce an AC-based disconnection score (Fig. 3a)
and an FC-based one. The disconnection score was the sum of the
voxel-wise connectivity values on a brain-wide connectivity map (i.e.,
AC or FC) that intersected with the lesion mask. This procedure
resulted in a score for each individual lesion reflecting either AC or FC
disconnection for each of the 360 ROIs. With CPM, the ROIs whose
lesion disconnection scores are significantly correlated with neu-
ropsychological scores in the training data (Fig. 3b) are selected to
predict neuropsychological scores in independent test data (Fig. 3c, d,
see the “Methods” section for detail).

In our analyses, training and test data were always independent to
avoid model overfitting. The performance of each prediction was
assessed by comparing predicted and actual behavioral test data using
Akaike Information Criterion (AIC), with a lower AIC indicating better
prediction. All AICs are listed in Table 2. To assess the effect size, we
calculated the ratio of prediction error between two predictivemodels
(denoted as R, see the “Methods” section). For example, an R score of
1.03 indicates that prediction error from the worse model is, on aver-
age, 1.03 times, or 3% larger than, that from the better model for each
participant.

AC predicts cognitive control deficits better than FC
We first compared CPM performance using AC and FC disconnection
scores. Across all three analyses with increasing levels of general-
ization, AC disconnection scores consistently outperformed FC dis-
connection scores in predicting neuropsychological measures of
cognitive control (cross-validation within TMT-1: ΔAIC = −18.6,
p = 9 × 10−5,R = 1.03; TMT-1→TMT-2:ΔAIC = −16.2,p = 0.0003,R = 1.03;

TMT-1→ Stroop: ΔAIC= −28.7, p = 6 × 10−7, R = 1.07; Fig. 4a). Further-
more, adding FC disconnection scores to AC disconnection scores did
not improve prediction performance, as there was no statistically
significant difference in AICs between CPMs using AC disconnection
scores only and CPMs using both AC and FC disconnection scores in
any of the three analyses (all ps > 0.31; Fig. 4a). Therefore, we focused
on AC disconnection scores in the next analyses.

LH predicts cognitive control deficits better than RH
We further tested the lateralization of prediction performance and
observed that AC disconnection scores in the LH were better pre-
dictors than those in the RH (cross-validation within TMT-1: ΔAIC =
−14.7, p = 0.0007, R = 1.02; TMT-1→TMT-2: ΔAIC = −12.0, p =0.0024,
R = 1.02; TMT-1→ Stroop: ΔAIC = −41.3, p = 1 × 10−9, R = 1.10; Fig. 4b).
Across the three analyses, predictionperformance did not significantly
improve by adding RH disconnection scores to LH disconnection
scores (all ps > 0.50; comparison between both hemispheres and LH in
Fig. 4b), suggesting that RH disconnection scores did not provide
additional information for prediction beyond that provided by LH
disconnection scores. The same patterns were observed when con-
trolling for the lesion volumes between LH and RH across subjects
(Supplementary Fig. 2). Similar to the findings above, LH AC dis-
connection scores consistently outperformed LH FC disconnection
scores in predicting cognitive control performance (cross-validation
within TMT-1: ΔAIC = −19.2, p = 7 × 10−5, R = 1.03; TMT-1→TMT-2:
ΔAIC = −17.2, p =0.0002, R = 1.03; TMT-1→ Stroop: ΔAIC= −25.5,
p = 3 × 10−6, R = 1.06; Fig. 4b).

MDN outperforms the whole brain in prediction performance
To test our hypothesis that variance in cognitive control performance
was related toWMdisconnection of theMDN,we constrained the CPM
model to the subset of ROIs of the MDN (17% of cortical ROIs). If the
MDN connectivity is critical to cognitive control, then prediction
performance should be similar to that using all cortical ROIs. In con-
trast, if regions outside the MDN are critical to the predictive perfor-
mance of the model, the model’s performance will suffer when
constrained to the MDN ROIs. When tested within the TMT, MDN
displayed numerically worse prediction performance. However, this
difference did not reach statistical significance (cross-validationwithin
TMT-1: ΔAIC = 3.7, p >0.13, R = 1.006; TMT-1→TMT-2: ΔAIC = 3.3,
p >0.15,R = 1.006; Fig. 4c). Importantly, when tested between the TMT
and the Stroop task, MDN yielded better prediction performance than
all ROIs (ΔAIC = −12.2, p = 0.0022, R = 1.02; Fig. 4c).Whenweexpanded
the comparison using CPM on both AC and FC disconnection scores,
the MDN still performed similarly to or better than all ROIs (cross-
validation within TMT-1: ΔAIC = 4.1, p >0.11, R = 1.006; TMT-1→TMT-2:
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Fig. 1 | Participant groups. a The training and test samples used in each of the
three analyses with increasing levels of generalization (i.e., within-sample cross-
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b Visualization of lesion distributions in each group. The color scale indicates the
number of patients having overlapping lesions. TMT trail-making task.
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ΔAIC = 4.0, p >0.11, R = 1.007; TMT-1→ Stroop: ΔAIC = −12.0,
p =0.0024, R = 1.03; Fig. 4d). The better performance ofMDN in cross-
task generalization may be due to overfitting to the TMT task when all
ROIs were used. That is, some non-MDN ROIs that were helpful only in
predicting TMT scores were selected in the model and this led to
reduced performancewhen tested on Stroop scores. As an assessment
of the goodness of prediction, predictions from MDN were positively
correlated with actual neuropsychological measures in the cross-
sample and cross-task generalization tests (TMT-1→TMT-2: r =0.26,
p = 9 × 10−6; TMT-1→;Stroop: r =0.21, p = 0.0015; Fig. 4e).

