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Determinants of functional synaptic
connectivity among amygdala-projecting
prefrontal cortical neurons in male mice

Yoav Printz 1, Pritish Patil 1, Mathias Mahn 1, Asaf Benjamin 1,
Anna Litvin 1, Rivka Levy1, Max Bringmann1 & Ofer Yizhar 1

The medial prefrontal cortex (mPFC) mediates a variety of complex cognitive
functions via its vast and diverse connections with cortical and subcortical
structures. Understanding the patterns of synaptic connectivity that comprise
the mPFC local network is crucial for deciphering how this circuit processes
information and relays it to downstream structures. To elucidate the synaptic
organization of the mPFC, we developed a high-throughput optogenetic
method formapping large-scale functional synaptic connectivity in acutebrain
slices. We show that in male mice, mPFC neurons that project to the baso-
lateral amygdala (BLA) display unique spatial patterns of local-circuit synaptic
connectivity, which distinguish them from the general mPFC cell population.
When considering synaptic connections between pairs of mPFC neurons, the
intrinsic properties of the postsynaptic cell and the anatomical positions of
both cells jointly account for ~7.5% of the variation in the probability of con-
nection. Moreover, anatomical distance and laminar position explain most of
this fraction in variation. Our findings reveal the factors determining con-
nectivity in themPFC anddelineate the architecture of synaptic connections in
the BLA-projecting subnetwork.

The computational power of the neocortex is thought to be derived
from the complexity and plasticity of connectivity patterns in cortical
neuronal networks. Understanding these connections and their
dynamics is therefore crucial to deciphering the principles of neuronal
computation. Electrophysiological recordings from pairs or groups of
neurons have revealed many of the factors which determine the
probabilities and properties of cortical synaptic connections. The
majority of this work has focused on primary sensory and motor cor-
tical regions, aiming to delineate the streams of information that
support sensory processing and motor control1–3. These studies have
established that the pattern of synaptic connectivity among pairs of
cortical pyramidal neurons is not homogeneous4 but rather depends,
among other factors, on the pre- and postsynaptic cell types5,6, their
intracortical laminar source of input5,7–9, and the long-range projection
target of each of the neurons10–17. Moreover, the anatomical axoden-
dritic overlap alone cannot account for the probability of

connection11,18–20, indicating specific selection of synaptic partners.
These findings suggest that cortical regions consist of interdigitated
functional subnetworks of preferentially interconnected neurons2. In
the primary visual cortex, pyramidal neurons which respond to similar
visual stimuli are more likely to be synaptically connected18,21.
Remarkably, connections between neurons sharing similar stimulus
tuning are also the strongest22, emphasizing the preferential con-
nectivity between cells that share a common role in the circuit.

Despite this body of knowledge, little is known about the synaptic
organization of associative cortical structures such as the medial pre-
frontal cortex (mPFC)23. In line with the complex morphology of its
pyramidal cells24, the mPFC connects with numerous cortical and
subcortical regions25,26 and plays a role in multiple cognitive functions
and complex behaviors23,27–38. We set out to test whether similar prin-
ciples of functional-subnetwork organization can be applied to the
mPFC. We focused on the population of mPFC cells extending long-
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range axonal projections to the basolateral amygdala (mPFC-BLA cells)
in order to test our hypothesis that their known involvement in asso-
ciative fear learning30,39–43 is associated with a unique connectivity
pattern that distinguishes them from other neuron populations in the
mPFC, similar to principles found in the primary visual cortex11,18,21,22.
For this purpose, we developed an optogenetic approach for large-
scale, unbiased mapping of functional synaptic connections at the
level of specific neuron populations. Our approach is based on co-
expression of the channelrhodopsin stCoChR44 with the calcium indi-
cator GCaMP6s45 in a targeted cell population. Under this configura-
tion, we conducted whole-cell patch-clamp recordings from single
neurons in the expressing region while semi-automatically detecting
and stimulating other cells in their vicinity in three dimensions, in
order to evaluate the input from each stimulated cell onto the recor-
dedpostsynaptic cell.Weutilized theoverlapping excitation spectra of
stCoChR and GCaMP6s to perform simultaneous optogenetic stimu-
lation and calcium recording using a single femtosecond laser source.
This allows validation of spiking in stimulated cells, thereby providing
information on the spatial selectivity of synaptic connections aswell as
accurate measures of connection probabilities. With this method, we
mapped the functional connections among mPFC-BLA cells and
among randomly labeled mPFC cells as reference. Our results reveal
the detailed layer and projection target selectivity in the connectivity
patterns of mPFC pyramidal cells. We further used the comprehensive
connectivity maps to quantify the contribution of various anatomical
and physiological features to the probability of connection between
mPFC neurons.

Results
An optogenetic strategy for simultaneous two-photon stimula-
tion and calciumrecordingof neurons in threedimensionsusing
a single laser source
To achieve reliable, single-cell-targeted optogenetic stimulation of
pyramidal cells in the mPFC, we used the recently published soma-
targeted channelrhodopsin variant stCoChR, which allows highly effi-
cient two-photon stimulation44. Since both stCoChR andGCaMP6s can
be efficiently excited at λ = 940 nm, their co-expression allows simul-
taneous photostimulation and fluorescence-based activity readout
using one wavelength. To target mPFC-BLA cells, we first injected a
Cre-expressing rAAV2-retro vector46 into the BLA of the reporter
mouse line Ai9 (ref. 47) and characterized its retrograde coverage in the
mPFC (Fig. S1; see also Methods, under Specificity of mPFC-BLA cell
labeling). We next co-expressed stCoChR and GCaMP6s in mPFC-BLA
cells by injecting rAAV2-retro-Cre into the BLA of wildtype mice, and
Cre-dependent AAV vectors expressing stCoChR and GCaMP6s into
their mPFC (Fig. 1a, b and Fig. S2a, b). In these two experiments we
observed that in the dorsal mPFC (prelimbic and cingulate cortices),
BLA-projecting cells were largely absent from layer 3, whereas in the
ventral infralimbic and dorsal peduncular cortices, BLA-projecting
cells distributed densely across all layers (Fig. 1b, Fig. S1a, and Fig. S6).

In order to validate spiking in response to two-photon stimula-
tion, we performed cell-attached recordings from mPFC-BLA cells
expressing stCoChR andGCaMP6s in acute slices while scanning spiral
patterns over the soma48 (Fig. 1c). Two-photon spiral patterns were
scanned at 10 Hz (spiral duration: 7.1 ms), and GCaMP6s fluorescence
was recorded only during scan periods (Fig. 1d). We found that spiral
patterns scanned at 10Hz evoked reliable spiking as well as an increase
in GCaMP6s fluorescence over the spiral train (Fig. 1d–f). Application
of TTX (1 µM) blocked spiking and abolished the increase in GCaMP6s
fluorescence (Fig. 1d–h), indicating that GCaMP6s fluorescence can be
used as a proxy for spiking activity in these conditions. Furthermore,
reducing the duration of each spiral from 7.1 ms to 3.6 ms such that
some spirals fail to evoke a spike, we found thatGCaMP6sfluorescence
increased only following successful spiral stimulations (Fig. S3a). Since
the rise and decay kinetics of GCaMP6s fluorescence are slower than

the duration of a spiral and the inter-spiral interval, respectively (Fig. 1i
and ref. 45), the relative GCaMP6s fluorescence during each spiral in a
train reports spiking in response to previous spirals in the train. We
therefore used the raw GCaMP6s fluorescence slope to determine
whether spiking occurred during a spiral train (Fig. 1g, bottom; Fig. 1h,
right; and Fig. S3b; see Methods).

We next surveyed the space of two-photon scan parameters in
order to optimize the GCaMP6s-based spike readout and the time
precision of spiking. We performed cell-attached recordings from
mPFC-BLA cells expressing stCoChR and GCaMP6s and measured
spiking and relative GCaMP6s fluorescence while scanning trains of
10 spirals over each cell (Fig. 1i and Fig. S3c).Wemodified the diameter
of the spirals, their duration (by concatenating multiple spirals and
keeping the dwell time constant), their frequency in the train, and the
light power on the cell. GCaMP6s ΔF/F0 was higher for smaller spirals
(10 and 15 µm; Fig. 1i), mainly due to increased contribution from off-
cell noise in larger spirals (20 µm; seeMethods). Spike latency and jitter
were lower for larger spirals (Fig. S3c), leadingus toproceedwith 15 µm
spirals for our experiments.Wechose a spiral durationof 7.2ms (a two-
spiral sequence), stimulation frequency of 10Hz, and light power of 10
mWon cell, since these parameters provided highGCaMP6sΔF/F0 and
high spike probability while maintaining low spike latency, jitter and
number of spikes per spiral (Fig. 1i and Fig. S3c). Under these condi-
tions, the spatial specificity for evoking spikes, measured as the full
width at half maximum (FWHM), was 55.9 ± 16.4 µm in the axial (z) axis
and 24.2 ± 7.2 µm in the radial (xy) plane (Fig. S4a, b). Based on this
spatial specificity and on the density of expressing cells (Fig. S4c–e),
we estimate the potential bias in measurement of probability of
synaptic connection to be 11.5% (see Methods). The spatial specificity
curve for GCaMP6s ΔF/F0 tended to be narrower than that of spiking
(Fig. S4a, b; FWHM for ΔF/F0: 23.9 ± 4.1 µm in z and 11.3 ± 1.8 µm in xy;
see Fig. S4f–h for the microscope’s point spread function), potentially
as a result of the high light-sensitivity of stCoChR compared with the
light power needed for imaging GCaMP6s.

We next applied our method for combined stimulation and ima-
ging to a population of cells in three dimensions (Fig. 1j). For this, we
used an algorithm for automated detection of fluorescently labeled
cell bodies in image-stack volumes49. Detection was based on
mScarlet50 and nuclear dTomato51 co-expressed with stCoChR and
GCaMP6s, respectively (since these two markers could not be dis-
tinguished, co-expression of both stCoChR and GCaMP6s was vali-
dated later in analysis based on GCaMP6s fluorescence in response to
stimulation; see below and Methods). Running the algorithm on n =
5 scanned volumes from twomice (volume size ~420 × 420 × 300 µm3;
n = 209.2 ± 8.9 detected cells per volume) and observing the detec-
tions, we found that 2.5 ± 0.4% of detections were false and 5.4 ± 0.5%
were double (i.e., coordinates point to the center of two adjacent cells;
Fig. S2d).We tested the algorithmon additional n = 4 scanned volumes
from four mice, where we manually registered the coordinates of all
the cells in the volume, independent of and blind to the automated
detection (n = 316.5 ± 45.8 manually registered cells per volume). The
automated detection was biased to cells with higher fluorescence
intensities compared with our manual cell registration (Fig. S2e). In
contrast, the distribution of cell depths was similar for automatically
and manually detected cells (Fig. S2f). Finally, we transformed the
coordinates of the automatically detected cells into standardized
brain-reference anatomical positions using anatomical landmarks
(Fig. 1j; see Methods).

