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Predictability of fossil fuel CO2 from air
quality emissions

Kazuyuki Miyazaki 1 & Kevin Bowman 1

Quantifying the coevolution of greenhouse gases and air quality pollutants can
provide insight into underlying anthropogenic processes enabling predictions
of their emission trajectories. Here, we classify the dynamics of historic
emissions in terms of amodified Environmental Kuznets Curve (MEKC), which
postulates the coevolution of fossil fuel CO2 (FFCO2) and NOx emissions as a
function of macroeconomic development. The MEKC broadly captures the
historic FFCO2-NOx dynamical regimes for countries including the US, China,
and India as well as IPCC scenarios. Given these dynamics, we find the pre-
dictive skill of FFCO2 given NOx emissions constrained by satellite data is less
than 2% error at one-year lags for many countries and less than 10% for 4-year
lags. The proposed framework in conjunction with an increasing satellite
constellation provides valuable guidance to near-term emission scenario
development and evaluation at time-scales relevant to international assess-
ments such as the Global Stocktake.

Fossil fuel CO2 (FFCO2) emissions continue to be the largest driver of
anthropogenic climate change1 while co-emitted air pollutants are
one of the largest global morbidity factors2. Broadly speaking, both
emissions are driven by common activity such as fuel consumption,
but differ by their relative contribution (i.e., emission factor). At
country scales, fuel consumption is regulated by macroeconomic
processes reflected in metrics such as gross domestic product (GDP)
while emission factors reflect sector distribution, technology, and
environmental regulation. A framework for understanding the bal-
ance between activity and emission factor during economic growth is
the environmental Kuznets curve (EKC), which hypothesizes that at
early stages there is a regimewhere economic development (activity)
is prioritized at the expense of environmental quality (factor) but
transitions over time to a regime where additional resources are
placed on limiting environmental degradation (i.e., reduced emission
factors) reflecting changes in both sectoral distribution and eco-
nomic costs. The EKC leads to an inverted “U” shape curve of envir-
onmental degradation as a function of GDP3. The EKC concept has
been shown to be useful for interpreting IPCC scenarios4 and has
been tested for many countries, including the United States (US)5,
Asia6, India7, and Africa8. For instance, in the US, consumption-based
post-trade EKCs peak at significantly higher incomes than
production-based pre-trade EKCs, suggesting that emissions-

intensive trade largely drives the income-emissions relationship9.
The EKC can also be applied to sub-national scales. For example, per
capita GDP appears to be the primary driver for FFCO2 from Chinese
cities, indicating that the economic wealth of cities may be a key
factor in driving their emission changes10.

Accurate and timely FFCO2 emission inventories are critical inputs
for assessments of the global carbon cycle11, climate targets1 as well as
for carbon cycle assimilation. However, these inventories are depen-
dent on country reporting, which can take several years to produce12.
While these emissions are well-known relative to other parts of the
carbon cycle, inventory compilation can still incur significant
regionally-dependent uncertainties13,14, which are typically 5–10% for
developed countries but likely higher for developing countries15. These
differences can confound the attribution of natural and fossil fuel
trends16. For example, large variations in FFCO2 in China among nine
inventories were largely due to the different emission factors and
activity data17. Spatially-explicit inventories depend on proxies such as
population and remote sensing in order to spatially allocate country
totals18–21. Differences in these approaches can lead to large dis-
crepancies in spatial patterns at city-scales22–24.

Air quality (AQ) emission inventories, like FFCO2, use similar
methods to determine fuel consumption and sector-based emission
factors, and consequently incur substantial latency in their reporting25.
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However, recent advances in satellite-based AQ emissions from che-
mical data assimilation ("top-down”) estimates can circumvent chal-
lenges with latency while providing an unprecedented picture of
global AQ emissions. These systems have been applied to both short-
term (e.g., during the COVID-19 lockdown)26,27 and long-term global
changes28,29 in NOx emissions–one of the key atmospheric precursor
pollutants–while accounting for chemical and transport processes30.
Atmospheric data are a direct constraint on the product of activity and
emission factor and therefore an independent dataset for inventory
evaluation.

Information from AQ measurements can provide supplemental
information on FFCO2 estimations. Proxy species such as NO2 and CO
can help monitor localized FFCO2 due to their relatively short lifetime
and large signal relative toCO2

31–33. At large scales, however, FFCO2 and
AQ emissions will evolve as a consequence of increased regulation,
changes in sector composition, and economic development34,35. Con-
sequently, the coevolution of FFCO2 and AQ emissions can provide
insight into the underlying anthropogenic processes. This insight, in
turn, could enable the predictability of emissions trajectories at
national and subnational scales. This information is increasingly urgent
to support short-term climate mitigation assessments such as the
Global Stocktake needed for the Paris Agreement and international
efforts36, and how they may be coupled to AQ human health and
vegetation impact assessment including both local and remote
impacts37.

In this study, we quantify the co-evolution of FFCO2 and NOx

emissions over the last two decades using a combination of bottom-up
FFCO2 and top-down AQ emissions. We propose a modified EKC
(MEKC) framework to classify this co-evolution, which are shown to be
distinct for countries such as the US, China, and India. We then build a
simple model to assess the predictability of FFCO2 given low-latency
NOx emissions. The performance of this system is assessed for a
number of countries and is shown to be related to their MEKC regime.

Results
Modified EKC for FFCO2 and NOx

The original EKC describes environmental degradation as a function of
economic growth38, which implicitly assumes a monotonic increase in
GDP over time. This framework posits an inflection point at some
economic threshold whereby this degradation begins to diminish as
environmental regulations are implemented and sector composition

shifts to lower AQ emissions. While both AQ and greenhouse gas
(GHG) impact the environment, the time-scales between the two can
differ substantially. Here, in order to evaluate the co-evolution of AQ
andGHGemissions,wepropose amodified EKC (MEKC) that describes
the evolution of FFCO2 and NOx emissions as a function of GDP. In this
MEKC framework, GHG and AQ emissions are normalized to a refer-
ence year, leading to a spiral form (Fig. 1). Different regimes ofGHG-AQ
coevolution are represented on this form, denoted as quadrants (Q1-
Q4). Here we use FFCO2 and NOx as one of the most measurable GHG
and AQ species and good proxies of various co-emission sources to
describe theMEKC trajectory.MEKC applications to other forms of co-
emitted GHG-AQ species would provide different trajectories and
unique insights into the economy and emission relationship. Never-
theless, its concept provides a generalized framework to describe the
emission trajectory dynamics.

