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Brain-wide and cell-specific transcriptomic
insights into MRI-derived cortical morphol-
ogy in macaque monkeys

Tingting Bo 1,2,3,14, Jie Li 4,14, Ganlu Hu5, Ge Zhang6,WeiWang 4, Qian Lv 7,
Shaoling Zhao8,9, Junjie Ma4, Meng Qin10, Xiaohui Yao11,12, Meiyun Wang 6 ,
Guang-Zhong Wang 4 & Zheng Wang 7,13

Integrative analyses of transcriptomic and neuroimaging data have generated
a wealth of information about biological pathways underlying regional varia-
bility in imaging-derived brain phenotypes in humans, but rarely in nonhuman
primates due to the lack of a comprehensive anatomically-defined atlas of
brain transcriptomics. Here we generate complementary bulk RNA-
sequencing dataset of 819 samples from 110 brain regions and single-nucleus
RNA-sequencing dataset, and neuroimaging data from 162 cynomolgus
macaques, to examine the link between brain-wide gene expression and
regional variation in morphometry. We not only observe global/regional
expression profiles of macaque brain comparable to human but unravel a
dorsolateral-ventromedial gradient of gene assemblies within the primate
frontal lobe. Furthermore, we identify a set of 971 protein-coding and 34 non-
coding genes consistently associated with cortical thickness, specially enri-
ched for neurons and oligodendrocytes. These data provide a unique resource
to investigate nonhuman primate models of human diseases and probe cross-
species evolutionary mechanisms.

Large-scale magnetic resonance imaging (MRI) and genetics datasets
have opened up entirely new avenues to discover common genetic
variants contributing to MRI-derived structural and functional phe-
notypes of the human brain in health and disease1–5. Given the

functional heterogeneity of the brain, transcriptomic-based analyses
have been conducted across the entire brain utilizing high-throughput
profiling of tissues, cells, and most recently at the level of single
nucleus in order to gain unprecedented insights into the
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neurobiological mechanisms by which genetic and molecular differ-
ences influence cognition, behavior and emotion in different
species6–9. A resource portfolio like the Allen Brain Atlas containing a
multimodal atlas of gene expression and anatomy from the prenatal
period to adulthood is essential to enable advanced data-mining for
researchers interested in comparisons across brain organization or
development8,10,11. Cumulative evidences reveal a hierarchical gradient
pattern of cortical microstructure, functional connectivity, and gene
expression profiling in the primates neocortex mainly spanning from
primary sensorimotor regions to transmodal regions12–14. However,
such brain-wide observations fail to capture the intrinsic complexity
within specific brain regions due to relatively sparse spatial sampling
coverage that restricts the types of analyses8,15,16. Therefore, up to date,
cross-species transcriptomic comparisons have primarily relied on
data from a small set of brain areas in the monkey brain17,18, which
apparently restrains the capacity to examine relationships between
genes with spatial profiles of regional expression and whole-brain
imaging-derived phenotypes. Furthermore, a complete anatomically
defined atlas of brain transcriptomics in nonhumanprimates, although
still lacking7,19,20, is prerequisite to bridge the gap between microscale
attributes including a single-cell/nucleus transcriptomic atlas6 and a
wide variety of macroscale imaging attributes that inform brain
development, morphology and function16,21–23.

It has long been recognized that characterization of spatial and
temporal associations between gene expression and brain structural
variation is a critical step towards developing a mechanistic model of
how specific genes influence brain infrastructure. In humans, genome-
wide association meta-analyses of brain MRI data frommultiple large-
scale repositories have demonstrated that distinct genes among the
highly polygenic architecture of the human cerebral cortex contribute
to the development of specific cortical areas2,3,24–26, which engenders
brain structural variations and causally linked differences in brain
functional specializations. Using coarse partitions of the human cor-
tex, previous studies have identified polygenic organization patterns
related to variation in global and regional cortical thickness (CT)
during development27–29, which may confer the potential to detect
regional vulnerability to pathological changes at the earliest stages of
neuropsychiatric disorders4,30–35. Notably, as a simple pragmatic sur-
rogate characterizing cortical morphometry, average thickness has
been attributed to an array of complex biological processes including
intracortical myelination, remodeling of dendritic arbors, axonal
sprouting and its components (e.g., neuronal and glial cells, neuropil
and dendritic spines)32,36,37, whereby transcriptomic divergence
observed between human and macaque brains is likely to be anato-
mically dependent within the brain17. However, little is known in non-
human primates about how common genetic determinants mediate
the thickness of the cerebral cortical sheet across the entire brain,
despite prior reports of developmental variations in human29 and
monkey brains7. Furthermore, it remains unclear whether biological
and cell pathways that underlie regional variability in CT differ
between monkeys and humans.