Analysis of functional connectivity
In order to measure functional synaptic connectivity among mPFC-
BLA cells, we co-expressed stCoChR and GCaMP6s in mPFC-BLA cells
(Fig. 1a). In each experiment, we obtained a whole-cell recording from
one mPFC-BLA cell in the acute slice. We then acquired a series of
Z-sections covering the entire depth of the slice (λ = 1040 nm),
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Fig. 1 | Simultaneous optogenetic stimulation and GCaMP6s-based spike
readout using a single laser source. a Top, Intersectional viral strategy for
expressing stCoChR (co-expressed with mScarlet) and GCaMP6s (co-expressed
with nuclear dTomato) in mPFC cells projecting to the BLA (mPFC-BLA cells).
Sagittal atlas illustrationwas adapted from ref. 107. Bottom, Schematic of expression
of stCoChR andGCaMP6s exclusively inmPFC-BLA cells.bRepresentative confocal
image of a coronal section showing expression of stCoChR and GCaMP6s in mPFC-
BLA cells. Anatomical region outline is adapted from ref. 54. c Representative two-
photon images of a cell targeted for spiral scanning, with the spiral-scan pattern
overlaid (right). d, e Cell-attached recordings from an mPFC-BLA cell expressing
stCoChRandGCaMP6s. Trains of 10 spiral patterns (7.1mseach)were scanned at 10
Hz over the soma as in c to excite stCoChR and GCaMP6s, and GCaMP6s fluores-
cence was recorded during the scan of each spiral. d Raw GCaMP6s fluorescence
(normalized to the maximum) during four selected spirals in absence of TTX (top,
aCSF) and after application of TTX to block spiking (bottom, aCSF+TTX). e Cell-
attached recording traces from the same cell shown in d, in absence (black) and
presence (red) of TTX. Red ticks denote spiral-scan times. f, g Cell-attached
recordings from three mPFC-BLA cells during spiral scanning as in d, e. f GCaMP6s
ΔF/F0 without TTX (black) and with TTX (red) over 10 spirals for each cell. Plotted
symbols indicate individual cells.g Probability for at least one spikeper spiral (top),
maximal GCaMP6s ΔF/F0 (middle), and slope of the linear fit of the raw GCaMP6s
fluorescence trace (bottom), with and without TTX. Here and elsewhere, error bars
indicate mean ± SEM, unless indicated otherwise. Lines represent individual cells,
and shaded regions in the fluorescence slope (bottom) indicate the 95% confidence
interval of the slope for each cell. h Raw GCaMP6s fluorescence of automatically

detected mPFC-BLA cells across 15 spirals scanned at 10 Hz, in absence (left) and
presence (middle) of TTX (see j for the soma-detection process). Right, Slope of
GCaMP6s fluorescence traces for the same cells. Vertical lines inside boxes indicate
median, boxes indicate 25th and 75th percentiles, andwhiskers represent the 5th and
95th percentiles. n = 645 cells from six slices in twomice. See also Fig. S3b. i Effects
of scan parameters on maximal GCaMP6s ΔF/F0 (top; normalized per cell to the
maximal value across conditions) and on probability for at least one spikeper spiral
(bottom). Cell-attached recordings were acquired frommPFC-BLA cells expressing
stCoChR and GCaMP6s, while the cells were scanned with trains of 10 spirals. The
following scan parameters were varied: diameter and duration of each spiral (left;
n = 11 cells; light power on cell = 13.9 mW, inter-spiral interval = 100 ms), time
interval between consecutive spirals (middle; n = 11 cells; light power on cell = 13.9
mW, spiral duration = 3.6 ms), and light power on cell (right; n = 10 cells; spiral
duration = 3.6 ms, inter-spiral interval = 100 ms). See Fig. S3c for additional mea-
surements. j Process of targeting a groupof cells for photostimulation and imaging.
First, a two-photon image stack is acquired (left). An algorithm then automatically
detects the cell bodies within the acquired image volume (middle; color scale
indicates relative fluorescence intensity) and targets the detected cells for con-
secutive individual stimulation and imaging using spiral scans. Finally, the positions
of the cells are transformed into brain-reference anatomical coordinates (right; the
same cells are shown in red overlaid on a reference coronal atlas image adapted
from ref. 54). Cortical region abbreviations: Cg cingulate, PL prelimbic, IL infra-
limbic, DP dorsal peduncular, M1 primarymotor, M2 secondarymotor. fmi forceps
minor of the corpus callosum. DV dorsoventral axis, ML mediolateral axis, AP
anteroposterior axis. Source data are provided as a Source Data file.
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detected the labeled mPFC-BLA cells within the scanned volume
(Fig. 1j), and stimulated them sequentially as described above while
recording both their GCaMP6s fluorescence and the synaptic currents
in the recorded postsynaptic cell. Cells whose GCaMP6s fluorescence
indicated they did not spike in response to stimulation (see Methods)
were excluded from analysis.

In order to determinewhich of the stimulated cells is connected to
the recorded cell, we first used a template deconvolution-based
method52 with a synaptic event waveform kernel53 to identify all exci-
tatory postsynaptic currents (EPSCs) recorded during the period of
sequential stimulation (seeMethods).We clustered the detected EPSCs
(both spontaneous and evoked) based on temporal proximity and fit
EPSC clusters with a sum of functions describing the waveform of a
synaptic current, such that compound events could be decomposed to
determine the kinetics of each of the underlying events (Fig. 2a).

We next constructed a model to determine whether each stimu-
lated cell is connected to the corresponding recorded cell.Weused the
rate and the stimulation-aligned time distribution of all EPSCs (Fig. 2b
and Table S5) to predict the EPSC distribution around the stimulation
of each cell. We then fitted two models for each stimulated cell, one
model that assumes no synaptic connection (whereby EPSCs distribute
uniformly) and another model that assumes connection (whereby the
EPSC distribution contains a bump following the stimulation; see
Methods). To decide whether the stimulated cell is connected to the

recorded cell, weused information criteria (seeMethods) todetermine
which of the two models fits the EPSC distribution more accurately
(Fig. 2d). To validate and quantify the performance of our model, we
examined the recording traces of all cells to identify synaptic con-
nections manually. The area under the receiver operating character-
istic curve was 0.996 (Fig. 2e, f). Tomaximize accuracy, we relied both
on the manual observation and on the model to identify synaptic
connections, such that candidate connections which could not be
resolved by manual observation (n = 44 stimulated cells) were settled
by the model. Finally, we calculated the strength of synaptic connec-
tion at each stimulation as theweighted average of EPSCswithin a time
window following stimulation (seeMethods), thus accommodating for
jitter in synaptic latency and the possibility for multiple evoked EPSCs
(Fig. S3c).

Overall, wegenerated 92 functional inputmaps by recording from
92 mPFC cells and stimulating a total of 10817 cells (Tables S1 and S2).
Out of the stimulated cells in each input map, 78.6 ± 1.6% responded
with spiking based onGCaMP6s data, giving a total of 8780 responsive
cells (95.4 ± 5.1 responsive cells out of 117.6 ± 5.0 stimulated cells per
map). Of the maps, 75 were in the ventral mPFC (69 maps in the
infralimbic cortex and 6 maps in the dorsal peduncular cortex) and 17
were in the dorsalmPFC (14maps in the prelimbic cortex and 3maps in
the cingulate cortex). An example of one functional input map of an
mPFC-BLA cell in the ventral mPFC is shown in Fig. 2g. The anatomical
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Fig. 2 | Analysis and modeling of synaptic connections. a, Detection and mod-
eling of excitatory postsynaptic currents (EPSCs) in continuous voltage-clamp
recording traces obtained during stimulation of candidate presynaptic cells. Top,
The zero-baseline version of the inverted recording trace (gray) was deconvolved
with a synaptic-event waveform kernel using OASIS (purple trace). Putative EPSCs
were detected based on peaks in the deconvolved trace. Dots and vertical dashed
lines mark the fitted onset times of detected events (see Bottom). Middle, Putative
events were then clustered by temporal proximity, and each cluster was fit with a
model which assumes linear summation of EPSCs (blue traces). Bottom, Clustered
events were decomposed and their kinetic features were extracted. EPSCs with
amplitude below a 2.5 cSD threshold (dashed line) were discarded (red traces).
b Peristimulus time histogram of EPSCs (n = 151797 EPSCs recorded during sti-
mulation of n = 10445 cells, bin size = 1 ms), overlaid with a fitted mixturemodel of
gammaanduniformdistributions. Parameterfits [95%confidence interval]: Gamma
shape k = 4.1896 [3.7063, 4.6729]; gamma scale θ = 3.0942 [2.6602, 3.5283]; weight
w = 0.0455 [0.0421, 0.0489]. Only stimulated cells that did not evoke any direct
photocurrent in the recorded cell were considered for this distribution. c Example
traces obtained during stimulation of six mPFC-BLA cells while recording from
another mPFC-BLA cell (left), and during repeated stimulation in the presence of

glutamate-receptor blockers (right). The top three cells were synaptically con-
nected to the recorded cell, and the bottom three were not. Note the compound
photocurrent+EPSC response in the third cell (see Methods, under Subtracting
evoked photocurrents). d Identification of synaptic connections based on EPSC
distribution. Top, Overlaid traces recorded during stimulation of a synaptically
connected cell (left) and a non-connected cell (right). Red shaded area denotes
stimulation period, shaded lines are individual traces (n = 20 per cell), and dark
lines indicate mean of all traces. Middle, Raster plots of the EPSCs. Bottom, Esti-
mated probability density functions of the EPSC times, using either a model that
assumes synaptic connection or a model that assumes no connection. The kernel
density estimation (KDE) of the true EPSC times is presented as reference.
e, f Connectivity model performance, based on n = 10445 cell pairs (see Methods),
of which 243 are synaptically connected. e Receiver operating characteristic curve.
f Precision and recall as a function of themodel score threshold. g A representative
synaptic connectivity map describing the functional inputs onto a recordedmPFC-
BLA cell from neighboring mPFC-BLA cells. Blue box on Atlas image (left, adapted
from ref. 54) marks the anatomical location of themap. Source data are provided as
a Source Data file.
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position of each recorded and stimulated cell was inferred using ana-
tomical landmarks alignedwith projections on reference atlas images54

(see Methods).

Functional synaptic connectivity in mPFC cell populations
Weusedour technique to analyze the properties of functional synaptic
connections among mPFC-BLA cells in the ventral mPFC (Fig. 3a, left).
As reference, wemeasured synaptic output frommPFC-BLA cells onto
non-labeled cells, which likely do not extend projections to the BLA
(given efficient retrograde labeling by rAAV2-retro46 and assuming that
<10% of mPFC neurons project to the BLA55), by recording from non-
labeled mPFC pyramidal cells while exciting mPFC-BLA cells in their
environment (mPFC-BLA cells to non-mPFC-BLA cells; Fig. 3a, middle).
Tomeasure the general, non-specific connectivity in the ventral mPFC,
we sparsely expressed stCoChR and GCaMP6s in the mPFC (see
Methods) and recorded from a randomly selected pyramidal cell while
scanning over labeled cells in its environment (random mPFC cells to
randommPFC cells; Fig. 3a, right). Fig. 3b shows the overlay of allmaps
obtained for each of the three types of synaptic connection, aligned to
the position of the corresponding recorded cell. Among the 75maps in

the ventral mPFC, six maps (8%) were in the dorsal peduncular cortex
(DP). Since the DP contained cells projecting to the BLA with a laminar
distribution similar to that of the infralimbic cortex (Fig. 1b, Fig. S1a,
and Fig. S6; see also ref. 56), and since the DP-BLA cells have been
implicated in fear extinction, similar to infralimbic neurons39 –we have
included the DP maps in our analysis of ventral mPFC connectivity.