At the initial stages of economic growth both FFCO2 and AQ
emissions trajectories follow a “business-as-usual” (BAU) phase (Q1)
where FFCO2 is driven by fuel consumption from increased GDP39

and AQ emissions are weakly regulated. As economic growth con-
tinues, AQ emissions will start to decrease due to AQ mitigation and
sectoral shifts while FFCO2 continues to increase (Q2). In this case,
AQ emissions can return to reference values or below (e.g., AQ
emissions < 1). As the economy continues tomature, both FFCO2 and
AQ emissions decrease where FFCO2 will return to its initial values
while AQ emissions will be likely less than the normalized year (Q3).
Finally, FFCO2 emissions continue to fall below reference values as
the economy moves towards decarbonization along with AQ emis-
sions (Q4). This phase reflects substantial changes in energy pro-
duction and AQ mitigation. In all phases, GPD continues to increase.
Implicit in the MEKC formulation is the lag in the reduction of FFCO2

relative to AQ emissions. The formulation assumes that an economy
will address short-term health needs before long-term climate con-
cerns, while achieving co-benefits between AQ and climate40,41. How
well this assumption holds can be tested with predictability of the
system.

If AQ and GHG evolve according to the MECK, then we could
expect some predictive skill when the emission dynamics are in a
particular regime (i.e., quadrant). Within the regime, the CO2/NOx

emission ratio should vary more slowly than either emission inde-
pendently because the sectoral distribution should stay relatively
stable given a common activity level.

To evaluate the predictability, we implemented a simple Kalman
filter (KF) of the CO2/NOx emission ratio (Fig. 2a). The FFCO2 emissions
(Fig. 2c) are then updated based on the product of the CO2/NOx ratio
prediction (Fig. 2a) and the top-down NOx emission estimate (Fig. 2b).
In principle, top-down NOx emissions constrained by satellite obser-
vations can be computed with a much shorter latency (e.g., weeks)
than FFCO2 bottom-up inventories. Traditional methodologies for

Fig. 1 | The schematic diagram of the modified environmental Kuznets curve
(MEKC). The MEKC concept represents the relationship between greenhouse gas
(GHG) emissions (x-axis) and air quality (AQ) emissions (y-axis) under developing
economy. Q1 is the business-as-usual (BAU) condition. Q2 is the AQ only reduction
phase. Q3 is the AQ and GHG co-reduction phase. Q4 is the Carbon-only
reduction phase.

Fig. 2 | The schematic diagramof theKalmanfilter (KF)prediction. aChanges in
CO2/NOx emission ratio for the previous timeperiods (t = k − 1) are diagnosed using
top-downNOx emissions and bottom-up fossil fuel CO2 (FFCO2) inventories.bCO2/
NOx emission ratio for more recent time periods (t = k) is predicted using a KF
optimal estimation approach based on information obtained from the previous
time period (t = k − 1). c A prediction of FFCO2 for t = k is obtained from the pre-
dicted emission ratio from b and the top-down NOx emissions.
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bottom-up inventories require country-scale reporting that can be
delayed by several years. While utilizing sectoral distributions from
bottom-up inventories informed by international statistics, our
approach exploits both the rapid update of NOx emissions enabled by
satellite assimilation and the gradual changes in technology and reg-
ulation (i.e., emission ratio). The approach is depicted in Fig. 2 and
explained in the Material and Methods section.

We focus mainly on the country and annual scales because they
provide the best data to evaluate the predictive skill within a MEKC
regime. The KF prediction exploits the relatively gradual changes in
emission ratio with a given MEKC regime. Even when the activity
changes rapidly, multi-sector activities can be strongly linked at
country scales and canprovide robustKFpredictions.However, during
the transition from one regime to the next, we would expect poorer
performance.

We complement the top-down NOx emissions with bottom-up
FFCO2, which use similar input data sources but employ different
methods to spatially disaggregate country-level totals. The differences
impact both national and subnational trajectories. We apply the KF to
an ensemble of inventories to account for structural differences in the
emission approaches on emission trajectory. Further detailed infor-
mation is given in the Methods section.

Co-evolution of FFCO2 and NOx emissions
While the focus is on the recent two decades, a longer window pro-
vides context and insights into the dynamics described by the MEKC.

Using EDGAR historical inventories (Supplementary Fig. S1), the co-
evolution of NOx andCO2 emissions from 1970 to 2015 for theUS show
distinct dynamical patterns. From 1970-1982, the US experienced
economic stagnation and concomitant GDP fluctuations leading to
oscillations in CO2 emissions but gradual reductions in NOx emissions
from increased regulation. Renewed economic growth from 1982
onward led to relative increases in both NOx and CO2 emissions,
reflecting the phase Q1 of the MEKC (Fig. 1). At the turn of the century,
AQ started improving but FFCO2 remained stable, which suggests an
inflection point indicative of a Q2 phase. After 2004, both FFCO2 and
NOx emissions started to decline reflective of a Q3 phase. Based on
EDGAR sectoral information, this co-evolution is attributable to
changes in energy usage, especially the reduction of coal, the shift
towards natural gas, and the increase in renewable energy sources.
BothChina and India reveal strong long-term increases in country total
emissions of both CO2 and NOx from 1970, with a stronger increase in
China until 2011, showing the continued GDP-driven economic devel-
opment and environmental degradation consistent with phase Q1.
Following the US, China moved to the phase Q2 after 2012.

The evolution of NOx and CO2 emissions exhibit distinct dyna-
mical patterns of GHG and AQ trajectory that can be interpreted in the
MEKC framework for different countries during 2005–2018 (Fig. 3a)
when top-down NOx emissions from chemical data assimilation (see
Materials and Methods) are available. The NOx emissions have been
extensively used to study decadal and short-term variability of
anthropogenic emissions26–28,42–44. For China, both FFCO2 and NOx

emissions continued to increase until 2012 where the NOx emission
trajectory reached a plateau, then exhibited an arc towards lower NOx

emissions before returning to 2005 emission levels. FFCO2 showed
modest reductions after 2014. These changes show the MEKC phase
shift fromQ1 toQ2. A sectoral analysis basedon the EDGAR inventories
(Supplementary Fig. S2) suggests that the strong NOx emission
reductions are driven by power industry sources (about 50%) followed
by combustion for manufacturing (about 40%) from 2011 to 2018. For
FFCO2, while power industry has the largest contributions to the total
increase, the relative growth rate was the largest for road transporta-
tion. Consequently, the phase shift fromQ1 toQ2wasmainly driven by
power industry and combustion for manufacturing. India demon-
strated strong, monotonic increases in both NOx and FFCO2 as well as
GDP from 2005 to 2018, reflecting the BAU condition (Q1). The rate of
increase is almost constant in NOx emissions from 2009 onwards and
in FFCO2 from 2005 onwards consistent with a Q1 phase. Based on the
EDGAR inventory, about 78% of the increases are associated with
power industry for NOx, whereas both power industry (60%) and
combustion for manufacturing (24%) contributed to the FFCO2

increase from 2011 to 2018. The different changes in emission ratio
among sectors (Fig. 4) suggest an importance of sectoral-level emis-
sion ratio prediction to improve FFCO2, as will be discussed later. A
longer term analysis using the EDGAR inventories revealed that the
BAU condition (Q1) continued for China from 1970 till 2012 before
reaching Q2 whereas for India has persisted in Q1 from 1970 to the
present (Supplementary Fig. S1).