In this study, we generated complementary atlas-based bulk-tis-
sue RNA-sequencing (RNA-seq) dataset of 878 samples from 111
regions defined by the D99 template of macaque brain38,39 and single-
nucleus RNA-sequencing (snRNA-seq) data, and structural MRI data
acquired from 162 cynomolgus macaques40. Firstly, we evaluated
brain-wide structural variation and composition of differentially
expressed genes, and depicted the cortical landscapes of various
neurotransmitter-related genes. We placed an emphasis on transcrip-
tional heterogeneity within the frontal lobe to characterize the frontal-
specific genetic architecture using weighted gene co-expression net-
work analysis (WGCNA). Second, using this anatomically defined gene
expression and structural MRI datasets, we applied partial least
squares (PLS) regression to test consensusmolecular correlations with
MRI-derived CT. Moreover, we used both the publicly accessible and

our single-nucleus sequencing data to resolve the underlying diversi-
fied cell types enriched in thoseCT-related genes. Third, we performed
a functional enrichment analysis to infer ontological pathways, which
converge with myelin, spine, dendrite and neuron-projection terms.
Finally, we linked clusters of CT-related genes to cell types, specifying
neurons and oligodendrocytes as contributing most to the tran-
scriptomic relationship of cortical structural variations. Together, we
provide a comprehensive spatial transcriptional atlas ofmacaquebrain
which allows us to integrate microscale single-cell/nucleus RNA-seq
andmacroscale brain imaging for elucidating the brain-widemolecular
and genetic architecture of brain phenotypes.

Results
Characterization of brain-wide transcriptome
This study combined single-nucleus, bulk-tissue transcriptomics, and
structural MRI data to determine links between cell-typespecific gene
expression and variations in cortical morphometric features in maca-
que monkeys, and established a multimodal data generation and
analysis pipeline for imaging transcriptomics as illustrated in Fig. 1. To
create a brain-wide, anatomically defined, spatial transcriptome atlas
of the macaque brain, we profiled genome-wide expression from
819 samples (RNA integrity number, 8.20 ±0.68, mean ± s.d.) origi-
nating from 110 brain regions by total RNA-seq, pooling across both
left and right hemispheres after strict quality control (Fig. 1 and Sup-
plementary Data 1). This monkey atlas manifested as relatively dense
spatial sampling of the frontal and temporal lobes compared to the
spatial distribution of tissue samples in the Allen Human Brain Atlas
(Supplementary Fig. 1). The deep sequencing produced an average of
52.7 million reads per sample, which enabled the detection of protein-
coding and non-coding genes, as well as accurate estimation of lowly
expressedgenes.Only geneswithdetected reads in≥10% sampleswere
considered as ‘expressed’. Consequently, 80.50% (23,605 out of 29,324
annotated genes) of the genes were detected with expression signal
across themacaque brain (Fig. 2a and Supplementary Data 2). A similar
proportion of expressed genes (80.52%, 23,613 genes) were detected
when only the cortical regions were considered.