Wefirst askedwhether the three types of connectiondiffer in their
probabilities and strengths. To avoid a bias between maps in the dis-
tances between presynaptic cells and the recorded cell, we restricted
the measurement of overall probability for synaptic connection to a
300 µm distance from the recorded cell. Overall connection prob-
ability and connection strength (which was not restricted in distance)
did not differ between the three map types (mPFC-BLA cells to mPFC-
BLA cells, mPFC-BLA cells to non-mPFC-BLA cells, and random mPFC
cells; Fig. S5a–c, top andmiddle). To quantify the compound input that
each recorded cell receives, we treated non-connected cells as having
zero amplitude and calculated the average connection strength from
all cells in themap (weighted input).Weighted input (restricted to 300
µm distance) did not differ between the three map types as well (Fig.
S5a–c, bottom). Moreover, we did not find a correlation between the
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connection probability and mean connection strength across recor-
ded cells (Fig. S5d). We next divided the connectivity maps to layers,
based on the laminar position of the recorded cell (Fig. S6). We found
that the weighted output from mPFC-BLA cells onto other mPFC-BLA
cells was stronger in deeper layers than in superficial ones, whereas
their output onto non-mPFC-BLA cells hadanopposite laminar pattern
(Fig. 3c–e and Fig. S5e). To further examine the directionality of exci-
tatory input in each network, we measured the weighted input that
each cell receives from a given anatomical direction. We found that
mPFC-BLA cells tend to receive stronger input from other mPFC-BLA
cells located medially to them (Fig. S5f), yielding a superficial-to-deep
flow of excitatory input. In contrast, we did not find such a pattern in
output from mPFC-BLA cells onto non-mPFC-BLA cells or among ran-
dommPFC cells. Consistent with this finding, randommPFC cells in L5
did not receive input from L2 and L3 cells, and non-mPFC-BLA cells in
L5 did not receive input from mPFC-BLA cells in L2 and L3 (Fig. 3d).
While this stands in contrast to canonical circuits in sensory cortex,
where L5/6 samples from L2/3 (ref. 6,9), it could be explained by the
small sample of L2/3-to-L5 connectivity maps, since we did find con-
nections from L2 and L3 to L5 among mPFC-BLA cells, which are
included in the randommPFC cell category. Weighted input along the
dorsoventral axis showed no particular directionality (Fig. S5g). All
connection types showed similar dependency of connectivity on dis-
tance (Fig. S5b, c). Finally, synapses of all types and in all layers dis-
played similar short-term depression upon a presynaptic stimulation
train (Fig. S7; see Discussion).

Determinants of functional synaptic connectivity in the mPFC
We next asked which parameters (of the ones recorded in our
experiments) contribute to the variation in probability of connection
between pairs of cells in the entiremPFC. For this purpose, in addition
to the information about the anatomical locations of stimulated and
recorded cells, we analyzed the intrinsic electrophysiological proper-
ties of each recorded cell, for the three classes of mPFC neuron
(Fig. 4a). We found that in the ventral mPFC, mPFC-BLA cells had
higher output gain compared with non-mPFC-BLA cells (Fig. 4b, d).
mPFC-BLA cells showed stronger firing-rate adaptation comparedwith
non-mPFC-BLA and with random mPFC cells (Fig. 4c, e). Other elec-
trophysiological properties did not differ between cell classes (Fig. S8a
and Table S3; see Fig. S8b for pairwise correlations between electro-
physiological properties and connectivity features). Counter-
intuitively, cells receiving strong weighted input tended to have lower
input resistance (Fig. 4f), perhaps as a homeostatic mechanism to
restrain excitation. When examining the relationship between anato-
mical position and intrinsic properties, we found that sag ratio and
spike threshold were both strongly correlated with cells’ mediolateral
(laminar) position, for all cell classes (Fig. S8c). Spike half-width was
also correlated with mediolateral position, but not in the mPFC-BLA
cell class (Fig. S8c).

To identify the factors that play a role in determining synaptic
connectivity, we treated the data as pairs of stimulated (candidate
presynaptic) and recorded (postsynaptic) cells, and included cell pairs
in both the ventral and the dorsal mPFC (n = 7752 cell pairs; see
Methods).Weused a logistic regressionmodel to predictwhether each
pair is connected (Fig. 4g). As features, we used the electro-
physiological properties of the recorded cell, the anatomical positions
of both cells, their distance, the connection type (as in Fig. 3a), and the
anteroposterior position of the recorded slice (n = 20 features overall).
In order to remove multicollinearity between features (Fig. S8b), we
performed zero-phase components analysis (ZCA) whitening (see
Methods). To find the features which non-redundantly affect con-
nectivity, we imposed sparsity on the regression model by using
Horseshoe priors57,58 (Fig. 4h and Fig. S9). We found that among all
features, the distance between cells (Euclidean and lateral), the ana-
tomical position of the presynaptic cell (mediolateral and

dorsoventral), the bursting behavior of the postsynaptic cell, and the
connection type had coefficients that center away from zero, sug-
gesting that they contribute most to the variation in connectivity. The
postsynaptic cell’s input resistance and the anteroposterior positionof
the slice also contributed to connectivity. In order to quantify the
contribution of all features to variation in connectivity, we used the
unregularized regression model (Fig. 4g) and calculated the cross-
entropy between predicted and true connectivity as a measure for the
information that the features in the model have on connection prob-
ability (Fig. 4i; seeMethods).We found that using the selected features
mentioned above (n = 8 features) to predict connectivity reduced the
cross-entropy by 7.5% compared with using shuffled connections
(from 0.1161 to 0.1074). Using all features (n = 20) resulted in worse
performance compared with using only the selected features, as
demonstrated by higher cross-entropy and larger difference between
the cross-validated and non-cross-validated models (Fig. 4i). This
finding supports the central role of these selected anatomical and
physiological features in explaining variation in connectivity. When
removing individual features from the model that uses selected fea-
tures, we found that the largest effect on cross-entropy arises when
removing Euclidean distance and the mediolateral position of the
presynaptic cell (Fig. 4i). These results suggest that anatomical posi-
tion, especially along the mediolateral axis, and intersomatic distance
dominate connectivity, while all features in our dataset can jointly
account for ~7.5% of overall variation in connection probability.

Discussion
Current knowledge about functional synaptic connectivity in cortical
networks is derived largely from experiments using paired-patch
recordings, where two or more cells are simultaneously recorded in
the whole-cell patch-clamp configuration, and spikes are triggered in
one cell while the others are recorded for synaptic responses6,9,21,23,59.
These recordings are typically limited to a confined intersomatic dis-
tance and to cells located within ~60 µm of the surface of the slice.
While this method provides high-precision information about the
functional properties of the probed synapses, it suffers from very low
yield, making it extremely difficult to detect sparse connections and to
avoid bias in distances or positions of probed connections. In contrast,
several recent studies have implemented recording fromone cell while
optogenetically stimulating a selection of cells in its vicinity. This
approach allows unbiased mapping of synaptic connections in the
network, thereby facilitating detection of sparse connections, but is
restricted to measuring only unidirectional (in-degree) connectivity
from the stimulated cells onto the recorded cell60–64. Here we pre-
sented a large-scale implementation of such anapproach, combining it
with calcium-based readout of activity using a single laser source. We
utilized the overlapping excitation spectra of stCoChR and GCaMP6s
to perform simultaneous stimulation and calcium recording. Using
GCaMP6s recording to monitor the activity of each stimulated cell
allowed us to accurately reconstruct the spatial architecture of
synaptic connections by assigning an anatomical position to each
connected and non-connected cell. Our semi-automated approach for
cell detection and for sequential stimulation and calcium recording
allowed us to probe the input from 95.4 ± 5.1 cells, whose spiking in
response to stimulation was validated using the GCaMP6s signal, onto
each recorded cell in three dimensions within a volume of
~420×420×300 µm3. The use of a single light pathmakes this approach
accessible and widely applicable using almost any commercially
available two-photon microscope system. Future experiments could
utilize scanless holographic illumination and temporal focusing
techniques60,65 in order to reduce the stimulation-induced spike jitter
and thereby improve detection of connections.

Among all the available anatomical and cellular features in our
data, several seem to dominate the probability of synaptic connection
between pyramidal cells in the mPFC (Fig. 4g–i and Fig. S9). The most
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prominent features are intersomatic distance and the laminar depth of
the presynaptic cell, consistent with previous studies of cortical
synaptic connectivity6,9. Connectionprobability tends to decreasewith
intersomatic distance, and cell pairs whose presynaptic cell is in dee-
per layers also tend to have a lower probability of connection (Fig. 4h,
i). Notably, the laminar depth of the recorded (postsynaptic) cell is not
correlated with its input properties (connection probability and
amplitude, p ≥ 0.12). Other features contributing to the reduction in
connection probability include the spike-bursting behavior of the
postsynaptic cell (and, to a lesser extent, its input resistance), the
dorsoventral anatomical position of the presynaptic cell (whereby
ventral position is associated with reduction in connection prob-
ability), and the anteroposterior position of both cells (whereby
anterior position is weakly associated with reduction in connection
probability). A connection type of mPFC-BLA cell to mPFC-BLA cell is
positively associated with connection probability (Fig. 4h and Fig. S9).

Notably, the negative correlation of input resistance with connectivity
(Fig. 4f) indicates that it is not an artefact of the detectability of
synaptic connections (as higher resistance would facilitate detection
of weaker EPSCs). Our regression analysis and cross-entropy calcula-
tions (Fig. 4i) suggest that all features taken together can account for
~7.5% of variation in connectivity. This finding suggests that the
probability of pyramidal cells in the mPFC to form a synaptic con-
nection is determinedmostly by features thatwere not available in our
experimental paradigm. These could be themorphological features of
the pre- and postsynaptic cells, the electrophysiological properties of
the presynaptic cell (which are not accessible using optogenetic con-
nectivity mapping)6,12,14,23, the activity patterns of the cells18,21, their
gene-expression profile66,67, cell lineage67–70 (and lineage of projection-
target cells71), age and experience of the animal72–74, or other factors.

Aprevious transsynaptic tracing studyhas revealed thatonly ~20%
of the synaptic inputs onto mPFC L5 cells are from local mPFC cells,
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regression as in g) and true connections, using different sets of features based on
their selection in h. Cross-entropy of shuffled connections is calculated between
true connections andpredictions runon shuffledconnections (n= 10,000shuffles).
Mean probability prediction presents the cross-entropy between the true con-
nectivity and a constant connection probability equal to its mean over all data. The
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connection prediction (where a one-sample t-test was used). Source data are pro-
vided as a Source Data file.
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whereas in L5 cells of the barrel cortex, input from local cells amounts
to ~80% of the total synaptic input75. This property could translate to
sparser local connectivity in the mPFC compared with other cortical
regions. Accordingly, the overall synaptic connection rates in our
dataset (Fig. S5a–c, top) were low compared with connection rates
found in the sensory cortex6,9. This sparse connectivity is consistent
with recent findings regarding connections among pyramidal neurons
in the mPFC found using paired intracellular recording76. However, an
earlier study found similar connectivity rates in the mPFC and the
visual cortex of the ferret23. These differences could be attributed to
experimental factors of our system, such as the temporal jitter in
presynaptic spiking and in EPSC latencies, and the limitation in the
number of stimulations per presynaptic cell, set by the limited
recording duration and the large overall number of putative connec-
tions to be probed. We also experimentally estimated that the process
of slicing the brain scales down connection rates by a factor of 43.6%
(see Fig. S10 andMethods), informing future studies relying on in vitro
recording.