Based on Fig. 3, US remained in the Q3 phase with AQ/Carbon co-
reductions from 2005 to 2018. The US showed about a 20% reduction
in NOx emissions in 2010 relative to 2005, followed by much smaller
reductions in both FFCO2 and NOx emissions thereafter, mainly driven
by power industry emissions. These changes are attributable in part to
road transportation reductions (24%), which contributed to a slightly
increased FFCO2 after 2010.

These countries show development at different points along the
MECK trajectory. Inmany developing countries from2005 to 2018, the
MEKC phase shifted from Q1 to Q2. For example, after 2017 NOx

emissions in Vietnam stay almost constant during 2017 and 2018,
which are 20% higher than the 2005 levels, whereas FFCO2 continues
to increase to about 65% higher in 2018 than in 2005 (not shown).

Fig. 3 | Co-evolution of anthropogenic emissions of CO2 and NOx. a Changes in
country-total anthropogenic emissions of CO2 (x-axis) and NOx (y-axis) from 2005
through 2018. The values normalized at the 2005 level are shown for China, India,
USA, EU West, and Middle East. The NOx emissions were obtained from the TCR-2
top-down estimates. TheCO2 emissionswere fromODIAC.The error bars represent
one standard deviation of the CO2 emission changes derived from the multi-
inventory spread.bTime series of CO2/NOx emission ratio from2005 through2018
for USA, China, and India. The modified environmental Kuznets curve (MEKC)
phase is shown in different colors.
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Similarly, the NOx emissions in Iran stay almost constant from 2013 to
2018, about 25% higher than the 2005 level, whereas FFCO2 shows a
nearly linear increase from 2005 through 2018 by 45%. In contrast,
some developed countries such as Japan and western European
countries have experienced gradual changes from Q3 to Q4. Non-
monotonic changes in economic activity can obscure the underlying
trajectory for the MEKC, such as the 2007–2008 global financial crisis
with widespread negative emission anomalies for both FFCO2 and NOx

across the US, Europe, and many other countries.
The CO2/NOx emission ratio is higher in 2018 relative to 2005 for

the US, China, and India (Fig. 3b), which reflects a gradual decoupling
of AQ emissions from energy production possibly reflecting the
adoption of clean air technologies and a shift in sectoral composition25.
TheCO2/NOx ratio for theUShas stabilized to0.35 PgC/TgNduring the
time period. The sectoral emission ratios for the US were higher in
power sector (0.42–0.58 PgC/TgN) than the combustion (0.22–0.3
PgC/TgN) and transportation sector (0.15–0.2 PgC/TgN), while the
flattened ratio trend in 2016–2018 is largely driven by the transporta-
tion and power sectors (Supplementary Fig. S3). The current estimate
of about 0.35 PgC/TgN is consistent with other developed countries
such as Europe and Japan. This plateau could indicate that AQ reduc-
tions are nearly saturated in the Q3 phase. By contrast, in most
developing countries including Vietnam, Iran (not shown), and China,
the emission ratio continues to increase. The rapid increase in China’s
emission ratio until 2016 and flattened trends afterward are driven
largely by power sectors, followed by transportation. However, the
difference in the emission ratio between the US and China has nar-
rowed from 0.07 TgC/TgN to less than 0.03 TgC/TgN from 2005 to
2018. India’s ratio has improved by about 20% but is still substantially
less than either China or the US.

The GHG-AQ emission ratio tends to increase with GDP, demon-
strating the coupling between economic development and technology
improvement informed by AQ and carbon mitigation (Supplementary
Fig. S3). There are differences between the emission ratio for countries
at the sameGDP. For example, India’s GDP in 2018 is about the same as
China’s in 2005 (approximately 2.5 trillion US$) as are their emission
ratios, population (1.30 billion in China in 2005 and 1.35 billion in India
in 2018) and per capita GDP.On the other hand, GDP inChina in 2018 is
close to the US in 2005 (roughly 1.35 trillion US$), but the emission
ratio is higher for China in 2018 than the US in 2005. For example, the
emission ratio in China’s power sector in 2018 is about 0.57 TgC/TgN,
which is comparable to the US emission ratio of 0.59 TgC/TgN, but is
substantially higher than theUS emission ratio in 2005 (0.42 TgC/TgN)
for the same sector (Supplementary Fig. S3). The parity in emission
ratio suggests that a country can adopt modern industrial technology
allowing them to accelerate its MEKC trajectory.

The choice of inventories affects the decadal emission trajectories
(Supplementary Fig. S4). The trend in sign for India, China, and the US
are consistent between inventories. Nevertheless, the magnitude of
FFCO2 differs by up to about 10% at country scale, with even larger

differences at smaller scales. Our top-down NOx emissions provide
unique information on the trajectories, such as smooth gradual
changes for India during 2005–2018 and flat emissions since 2016 for
China, but tend to be smoother than the EDGAR emissions (Supple-
mentary Fig. S4). Because of strong observational constraints by
assimilated satellitemeasurements, the choice of prior emissions has a
reduced influence on the optimized NOx emissions42,45. Consequently,
top-down NOx emissions represent both a potential benchmark for
bottom-up estimates and a way to reduce latency for the recent past,
while providing improved estimates, especially in regionswhere global
inventories lack accurate and timely activity data and emission
factors43.

Prediction based on multiple emission inventories
The distinct changes in the MEKC trajectory provide insights into not
only emission processes but also the skill in predicting FFCO2 for dif-
ferent regimes. The relatively smooth changes in theGHG-AQemission
ratio suggest that the evolution can be predicted within MECK
regimes. Figure 5 shows the time series of FFCO2 estimated from the
prediction of the CO2/NOx emission ratio and the top-down NOx

emissions. Emission ratios are trained on individual bottom-up
inventories from 2005 to 2015 and then those ratios are predicted
and applied to estimate FFCO2 for 2016–2018. The prediction error for
2016–2018 is computed relative to each withheld inventory. The
spread among four different FFCO2 inventories is used as a proxy for
the uncertainty in country total emissions. This spread is compared to
the range of predicted FFCO2 across inventories. As expected, pre-
diction error increases with time as the emission ratio evolves relative
to the 2015 value.