To identify genes with conserved expression patterning across
brain regions, we performed differential expression gene (DEG) and
differential exon usage gene (DEU) analysis for every pair of 102 ana-
tomically defined brain structures (94 cortical and 8 subcortical areas)
that were sampled thrice or more41. Our result revealed that 59.98% of
expressed genes were DEGs between any two regions, and 46.00%
were DEGs between any two cortical areas. By contrast, 54.40% of
expressed geneswereDEUs between any two regions, and47.59%were
DEUs across cortical areas. Moreover, 27.02% and 14.61% of the
expressed genes were detected as DEGs andDEUs, respectively, across
the entire brain and the cortex-only areas. In themeantime, 33.95% and
27.38% of the expressed genes were restrictedly detected as either
DEGs or DEUs between any two regions, while 31.40% and 32.98%
expressed genes were detected as DEGs or DEUs between cortical
areas. These results demonstrate widespread spatial variations in the
expression of entire transcripts or individual exons, suggesting that
alternative splicing assessment is of equivalent importance as DEGs for
assessing regional gene expressions. Moreover, transcriptome-wide
analysis of the present dataset allowed us to identify multiple com-
positions of DEGs that include highly expressed protein-coding genes
(79.73 ± 3.10%, mean ± s.d.), long non-coding RNAs (4.48 ± 0.46%),
small RNAs (14.77 ± 2.79%) and pseudogenes (1.01 ± 0.12%) (Fig. 2b).

In addition, this transcriptomics atlas enables us to generate a
bird’s eye view of gene expression patterns related to specific neu-
rotransmissions across the entire brain, for instance, showing a
spatially-resolved enrichment of serotonin-signaling-associated
genes (Fig. 2c). Serotonin is well known to form the most complex
efferent system in the primate neocortex and plays a crucial role in
the control of complex brain functions and neuropsychiatric
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disorders42–45. Representative regional enrichments relevant to ser-
otonin synthesis, packaging, breakdown, reuptake, and receptors
were rendered onto a 3D brain surface map for demonstration
(Fig. 2d). We found that the serotonin receptor 1B (HTR1B), serotonin
receptor 2C (HTR2C) and serotonin synthesis-related gene L-Dopa-
Decarboxylase (DDC) were highly enriched in the primary visual
cortex (V1), medial prefrontal area (area 25), and subdivision of
orbitomedial prefrontal cortex (area 14r) and caudal subdivision of
perirhinal cortex (area 36c), respectively. The expression landscapes
of these transmitter genes closely resembled the corresponding
mRNA expression profiles in the human brain46 (Supplementary
Fig. 2). Interestingly, the overall expression pattern of HTR1B was
consistent with the PET tracer image obtained from human
subjects47. We provided 3D plots of transcript distributions across
the whole brain and brain maps for other neurotransmitter systems
in Supplementary Fig. 3.

Regional transcriptional signatures in macaque brain
To capture the fundamental architecture of the macaque brain tran-
scriptome, we plotted a pairwise differential expression matrix which
shows upregulated (bottom left) and downregulated (top right) DEGs
(Fig. 3a), further validated by applying DEU analysis and other DEGs
detectionmethods including edgeR and limma (Supplementary Fig. 4).
Heterogeneity of differential gene expression between divisions of the
macaque brain is prominent, manifested as distinctively regulated
patterning of subcortical and occipital cortices relative to the rest of
cerebral cortex (Fig. 3b), compatible with that in human brain48 and
supported by principal component analyses (Supplementary Fig. 5).
Remarkably, wewere able todetectmoreDEGs especially in the frontal
and temporal lobes (Fig. 3c) and observe nonnegligible differences
evenwithin the frontal lobe. MoreDEGs were detected in the temporal
lobe while the average number of DEGs in the frontal lobe was com-
parable to that of other cortical lobes/regions (Fig. 3d).

Consensus gene expression profiles related to CT

Anatomical variation assessment of the whole-brain transcriptome
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Fig. 1 | A scheme of experimental strategy, data generation and analysis
pipeline. aBrain tissue collection andmanagement. The fresh brain of cynomolgus
macaques was immediately frozen in liquid nitrogen, and coronally cut into a serial
of slabs (2-mm thickness). Each slab was placed on a barcoded disk, photographed
for orientation, stored at −80 °C and documented by an in-house developed LIMS
(Laboratory InformationManagement Systems) software.bRNA isolation. For each
slab, both digital photographs (taken before and after sampling) and correspond-
ingMRI images from an atlas of cynomolgusmacaques Cyno162were used tomark
the exact spatial location of the individual sampled area. The sampled tissues were
hence subject to lysis, standardized RNA extraction and cDNA library construction,
and finally sequenced using a high-capacity Illumina NovaSeq 6000 instrument.
c 3Dvisualizationof all collected samplesbasedon theCyno162brain template. The
size of each color-coded sphere indicates the number of samples collected from
that specific brain region. The total numbers of samples collected from each brain
lobe/region are shown here. A total of 878 samples were subject to quality control