Evaluation of specificity
In order to evaluate the specificity of this analysis for the MDN, we
performed additional tests. First, we conducted a control CPM analysis
using a set of randomly selectedROIs such that the newROI set and the
MDN have the same number of ROIs. The AIC for the random ROI set
was then recorded. The procedure was repeated for 1000 times, pro-
ducing an approximation of the null distribution of AIC. MDN sig-
nificantly outperformed themedian of the null distribution (p =0.001,
Fig. 4f). Second, wecomparedpredictions from theCPMusingMDN to
other variables less specific to cognitive control. This includes pre-
dictions derived from the edge density map18, which quantifies the
overall density of streamlines connecting GM regions throughout the
brain and has been shown to predict domain-general cognitive
performance18 and lesion volume. CPM using MDN was marginally
better than the edge density map in the cross-validation test within
TMT-1 (ΔAIC = −5.9, p =0.0503, R = 1.01; Fig. 4c). The advantage
became statistically significant as the level of generalization increased
in the analyses (TMT-1→TMT-2: ΔAIC = −11.2, p =0.0036, R = 1.02;
TMT-1→ Stroop: ΔAIC = −17.8, p =0.00014, R = 1.04; Fig. 4c). CPM

using MDN also outperformed prediction using total lesion volume in
all three analyses (cross-validation within TMT-1: ΔAIC = −13.1,
p =0.0014,R = 1.02; TMT-1→TMT-2:ΔAIC= −14.2, p =0.0008,R = 1.03;
TMT-1→ Stroop: ΔAIC = −34.6, p = 3 × 10−8, R = 1.08; Fig. 4c).

Lastly, we compared CPM using MDN to predictions based on
lesion location without disconnection information (conducted using
multivariate lesion-symptom mapping with lesion-symptom map).
Two lesion-symptom map-based predictions were tested. First, we
computed a lesion-symptom map-based on the TMT-1 sample and
used it to predict behavioral scores in the TMT-2 and the Stroop
samples separately. Both tests showed better performance for CPM
using MDN (TMT-1→TMT-2: ΔAIC = −7.8, p = 0.020, R = 1.01; TMT-
1→ Stroop: ΔAIC = −25.2, p = 3 × 10−6, R = 1.06; Fig. 4g). Second, we
performed the CPM on the collection of HCP cortical ROIs that over-
lapped the LESYMAP above (23% of all ROIs). A comparison of AC
pattern maps between this set of ROIs and the ROIs included in the
MDN is visualized in Supplementary Fig. 3. This CPM numerically
outperformed the CPM on MDN in the analysis of TMT-1→TMT-2
(ΔAIC= −4.5, p >0.095, R = 1.01, Fig. 4g). However, it showed inferior
predictive performance compared to the CPM on MDN when pre-
dicting Stroop performance using information from the TMT-1 sample
(ΔAIC= −15.3, p = 5 × 10−4, R = 1.03; Fig. 4g). Together the results show
that AC disconnection in the MDN predicted cross-task cognitive
control performance better than a CPM that utilized results of lesion-
symptom mapping.

Comparison to other networks of cognitive control
A limitation of the current study is that the MDN is only one out of
many possible iterations of cognitive control networks. As an
exploratory analysis, we compared CPM performance on the MDN to
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CPM performance on each of three networks that are involved in
cognitive control and contribute to regions within the MDN, namely
the frontoparietal network, the cingulo-opercular network and the
dorsal attention network (Table 3). After FDR correction, the dorsal
attention network showed better performance than the MDN in the
TMT-1→TMT-2 analysis (ΔAIC = −7.2, p = 0.026, R = 1.01). However,
MDN outperformed the dorsal attention network in the TMT-
1→ Stroop analysis (ΔAIC = −10.4, p =0.0055, R = 1.02). No other net-
works were significantly better than MDN in predicting out-of-sample

performance after FDR correction. The overall similar prediction per-
formance may be partly attributed to the overlap of the networks and
the MDN. More research is needed to further delineate the neuroa-
natomy of the cognitive control network.