Even at country scales there are substantial differences between
inventories even though global FFCO2 agree well. For instance, the
ODIAC and EDGAR showedminor differences inmagnitude (0.3–2.7%)
and trends in global total emissions18. At country scale, China’s FFCO2

varies by almost 30% from about 2.1 to 2.8 PgC in 2015. These differ-
ences reflect different regional activity data, emission factors, and
latency of data during inventory compilation. The comparisons in
Fig. 5 also highlight that the temporal evolution of FFCO2 is strongly
dependent on the bottom-up approach. The difference in sectoral
definition, resolution, and methodology can also result in the multi-
inventory discrepancy (see Materials and Methods).

In order to separate the performance of the emission ratio pre-
diction from the spread of the inventories, all inventories were shifted
to the same 2015 value (e.g., 2.8 PgC for China). The adjusted inven-
tories, without applying the KF prediction, show different temporal
evolutionduring 2016–2018, with themulti-model spread (1-σ) of up to
2.1% for China and 3.3% for the US in 2018. The ODIAC inventory
exhibits substantially lower FFCO2 in 2017-2018 in the US compared to
the EDGAR and GCP inventories, reflecting different trends from 2016.
The multi-inventory agreement is better for India, with up to a 1%
spread using the shifted emissions.

Fig. 4 | Co-evolutionof sectoral emissionsofCO2 andNOx. SameasFig. 3a, but forNOx/CO2 emissionchanges for eachemission sector separately: (a) power industry, (b)
combustion for manufacturing, and (c) road transportation.
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TheKF predictions reduced the spreadbetween the inventories in
2016–2018, reflecting the common constraints provided by the top-
downNOx emissions. In the casewith applying the 2015 normalization,
the multi-inventory spread is reduced by 80% over the USA in 2018,
from 3.3% spread in the original inventories to 0.6%. The multi-
inventory spread is also reduced over China by 25% and over India by
45% in 2018. These results suggest that the common NOx emissions
estimate provides amore consistent calculationof activitywhile theKF
ratio prediction provides a more consistent model of temporal
dynamics than implied by the bottom-up inventories. Consequently,
these results lead to a more precise estimate than from the multi-
inventory.

The country-scale results in Fig. 5 are based on a 3-year pre-
diction window, which is a typical latency for comprehensive
bottom-up inventories while there has been an increasing attempt
to reduce its latency up to a year using relatively simplified settings.
The predictability of the emission ratio depends not only on the lag-
time but also the regional emission dynamics. Figure 6 shows one-
year KF predictions initialized for each year from 2005 to 2018
trained against ODIAC inventories. The KF captures the changes in
emission ratios within MEKC regimes. However, the approach does
not reproduce the dynamics when the emission ratio changes
rapidly, such as in India in 2010 and the USA in 2007 during the

economic crisis. These anomalies could not impact all sectors
equally, which leads to a change in the aggregate emission ratio, and
therefore degrades the prediction skill, especially when predicting
FFCO2 at small scales where the relative sectoral distribution can
change substantially, e.g., transportation relative to power pro-
duction. At country scales, however, multi-sector activities are
highly coupled and therefore provide robust predictive still for
many cases, as discussed later.

The prediction error was calculated from differences between the
predicted and original inventory values (Fig. 6d). When the emission
ratio changes are temporally smooth, the KF prediction error is gen-
erally less than 2% errors for both developing (e.g. Vietnam and Iran,
not shown) anddeveloped countries (Fig. 6d). The exception is India in
2007 and 2010 where the 1-year lag error exceeded 3%. Likewise, US
prediction overestimated FFCO2 reductions from 2006 to 2007 rela-
ted to the economic crisis (Fig. 5c). Short-term fluctuations in GDP are
not well-modeled in the MEKC and are reflected in the skill of the
prediction. In general, however, these errors are smaller than the
spread in current emission inventories (6–7%)14. Rapid changes in
emissions are oftendrivenby changes in activity that arewell-informed
by satellite-constrained NOx emissions, e.g., COVID-19 lockdowns27,44

and cut acrossmultiple sectors. To the extent that the relative sectoral
impacts are the same, the FFCO2 will be robust. Over longer time

Fig. 5 | Temporal evolution of fossil fuel CO2 (FFCO2). (Left) Time series of
country total fossil fuel CO2 (FFCO2) obtained from multiple inventories: EDGAR
(red), ODIAC (blue), FFDAS (magenta), and GCP (orange) during 2009 and 2018.
The original inventory values are shown by dotted lines. The Kalman filter (KF)
prediction results, with training before 2015, are shown by solid lines. (Center)
Similar to the left panels, but the emissions inventories shifted to a common value

(to match the EDGAR emission value) at 2015 were used to make the predictions.
The shifting was applied to avoid the influences of systematic differences among
the inventories on theKFpredictions, (Right) Themulti-inventory spreadafter 2015
for the original inventory (dotted lines) and KF predictions (solid lines) using the
shifted inventories. The results are shown for China (top), USA (middle), and India
(bottom).
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scales, the predictive skill suggests that emission ratios tend to change
more slowly than activity.

The limit to useful predictive skills was investigated by initializing
each year from 2010 to 2017 (Fig. 7). The growth rate of prediction
error depends largely on the start year of the KF prediction. For
example, in the US, the prediction error did not exceed 2% for 1 to
4-year lags starting from 2011 and 2013. Starting from 2010, however,
the 4-year lag error exceeded 5%. However, for other years (7 out of 8
years), the 4-year lag error did not exceed 5% while all the 1-year lag
predictions had errors less than 2%. China and India show similar
predictive skills, with slightly smaller errors for China than India for 1–4
year lag predictions. Themean 2-year lag errors are about 2% for China
and 3% for India, whereas both countries reveal about 5% mean errors
for the 3-year lag predictions and 7% for the 4-year lag predictions. The
4-year lag errors exceed 10% only for China starting from 2014 and in
India starting from 2011. The relatively large errors in China starting in
2011 are reflective of the regime shift in AQ-Carbon starting in 2011.
The high predictive skills for India reflect the continued linear increase
in both emissions consistent with Q1 dynamics and substantial
increases in GDP.

As discussed in the Materials and Methods section, the uncer-
tainty estimate is robust based upon three independent uncertainty
estimates: (1) KF prediction errors against the original bottom-up
inventories, (2) multi-inventory spreads of the predicted FFCO2, and
(3) predicted FFCO2 uncertainty from the KF equations.