(see “Methods” for details) and then to subsequent transcription profiling.
dAnatomical variation assessmentof thewhole-brain transcriptome.DEG,DEUand
WGCNAanalyseswereperformed to exploreglobal transcriptional variation, and to
identify both co-expressionmodules and region-specific hub genes (upper left and
lower panels). Brain-wide topography of transcript distributions for neuro-
transmitters was plotted in 3D space and rendered onto the brain surface (upper
right panel). DEG, differential expressed gene; DEU, differential exon usage;
WGCNA, weighted gene co-expression network analysis. e Monkey neuroimaging
dataset, data processing and morphological evaluation including estimation of
cortical thickness (CT). f Consensus gene expression profiles related to CT. Partial
least squares (PLS) regression analyses were applied to identify candidate gene
clusters whose expression were associated with the spatial variation of CT over the
whole brain at different ages. Cellular diversity of CT-related genes was assessed
with single-cell expression data and functional annotations were evaluated.
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Genetic topography in macaque brain
We performed WGCNA analysis based on 19,971 genes that were
expressed solely in the cortical regions following the standard
procedures49,50. Genes were determined by summing up all tran-
scripts including protein-coding genes (PCGs), long non-coding
RNAs (lncRNAs) and microRNAs (except mitochondrial RNAs), and
the top 95% of highly expressed genes were retained for analysis to

reduce the noisy effect of low-expression genes (Fig. 4a). A total of
20 main transcriptional modules were derived, each of which was
represented by a characteristic gene cluster across 97 cortical
regions. The expression patterns summarized by module eigengene
in each region were plotted (Fig. 4b, Supplementary Figs. 6a, 7, and
Supplementary Data 3). Given the heterogeneity and complexity of
the primate prefrontal cortex, we were particularly interested in
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exploring its spatial organization pattern of gene expression. With
hierarchical clustering analysis, four modules (M1–M4) of gene
expression were identified and spatially organized along a
dorsolateral-ventromedial gradient within the frontal lobe, where
M1 andM2modulesmainly spanned themedial sectionwhileM3 and
M4 modules pertained to the dorsal section (Fig. 4c and Supple-
mentary Fig. 6b).

We further conducted Kyoto Encyclopedia of Genes and Gen-
omes (KEGG) pathway enrichment analyses on genes assigned to
M1–M4 (Fig. 4d and Supplementary Data 4). Interestingly, module
M1 was enriched in neuronal structure and transmitter related
annotations, including neuroactive ligand-receptor interaction
(p = 3.35 × 10−10, FDR corrected for all comparisons below), cell
adhesion molecules (p = 3.25 × 10−5), axon guidance (p = 2.17 × 10−4),
glutamatergic synapse (p = 2.56 × 10−3), and serotonergic synapse
(p = 4.92 × 10−3). M2 was uniquely associated with multiple biologi-
cal processes related to RNA synthesis and degradation, such as
RNA transport (p = 1.83 × 10-5) and RNA degradation (p = 9.18 × 10−4).
In contrast, M3 showed close associations with biosynthesis of
amino acids (p = 1.29 × 10-4), carbon metabolism (p = 1.76 × 10−4),
glycine, serine, and threonine metabolism (p = 1.94 × 10−3). M4 was
highly enriched in supplementary motor area and dorsal prefrontal
cortex, of which the genes were associated with neurodegenerative
process and diseases, such as ribosome (p = 5.25 × 10−42), oxidative
phosphorylation (p = 2.01 × 10−31), Parkinson disease (p = 7.54 ×
10−27), Huntington disease (p = 5.15 × 10−25), and Alzheimer disease
(p = 6.73 × 10−24).