Frontoparietal WM tracts predict cognitive control
performance
To visualize the feature selection results of the CPM, Fig. 5a shows the
cortical regions from which anatomical disconnection is predictive of
impaired cognitive control (surface view of cortical ROIs color-coded
according to predictive performance). In order to identify these dis-
connection patterns within the WM, we used FSL’s permutation ana-
lysis of linear models (PALM, see the “Methods” section). Each cortical
ROI’s brain-wide ACmapwas used as the independent variable and the
T-statistic of each cortical region (shown in Fig. 5a) was used as the
dependent variable. In so doing, we can identify WM voxels that show
stronger connectivity (i.e., having higher streamline values) with cor-
tical ROIswhoseACdisconnection scores aremore strongly associated
with cognitive control performance. In other words, disconnection in
these WM voxels will be selectively linked to cognitive control per-
formance. The results for TMT (TMT-1 and TMT-2 combined) and
Stroop scores were shown in Fig. 5b and c, respectively. Both test
scores relied on LHWM tracts linking frontal and parietal areas. When
contrasting the two tests, Stroop appeared to dependmore on frontal
and posterior temporal WM tracts, whereas TMT showed a stronger
reliance on both frontoparietal and occipito-temporal WM tracts
(Fig. 5d). Importantly, both tests overlap in frontoparietal WM tracts
(Fig. 5e), suggesting a shared WM correlate for different cognitive
control tasks. The shared WM tracts (green in Fig. 5e) further overlap
theACmapof theMDN (Fig. 5f). To testwhether the volumeof overlap
is significantly above chance, we performed a random permutation
test by randomly shifting the locations of the shared WM clusters
(green in Fig. 5e) and computing its overlap volumewith theACmapof
the MDN across 1000 iterations. The overlap volumes thus from ran-
domization formed a null distribution. The volume of overlap from
Fig. 5f was significantly higher than the median of the null distribu-
tion (p <0.001).

Discussion
Cognitive control guides goal-directed behavior and is a hallmark of
human intelligence. We aimed to identify the WM correlates under-
lying cognitive control by predicting cognitive control performance
based on the location and connectivity patterns of acquired focal
lesions. To comprehensively evaluate prediction performance, pre-
diction outcomes were analyzed at three different levels of abstrac-
tion: within-sample cross-validation, cross-sample generalization, and
cross-task generalization. Consistently across the three analyses, we
observed four main results: (1) AC disconnection scores outperform
FC disconnection scores and lesion-symptom maps in predicting
cognitive control performance, (2) AC disconnection scores in the LH
show better performance than RH, (3) AC connecting the MDN shows
similar or better prediction performance compared to the whole-brain
AC data, and (4) WM tracts connecting frontal and parietal areas are
more strongly connected to cortical areas whose AC patterns better
predict cognitive control performance.

When predicting cognitive control performance, we employed
disconnection scores that inferred the connectivity strength of each
lesion location withmultiple cortical ROIs. This approach captures the
communicative functions of the WM. These results add to the litera-
ture in at least four important ways.

First, our results are consistent with other recent work demon-
strating better prediction performance using AC-based than FC-based
disconnection scores (Fig. 4a) and lesion-symptom maps
(Fig. 4g)18,26–28. Our findings extend this observation to the field of
cognitive control. One possible explanation is that GM lesions are
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patient’s disconnection score for that specific cortical ROI. This process is repeated
for each AC map derived from 360 cortical ROIs. b Feature selection of dis-
connection scores in CPM. A feature (i.e., disconnection scores for an ROI) is
selected if it is positively correlated with behavioral scores with uncorrected
p <0.01 (tested using two-sided Pearson’s correlation). c For a selected feature,
disconnection scores are regressed against behavioral scores of the training sample
to obtain regression coefficients (in red). The coefficients are the output of learn-
ing. (d) the coefficients are applied to disconnection scores from a test sample to
make predictions of behavioral scores (in red), whichwere then compared to actual
behavioral scores to assess prediction performance.
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better compensated by plasticity mechanisms relative to WM
lesions28,29, and thus the location is less predictive of behavioral out-
comes long after the lesion.

Second, our results suggest LH disconnection scores predict
cognitive control performance better than the RH, a finding consistent
laterality differences observed in brain activity while performing cog-
nitive control tasks30,31. Note that due to the limited tests of cognitive
control in our data, inhibitory control (i.e., inhibiting a potent response
or canceling initiated action), which involves the right inferior frontal
cortex32, was not tested in this study. Thus, future research needs to
include more neuropsychological tests of cognitive control to inves-
tigate both generic predictors capturing domain-general cognitive
control and predictors specialized for individual cognitive control
types (i.e., domain-specific cognitive control). In our experimental
design, the TMT and the Stroop task share cognitive control processes
that inhibit the processing of distractors (e.g., non-target letters and
digits in theTMTand thewordmeaning in the color–word conditionof
the Stroop task). Inhibition is believed to be a key component of
domain-general cognitive control33. These shared processes may be
reflected in the overlap of the lesion-symptom maps (Fig. 2b) and the
overlap of cortical ROIs whose AC disconnection scores significantly
scaled with TMT and Stroopmeasures (Fig. 5a). On the other hand, the
TMT and the Stroop tasks also rely on different, domain-specific cog-
nitive control processes. For example, the TMT part B involves