Sectoral analysis
Emission ratios differ between regions as a consequenceof sectors and
their relative activity (see Methods). To understand their impact in
greater detail, we investigated the sectoral drivers using the EDGAR
sector-specific grid map25 that could provide insight into emission
processes.

Based on the EDGAR inventory in 2018 (not shown), the power
industry accounted for about 38%of total FFCO2 in the US, followedby
road transportation (30%) and energy from buildings (11%). In both
China and India, the power industry has greater contributions (44% in
both countries) than theUS, with the second largest contribution from
manufacturing (29% and 22%, respectively). As shown in Supplemen-
tary Fig. S2, the MEKC phase change from Q1 to Q2 in China is largely
driven by manufacturing and power industry sources, which largely
dominate over transportation sources. In India, the relative distribu-
tion of sectors remains stable though manufacturing has the greatest
contribution to the ratio increase (figure not shown).

The emission ratios show distinctly different patterns among
sectors (Fig. 4). For instance, in China and the US, the emission ratio of
the power industry emission increased due to the AQ regulations and
the increased use of natural gas46. Also, in the US, total on-road NOx

emissions declined after 2004 when heavy-duty diesel NOx emission
controls started47, which increased the emission ratio.

The MEKC framework is robust for interpreting GHG-AQ co-evo-
lution when integrated over coupled sectors typical of countries

Fig. 6 | One-year Kalmanfilter (KF) predictionperformance. a–cCo-evolution of
fossil fuel CO2 (FFCO2) from the ODIAC inventory and NOx emissions from top-
down estimates (red). The results obtained from the one-year Kalman filter (KF)

prediction are also shown (blue) for (a) India, (b) China, and (c) US.d Time series of
root-mean-square (RMS) errors of the one-year KF FFCO2 predictions (in %) for US,
China, and India.
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scales. However, individual sectors may deviate from the MEKC. For
example, FFCO2 from European transportation has increased since
2013 while NOx emissions decline due to the growing demand for
freight transport and the effective AQ regulation for heavy-duty vehi-
cles. That sector change is more reflective of Q2 even though Western
Europe as a whole is in Q3 where both CO2 and NOx emissions have
reduced. At regional scales, the ratio of aggregated sectoral CO2

emissions to aggregated sectoral NOx emissions is not equal to emis-
sion ratios aggregated over sectors (see Methods). Consequently,
aggregated over all the major sectors, countries such as US, India, and
China, and western Europe follow the MEKC regimes, but individual
sector emission ratio trajectories may have distinctly different trends.

Nevertheless, our comparisons show that projecting KF predic-
tions to sectoral scales were able to provide predictive skill for most
dominant sectors. The predictive errors of total FFCO2 were mostly
comparable between the cases with and without sectoral information
(see theMethods section) with less than 5%difference in the predictive
errors for the US, China, and India at country scale throughout the
analysis period. However, using emissions at each grid point, the
predictive errors became slightly larger when sectoral information is
used, by about 0-60 % (from about 0.5–3% to 0.5–4%) for 1-year pre-
diction for China and by up to 100% (from 0.5–2% to 0.5–4%) for India
(figure not shown). The differencewas smaller for the USA. The overall
increased error could reflect a more obvious transition in the MEKC
regime for the individual sector compared to those in total emissions
at the individual grid point. The comparisons also highlight that the
impact of the sectoral shifts informed by bottom-up inventories is well
reflected as awhole in changes in an aggregated country total emission
ratio. An aggregate emission ratio usually shows smooth trajectories
(Supplementary Fig. S3). Since a KF prediction error of total emissions

can be represented as a sum of sectoral emission ratio prediction
errors (see the Methods section), a smooth trajectory of an aggregate
emission ratio is more amenable to KF predictions.

The estimated emission trajectories for each sector separately can
be used to identify key processes, resulting in changes in the emission
dynamics. For instance, in the US, the KF prediction starting in
2011 showed a decreased relative contribution from power industry
from 42% to 38% in 2015, similar to the original inventory for the same
timeperiod (from42% in 2011 to 39% in 2015),while suggesting about a
4% increase in CO2/NOx ratio for that sector. In contrast, the KF pre-
dicted the increased relative contribution from power industry, from
42% in 2011 to 47% in 2015, again consistent with the original EDGAR
inventory.

Regional scale analysis
The relationship between emissions and GDP for subnational scales
has been described by the traditional EKC. For example, peaks of per
capita emissions and the years that these peaks occurred differ sig-
nificantly across many Chinese cities10, but these changes are expres-
sed differently among the FFCO2 inventories. For rapidly developing
cities in Asia20 and Middle East48, strong increases in both AQ and GPD
are attributable to local economic developments.

Consequently, the relationship between AQ and GHG emissions
could also be well-described even at subnational scales. Nevertheless,
the KF prediction skill is scale-dependent (Supplementary Fig. S5). The
prediction error generally increases with increasing spatial resolution
(as does a priori uncertainty). As shown in Supplementary Fig. S5, the
1-year KF prediction error strongly depends on the KF prediction
resolution. At 0.1 × 0.1° resolution, it exceeds 10% for about 14% of the
grids, which is only about a factor of 2 worse than the global mean

Fig. 7 | Temporal evolution of the Kalman filter (KF) prediction errors. (left)
Temporal evolution of the Kalman filter (KF) prediction errors, starting from each
year during 2010 and 2017 (color lines), for the US, China, and India. The shaded
area represents the ± root-mean-square (RMS) of the prediction errors. (right) The

multi-inventory spread of KF predictions using the original inventories (blue) and
inventories shifted to a same level at the beginning of the prediction (t =0). The
shaded area represents the 1-sigma deviations of the spread among predictions
staring in different years (2010–2015).
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1-year predictive error of 5.5% over high emission grids (FFCO2 greater
than 0.1 gC/m2/day).

The high-resolution prediction provides detailed information on
spatial gradients in the emission trajectories. FFCO2 at urban scales,
including their absolute values, spatial gradient, and yearly changes,
are substantially different between inventories. The comparisons of
the grid scale FFCO2 predictions for selectedmega-cities highlight that
the grid scale FFCO2 absolute value and temporal change differ largely
among bottom-up inventories (Supplementary Fig. S6). The inven-
tories adjusted to the same 2015 value clearly reveal different temporal
evolution, with the multi-model spread of up to 1.5-15% during
2016–2018, which are mostly larger than the country-scale analysis
(Fig. 5). The KF predictions provide closer multi-inventory agreements
in the temporal evolution for many large cities and reduced the multi-
inventory spread by 20-80% in 2018. The grid-scale KF prediction thus
can provide more consistent temporal dynamics.