Using previously published gene lists8, we evaluated the spatial
distribution of different neurotransmitters in these modules. It
showed that serotonin (odds ratio, OR = 4.78, p = 0.001, FDR cor-
rected for all comparisons below, Fisher’s exact test), dopamine
(OR = 5.17, p = 0.001) and glutamate (OR = 3.29, p = 0.001) related
genes were enriched in M1, whereas glycine genes were enriched in
M3 (OR = 4.75, p = 0.009) (Fig. 4e and Supplementary Data 5). The
dorsolateral-ventromedial gradient of gene ensembles within the
frontal lobe was observed similar to the expression pattern of those
neurotransmitters-related genes (Supplementary Fig. 8). The brain-
wide and frontal-specific gene expression profiles were demon-
strated in Supplementary Data 6. We then visualized the network of
M1–M4 modules and identified the hub genes with high degree
(degree > 100) and significant Pearson correlation with the corre-
sponding module eigengene (kME, p < 0.05)51,52. Of the 19 hub genes
in M3, 7 of them were myelination-related genes (CNP, FA2H, PLP1,
MYRF, UGT8, MAG, MBP) (Fig. 4f and Supplementary Data 7). Nota-
bly, myelination-related genes, like CNP, were highly expressed in
cortical regions, consistent with the notion that primary cortical
areas are strongly myelinated in both human and macaque29,53.
Detailed hub gene diagrams of other three modules and cell type
enrichment for all modules annotated with three independent
snRNA-seq datasets are provided in Supplementary Fig. 9, 10 and
Supplementary Data 7, 8.

Persistent gene expression profiles related to brain-wide varia-
tions in cortical thickness
We next investigated the relationship between regional CT and ana-
tomically patterned expression of cortical genes using PLS analysis, a
multivariate statistical technique that decomposes relationship
between two datasets into orthogonal sets of latent variables with
maximum covariance and has been extensively used for neuroimaging
and transcriptional data analysis29,33,54. With in-house generated struc-
tural MRI and transcriptomic datasets of cynomolgus macaques, we
estimated CT of 97 cortical regions for 161 monkeys at age 2–8, and
constructed a matrix (97 cortical regions × 23,613 genes) of tran-
scriptional level values, and then subject to PLS regression for all age
groups. The first component (PLS1) is defined as the spatial map that
captures the greatest fraction of total expression variance across
cortical areas, which explained 17.6–21.2% of the variance in our data
(Supplementary Data 9), and significantly correlated with the CT
values at each age group (Fig. 5a). In total, we found 2269 (positively or
negatively weighted) PLS1 genes persistently associated with regional
variations in CT from age 2 to age 8 (Fig. 5b). We next identified 1284
genes whose expression levels were significantly correlated with CT
using Pearson correlation (r >0.3, FDR corrected p <0.05 at each age,
Fig. 5c andSupplementaryData 10). As such,wedetermined consensus
CT-related PLS1 genes as the overlapped ones between 2269persistent
PLS1 genes and 1284 CT-related genes, as led to 1005 genes including
532 positively (PLS1+) weighted genes (i.e., PNCK, DOK4, TMEM130,
and L1CAM) and 473 negatively (PLS1−) weighted genes (i.e., RCBTB1,
ABCB7, and UGT8) (Supplementary Data 11). Representative cortical
maps of CT-correlated PLS1+ and PLS1− genes (e.g., L1CAM and UGT8)
were illustrated in Fig. 5d. Of note, this set of 1005 genes consisted of
971 protein-coding genes, 18 long non-coding RNAs, 13 small RNAs and
3 pseudogenes. As a range of transcriptomic studies in human subjects
have identified candidate genes associated with CT, we conducted a
direct comparison with 1005 genes identified in the current study, and
found that 94 of 1005 genes (OR = 1.43, p =0.002, Fisher’s exact test)
were significantly overlapped with those reported by Whitaker et al.29

(Fig. 5e and Supplementary Data 12).