Synapses among pyramidal neurons in the ferretmPFC have been
shown to be diverse in their kinetic properties, with some showing
strong short-term facilitation23 compared with the largely depressing
synapses among sensory pyramidal neurons in the mouse77 (although
this may differ in vivo78,79). Although our connectivity-mapping pro-
tocol does not allow precise control over the number of presynaptic
spikes per stimulation (Fig. S3c), we used it to estimate the short-term
plasticity in probed synapses. We found no differences in short-term
plasticity between cell types and layers (Fig. S7), suggesting either that
this specific type of facilitating synaptic connection does not exist in
the mouse mPFC, or that it was not represented in our dataset. Alter-
natively, the relatively high extracellular calcium concentration we
used (2 mM)80, although standard for slice electrophysiology, could
have masked facilitation81–83.

Pyramidal cells in the mPFC are highly heterogeneous in their
long-range input and output profiles25,26. Given their common projec-
tions to the BLA and their shared involvement in associative fear
learning30,39–43, we hypothesized that mPFC-BLA cells would show
unique connectivity patterns within the mPFC local circuit. Our data
indicated that, at the population level, mPFC-BLA cells seem to be
similar in their connectivity pattern to the generalmPFCpyramidal cell
population (Fig. S5a–c). However, close examination of the spatial
distribution of connections revealed that mPFC-BLA cells are selective
in their synaptic output along the laminar axis (Fig. 3c–e). The mPFC
and the BLA have been shown to share preferentially strong reciprocal
synaptic connections55,84,85. Axonal projections from the BLA onto the
mPFC, which carry information about learned associations86, densely
innervate L2 (and also L5)84,87, where they directly excite L2/3 pyr-
amidal cells55 and interneurons84. Our findings suggest a stream of
information, whereby input from the BLA strongly excites back-
projecting mPFC-BLA cells in superficial layers55, from which informa-
tion diverges to two main routes. One route is directed laterally onto
other mPFC-BLA cells in deeper layers (Fig. 3c and Fig. S5f) to form a
recurrent excitatory loopwith the BLA. The other route spreads locally
within the superficial layers onto other mPFC pyramidal cell popula-
tions (Fig. 3c). One possible target population for this route is nucleus
accumbens (NAc)-projecting neurons, which are abundant in super-
ficialmPFC layers25,84 (as well as pyramidal neurons dually projecting to
both the BLA and the NAc84). Therefore, this local processing of
information from the BLA in the mPFC could form a basis for the
processing of sensory inputs associated with negative and positive
valence, to guide action selection in the face of conflicting cues35,86.

Methods
AAV expression plasmids
A Cre-dependent stCoChR expression plasmid, labeled with mScarlet
(pAAV-EF1α-DIO-CoChR-Kv2.1-P2A-mScarlet), was generated as

described in ref. 44. Cre-dependent GCaMP6s plasmid labeled with
nuclear dTomato (pAAV-EF1α-DIO-GCaMP6s-P2A-NLS-dTomato) was
acquired from Addgene (plasmid #51082). Cre expression plasmids,
used for local sparse expression of stCoChR and GCaMP6s in the
mPFC, were either acquired from Addgene (pAAV-EF1α-NLS-Cre-P2A,
plasmid #55636) or cloned based on pAAV-EF1α-NLS-Cre-P2A using
standard restriction cloning (pAAV-CaMKIIα-NLS-Cre-P2A).

Production of recombinant AAV vectors
HEK293 cells were seeded at 25–35% confluence. The cells were
transfected 24 h later with plasmids encoding AAV rep, cap of AAV1
and AAV2, and a vector plasmid for the rAAV cassette expressing the
relevant DNA using the PEI method88. Cells and medium were har-
vested 72 h after transfection, pelleted by centrifugation (300 × g),
resuspended in lysis solution ([mM]: 150NaCl, 50 Tris-HCl; pH 8.5 with
NaOH), and lysed by three freeze–thaw cycles. The crude lysate was
treated with 250U benzonase (Sigma) per 1ml of lysate at 37 °C for
1.5 h to degrade genomic and unpackaged AAV DNA before cen-
trifugation at 3000× g for 15min to pellet cell debris. The virus parti-
cles in the supernatant (crude virus) were purified using heparin-
agarose columns, elutedwith soluble heparin, washedwith phosphate-
buffered saline (PBS) and concentrated by Amicon columns. Viral
suspension was aliquoted and stored at −80 °C. Viral titers were mea-
sured using real-time PCR. Retrograde AAV vectors (rAAV2-retro) were
kindly provided by the Janelia Viral Tools facility (rAAV2-retro-hSyn-
Cre) or generated as described in ref. 46 (rAAV2-retro-EF1α-Cre).

Animals
All experimental procedures were approved by the Institutional Animal
Care and Use Committee (IACUC) at theWeizmann Institute of Science.
C57BL/6J male mice aged four weeks postnatal were obtained from
Envigo and used for AAV vector injections and for recordings. Ai9mice47

(Cre-dependent tdTomato reporter line, used for calibrating retrograde
expression from the BLA) were obtained from Jackson Laboratory and
bred in-house. Up to fivemice were housed in a cage in a 12 h light–dark
cycle with food and water ad libitum at 22 °C and 48% humidity. Fol-
lowing viral injection surgery, mice were housed for at least four weeks
before being recorded to allow for recovery and virus expression.

Stereotactic injection of AAV vectors
Four- to six-week-old mice (29–46 days postnatal) were initially
induced with ketamine (80mg/kg) and xylazine (10mg/kg) by intra-
peritoneal injection and then placed into a stereotaxic frame (David
Kopf Instruments) and put under isoflurane anesthesia (~0.9% in O2, v/
v). A craniotomy (∼1mmdiameter)wasmade above each injection site.
A Nanofil syringe (World Precision Instruments) with a 34G beveled
needle was filled with virus suspension (or mixture of viruses,
according to injection site). The needle was inserted into the injection
site, bevel facing anteriorly, and left inplace for 5min, followedby slow
injection of the virus mixture (10–100 nl/min). After injection, the
needle was left in place for additional 10 min and then slowly with-
drawn. The surgical incision was closed with tissue adhesive (3M), and
buprenorphine (0.05mg/kg) was subcutaneously injected for post-
surgical analgesia. Mice were monitored daily for the first week after
surgery and twice weekly afterward. Injections coordinates, in mm
relative to bregma (injected volume): mPFC: 1.95 anterior, 0.3 lateral,
2.85 ventral (400–500 nl); BLA: 1.15 posterior, 3.0 lateral, 5.0 ventral
(100–350nl). AAV vectors used for intracranial injections had genomic
titers ranging 5.3 × 1011–3.1 × 1013 genome copies per milliliter (gc/ml,
before dilution; see below). When AAV vectors were injected together
for co-expression, their titers were matched by up to one order of
magnitude. To achieve local sparse expression of stCoChR and
GCaMP6s, Cre-dependent vectors were injected together with a titer-
matched Cre-expressing vector that was first diluted in PBS by a factor
of 1:100 before being mixed with the Cre-dependent vectors and
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injected. This dilution factor was based on calibration injections per-
formedusing dilutions of 1:20 to 1:1000 in order to achieve cell density
comparable to that of mPFC-BLA cells.

Calibration of retrograde expression in mPFC-BLA cells
Ai9 mice were injected with varying volumes of rAAV2-retro-Cre into
the BLA (100 nl at injection rate of 10 nl/min, 200 nl at 20 nl/min, or
300 at 30nl/min). The left BLAof eachmousewas injectedwith rAAV2-
retro-EF1α-Cre at a titer of 4.1 × 1012 gc/ml, and the right BLA was
injected with the same volume of rAAV2-retro-hSyn-Cre at a titer of 2.5
× 1013 gc/ml. At least four weeks after injection, mice were deeply
anesthetized with an intraperitoneal injection of pentobarbital
(400mg/ kg) andperfused transcardiallywith ice-cold PBS followedby
a solution of 4% paraformaldehyde (PFA) in PBS (pH 7.4). Brains were
removed and incubated overnight in 4% PFA at 4 °C, and then trans-
ferred to 30% sucrose in PBS for at least 24 h at 4 °C until cryo-
sectioning. Coronal sections (40 µm thickness) were cut on a
microtome (Leica Microsystems) and collected in cryoprotectant
solution (25% glycerol and 30% ethylene glycol in PBS, pH 6.7). Sec-
tions were washed in PBS, stained for 3min with DAPI (5mg/ml solu-
tion diluted 1:30,000 prior to staining), washed again with PBS,
mounted on gelatin-coated slides, dehydrated, and embedded in
DABCO mounting medium (Sigma). Images of sections from each
mouse, located approximately at the same anteroposterior position,
were acquired using a slide-scanning microscope (VS120, Olympus,
using VS-ASW 2.9 software), with acquisition settings being kept con-
stant across all sections. Regions of interest (ROIs) for quantificationof
cell number and fluorescence intensity were selected based on DAPI
fluorescence and on atlas reference images54 to cover the BLA and the
ventral mPFC. Cell bodies in the ventral mPFC ROIs were counted
manually from z-stack images that were reacquired under a confocal
microscope (Zeiss LSM 700, using ZEN 14.0 software). Cell bodies in
the BLA could not be clearly discerned due to local expression of the
rAAV2-retro-Cre vector and therefore were not counted. Fluorescence
intensity was calculated as themean for the entire ROI from the z-stack
images acquired using the slide scanning microscope.

Immunohistochemistry
Since both stCoChR and GCaMP6s were co-expressed with red fluor-
ophores (cytosolic mScarlet and nuclear dTomato, respectively), we
performed anti-GFP staining on fixed prefrontal slices in order to
visualize GCaMP6s independent of stCoChR and quantify their colo-
calization. Slices were washed three times in PBS for 5 min each, then
blocked for 1.5 h at room temperature (RT) in blocking solution (20%
normal horse serum (NHS) and 0.5% triton in PBS). Slices were then
incubated with a polyclonal rabbit anti-GFP primary antibody (Ther-
moFisher Scientific, catalog # A-11122) for 24 h at RT (1:300 anti-GFP
antibody, 2% NHS and 0.5% triton in PBS). Slices were subsequently
washed three times in PBS for 5 min each and incubated with a poly-
clonal goat anti-rabbit secondary antibody conjugated to Alexa Fluor
488 (Abcam, catalog # ab150077) for 2 h at RT (1:300 anti-rabbit
antibody and 2% NHS in PBS). Finally, slices were washed in PBS three
times, stained with DAPI for 5 min (5mg/ml solution diluted 1:10,000
prior to staining), washed, mounted, and imaged on a confocal
microscope as described above.

Point spread function (PSF) measurement
Fluorescent microspheres (Bruker) were suspended in ethanol and
thinly spread on a coverslip. After allowing the ethanol to evaporate,
microspheres were imaged under 940 nm at 10 mW with pixel size of
0.1 µm in z (binned to 0.2 µm) and 0.03 µm in xy (binned to 0.12 µm).