The prediction at 2 × 2° resolution reduced global mean errors by
37% relative to predictions at 0.1 × 0.1° resolution. This prediction
results in reductions from 5.5 to 3.5% over high emission grids (FFCO2

greater than 0.1 gC/m2/day), while increasing prediction errors locally
over several locations (Supplementary Fig. S5). The reduced global
mean error suggests that aggregated multi-grid emissions (over 20
grids in this case) provide a smoothed emission trajectory that is suited
for the KF prediction. Meanwhile, the increased errors over several
locations could reflect the fact that mixed emission sectors that are
non-uniformly distributed can complicate the KF prediction. Increas-
ing the prediction resolution to 4x5 degree further reduces the global
mean error to 2.7%, while reducing the detailed spatial information.
The global mean predictive error is smallest at country scale, 1.9%,
which is 65% smaller than the grid-scale (0.1 × 0.1°) prediction.

Future perspective of emission trajectory
TheMEKC regime shifts, whichmany countries experienced in the past
few decades, have important implications for future AQ-GHG mitiga-
tion. The Shared Socio-economic Pathways (SSPs) have been devel-
oped to describe future scenarios of socioeconomicglobal change and
provide projected GHG and AQ emissions scenarios with different
climate policies up to 210049,50. Here we compare four SSPs: SSP1-19,
SSP1-26, SSP3-70, and SSP5-85 (from the IPCC’s most optimistic sce-
nario to the double CO2 scenarios. See the Supplementary Fig. S7
caption.).

As shown in SupplementaryFig. S7,most of thepredicted changes
can be well described by the MEKC. Consequently, the overall smooth
changes in the emission ratio and theMEKC phase indicate that FFCO2

can be predicted well using the proposal KF prediction for many
decades. The Chinese MEKC regime for 2015–2100 in the SSP opti-
mistic scenarios (SSP1-19 and SSP1-26) is Q3 consistent with our ana-
lysis after 2014 (Fig. 3), while suggesting the continued current phase
after 2018. In the double CO2 scenarios (SPP3-70, SPP5-85), the Q1-Q3
transitions are not predicted until 2100. By contrast, the Chinese
transition toQ3has alreadyoccurredby 2018 inour estimate. TheCO2/
NOx emission ratios are predicted to increase by 2030 in all the sce-
narios. While showing similar ratios for recent years (0.28 PgC/TgN in
2015 in SSPs and 0.31 PgC/TgN in 2018 in our analysis), the SSPs pre-
dicts maximum emission ratio values of 0.42–0.43 PgC/TgN in 2030 in
the SSPs optimistic scenarios, beyond the upper limit for 2018 in this
study, suggesting about0.1 PgC/TgN ratio increase from2018. Thiswill
be followed by reduced ratios from 2030 through 2100 according to
stronger FFCO2 reductions.

Also in India, the predicted emission ratios follow theMEKC. The
predicted regimes, Q2 during 2015–2020, followed by Q3, in the
optimistic scenarios are inconsistent with our estimates (Q1 from
2005 through 2018), while the doubled CO2 scenarios show that it
will take many decades to reach Q2 from Q1. A continued increase in
the emission ratio by 0.08–0.12 PgC/TgN from 2015 through 2030 in

the optimistic scenarios suggests a possible rapid pathway to achieve
economic development while improving AQ. Meanwhile, the pre-
dicted ratio of 0.20–0.24 PgC/TgN in 2030 is still smaller than the
2018 ratio in the US and China. This could reflect differences in both
technology level and emission sectoral distributions between the
countries.

In the US, the observed 2018 phase, Q3, is predicted for
2015–2020 in the optimistic scenarios, whereas it is predicted to reach
Q4 in the latter time period when further AQ improvement becomes
difficult. The predicted emission ratio increase till 2030 is inconsistent
with the already flattened trends before 2018 in our estimates, which
are mainly driven by a slow-down in NOx emission reductions51. These
scenarios could already overestimate NOx reductions (or under-
estimate FFCO2 reductions). The maximum ratio value of about 0.7
PgC/TgN is twice larger than the present value. To achieve the socio-
economic level considered in the optimistic scenarios, substantial
socio-economic and technological developments would be clearly
required. The double CO2 scenarios with Q2 in early years do not
match with the actual change (Q3) before 2018, while implying that
only NOx emission reductions may be achieved with fossil fuel based
and energy intensive lifestyles.

Discussion
The MEKC is an important framework for understanding the co-
evolution of AQ and carbon emissions in the context of large-scale
macroeconomic growth. Based upon this framework using FFCO2

and NOx, the US, China, and India are different locations along the
MEKC trajectory, but also change at very different rates. For example,
it is remarkable how quickly China shifted MEKC regimes. Within 5
years from 2010, NOx emissions started returning to 2005 emissions
while CO2 emissions stabilized relative to 2005. Furthermore, our
results suggest that these trajectories are not independent. For
example, China achieved a CO2/NOx ratio (0.59 TgC/TgN) in the
power sector thatwas roughly 50%higher than theUS in 2005with an
equivalent GDP. This suggests that developing countries can take
advantage of technology development to reduce AQ emissions.
Under the premise that countries will tend to address short-term AQ
needs before long-term carbon mitigation, comparing different
countries at equivalent GDP could provide insight into their near-
term trajectory.

The prediction of CO2 emissions given NOx emissions bears this
out. Dependent on the regime, prediction errors are less than 2% for
both developing and developed countries and 5% up to three years for
most cases when the the emission ratio changes are temporally
smooth. The higher predictive skills for India relative to the US and
China reflect the continued linear increase. This predictability can be
especially useful for growing economies such as India, which is grap-
plingwith substantial AQchallenges.While current results suggest that
India continues on a BAU trend, the results from China hold some
promise that this trajectory can change fairly quickly with sufficient
political and economic demand.

This information could be useful in looking at near-term sce-
nario development. Current IPCC scenarios largely follow a MEKC.
However, some scenarios such as doubled CO2 scenarios for China
are too pessimistic given our results. Some scenarios suggest CO2/
NOx ratios 20–30%higher than is currently feasible. Progress towards
these higher ratios can bemonitored with remote sensing, which can
provide near-term information. This information is particularly use-
ful for activities such as the Global Stocktake, which requires near-
term, e.g., 5-year, assessments. Current predictive errors could be
used to assess and adjust emission scenario “story-lines” at this
bidecadal cadence consistent with sectoral evolution. For example,
the analysis of the MEKC trajectories would provide important
implications into low-carbon strategies which could differ between
developed and developing countries10. The former should focus

Article https://doi.org/10.1038/s41467-023-37264-8

Nature Communications |         (2023) 14:1604 8



more on how to improve energy efficiency and how to change the
emission trajectories rather than their initial carbon-intensive infra-
structure, whereas the latter, which are currently expanding their
energy infrastructure, may have opportunities to leap-frog and
bypass carbon-intensive growth.