cognitive flexibility that switches search targets between letters and
digits, in contrast to the sustained, stable cognitive control on the
color–word interference portion of the Stroop task. Cognitive stability
and cognitive flexibility are considered different aspects of cognitive
control34. Additionally, the two tasks have distinct targets of cognitive
control: the TMT engages cognitive control to modulate visual search,
whereas the Stroop task requires cognitive control to modulate
stimulus-response associations35. Indeed, the co-existence of brain
regions supporting domain-general and domain-specific cognitive
control is a common finding in the literature20,21 and is typically
documented as partially overlapping networks, each of which repre-
sents cognitive control in a specific domain. We speculated the par-
tially overlapping sets of brain areas for the TMT and the Stroop
measures in Figs. 2b and 5a may capture the co-existence of domain-
general and domain-specific cognitive control.

Our third main finding is that prediction performance using dis-
connection scores from the MDN, which is ~17% of the 360 cortical
ROIs, is similar to or better than the performance using all ROIs’ dis-
connection scores (Fig. 4c). This is consistent with theories and
empirical evidence that cognitive control is mainly supported by a
network of selective cortical and subcortical regions8,9. Although there
is diversity in how the network is defined and what brain areas are
included in this network, a general consensus is that prefrontal and
(inferior) parietal regions are involved in the network to implement

Table 2 | Model performance (in AIC) and confidence interval (in parentheses) from cross-validation within TMT-1,
TMT-1→ TMT-2 generalization, and TMT-1→Stroop generalization

Both hemispheres Left hemisphere Right hemisphere

TMT-1: Cross-validation

All ROIs AC −86.8 (−89.2, −82.8) −87.4 (−89.7, −83.7) −72.7 (−76.2, −66.6)

FC −68.2 (−73.6, −60.8) −68.1 (−73.1, −61.4) −74.5 (−77.5, −69.5)

AC + FC −86.2 (−88.7, −82.3) −86.3 (−88.8, −82.4) −75.3 (−78.4, −71.3)

Multiple demand network AC −83.1 (−85.6, −78.9) −83.2 (−85.5, −79.0) −68.5 (−74.6, −60.5)

FC −62.7 (−70.5, −55.4) −62.2 (−69.8, −55.7) −74.5 (−77.0, −69.6)

AC + FC −82.5 (−85.1, −78.5) −82.3 (−84.9, −78.2) −75.2 (−77.8, −70.8)

Baseline Edge density −77.3 (−80.3, −73.7) N/A N/A

Lesion volume −70.0 (−73.5, −65.7) N/A N/A

TMT-1→ TMT-2

All ROIs AC −160.4 (−234.0, −94.6) −160.4 (−237.0, −106.4) −148.4 (−216.1, −78.8)

FC −144.2 (−212.3, −76.8) −143.3 (−215.6, −92.7) −144.1 (−209.0, −66.3)

AC + FC −159.8 (−232.6, −92.4) −160.4 (−237.1, −106.1) −149.1 (−214.8, −72.0)

Multiple demand network AC −157.1 (−233.8, −91.5) −156.4 (−231.9, −101.6) −150.5 (−221.0, −79.5)

FC −146.4 (−211.6, −79.8) −139.8 (−214.6, −89.1) −146.4 (−208.6, −70.9)

AC + FC −158.7 (−233.0, −91.3) −156.8 (−232.7, −101.8) −150.0 (−213.8, −74.5)

Baseline Edge density −145.9 (−223.0, −85.4) N/A N/A

LSM −151.0 (−217.2, −101.0) N/A N/A

LSM+CPM −161.6 (−201.1, −154.1) N/A N/A

Lesion volume −142.9 (−214.1, −83.7) N/A N/A

TMT-1→Stroop

All ROIs AC 123.6 (82.1, 157.5) 121.8 (79.0, 150.0) 162.8 (134.9, 185.4)

FC 152.3 (109.0, 181.9) 147.3 (112.8, 181.5) 154.5 (114.6, 183.8)

AC + FC 125.2 (83.1, 165.1) 120.7 (77.3, 150.5) 155.0 (113.6, 182.4)

Multiple demand network AC 111.4 (67.7, 149.2) 109.8 (64.6, 138.9) 157.0 (129.3, 183.4)

FC 160.0 (119.8, 188.6) 131.3 (89.3, 170.6) 165.0 (131.4, 191.3)

AC + FC 118.8 (74.0, 159.4) 105.8 (59.0, 135.7) 165.2 (129.8, 190.8)

Baseline Edge density 129.2 (97.6, 157.0) N/A N/A

LSM 135.4 (73.0, 219.5) N/A N/A

LSM+CPM 126.6 (81.3, 162.1) N/A N/A

Lesion volume 145.9 (116.1, 171.7) N/A N/A

N/A: Not applicable. LSM+CPM: CPM performed on ROIs defined by lesion-symptom map results on TMT-1. Bold font indicates the analysis conducted.
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cognitive control as prefrontal top-down modulation of posterior
processing2. Supporting this view, our last main result shows that
disconnection in WM tracts connecting frontal and parietal areas is
predictive of impaired cognitive control performance (Fig. 5d). Simi-
larly, fMRI connectivity analysis has shown that neural activity in
posterior visual areas is modulated by prefrontal activity as a function

of the strength of cognitive control36, which also suggests connectivity
between frontal and posterior cortical areas is crucial in supporting
cognitive control. Importantly, lesions in the frontoparietal WM tracts
are associated with impairments in both neuropsychological tests of
cognitive control (Fig. 5e). This result suggests shared WM correlates
between the two tasks involving cognitive control andmay reflect that