Cell-type and enrichment analysis of genes transcriptionally
related to cortical thickness
To identify cell types expressing genes correlated to cortical imaging
phenotypes in cynomolgusmacaque, we performed uniformmanifold
approximation and projection (UMAP) and clustering analyses on our
V1 snRNA-seq data and focused on six interested cell clusters including
oligodendrocytes, microglia, astrocytes, oligodendrocyte precursor
cells (OPCs), excitatory and inhibitory neurons (Fig. 6a). For each cell
type,marker geneswerecalculatedby comparing themeanexpression
of each gene in this cell type against themean of average expression in
all other cell types basedon a strict cutoff (FDRcorrectedp <0.05, fold
change ≥ 2). Subsequently, these cell type annotations were applied to
enrichment analysis of 534 PLS1 + and 473 PLS1- genes, respectively
(Fig. 6b). Contrasting one cell type with the others, CT-related PLS1 +

Fig. 2 | Transcriptional composition and topography of expression distribu-
tions for serotonin-signaling-associated genes. a Venn diagrams demonstrate
the total number of expressed genes among 29,324 annotated genes and the
overlaps between spatially DEGs and DEUs for whole-brain (left) and cortex (right).
Percentages of DEGs and DEUs were calculated by dividing the corresponding
expressed genes. DEGs, differentially expressed genes; DEUs, differential exon
usage genes. b Percentages of different types of DEGs detected in 102 regions that
were sampled thrice or more, including protein-coding genes, long non-coding
RNAs, pseudogenes, and small RNAs, scaled to the maximum height for each brain
region. c Expression topography of serotonin-signaling-related genes across the
entire brain. Expression profiles for individual genes were transformed to the same
scale by normalizing to the median expression value and then plotted in

exponential form. Highly expressed genes are marked in corresponding brain
structures. d Box plots of raw expression levels of three representative genes
associated with serotonin (HTR1B, HTR2C and DDC) at each of the 97 neocortical
brain regions and thenormalized spatial expression patterns on the cortical surface
are displayed alongside. In each box plot, the center line indicates the median, the
edgesof thebox indicate the 25th and 75th percentile (interquartile range, IQR) and
the whiskers indicate last point within a 1.5× IQR (sample size varies among brain
regions, ranging from2 to 15, see Sourcedata). All sampledareas are color codedby
major structure; the bar below from left to right are frontal, parietal, temporal,
cingulate, occipital and insula. M, medial view; L, lateral view. See Supplementary
Data 1 for a complete list of abbreviations for all sampled regions. Source data are
provided as a Source Data file.
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Fig. 3 | Brain-wide structural variation in gene expression in macaques.
a Pairwise differential expression matrix across the brain. Each matrix entry
represents the upregulated (bottom left) and downregulated (top right) number of
DEGs with a fold change ≥ 2 in expression level. Subcortical and occipital regions
exhibitmarked heterogeneous patterns (red) in contrast to the rest cortical regions
(blue). DEGs, differentially expressed genes. b Heatmap of the numbers of DEGs
betweenmajor brain structures (left) and cortical regions (right). Occipital regions
exhibit marked inter-regional variations (red). GP globus pallidus, Tha thalamus, Pu
putamen, Cd caudate, NA nucleus accumbens, Amy amygdala, HC hippocampus,
CTX cortex, Pir piriform cortex. c Increased number of detected DEGs when

increased the number of randomly-sampled areas within each lobe/region (color
coded) (Permutation test, n = 1000). d Average number of DEGs in each lobe/
region. In each box plot, the center line indicates the median, the white diamonds
indicate the mean, the edges of the box indicate the 25th and 75th percentile
(interquartile range, IQR) and the whiskers indicate last point within a 1.5× IQR
(n = 561, frontal; 55, parietal; 351, temporal; 21, cingulate; 15, occipital; 36, insula).
*p <0.05, **p <0.01, ***p <0.001, pairwise two-sided Wilcoxon rank sum test
(uncorrected for multiple comparisons), p values in d are provided as a Source
Data. Source data are provided as a Source Data file.
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genes were significantly enriched in excitatory (31, OR= 2.61, p = 7.81 ×
10−6, FDR corrected for all comparisons below, Fisher’s exact test) and
inhibitory (22, OR = 2.88, p = 2.95 × 10−5) neuron markers (Fig. 6c and
Supplementary Data 13). Meanwhile, CT-related PLS1- genes were sig-
nificantly expressed in oligodendrocytes (115, OR = 25.91, p = 8.41 ×
10−102), microglia (13, OR= 2.92, p = 9.72 × 10−4), astrocytes (24, OR =
2.44, p = 1.76 × 10−4) andOPCs (21, OR = 4.15, p = 2.18 × 10−7). To further
validate the results of cell type annotation, we replicated the present
analyses using previously published single-cell/nucleus RNA-seq data
acquired from the neocortex of cynomolgus macaques6 and the
frontal region in rhesus macaques55 (Supplementary Fig. 11 and Sup-
plementary Data 13). Sensitivity analyses also support this cell type

enrichment (Supplementary Fig. 12). Additionally, similar enrichments
were obtained by using cell-level enrichment methods, such as
AUCell56 (Supplementary Fig. 13).