The accuracy of these predictions is currently contingent on
bottom-up approaches. While our current results indicate that we
can narrow discrepancies, structural errors can not be fully miti-
gated. On the other hand, top-down approaches, which use atmo-
spheric CO2, can provide low-latency information, especially for
point-sources52,53, and with increasing capability for urban-
scales48,54,55. The formulation developed here could be readily adap-
ted to top-down CO2 approaches where our predictions, for exam-
ple, could help provide AQ-informed priors. Over larger scales where
both the biosphere is important and FFCO2 emissions are uncertain,
our approach can help partition net carbon fluxes56 and support
attribution57. The MEKC concept is a useful interpretive framework
for both bottom-up and top-down approaches. Near-term coevolu-
tion of AQ and carbon with these data could be used to partition
natural and anthropogenic carbon drivers16,58 and compliment local-
scale atmospheric approaches22.

Additional AQ measurements, e.g., carbon monoxide, can help
discriminate sectoral contributions59 and could be incorporated in
future work. Proxies for activity have become increasingly impor-
tant for near-term carbon emissions estimates but their availability
can differ substantially between regions and spatial resolution of
the process60. Our approach has the advantage of being both
transparent and global. Nevertheless, short-term rapid fluctuations
in sectoral distribution, and therefore the emission ratio can lead to
reduced predictive skill. Additional constraints from proxy infor-
mation on sectoral distribution changes and the uncertainty esti-
mation results would be helpful to consider these effects more
properly.

In order to avoid dangerous climate change, the remaining carbon
budget must be managed over increasingly short time horizons.
Meeting those targets requires knowledge of emissions and their
expected trajectory. The predictive MEKC framework introduced here
is useful to both.

Methods
FFCO2 emission inventories
EDGAR v5.0. Bottom-up emissions of FFCO2 for 2005–2015 were
obtained from the EDGAR version 5 inventories61. The gridded emis-
sions at 0.1° × 0.1° resolution is extended to 2016–2018 in this study by
applying country-scale emission changes providedby the EDGAR2020
Report19, while keeping the spatial distributions from EDGAR v5 2015
inventories.

ODIAC. The Open-source Data Inventory for Anthropogenic CO2

(ODIAC) is a global high-resolution gridded emissions data product
that distributes CO2 emissions from fossil fuel combustion. The
emissions spatial distributions were estimated at a 1 × 1 km spatial
resolution using power plant profiles and satellite-observed nighttime
lights. We used the year 2019 version of the ODIAC emissions data
product18 gridded at 0.1° × 0.1° resolution. The use of bunker fuels was
excluded from the analysis.

FFDAS. We used the fossil fuel data assimilation system (FFDAS)
version 2 data for 2005–201562. It considers electricity-production,
industrial, residential, commercial, and transportation (other than
domestic aviation and domestic waterborne) sectors, which are
similar to the IPCC 1A fuel consumption category. For FFDAS, emis-
sion inventories for 2016–2018 were obtained by linear extrapolation
from 2014–2015 and used as a reference point to validate the KF
predictions.

GCP-GridFEDv2019.1. We used GCP-GridFED (version 2019.1), a grid-
ded fossil emissions dataset that is consistent with the national CO2

emissions reported by the Global Carbon Project (GCP).
GCP-GridFEDv2019.1 provides monthly FFCO2 for the period
1959–2018 at a spatial resolution of 0.1° × 0.1°63. Estimates are pro-
vided separately for oil, coal and natural gas, for mixed international
bunker fuels, and for the calculation of limestone during cement
production. We used the combined emissions except for bunker fuels.

Top-down NOx emissions
An updated version of the Tropospheric Chemistry Reanalysis version
2 (TCR-2)64 is used to evaluate NOx emission changes. The reanalysis is
produced via the assimilation of multiple satellite measurements of
ozone, CO, NO2, HNO3, and SO2. The tropospheric NO2 column
retrievals from the QA4ECV version 1.1 level 2 product for OMI65 were
used to constrain NOx emissions.

The forecast model and assimilation technique used were the
Model for Interdisciplinary Research on Climate (MIROC)-chemical
atmospheric general circulation model for study of atmospheric
environment and radiative forcing (CHASER) and an ensemble Kalman
filter technique that optimizes both chemical concentrations of var-
ious species and emissions.

The global NOx emissions estimation is based on a state aug-
mentation technique, which has been employed in our previous
studies to quantify the spatial and temporal variability of anthro-
pogenic emissions and their impacts on atmospheric
composition26–28,42,44,45,51. This approach allows us to reflect temporal
and geographical variations in transport and chemical reactions in
the emission estimates. The emissions in the state vector are repre-
sented by scaling factors for each surface grid cell. Only the com-
bined total emission is optimized in data assimilation, where the ratio
of different emission categories within the a priori emissions for each
grid point were applied to the estimated emissions after data
assimilation to obtain the a posteriori anthropogenic emissions. The
quality of the reanalysis fields for 2005–2018 has been evaluated
based on comparisons against independent observations for various
chemical species64.

Our reanalysis shows the strong increase of ChineseNOx emission
from 2005 to 2011 and a strong decrease after 2014. Emissions from
India continue to increase during 2005–2018. Emissions from US and
Europe decreased over the past decade. These decadal emission
changes reflect the success of AQ mitigation policies and sectoral
shifts associatedwith changes in economy and trade, with implications
for AQ and human health.

While top-down NOx emissions offer great potential to supple-
ment or improve bottom-up inventories, they also contain large
uncertainties associated with errors in chemical transport modeling
and assimilated observations. Furthermore, any mislocation in the a
priori inventories lead to spatial mismatches with the FFCO2 inven-
tories and make the FFCO2 analysis/prediction inadequate. Further
detailed comparisons of spatial and temporal emis sion patterns will
play an essential role in improving the prediction.