Fig. 4 | Performance of predicting cognitive control performance using lesion
data across participants. a–d, g Prediction performance, quantified using Akaike
information criterion (AIC), plotted as a function of the collection of connection
scores used in prediction.p-values are fromone-sided tests of difference inAIC (see
the “Methods” section). a Comparison between anatomical connectivity (AC) and
functional connectivity (FC) prediction performance using all regions of interest
(ROIs). AC outperformed FC in all three analyses (cross-validation within trail-
making test-1 [TMT-1]: p = 9 × 10−5; TMT-1→ TMT-2: p =0.0003; TMT-1→ Stroop:
p = 6 × 10−7). b Lateralization of prediction performance using all ROIs. AC dis-
connection scores in the left hemisphere (LH) were better predictors than those in
the right hemisphere (RH, cross-validationwithin TMT-1:p =0.0007; TMT-1→ TMT-
2: p =0.0024; TMT-1→ Stroop: p = 1 × 10−9). LH AC disconnection scores con-
sistently outperformed LH FC disconnection scores in predicting cognitive control
performance (cross-validation within TMT-1: p = 7 × 10−5; TMT-1→TMT-2:
p =0.0002; TMT-1→ Stroop: p = 3 × 10−6). c Performance using multiple demand
network (MDN) AC disconnection scores compared to that of AC disconnection
scores from all ROIs, edge density map, and lesion volume. When tested between
the TMT and the Stroop task, MDN yielded better prediction performance than all
ROIs (p =0.0022). Connectome-based predictive modeling (CPM) using MDN was

at least marginally better than the edge density map (cross-validation test within
TMT-1: p=0.0503; TMT-1→TMT-2: p =0.0036; TMT-1→ Stroop: p =0.00014). CPM
using MDN also outperformed prediction using total lesion volume in all three
analyses (cross-validation within TMT-1: p =0.0014; TMT-1→TMT-2: p =0.0008;
TMT-1→ Stroop: p= 3 × 10−8). d Performance using MDN AC disconnection scores
compared to performance using both MDN AC and FC disconnection scores. Per-
formance is better using only AC disconnection scores than both AC and FC dis-
connection scores when tested on Stroop data (p =0.0024). e Scatter plots showing
the relation between predicted and actual neuropsychological scores in cross-
sample and cross-task generalization tests using MDN AC disconnection scores.
Trend lines were plotted as dashed gray lines. f Probability density function of AICs
from 1000 randomly selected ROI sets that have the same number of ROIs as the
MDN. g Prediction performance using CPM on MDN, compared to that of a lesion-
symptom map from TMT-1 (lesion-symptom mapping [LM]) and CPM with cortical
ROIs overlapping the lesion-symptommap (CPM+LM).When tested on TMT-2 data,
CPM on MDN outperformed LM (p=0.020). When tested on Stroop data, CPM
onMDN outperformed both LM (p = 3 × 10−6) and CPM+LM (p = 5 × 10−4). ~: p>0.05;
*: p <0.05; **:p <0.01; ***: p <0.001. BHboth hemispheres, ED edge density, LV lesion
volume. Source data are provided as a Source Data file.
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the frontoparietal tracts are part of the domain-general cognitive
controlmechanisms19 and/or that theWM tracts connect brain regions
that adaptively encode information for different tasks10. We further
found that the WM tracts shared by the two tasks significantly over-
lapped the AC map of the MDN (Fig. 5f). Consistent with the MDN’s
proposed function of supporting performance in highly demanding
cognitive control tasks, CPM limited to the MDN cortical regions
identified white matter regions with robust cross-task prediction of
cognitive control performance (Fig. 4c). On the other hand, when
lesion disconnection scores from all ROIs were used, WM tracts that
are only sensitive to one task (e.g., supporting domain-specific cog-
nitive control, Fig. 3c and d) may be selected in the predictive model,
leading to overfitting and worse prediction performance than MDN in

the cross-task analysis (Fig. 5c). This may also explain the finding that
AC-based CPM defined on lesion-symptom map results performed
worse than MDN AC-based CPM (Fig. 4g) when predicting Stroop task
performance using performance in TMT-1, as lesion-symptom map-
ping method may have relied on neural correlates specific for TMT to
predict performance in the Stroop task. To fully investigate the neural
substrates of domain-general and domain-specific cognitive control,
more tasks capturing cognitive control and more data to further
increase lesion coverage are needed.