Acute brain slice preparation
Mice were injected intraperitoneally with pentobarbital (130mg/kg)
and perfused transcardially with carbogenated (95% O2, 5% CO2) ice-

cold slicing solution ([mM] 2.5 KCl, 11 glucose, 234 sucrose, 26
NaHCO3, 1.25 NaH2PO4, 10 MgSO4, 0.5 CaCl2; 340mOsm/kg). After
decapitation, 300 µm-thick coronal mPFC slices were prepared in
carbogenated ice-cold slicing solution using a vibratome (Leica VT
1200 S) and allowed to recover for 20min at 33 °C in carbogenated
high-osmolarity artificial cerebrospinal fluid (high-osmolarity aCSF;
[mM] 3.21 KCl, 11.8 glucose, 131.6 NaCl, 27.8 NaHCO3, 1.34 NaH2PO4,
1.07MgCl2, 2.14CaCl2; 320mOsm/kg) followedby 25min incubation at
33 °C in carbogenated iso-osmotic aCSF ([mM] 3 KCl, 11 glucose, 123
NaCl, 26 NaHCO3, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2; 300mOsm/kg).
Subsequently, slices were kept at room temperature in carbogenated
aCSF until use.

Electrophysiological recording in acute brain slices
Whole-cell patch-clamp recordings were obtained under visual control
using oblique illumination on a two-photon laser-scanningmicroscope
(Ultima IV, Bruker) equipped with a femtosecond pulsed laser (Cha-
meleon Vision II, 80 MHz repetition rate; Coherent), a 12 bit mono-
chrome CCD camera (QImaging QIClick-R-F-M-12) and a 20×, 1.0 NA
objective (Olympus XLUMPlanFL N). Borosilicate glass pipettes (Sutter
Instrument BF100-58-10) with resistances ranging 3–6MΩwere pulled
using a laser micropipette puller (Sutter Instrument Model P-2000).
The recording chamber was perfused with carbogenated aCSF at
2ml/min and maintained at ~26–32 °C. Pipettes were filled with
K-based low-Cl solution ([mM] 130 K-gluconate, 5 KCl, 10 HEPES, 10
Na2-phosphocreatine, 4 ATP-Mg, 0.3 GTP-Na; 285 mOsm/kg; pH
adjusted to 7.25 with KOH) for most of the connectivity-mapping
experiments, and with Cs-based intracellular solution for six of the
experiments ([mM] 120 Cs-gluconate, 11 CsCl, 1 MgCl2, 1 CaCl2, 10
HEPES, 11 EGTA, 5 QX-314; 280mOsm/kg; pH adjusted to 7.3 with
CsOH). In cell-attached recordings, used for correlating GCaMP6s
fluorescence with electrophysiological recording of the same cell,
pipettes were filled with 150 mM NaCl. Alexa Fluor 350 dye (<1 mM;
Thermo Fisher Scientific) was added to the intracellular solutions, as
well asNeurobiotin Tracer (0.3mg/ml; Vector Laboratories) in someof
the experiments. Recordings were performed using a MultiClamp
700B amplifier, filtered online at 8–10 kHz, digitized at 20–50 kHz
using a Digidata 1440A digitizer, and acquired using pClamp 10 soft-
ware (Molecular Devices).

Full-field illumination and light power calibration
Full-field illumination was performed using a 470 nm light-emitting
diode (29 nm bandwidth LED; M470L2-C2; Thorlabs) delivered
through themicroscope illumination path including a customdichroic
in order to reflect the 470nm activation wavelength. Light power
densities were calculated by measuring the light transmitted through
the objective using a power meter (Thorlabs PM100A with S142C
sensor) and dividing by the illumination area, which was directly
measured by placing an autofluorescent micrometer in the image
plane and illuminating with the LED to measure the fluorescent area
observed through the microscope eyepiece.

Sequential two-photon spiral scanning of candidate pre-
synaptic cells
A region in an acute mPFC slice containing cells expressing stCoChR
andGCaMP6s was selected using brief wide-field green illuminations so
as to minimize activation of stCoChR in the slice. A cell (either expres-
sing stCoChR andGCaMP6s or non-expressing) was patch-clamped and
sections spanning the entire depth of the slice were scanned (5 µm
interval, 1040 nm, ~9–55 mW under objective) using Prairie View soft-
ware (Bruker) to obtain a volume of ~420 × 420 × 300 µm3 containing
the recorded cell. Cell bodies were detected in the volume using a
custom script written in Matlab (MathWorks)49. Coordinates for two-
photon spiral scanning of each of the cells (15 µm diameter, 1 µm
revolution distance, scanning inward and outward for 7.16 ms) were
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generated using a custom-written Matlab script. An additional Matlab
script was generated for sequential scanning of all the cells while
adjusting focus and light power between cells. Detected cells were
sequentially scannedat940nmusingPrairieViewwhile thepatchedcell
was continuously recorded in voltage-clamp mode at –70 mV. The
GCaMP6s fluorescence signal was recorded through a GaAsP PMT
(Bruker) during scan periods. Each cell was scannedwith 10 or 15 spirals
delivered at 10 Hz. Light power on each cell was 10 mW (after adjust-
ment for attenuation through the tissue; see below). If the recorded cell
remained viable after all putative presynaptic cells were stimulated, up
to three repetitionswere executedwith the samesetof scanpatterns. At
the beginning and at the end of each protocol repetition, a series of
5 mV square hyperpolarizing voltage pulses were delivered in order to
monitor the recorded cell’s input resistance, membrane capacitance,
and access resistance. At the beginning of each recording (prior to the
presynaptic cell scanningprotocol), full-field light pulsesweredelivered
to verify stCoChR expression, or to look for active synaptic contacts
across the entire field of illumination in case the recorded cell was non-
expressing.

Detection and modeling of synaptic events
The process of detecting and modeling EPSCs in a voltage-clamp
recording trace was composed of six steps.
(1) Detrending. To standardize event detection, we inverted the

recording trace (multiplied by –1) and then downsampled it to
5000Hz using polyphase resampling. To compensate for drifts in
the holding current and other slow fluctuations in the signal, we
estimated a baseline for the recording trace by applying a 10th
percentilefilter of 50mswidth, followedby smoothing,whichwas
done by downsampling to 200 Hz, median filtering with a 15 ms
window, and upsampling back to 5000 Hz. The baseline was then
subtracted from the recording trace to yield a “zero-baseline”
trace S (shifted to have a zero median) which was used for all
subsequent analyses. The noise in the trace was characterized by
an estimated standard deviation cSD of 1.4826 × MAD, whereMAD
is the median absolute deviation around the median.

(2) Deconvolution. To detect the EPSCs in the zero-baseline trace, we
deconvolved it with a kernel similar to the waveform of a typical
EPSC:53,89

k tð Þ= exp �t=τdecay
� �

× 1� exp �t=τrise
� �� � ð1Þ

We used the OASIS implementation of this deconvolution52 ori-
ginally intended for fast and accurate detection of spikes from
calcium signals. We used a kernel with time constants τdecay =3:5
ms and τrise =0:7 ms and ran the OASIS algorithm for up to 10
iterations with a sparsity-imposing L1 penalty and noise level of
0.8 cSD. For subsequent analyses we used two outputs from the
OASIS algorithm: the deconvolved trace and the denoised trace
(convolution of the deconvolved trace with the kernel).

(3) Detection. Detection of EPSCs was performed by finding peaks in
the deconvolved trace after filtering it with a triangular kernel of 2.5
ms width. We only used peaks with height and prominence of at
least 0.5 cSD and a minimum distance of 2.0 ms between them. The
location of the peak was used as an estimate of onset time (ô), and
the area under the curve of the deconvolved trace between –0.4ms
and+0.8ms from ôwasused to estimate theheight (ĥ) of the event.

(4) Clustering. Detected EPSCs were clustered such that two con-
secutive eventswere in the same cluster if the second event started
before the first had decayed back to baseline. To achieve this, we
took all segmentsof thedenoised tracewhere itwashigher than 1.8cSD. We extended each segment by 10 ms before its beginning and
20msafter its end, and further extended it by 10msaroundevents.
We merged overlapping segments, such that all events within the
same segment were included in the same cluster.

(5) Fitting. To accurately determine the time and the shape of
synaptic events, we used two steps of curve fitting to refine our
parameter estimates iteratively. For this, the zero-baseline trace
for each cluster of events was fit to the sum of synaptic kernels
with separate parameters:

es = c+ Xn
i= 1

k t;h, o, τdecay, τrise
� �

ð2Þ

where kðt;h,o, τdecay, τriseÞ is a synaptic kernel of height h at onset
time o with shape k tð Þ= expð�t=τdecayÞ× ð1� expð�t=τriseÞÞ as
Eq. (1), c is the constant offset for eachcluster, andn is the number
of events in the cluster (for simplicity, we assumed that in the
soma, where the recordings are made, synaptic events are sum-
med linearly).
We minimized

RMS S�es� �
cSD +

RMS o� ô
� �
5

ð3Þ

where RMS is the root mean square error, S is the zero-baseline
trace, and onset times of all the events are in milliseconds. The
height and the two time constants (rise and decay) were
optimized in the logarithmic scale to ensure the same relative
accuracy across event heights and timescales. The search space of
the parameters height ½ĥ=15, 3ĥ� and onset time ô� 10, ô + 10

� �
was set relative to the estimate for each event, whereas the search
space for the time constants (0:5 < τdecay < 50, 0:1 < τrise < 10, in
ms, with a constraint τdecay > τrise) was identical across all the
events. The first round of minimization was done using Dual
Annealing90, a global minimization method based on simulated
annealing in SciPy91. The number of iterations and function
evaluations were increased with the number of events in the
cluster. The second round of minimization was done using the
SciPy implementation of Powell’s method, a derivative-free local
optimization method, with the starting point from the optimum
found by dual annealing.

(6) Thresholding. After the fitting, only events with heights of more
than 2.5 cSD were kept. A 2.5 cSD value corresponded to 4.55
± 0.06 pA.

See Table S4 for all parameter used in the procedure.

Modeling the distribution of EPSCs and assessing functional
connectivity
The recorded (postsynaptic) cell receives spontaneous EPSCs from
cells in the network that are independent of the stimulation of the
targeted (candidate presynaptic) cells. Moreover, evoked EPSCs can
have large jitter resulting from the jitter in stimulation-evoked pre-
synaptic spikes (Fig. S3c) and in synaptic latency. These two factors
served as motivation for developing a statistical model to determine
which stimulated cell is connected to the recorded cell.
(1) Bayesian “rate-and-time” models. To this end, we combined two

types of information using Bayesian models whose posteriors
were sampled using a Markov chain Monte Carlo (MCMC)
method. First, if a stimulated cell is connected to the recorded
cell, a bump in the rate of EPSCs is expected between ~5–25 ms
from stimulation onset (see Fig. 2b–d). Second, if a cell is con-
nected, evoked events appear in addition to spontaneous events,
such that a higher rate of events is expected during the evoked
time period (90 ms after the stimulation, disregarding the last 10
ms before the next stimulation) compared with reference 90 ms
intervals where no stimulation occurred (spontaneous intervals).
Model 1 assumes that the stimulated cell is not connected to the
recorded cell, and thus expects the distribution of events in the
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evoked time periods to be uniform and the same rate to explain
the number of events in both spontaneous and evoked periods.
Model 2 assumes that the cell is connected, and thus expects the
distribution of events in the evoked time periods to have a bump
following the stimulation time on top of a uniform distribution.
These two models (1 and 2) are referred to as “rate-and-time”
models. We sampled from the posteriors of these two models
using the No-U-Turn Sampler (NUTS)92 in PyMC393. Then, using
the Pareto-smoothed importance sampling leave-one-out (PSIS-
LOO)94 informationcriterion,wechose thehypothesis (connected
or not connected) with a better fit for each cell. The priors for
these models were based on either empirical data or biologically
plausible values (Table S5).