Kalman filter technique
The Kalman filter estimates the state of a discrete-time controlled
process governed by a linear stochastic difference equation66. The
operation of the KF includes prediction and correction steps. In the
prediction step, an a priori sate of the vector state, x̂k , and its error
covariance, P̂k , at the current time step k is projected from the pre-
vious time step k − 1 based on a linear stochastic difference equation:

x̂k =Axk�1 +Buk +wk , ð1Þ

where A is the state-transition matrix and u is an external forcing
mediated by B. The uncertainty of the a state also evolves with time
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based upon the following:

P̂k =APk�1A
T +Q ð2Þ

where Q is the process noise covariance matrix. The measurement
model relates an observation to the state:

zk =Hkxk + εk ð3Þ

where zk is the observation, Hk is the observation operator, and εk is
measurement noise. The updated state xk is computed from mea-
surements zk and the a priori state x̂k through

xk = x̂k +Kkðzk � Hx̂kÞ ð4Þ

where the Kalman gain, K, is computed based upon the forecast error
covariance Pk and measurements noise covariance matrix, R:

Kk = P̂kH
T HP̂kH

T +R
� ��1 ð5Þ

The error covariance is also updated through the following:

Pk = ðI � KkHÞP̂k ð6Þ

For this application, xk = E
k
CO2

=Ek
NOx

is the scalar emission ratio at
time step k, which increments annually. To reduce the impact of short-
term variability on the prediction, we applied a weighted moving
average to xk (weights of 0.5 for k − 1 and k + 1) that helps reduce noise
while keeping signals associated with aMEKC regime transition, which
helped to improve the KF predictive skill.

FFCO2 prediction
The FFCO2 prediction approach is illustrated in Fig. 2 and elabo-
rated as:
1. The emission ratio, xk, at time k is predicted from the previous

emission ratio xk−1 based on the Kalman filter technique, which is
described in the previous section (Fig. 2a).

2. Top-down NOx emissions, Ek
NOx

, are calculated at time k (Fig. 2b).
3. The FFCO2 emissions, Ek

CO2
, at time k are computed by

xk × E
k
NOx

(Fig. 2c).
4. The updated emission ratio, xk will be used in the Kalman filter

prediction to compute xk+1 (then repeat the steps 2–4).

The prediction algorithm is scale-invariant (i.e., a zero-
dimensional model) that can be applied to grid-point, country,
and continental scales, at any time-scale (e.g., hourly or annual
means). For the historical record the predicted ratio, xk is updated
with “observations” zk of the emission ratio where both bottom-up
CO2 and top-down NOx emissions are available as illustrated
by Fig. 2.

For the predictions, top-down NOx emissions were first down-
scaled from 1.1° × 1.1° to 0.1° × 0.1° consistent with the resolution of the
bottom-up FFCO2 inventories, assuming that bottom-up FFCO2

inventories represent the correct spatial distribution. Then, the
bottom-up FFCO2 inventories and converted top-down NOx emissions
both gridded at 0.1° × 0.1° resolution were used for the KF predictions
at various spatial scales including regional and country scales.

Sectoral attribution
The empirical emission ratio, xk, used to compute FFCO2 emissions
does not use sectoral information explicitly. However, the updates to
this ratio can be projected back to sectors by leveraging a priori

sectoral distributions used in bottom-up inventories as follows:

xk =
Ek
CO2

Ek
NOx

=

P
iE

k,i
CO2P

iE
k,i
NOx

ð7Þ

where i denotes a sector. Each sector emission can in turn bewritten as

Ek,i
CO2

= EFk,i
CO2

Ak,i ð8Þ

and

Ek,i
NOx

= EFk,i
NOx

Ak,i ð9Þ

where EFk,i is the emission factor and Ak,i is the activity at time k. For a
given sector, the emission ratio and the emission factor ratio are
equivalent:

Ek,i
CO2

Ek,i
NOx

=
EFk,i

CO2

EFk,i
NOx

: ð10Þ

Consequently, changes in activity have no impact on the sectoral
emission ratio. In general, this equivalency is not the case for the
regional emission ratio in Eq. (7). Changes in xk can be driven by
changes in emission factors or activity across different sectors. How-
ever, when an economy is growing and the relative activity between
sectors is stable, then changes in xkwill bemore sensitive to changes in
emission factors. Furthermore, given the co-emission of CO2 and NOx,
we would expect changes in sectoral emission factors to impact xk. At
national scales, different sectors are correlated leading to coherent
changes in national emission ratios.

For the FFCO2 prediction comparisons between the cases with
and without sectoral information, the downscaled top-down NOx

emissions were first decomposed into each sectoral emissions,
assuming that the bottom-up EDGAR NOx inventories have the right
sectoral distributions at each 0.1° × 0.1° resolution grid. The sec-
toral top-down NOx emissions and bottom-up EDGAR FFCO2

inventories were then aggregated into each country and used for
the predictions. Errors in the KF predicted total FFCO2 using sec-
toral and total emissions, Ei and Etot, can be represented asPn

i = 1 ENOx,i × εi
� �

and ENOx,tot × εtot, respectively, where ε is the KF
prediction error of emission ratio. Prediction error of total FFCO2

emissions estimated from total emissions, ENOx,tot × εtot, can be
smaller than those from sectoral emissions,

Pn
i = 1 ENOx,i × εi

� �
, when

an aggregate total emission ratio has a substantially smoother tra-
jectory and a subsequent smaller KF prediction error than indivi-
dual sectoral emission ratios.

Uncertainty estimation
Our approach provides uncertainty information of the predicted
FFCO2 in the following three ways:
1. KF predictions against the original bottom-up inventories
2. Multi-inventory spreads of the predicted FFCO2

3. Predicted FFCO2 uncertainty from the KF equations

For (1), the prediction errors were estimated to be less than 2% for
the 1st year, 3% for the 2nd year, 5% for the 3rd year, and 8% year for the
4th year on average, with slight differences among the countries (Fig. 7
left panels).

For (2), an ensemble of the KF predictions usingmulti-inventories
is used. The choice of emission inventory affects the representation of
MEKC dynamics, associated with uncertainty in inventory input data43.
With removing systematic differences between the inventories at the
beginning of the forecast, the use ofmultiple-inventory resulted in the
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KF forecast spreadof 0.5–1% for the 1st year and 2–3% in the 4th year in
average for the predictions staring in 2010–2015 (red lines in Fig. 7
right panels). Without initial normalization, i.e., with the systematic
differences among the inventories, it ranges typically from 3 to 10%
(black lines in Fig. 7 right panels).

For (3), the KF predictions involve an evaluation of predicted
FFCO2 uncertainty. The error covariance matrix of CO2/NOx emission
ratio (Pk, see “Kalman filter technique” section) was updated based on
the KF equations. The predicted uncertainty in the current setting at
country scale was typically 2–10% for predictions up to 3 years, with
10% errors for R in Eq. (2) and Q in Eq. (5). The error statistics can be
refined in future studies as more uncertainty input data become
available fromboth sector-level bottom-up inventories14 and top-down
estimates (e.g., analysis ensemble spreads42 and multi-model analysis
spreads67).

These independent uncertainty estimates are in similar magni-
tudes and can be regarded as typical uncertainty information at
country scale.

Data availability
The NOx emission data that support the findings of this study are
available in https://doi.org/10.25966/9qgv-fe81.

Code availability
The code we used for data processing is available upon request to the
corresponding authors.
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