CPM is a powerful statistical approach that has been applied to
neuroimaging data to account for individual differences37 and pre-
dicting behavioral scores of sustained attention24. The power of the
method partly comes from the boosting technique38, or combining

Table 3 | AC-based CPM performance comparison to the MDN

Network Analysis AIC (95% CI) ΔAIC to MDN p-value (uncorrected) R

Frontoparietal network Within TMT-1 −81.6 (−84.0, −76.9) 1.6 0.312 1.00

TMT-1→ TMT-2 −153.4 (−219.1, −84.0) 3.6 0.140 1.00

TMT-1→Stroop 117.7 (70.4, 154.8) 6.4 0.040 1.01

Cingulo-opercular network Within TMT-1 −78.5 (−81.5, −73.4) 4.6 0.090 1.01

TMT-1→ TMT-2 −155.9 (−220.2, −86.7) 1.2 0.358 1.00

TMT-1→Stroop 105.2 (56.2, 146.1) −6.2 0.044 1.01

Dorsal attention network Within TMT-1 −86.0 (−88.6, −81.5) −2.9 0.188 1.00

TMT-1→ TMT-2 −164.3 (−231.1, −93.2) −7.2 0.026 1.01

TMT-1→ Stroop 121.7 (77.4, 156.6) 10.4 0.0055 1.02

p-Values are fromAICcomparison (one-sided tests, see the “Methods” section). Bold font indicatesp-values survived FDRcorrection. Anegative change inAIC reflects better performance andhigher
positive values reflect worse performance.
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Fig. 5 | Permutation analysis of linearmodels (PALM) analysis results. aCortical
regions of interest (ROIs)whose anatomical connectivity (AC)disconnection scores
significantly scaled with cognitive control impairment (false-discovery rate [FDR]
corrected). b Results of trail-making test (TMT) scores. For each voxel, the color
indicates the t-value of the PALM analysis. Only voxels that survived multiple

comparison corrections (two-sided p <0.05 corrected) are colored. c Results of
Stroop scores. Color coding is identical to (b).d t-value difference between (b) and
(c). eOverlap of (b) and (c). fWhite matter (WM) tracts shared by TMT and Stroop
(in green) and its overlap with multiple demand network (MDN) AC map.
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individual predictors to increase prediction performance. We applied
the CPM approach to a lesion database. Specifically, we calculated
disconnection scores for each lesion to 360 cortical regions. Cortical
region disconnection scores that were significantly associated with
cognitive control performance in the training data were used to gen-
erate regression coefficients, which were then used to predict cogni-
tive control performance in independent samples (Fig. 3). The selected
cortical regions leverage the boosting technique by incorporating
multiple individual predictive variables and, thus, outperforming
methods that would rely on only one or a small number of regions.
Further, we have proposed an approach for back-projecting those
results to the anatomical regions containing white matter tracts where
disconnection is most predictive of impaired performance.

In summary,we found that ACmaps linking theMDN, inparticular
left frontoparietal WM tracts, can robustly predict cognitive control
performance following acquired brain lesions. The findings provide
evidence of the WM correlates underlying cognitive control and have
the potential to forecast a deficit in cognitive control performance
following brain lesions.

Methods
Participants
Six hundred and forty-three patients with focal brain lesions partici-
pated in this study, including 564 from the Iowa Cognitive Neu-
roscience Patient Registry and 79 from the Benton Neuropsychology
Clinic. Prior to any data collection, this study was approved by the
Institutional Review Board of the University of Iowa. Participants
recruited through the Patient Registry signed informed consent prior
to performing cognitive testing while de-identified clinical data from
participants from the Benton Neuropsychology Clinic were acquired
by chart review of retrospective electronic medical records following
approval by the Institutional Review Board. Six hundred and twenty-
two patients completed the TMT and 229 patients completed the
Stroop task (208 patients completed both tasks). Participant sampling
and testing procedures are detailed in Supplementary Note 5. Partici-
pants were divided into three groups based on the experimental
design. Specifically, group 1 contains Iowa Cognitive Neuroscience
Patient Registry patients that only completed the TMT. The remaining
patients with TMT scores were included in group 2. The Stroop sample
contains all patients that completed the Stroop task and were not
included in group 1. The partitions ensured data independence in the
generalization tests (see below) while balancing the number of sub-
jects between samples. The demographic information for each sample
is listed in Table 1.

Behavioral assays
We utilized two different tasks to assess cognitive control perfor-
mance: TMT and Stroop task. TMT consisted of parts A and B. In part
A (TMTA), participants were required to link 25 circles, each of which
contains a number from 1 to 25, by drawing lines in ascending order
of number values as fast as possible. In part B (TMT B), participants
encountered circles containing either a number or a letter and were
required to link the circles by drawing lines in ascending order, and
at the same time, alternating between number and letter circles (1-A-
2-B-3-C, etc.), as fast as possible. While TMT A and TMT B both
measure motor skills and basic visual attention function, TMT B is
relatively more difficult and requires higher cognitive control
demand, including working memory and task switching. Behavioral
scores were measured by time spent (in seconds) in each of the two
parts. We subtracted TMT A scores from TMT B scores (TMT B-A) for
each participant to measure cognitive control-specific impairment
whileminimizing performance effects related to functions other than
executive functions (e.g. hemiparesis or visual field deficits), as per-
formed previously39. To reduce the impact of outliers, TMT B-A
scores were log-transformed.