(2) Data. The rate-and-time models fit the following data for each
stimulated cell for each protocol repetition:
• Spont_time = duration of the given spontaneous segment

(≤90 ms); these segments were within 5 seconds of the time
of stimulation of the stimulated cell.

• Evoked_time = duration of the given evoked seg-
ment (=90 ms).

• Num_events_spont = total number of events in each sponta-
neous segment.

• Num_events_evoked = total number of events in each evoked
segment.

• Event_times = exact times of all the events which occur in the
evoked time segment (relative to stimulation onset).

(3) Parameters. We fit the aforementioned data to infer two para-
meters for each stimulated cell:
• Spont_rate = spontaneous event rate (inferred separately for

each protocol repetition).
• Evoked_per_trial = number of events evoked per trial (shared

across repetitions and inferred only if the model assumes the
cell is connected).

(4) Mathematical formulation.
Model 1 (assuming no synaptic connection):
• Priors:

Spont rate∼Gamma rate mu,rate sigmað Þ
• Distributions:

bump=Gamma μ=bump center,σ =bump widthð Þ
unif =Unif lower =0,upper = Evoked timeð Þ

• Likelihood:
Num events spont ∼Poisson Spont rate× Spont timeð Þ
Num events evoked ∼ Poisson Spont rate× Evoked timeð Þ
Event times∼Mixture bump,unif

� �
,weights = 0, 1½ �� �

Model 2 (assuming synaptic connection):
• Priors:

Spont rate∼Gamma rate mu,rate sigmað Þ
Evoked per trial ∼Gamma
Evoked per trial mu,Evoked per trial sigmað Þ

• Distributions:
bump=Gamma μ=bump center,σ =bump widthð Þ
unif =Unif lower =0,upper = Evoked timeð Þ

• Likelihood:
Num events spont ∼Poisson Spont rate× Spont timeð Þ
Num events evoked ∼ Poisson Spont rate× Evoked time+ð
Evoked per trialÞ
w= Evoked per trial= Evoked per trial + Spont rate×ð
Evoked timeÞ
Event times∼Mixture bump,unif

� �
,weights = w, 1�w½ �� �

These two models were fit in PyMC3 using NUTS.
(5) Model comparison. Since the two rate-and-time models use the

samepriors and fit the same likelihoods, we compared themusing
expected log pointwise predictive density (ELPD) using Pareto-
smoothed importance sampling leave-one-out cross-validation
(PSIS-LOO-CV)94. Specifically, the twomodels were combined into
a single model using the Bayesian bootstrap-pseudo-Bayesian
model averaging (BB-pseudo-BMA) method95 applied to the PSIS-

LOO calculated using the “compare” function of the ArviZ
package96. This procedure gives weights to the two models
(connected and not connected) which sum up to 1. These weights
can be interpreted as the probability of the particularmodel to be
correct, assuming that one of the models is indeed correct. We
used the weight of the rate-and-time connected model (model 2)
as the output of the procedure (wrt).

(6) Bayesian “rate-only” and “time-only” models. The rate-and-time
models described above combine the information from both the
rates and the times of EPSCs. However, for some cell pairs, the
time information may indicate a bump implying a connection,
while the rates may suggest no extra evoked events over the
expected spontaneous rate (or the opposite: the rate information
may imply a connection while the time information does not).
Such borderline cell pairs may be misclassified by these models.
To resolve this, we further fit two pairs of reduced versions of the
rate-and-time models.
Models 3 and 4: A pair of “time-only” models where we only
used theMixture likelihood of the event times. As with the rate-
and-time models, one of the time-only models assumes no
synaptic connection (model 3), and the other assumes a
connection (model 4). For this pair of time-only models we
used priors with distribution Beta α =2,β=2ð Þ on the weight of
the bump directly. Note that the model which assumes no
connection (model 3) has no priors.
Models 5 and 6: A pair of “rate-only”models where we only used
the Poisson likelihoods of the rates. As before, one model
assumes no connection (model 5) and the other assumes a con-
nection (model 6).We used the samepriors for spontaneous rate
(Spont_rate) and evoked per trial (Evoked_per_trial).
The posteriors of these pairs of models (models 3–6) were
similarly sampled using NUTS. ELPD was calculated and the
relative weights of the connected and not connected hypotheses
were calculated the same way as for models 1 and 2 (rate-and-
time). We used the weights of the connected models (models 4
and 6) as the outputs of the procedure (wt and wr).

(7) Connectivity determination. To determine whether a stimulated
cell is connected to the corresponding recorded cell, we reliedboth
on the models and on manual observation. Cells whose weights of
the connected models (models 2, 4, and 6) crossed a threshold,
namely cells satisfying wrt ≥0:5

� � ^ wt ≥0:4
� � ^ wr ≥0:4

� �
, were

considered as putatively connected. The use of the “rate-only” (wr)
and “time only” (wt) models in the criterion ensured that we only
considered cells to be connected if both types of information
agreed independently that the cell is likely to be connected, thus
helping reduce false classifications. For manual identification of
synaptic connections, traces recorded during stimulation of each
cell were aligned to stimulation onset and observed in search of
EPSCs that appear near the stimulationwith high reliability and low
jitter. Cases of disagreement between the model and the manual
observation (n = 212 stimulated cells) were reexamined manually
and settled by manual observation (leaving n = 177 cases of dis-
agreement). Cases where manual observation was uncertain (n =
44 stimulated cells) were settled by the criterion above, namely
wrt ≥0:5
� � ^ wt ≥0:4

� � ^ wr ≥0:4
� �

. Performance of the model
(Fig. 2e, f) was measured after handling all cases of disagreement
and uncertainty as described.

(8) Bump estimation. For the connected cells, we used another
Bayesian model (model 7) to estimate the location and width of
the bump in EPSCs. Since the bump represents the distribution of
evoked EPSCs, we used this model in order to calculate the
strength of synaptic connection (see below). This model was
similar to the rate-and-timemodel assuming synaptic connection
(model 2), except for the use of a normal distribution for the
bump (which also makes calculations numerically more stable)
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and that the center and the width of this normal distribution have
prior distributions for which we infer the posteriors (for
determining connectivity, these were fixed numbers and thus it
was always the same bump).
Model 7 (assuming synaptic connection with variable bump):
• Priors:

bump center ∼Gamma μ= bump center mu,σ =ð
bump center sigmaÞ
bump width∼BoundedGamma μ=ð
bump center mu,σ =bump center sigma,lower bound =
3:0,upper bound =8:0Þ
Spont rate∼Gamma rate mu,rate sigmað Þ
Evoked per trial ∼Gamma Evoked per trial mu,Evokedð
per trial sigmaÞ

• Distributions:
bump=Normal bump center,bump widthð Þ
unif =Unif lower =0,upper = Evoked timeð Þ

• Likelihood:
Num events spont ∼Poisson Spont rate× Spont timeð Þ
Num events evoked ∼ Poisson Spont rate×ð
Evoked time + Evoked per trialÞ
w= Evoked per trial= Evoked per trial +ð
Spont rate× Evoked timeÞ
Event times∼Mixture bump,unif

� �
,weights = w, 1�w½ �� �

Measurement of synaptic connection strength
The timing of evoked EPSCs could not be accurately predicted due to
the jitter in presynaptic spike and in postsynaptic response, such that
spontaneous EPSCs occurring adjacent to stimulation could be mis-
taken for evoked EPSCs. To minimize this potential error, we used the
normal distribution which describes the time distribution of evoked
EPSCs (the bump) from model 7 described above. The strength of
synaptic connection at each stimulation was thus taken as the weigh-
ted average of the EPSCs during a 2–30ms timewindow following that
stimulation, where the weight of each EPSC was determined by the
probability density function of the fitted normal.

Logistic regression model
To understand which features contribute to connectivity, we fit a
logistic regression model from the features of the cell pairs to their
binary connectivity. For this analysis we used all pairs of stimulated
(candidate presynaptic) cells and their corresponding recorded
(postsynaptic) cells in the entire mPFC. We removed cell pairs where
the stimulated cell was excluded according to the criteria detailed
below (removing 2376 pairs), as well as cell pairs where not all of the
intrinsic electrophysiological properties of the postsynaptic cell could
be measured (removing 689 pairs where a Cs-based internal solution
was used for recording). This left n = 7752 cell pairs used for themodel.
(1) Preprocessing. First, to have all the features on similar scales, we

log-transformed features that were only positive or spannedmany
orders of magnitude (adaptation index, bursting index, mem-
brane capacitance, output gain, input resistance, and spike half-
width), and logit-transformed features that took values between 0
and 1 (sag ratio), so that thedistributionof each featurewas similar
to a normal distribution with relatively low skewness and kurtosis.
We included the cell type features (“mPFC-BLA to mPFC-BLA
connection” and “mPFC-BLA to non-mPFC-BLA connection”) as
either 0 or 1 (where “random to randomconnection”was encoded
as 0 for both cell type features). In order to compare the relative
contribution of the features to connectivity, they must also be
normalized, such that the relative magnitudes of the regression
coefficients correspond to the information gained by a change in
feature value in units of its standard deviation. However, several
features in the data have strong correlations with each other,
demonstrating multicollinearity (see Fig. S8b for correlations

between electrophysiological properties). This makes the inter-
pretationof the coefficients difficult, as theyno longer correspond
to the amount of information gained by a change of value in each
feature. To resolve themulticollinearity, we applied a robust zero-
phase components analysis (ZCA) transform to both whiten and
normalize the data, so that all the pairwise correlations are
removed, and the variance along each transformed feature is 1.We
used the SciPy91 implementation of the minimum covariance
determinant estimator97 (MinCovDet) to estimate the correlation
matrix, which we eigen-decomposed to calculate the ZCA
transform.

(2) Sparsity-inducing Horseshoe priors. We next performed feature
selection to reduce noise and to capture the predictive features in
the data. For this, we used a Bayesian generalized linear model
whose posteriors of the model were sampled using a MCMC
method. We applied Horseshoe priors57 using the formulation in
ref. 58 and based on its PyMC393 implementation in https://
mellorjc.github.io/HorseshoePriorswithpymc3.html
• Priors:
v =3
rlocal ∼Normal μ=0, σ = 1ð Þ[for each feature]
rglobal ∼Normal μ=0,σ = 1ð Þ
ρlocal ∼ InverseGamma α =0:5 × v,β=0:5 × vð Þ[for each feature]
ρglobal ∼ InverseGamma α =0:5,β =0:5ð Þ
z ∼Normal μ=0,σ = 1ð Þ[for each feature]
β0 ∼Normal μ= � 3:67, σ = 1ð Þ
τ = rglobal ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρglobal

p
λ= rlocal ×

ffiffiffiffiffiffiffiffiffiffiffi
ρlocal

p
β = z × λ× τ
μlogit =X � β+β0

where X is the ZCA-transformed features (model input data).
• Likelihood:
observed data∼Bernoulli p= InverseLogit μlogit

� �� �
We sampled the posteriors from this model using NUTS92 in
PyMC3. We selected features whose median posterior coeffi-
cient was larger than 0.05 in absolute value as features that
provide significant information about connectivity (Fig. 4h).
The reason for this choice is that a ±0.05 coefficient value
corresponds to a change of 0.05 in log odds (which in turn
corresponds to a change of approximately 5% in odds)when the
value of the feature moves by 1 standard deviation from
its mean.

(3) Unregularized, cross-validated logistic regression and cross-
entropy calculations. To quantify the information that the
features have on connectivity, we used an unregularized, cross-
validated logistic regression model implemented in Matlab using
the glmfit function. We used the preprocessed features and n =
191 stratified cross-validations (equal to the number of connected
cell pairs in the dataset to have one connected pair per fold). We
calculated the cross-entropy between the model prediction ŷ
(continuous probability) and the true connections y (binary) as

H = 1=n
� �

× �y � log ŷ
� �� 1� yð Þ � log 1� ŷ

� �� � ð4Þ

where n is the number of cell pairs in the test set (or the total
number of cell pairs in the dataset in case of no cross-validation).
We ran thismodel and calculationusing all features, usingonly the
selected features, and using the selected features minus one of
them, and for each run we calculated the distribution of cross-
entropies across the cross-validations as well as the cross-entropy
when running the model without cross-validation (Fig. 4i). The
same stratified folds were used for all cross-validations so that
models using different features could be compared using a paired
test (see Statistics below). As control, we ran the model using
shuffled connections (without cross-validation) and calculated
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the cross entropy between the prediction using shuffled connec-
tions and the true connections across 10,000 shuffles. As another
control, we calculated the cross-entropy between the true
connections and a constant connection probability of 0.025 (the
mean connection probability across all cell pairs).

Subtracting evoked photocurrents
While recording from an stCoChR-expressing cell, stimulation of some
targeted cells can evoke unwanted photocurrents in the recorded cell.
This is a result of imperfect restriction of the channelrhodopsin
molecules to the soma, and can obscure EPSCs. To resolve this, we
identified cells whose stimulation evoked direct photocurrent by
manually observing the recording traces after aligning them to the
stimulation pulse. Photocurrents were identified by their minimal
latency and jitter, their reliability, and their reproducible waveform
across consecutive stimulations of the same cell (Fig. 2c). Cells whose
stimulation evoked photocurrent stronger than 20 pA at the soma of
the recorded cell were excluded from analysis. Traces corresponding
to cells whose stimulation evoked ≤ 20 pA photocurrent were manu-
ally examined for synaptic connections by searching the stimulation-
aligned traces for reliable, low-jitter EPSC occurrences. Cases where
stimulation evoked a compound response consisting of both a pho-
tocurrent and an EPSCwere identified by the rapid rise constant of the
EPSC as compared with the photocurrent (e.g., Fig. 2c, left, third cell).
In order to remove the photocurrent so as to accuratelymeasure these
EPSCs, we identified stimulation-aligned traces where no EPSCs were
evoked (within a time window of 30 ms after stimulation), and sub-
tracted the mean of these photocurrent-containing traces from the
rest of the traces. The resulting traces contained only EPSCs with
approximately no photocurrent. Synaptic strength for each stimula-
tion was then calculated by subtracting themean of a baseline window
preceding stimulation (–20 to +2 ms relative to pulse onset) from the
minimum of a window following stimulation (+2 to +25 ms relative to
pulse onset). In order to improve separation of evoked photocurrents
from EPSCs, we repeated the stimulation protocol in several of the
recorded cells, in the presence of APV (25 µM) and CNQX (10 µM) to
block glutamate transmission (Fig. 2c). We then subtracted the mean
of the traces obtained in presence of glutamate-receptor blockers
from the corresponding traces without blockers.

Quantification of intrinsic electrophysiological properties
At the beginning of recording from each cell (prior to the synaptic-
mapping protocol), a series of square current pulses (~ –200 to +400
pA, interval 25–50 pA) were injected in current-clampmode (unless the
intracellular solution was Cs-based). Input resistance Rin was calculated
based on the peak hyperpolarization during injection of the smallest
negative current. Membrane capacitance Cm was calculated based on
Rin and on the membrane time constant τm, using an exponential fit
[a× 1� e�t=τm

� �
+ c] of 10 to 90% of the peak hyperpolarization during

injection of the smallest negative current. Maximal firing rate was taken
as the maximal rate among all injected current pulses. Output gain was
taken as the slope of the input-output curve in the range between the
minimal andmaximal firing rates. Bursting and adaptation indices were
based on traces with closest to 80% of the maximal firing rate per cell.
Bursting index was taken as the ratio between the second and the first
ISIs. Adaptation index was taken as the ratio between the last and the
second ISIs. Spike half-width, amplitude, and threshold were calculated
basedon thefirst spike in the tracewith the lowestfiring rate (that is, the
first evoked spike). Sag ratio was based on the trace with the strongest
hyperpolarizing current, and calculated as Vmin � Vss

� �
= Vmin � Vbl

� �
,

where Vmin is the minimal voltage during the first 30% of the hyperpo-
larizing pulse, Vss is the steady-state voltage during the pulse, and Vbl is
the baseline just before the pulse. In six of the connectivity-mapping
experiments, the internal solution was Cs-based and therefore the
intrinsic electrophysiological properties could not be measured.

Inferring the brain-reference anatomical positions of the pro-
bed cells
In order to standardize the coordinates of all cells (pre- and post-
synaptic) across all experiments and calculate their positions in the
brain, we transformed the cells’ coordinates into brain-reference ana-
tomical positions. For this purpose, we defined three orthogonal
planes for each slice. The anatomical positionof each cell wasbased on
its distance from each of these planes. (1) A slice-surface plane was
defined by a collection of points (n = 17.4 ± 0.64) on the surface of the
scanned volume. Recorded slices typically had small curvatures on
their surface, possibly caused by the harp that is used to hold them in
place during recording, creating an angled volume surface relative to
the image plane (θ = 11.2 ± 0.7 °). The points used to define this plane
were imaged during the scanning of the volume for connectivity
mapping. Distance from this plane defined a cell’s depth inside the
slice (referred to as AP position). (2) A midline plane was defined by
passing through the dorsal end and the ventral end of the midline of
the slice (both ends were recorded) and by being orthogonal to the
slice-surface plane. Distance from this plane defined theMLposition of
the cell. (3) A dorsal-end plane was defined by passing through the
dorsal endof the slice andbybeingorthogonal to theother twoplanes.
Thedistance from this planedefined theDVpositionof the cell. TheDV
and ML positions of each cell were then projected on a reference
coronal atlas image54 (https://kimlab.io/brain-map/atlas/) that mat-
ched the slice’s AP position relative to bregma, which was determined
based on anatomical landmarks such as the shape of the corpus cal-
losum. The anatomical region of the cell was determined by its pro-
jected coordinates on the corresponding intensity-labeled atlas
image54 (where anatomical regions were distinguished by their pixel
intensity), using a custom Matlab script. The layer of the cell was
determined based on Fig S6.

The effect of spatial specificity of stimulation on measured
probabilities of synaptic connection
Targeted optogenetic stimulation of one cell may lead to co-
stimulation of adjacent cells, depending on the local density of
opsin-expressing cells. If two (or more) adjacent cells respond with
spiking and with elevated GCaMP6s fluorescence to stimulation of
either one of them, and only one (or some) of them is synaptically
connected to the recorded cell, it will seem as though both (or all)
stimulated cells are connected to the recorded cell, introducing a
connectivity overestimation bias. To address this scenario, we
manually registered the positions of all labeled cells in four scanned
brain-slice volumes. For each cell in each volume, we defined an
ellipsoid centered at the center of mass of the cell. The primary axes
of the ellipsoid were defined as the FWHM of the spiking probability
at the corresponding axes (Fig. S4c–e). We calculated the number of
cells that fall within this ellipsoid as a proxy for the probability to
stimulate two (or more) cells together. The fraction of cells having at
least one neighboring cell within their FWHM ellipsoid was 0.13 ±
0.02 (Fig. S4c, blue). Among the cells having adjacentwithin-ellipsoid
neighbors, the number of neighbors was 1.06 ± 0.02 (Fig. S4d, blue).
The fraction of cell pairs, among all possible pairs in a scanned
volume, that are within each other’s ellipsoid was 4.2×10–4 ± 3.2×10–5

(Fig. S4e, blue). These data suggest that in ~13% of cells targeted for
photostimulation, two cells might be co-stimulated instead of only
one. In the case where all opsin-expressing cells in the volume are
sequentially stimulated and respond with spiking, the probability of
synaptic connection is therefore overestimated, on average, by 13%.
This is because 13%of the connected cells are expected to lie adjacent
to a cell that is being co-stimulated with them and is also targeted
separately for stimulation. However, in our hands, only 58 ± 7% of the
total opsin-expressing cells in a scanned volume are targeted for
stimulation. When stimulating a subset of the opsin-expressing cells
in a tissue volume during a mapping experiment, an additional 13%,
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on average, are effectively being stimulated. Since the number of
connections found in each experiment is not affected by these
unintended stimulations, the actual connection probability may be
lower by 11.5% than that calculated in our experiments. We did not
correct for this bias. Importantly, it only affects the absolute prob-
ability of connections. It does not affect calculations involving con-
nection strength or the identity of the connected and non-connected
cells (such as laminar distribution of connections and prediction of
connectivity using the regression model in Fig. 4).

The effect of acute brain slice preparation on connectivity
Oneof themajordrawbacksofourmethodology is that the connections
aremeasured in acute brain slices, and not in the live animal. During the
slicing of the brain, neuronal projections are inevitably cut. We took
several measures to minimize the loss of neuronal connections due to
this cutting process: we recorded from coronal slices, which are cut
parallel to theaxis of theapical dendrites ofpyramidal cells in themPFC;
we recorded from cells located relatively deep in the brain slice (depth
in slice = 66.9 ± 2.0 µm, range 26.7–125.1 µm); and we stimulated pre-
synaptic cells spanning the entire depth of the slice, thereby mapping
inputs from cells that are otherwise inaccessible using the conventional
multiple-patch configuration. By estimating the fraction of the anato-
mical axodendritic overlap volume between the pre- and postsynaptic
neurons that is removed after slicing, a recent study suggested that the
cutting process scales down connection rates globally, with little bias to
specific connection types98. Other studies using similar anatomical
simulations suggest that within the intersomatic displacement ranges
used in our dataset, ≥60% of the synaptic contacts remain intact in 300
µm-thick brain slices77,99. Only a few studies have directly examined
functional synaptic connectivity in vivo. Connection probabilities from
L2/3 pyramidal neurons onto nearby interneurons in the barrel cortex
seem similar in vivo and in vitro100,101, and amongpyramidal neurons the
connections in vivo seem even sparser than in vitro79,101. This may be
attributed to increase in synapse density after slicing, as observed in
hippocampal slices102. To quantify the possible loss of synapses due to
severing of projections, we performed the following analysis. For each
connectivity map in our dataset, we considered two groups of pre-
synaptic cells: one containing all the cells that are located in the volume
between the slice surface and the depth of the recorded (postsynaptic)
cell, and another containing all the cells located in the volume between
the depth of the recorded cell down to twice its depth. Since these two
groups reside in equally sized tissue volumes, and they differ only in
their distance from the cut surface, the difference in connectivity fea-
tures between them represents the downscaling of connections caused
by slicing. We found that connection probability deeper in the slice was
1.77 times higher than close to the surface (0.038 vs. 0.021, reduction of
43.6%; Fig. S10). Mean connection strength did not differ between the
two volumes (16.6 pA below vs. 16.2 pA above the recorded cell; Fig.
S10). This downscaling of connections is expected to be approximately
uniform across map types98, allowing us to compare the connection
probabilities and strengths between them. Therefore, the artefacts of
the slicing process should not undermine the comparative qualities of
our findings.