The Stroop test consisted of three different conditions: color (C),
word (W), and color-word (CW). In the C condition, patients
were presented squares painted in either red, blue, or green color and
were asked to name the color of the squares. In the W condition,
patients were asked to read thewords that are written in black ink, and
words could be either ‘red’, ‘blue’, or ‘green’. Lastly, in the CW condi-
tion, patients saw the words ‘red’, ‘’blue’, and 'green’, but printed in
incongruent colors (e.g., the word ‘red’ in green ink color), and are
required to state the color of the ink for the word. The CW condition is
more cognitively demanding than other conditions as cognitive con-
trol is required to suppress the habitual response of reading the word
and to select the response of naming the ink color. In each condition,
participants were given 45 s, and the number of correct responses was
recorded. Similar to the TMT, we focused on response times (i.e.,
seconds per correct response) and calculated the interference scores
as CW–(C +W)/2. Interference scores were then log-transformed.

Lesion segmentation
Each participant included in the analysis had a focal brain lesion with
visible boundaries evident from structural imaging sequences on MRI.
CT scans were used in rare cases when MRI was contraindicated
(n = 64). Lesions were manually segmented in three dimensions by a
rater blind to behavioral test scores, and the anatomical accuracy of
each tracing was reviewed by a neurologist (A.D.B.) in both native
space andupon transformation toMNI152 1-mmtemplate brainusing a
combination of linear and nonlinear registration techniques, as per-
formed previously40.

Multivariate lesion-symptom mapping
Lesion-symptommapping (LESYMAP) analyses were performed on the
TMT and Stroop results using sparse canonical correlation analysis
(SCCAN) as implemented in LESYMAP22, a package available in R
(https://github.com/dorianps/LESYMAP). The SCCANmethod involves
an optimization procedure that finds voxel weights that maximize the
multivariate correlation between voxel values and behavioral scores.
The predictive value and sparseness of the model are derived empiri-
cally using a 4-fold, within-sample correlation between model-
predicted and actual behavioral scores. LESYMAP deems a map
“valid” if it is associated with a statistically significant predictive cor-
relation. Briefly, SCCAN builds a model using 75% of the sample,
applies it to the remaining 25% of the sample in order to predict the
scores from lesion location, and correlates these predictions with
actual scores. Thus, this approach tests the statistical significance of
the entire map at once and avoids the pitfalls associated with voxel-
wise (i.e., mass univariate) methods, such as inflated rates of false-
positive errors. This previously validated method has been demon-
strated as more accurate than mass univariate methods and is better
able to identify when multiple brain regions are associated with a
behavioral variable.

CPM ROI definitions
We divided the whole cortical space into 360 ROIs (180 per hemi-
sphere) based on the HCP (HCP-MMP1.0) atlas23. All 360 ROIs were
used for whole-brain CPM analysis. When the CPM analysis was
restricted to the multiple demand network, the regions identified in
Assem et al.8 were used.

Connectome-based predictive modeling
In this study, CPM24,25 was used to evaluate how lesion locationpredicts
behavioral outcomes (i.e., TMTB-A, Stroop interference). In brief, CPM
consists of a feature selection and a prediction stage. In the feature
selection stage (Fig. 3b), the overlap of a lesion with an underlying
anatomical map of interest is computed as the lesion disconnection
score andwas then regressed against the behavioral score (e.g., TMTB-
A). The ROI is selected for inclusion in the model if its uncorrected
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p-value of the regression (relating lesion disconnection scores and
behavioral performance) is lower than 0.0124. We used ROI inputs into
CPM that spanned functional connectivity and structural connectivity
measures (described below). For AC scores, we further restricted the
feature selection to lesion load values with positive correlation (i.e.,
larger lesion load is associated with worse performance). In the pre-
diction stage, each selected ROI’s disconnection scoreswere regressed
against the behavioral scores separately across participants in the
training sample. The regression coefficients were used to predict
behavioral scores in the test sample (Fig. 3d). Thefinal prediction is the
average of each selected disconnection score’s prediction.

AC disconnection scores
Weused theDSI studio/LEAD-DBSConnectome pipeline (https://www.
lead-dbs.org/about/lead-connectome/41) to explore the WM tracts
associated with each of the HCP atlas ROIs. As performed previously42,
this software uses normative diffusion-weighted MRI from 32 subjects
from the HCP dataset to perform deterministic fiber tractography and
estimate the course of WM streamlines associated with a seed region-
of-interest43 (https://ida.loni.usc.edu/). This data was selected as the
state-of-the-art sequences and specialized hardwaremake it one of the
best openly available, in-vivo diffusion MRI datasets available44.
Diffusion-weighting with b = 1000 and 3000 s/mm2 was applied along
64 directions. Furthermore, additional shells at b-values of 5000 and
10,000 s/mm2 were applied in 128 directions. In-plane resolution was
1.5 × 1.5mm and 96 slices with a 1.5mm thickness were acquired. The
voxel-wise whole brain maps containing the streamlines from each
seed ROI were used to generate the AC disconnection scores. This was
defined as the voxel-wise sum of each ROI’s WM connectivity map
masked by each patient’s lesion map. As the AC maps were generated
using an independent dataset, they are not confounded by the lesions
in the subjects.

FC disconnection scores
For each ROI, its FC network was constructed using rs-fcMRI. The
primary rs-fcMRI dataset included 98 healthy right-handed subjects
(48 male subjects, age 22 ± 3.2 years), that were resting quietly at the
time of data collection. These data are part of a larger, publicly avail-
able data set used previously45–47. Rs-fcMRI data were processed in
accordance with previously described methods48–51. Participants com-
pleted two 6.2min rs-fcMRI scans duringwhich theywere asked to rest
in the scanner (3 T, Siemens) with their eyes open (TR = 3000ms,
TE = 30ms, FA = 85, 3mmvoxel size [27mm3], FOV = 216, 47 axial slices
with interleaved acquisition andnogap). Functional datawere spatially
smoothed using a Gaussian kernel of 4mm full-width at half-
maximum. The data were temporally filtered (0.009Hz <f < 0.08Hz)
and several nuisance variables were removed by regression, including
the following: (a) six movement parameters computed by rigid body
translation and rotation during preprocessing, (b) mean whole-brain
signal52,53, (c)meanbrain signal within the lateral ventricles, and (d) the
mean signal within a deep WMROI. The inclusion of the first temporal
derivatives of these regressors within the linear model accounted for
the time-shifted versions of spurious variance. For each voxel, linear
regression with the above model was applied to its fMRI signal time
course. The residual of the regression was used to measure FC, which
was defined as the correlation of residual fMRI signal time course
between the mean of the ROI and each voxel. Correlation coefficients
were converted to normally distributed Z-scores using the Fisher
transformation and group-averaged results were reported as voxel-
wise Z-scores. As a result, a FC connectivitymapwas built for each ROI,
containing a voxel-wise Z-score between the voxel and the average
fMRI signal time course of the ROI. Finally, for each participant and
each ROI, the FC disconnection score was computed as the sum of the
Z-scores in the ROI’s FC connectivity map masked by the participant’s
lesion map.

Statistical analysis of prediction performance comparison
For each model (e.g., AC from all ROIs), the AIC was computed using
the predicted and actual behavioral scores. Assuming two models M1

and M2 with AICs of AIC1 and AIC2, respectively, the likelihood of M1

outperforming M2 is L= e AIC1�AIC2ð Þ=2. Subsequently, the p-value cor-
responding to the null hypothesis that M1 does not outperform M2 is
L

L+ 1. FDR correction54 was applied across the three analyses (i.e., within
TMT-1, TMT-1→TMT-2, and TMT-1→ Stroop).

To estimate the confidence interval (CI), we used bootstrapping
to randomly sample the participants with replacement. Each random
sample had the same sample size as the original sample. For each
statistic, one hundred random samples were generated to estimate
the 95% CI.

To estimate the effect size, for each model we first computed its

average prediction error σ̂e =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

ðy�ŷÞ2
n

r

, where n is the sample size, and

y and ŷ are actual and model prediction of behavioral scores, respec-
tively. For the effect size of amodel comparison, we reported the ratio
of σ̂e, denoted as R. We always use the better model (i.e., model with
lower average prediction error) as the denominator, such that the
effect size is no less than 1. The effect size quantifies on average how
much larger the prediction error of the worse model is than the better
model. For example, a ratio R = 1.03 indicates that on average the
worsemodel produces 3%moreprediction error than thebettermodel
for each patient.

Identifying structural disconnection anatomy in CPM analysis
In order to identify the regional WM findings associated with the CPM
weused anFSL-based voxel-wisepermutation analysis of linearmodels
(PALM, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM). The 360 un-
thresholded individual tractography maps derived from each cortical
ROI in theCPMwereused to provide voxel-level predictors in a general
linear model. The dependent variable of the model was the T score
from the feature selection stage of the CPM. The general linear model
was used to identify white matter regions significantly associated with
ROIs with better performance (i.e., higher T scores) in predicting
cognitive control performance. Statistical significance was evaluated
with threshold-free cluster enhancement, 2-tailed significance, and
2000 permutations. Regional findings were compared to the HCP-842
and JHU white matter tractography atlases to relate our findings to
common white matter tracts55–59.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Lesion masks and neuropsychological test data are available under
restricted access, subject to the policies and procedures of the Iowa
Cognitive Neuroscience Patient Registry and the Benton Neu-
ropsychology Clinic. Data access may be requested by emailing A.D.B.
and will be replied within a month. Source data are provided with
this paper.

Code availability
Analysis code and sample data is available at https://github.com/
JiefengJiang/CPMCognitiveControl60.
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