Specificity of mPFC-BLA cell labeling
The representative images in Fig. S1a show retrogradely labeled cell
bodies, as well as locally transduced cells in the BLA and their ante-
rograde projections, resulting from injections of rAAV2-retro-Cre into
the BLA of Ai9 mice. Fluorescent labeling can be seen outside of the
BLA, mainly in the striatal region dorsal to the BLA. This viral spread
most likely occurred during the withdrawal of the injection needle
containing the virus. To determinewhether the transduction spread to
regions outside of the BLA can lead to retrograde labeling of mPFC
cells that do not project to the BLA and therefore could bemistaken as
mPFC-BLA cells, we injected wildtype mice with rAAV2-retro-Cre into

the BLA and Cre-dependent stCoChR and GCaMP6s into the mPFC. To
visualize GCaMP6s-expressing axonal projections, we stained brain
slices against GFP. We found that fluorescent projections are denser
inside the BLA than outside of it (Fig. S2a). Furthermore, we surveyed
the recently published database for brain-wide BLA connectivity56

(https://mouseconnectomeproject.github.io/amygdalar/) and found
that the infralimbic cortex only sparsely innervates the striatal region
dorsal to the BLA, compared with its dense innervations in the BLA.
Additionally, the BLA receives synaptic input from and sends projec-
tions to surrounding regions, such as the basomedial amygdala (ven-
tromedial to the BLA) and the entorhinal cortex (lateral to the BLA),
which could account for the labeling seen in these regions in Fig. S1a.
These observations suggest that the retrogradely labeled cells in the
mPFC are mostly mPFC-BLA cells, with a small minority of other cells
projecting to areas that surround the BLA.

Estimate of the total number of connected cells from the EPSC
distribution
The distribution of stimulation-aligned EPSCs in our data (Fig. 2b) can
be used to estimate the expected number of connected presynaptic
cells in the entire dataset.

Let E be the total number of synaptic events in Fig. 2b, f be the
fraction of events in the evoked bump (and 1–f the fraction of events in
theuniformpart),Nbe thenumber of stimulated cells, cbe the fraction
of connected cells among all stimulated cells, n be the average number
of stimulations on each targeted cell (including protocol repetitions),
and ep be the average number of evoked EPSCs per stimulation for a
connected cell.

Then the number of evoked events can be expressed as

#evoked events = E × f = N × cð Þ×n× ep ð5Þ

The fraction of connected cells can therefore be estimated as

ĉ=
E × f

N ×n× ep
ð6Þ

Fromthedata used in Fig. 2b, E = 151797,N = 10445,n = 27.2 ± 0.14,
and f = 0.046 (the weight of the Gamma in the mixture model).
Assuming ep = 0.5 (a combination of the number of evoked spikes per
spiral from Fig. S3c with synaptic failure), we get

ĉ= 151797 ×0:046
10445 × 27:2 ×0:5 =0:049

This value roughly resembles the fraction of connected cells in
our dataset (excluding stimulated cells that evoke a direct photo-
current in the recorded cell, and keeping all other cells regardless of
their GCaMP6s signals): c=243=10445 =0:023.

Compensation for light power attenuation inside the tissue
In all experiments, we maintained light power constant on cell bodies
located at different depths in the tissueby compensating for scattering
with increased light power. To calculate the light power at the focal
point as functionof its depth in the brain slice, wedesigned an “inverse
fiber” model. We used an existing model to calculate the spatial dis-
tribution of power in tissue for an optic fiber with given NA, tip radius
andwavelength103.Wemodeled the power distribution for a point fiber
(tip of 1 µm) with properties as in our system (1.0 NA and λ = 940 nm).
At a given distance d below the fiber, the acceptance angle of the fiber,
set by the NA, defines a circular plane centered at the fiber axis and
perpendicular to the fiber axis. By symmetry, the integrated light
density over this plane is equivalent to the light power at the focal
point when an objective with the same NA focuses into depth d in the
tissue. With this model, we found that the dependence of light power
on depth in the tissue fits monoexponential decay with attenuation
length of τ = 147.6 µm. This value is consistent with the excitation
attenuation length previously found for 920 nm in the mouse brain
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in vivo (τ ~ 155 µm)104. We modulated the absolute light power
accordingly throughout all experiments.

Analysis of GCaMP6s fluorescence and validation of spiking in
response to stimulation
The fluorescence trace recorded during a single spiral-pattern scan (as
in Fig. 1d) was averaged such that a complete spiral was treated as one
time point. To determine whether a targeted cell spiked in response to
spiral scanning, we calculated the slope of GCaMP6s fluorescence
using a linear fit over the raw GCaMP6s fluorescence trace obtained
during the entire spiral-scan train (10 or 15 spirals). Notably, when
scanning populations of cells in the presence of TTX, GCaMP6s
fluorescence can still accumulate (Fig. 1h, middle), supposedly due to
strong light-induced depolarizationwhich can occurwithout spiking44.
This spike-independent depolarizationmeans that theGCaMP6s signal
obtainedwhile scanning in the presence of TTX is in itself not a reliable
measure for determining spiking. However, we found that the slope of
the raw GCaMP6s fluorescence trace across a spiral train generally
decreases after application of TTX (Fig. 1g, bottom; Fig. 1h, right; and
Fig. S3b). We therefore used the lower 95% confidence bound of the
rawGCaMP6s fluorescence slope as ameasure for spiking. Cells whose
lower 95% confidence bound was negative were excluded from ana-
lysis. For calculation of GCaMP6s ΔF/F0, the first spiral in the train was
taken as baseline (F0), due to the slow onset kinetics of GCaMP6s
relative to spiral duration.

Exclusion of interneurons from connectivity analysis
The AAV vectors encoding for stCoChR and for GCaMP6s are both
under the ubiquitous EF1α promoter. To express stCoChR and
GCaMP6s in a sparse, random set of mPFC cells and map connectivity
among randommPFC cells, we injected a low-titer AAV-Cre vector into
the mPFC which was either under the EF1α promoter or under the
more pyramidal cell-specific CaMKIIαpromoter (see above, underAAV
expression plasmids). This could lead to expression of stCoChR and
GCaMP6s in interneurons. Tominimize the resulting bias, we excluded
from analysis any cell whose stimulation evoked hyperpolarizing cur-
rents in the recorded cell (under a –70 mV clamp). In some of the
experiments, we repeated the sequential stimulation under a depo-
larized holding potential (–60 to –40 mV, and 0 mV in cases the
intracellular solution was Cs-based) to facilitate identification of inhi-
bitory connections. Since connections from interneurons to pyramidal
neurons appear at very high probabilities, both in sensory cortex6 and
specifically in the mPFC76,105, and since interneurons are estimated to
amount to ~20% of cortical neurons106, the remaining stimulated
interneurons that were not connected to the recorded cell likely
introduce a very small bias to connection probability.

Summary of exclusion criteria
Stimulated (candidate presynaptic) cells were excluded from analysis
if they met at least one of these conditions: Lower 95% confidence
bound for the slope of the rawGCaMP6s fluorescence trace across the
spiral train was negative; stimulation evoked a direct photocurrent
larger than 20 pA in the recorded (postsynaptic) cell; stimulation
evoked an IPSC; recording trace during stimulation was too noisy or
leaky. Tomeasure the performance of our connectivity determination
model (Fig. 2e, f), we disregarded the GCaMP6s signal of the pre-
synaptic cell (such that cell pairs where the presynaptic cell was not
confirmed to have spiked were included in this particular analysis,
unlike all other analyses), and we excluded from this analysis cell pairs
where stimulation of the presynaptic cell induced any direct photo-
current (also <20 pA) in the recorded postsynaptic cell.

Data analysis
Detection and modeling of synaptic events and analysis of synaptic
connectivity were performed using custom scripts written in Matlab

and in Python. Analysis of GCaMP6s fluorescencewasperformedusing
Matlab. Analysis of electrophysiological recordings for intrinsic prop-
erties was performed using Matlab and Clampfit (Molecular Devices).
Image analysis was performed usingMatlab and Fiji. Statistical analysis
was performed in Matlab. Data are presented as mean ± SEM unless
otherwise stated.

Statistics
In comparisons of connectivity features between map types (Fig.
S5a) and in comparisons of electrophysiological properties between
cell types (Fig. 4d, e and Fig. S8a), we used the Kruskal-Wallis test
with multiple post hoc comparisons using Tukey’s Honestly Sig-
nificant Difference (HSD) procedure. Two-way analysis of variance
(ANOVA) was used to test interaction between connection type and
layer (Fig. 3c). Wilcoxon signed-rank test was used for comparing
weighted synaptic input along the mediolateral axis (Fig. S5f) and
along the dorsoventral axis (Fig. S5g), for comparing connectivity
measures above and below the recorded cell (Fig. S10), and for
comparing spatial specificity (FWHM) of spiking vs. GCaMP6s ΔF/F0
(Fig. S4b). Two-sample Kolmogorov-Smirnov test was used for
comparing properties of automatically vs. manually detected cells
(Fig. S2e, f). To compare regression models to the model using all
(and only) selected features (Fig. 4i), the same cross-validations
were used for all models (except for the shuffled connections and
mean connection prediction), and a paired-sample Student’s t-test
was performed. The model using shuffled connections did not use
cross validation and therefore the comparison with themodel using
selected features was performed with a two-sample Student’s t-test.
Finally, to compare the mean probability prediction model, one-
sample t-test was used.

Markov chain Monte Carlo (MCMC) sampling parameters
The MCMC sampling in the cell connectivity determination was done
using the NUTS algorithm in PyMC3 with 5000 steps for tuning for a
‘target_accept’ of 0.95 and 2000 steps after the tuning for sampling in
4 independent chains. We used the ‘jitter+adapt_full’ initialization. The
MCMC sampling for the Horseshoe-prior logistic regression was done
using the NUTS algorithm in PyMC3 with 10000 steps for tuning for a
‘target_accept’ of 0.95 and 2000 steps after the tuning for sampling in
4 independent chains.We used the ‘advi+adapt_diag’ initializationwith
a maximum of 50000 steps for initialization.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper as spreadsheets for each of
the figures. Raw data will be shared upon request.

Code availability
All of the custom-written analysis code used in this study is available
from the Yizhar lab Git repository at https://doi.org/10.5281/zenodo.
7607227.
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