We aligned the geneontology (GO) biological functions andKEGG
pathways with consensus CT-related PLS1+ and PLS1− genes using
Metascape57. After correcting for multiple enrichment comparisons
(p < 0.05), the CT-related PLS1+ genes were significantly enriched for
biological processes related to neuronal functions, such as “synaptic
signaling”, “regulation of ion transmembrane transport”, “synapse
organization”, and “neuroactive ligand-receptor interaction” whereas
PLS1- genes were enriched for biological processes such as “myelin
maintenance”, “ensheathment of neurons”, and “membrane lipid
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biosynthetic process” (Fig. 6c and Supplementary Data 14). Never-
theless, we used three prior CT-related gene panels of spine, dendrite
andmyelin32, and gene panel of neuronprojection to validate theseGO
terms and benchmark the components of CT (Fig. 6d). It showed that
1005 CT-related PLS1 genes were highly overlapped with spine (33,
OR = 3.42, p = 1.37 × 10−8), dendrite (78, OR = 2.78, p = 1.88 × 10−13),
myelin (30, OR = 5.44, p = 4.02 × 10−12), and neuron projection (178,
OR = 2.57, p = 1.42 × 10−23) associated genes (Fig. 6e, Supplementary
Fig. 14 and Supplementary Data 15). Notably, the CT-related PLS1-
genes were solely enriched in myelin-related genes (28, OR = 11.20,

p = 9.08 × 10−19) (Supplementary Fig. 15). Moreover, most of the 1005
genes were retained and the same cell type enrichment and biological
functions were observed when imaging-transcriptomics analyses were
performed taking account of age and sex effects (Supplementary
Figs. 16–18).

Discussion
We applied large-scale bulk RNA-seq data on anatomically defined
areas of the entire cynomolgus macaque brain to chart a complete
transcriptional landscape in 3D MRI coordinate space, which opens
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basedona two-sided test andnot corrected formultiple comparisons. Eachpoint in
a, d stands for a cortical region (n = 97). Source data are provided as a Source
Data file.
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new horizons for single-cell/nucleus and spatial transcriptomics in
primates. Essentially, we observed similar regional expression profiles
between macaque and human brain in terms of the number of
expressed (80.50% vs 76–86.1%) anddifferentially regulated (59.98%vs
70.9–81.8%) genes, striking differences in transcriptional profiles
between cortical and subcortical regions, and unique molecular sig-
natures of the occipital lobe across the neocortex10,48. Moreover, we
observed the full range of transcripts with their compositions varying
across the whole brain, which thus enables the detection and the
characterization of novel transcripts like long non-coding RNAs and
alternative transcripts of protein-coding genes in future investigations.
Using this transcriptomic atlas, one can examine topographic
expression organization of specific gene sets in the macaque brain
such as serotonin-signaling-associated genes, and accurately quantify
regional enrichment of any single gene and plot it onto anMRI-derived
brain map for visualization, whichmay serve as a reference catalog for
developing exploratory study design and hypothesis generation. As an
immediate example, identification of DEGs in distinct cell types within
various brain regions of macaque monkeys, together with further

elucidation of specific promoters/enhancers for expressing these
genes, is a stepping stone to the development of molecular targets for
cell-specific manipulation. This is rather attractive as viral-based
transgenic and gene-editing approaches used in generating rodent
models have been progressively extended to nonhuman
primates15,58–60.

While incredible amounts of transcriptomics data at multiple
spatial scales are now being aggregated from nonhuman primates and
human brains, the transcriptional substrates that influence the anato-
mical/functional differentiations and specializations of the primate
prefrontal cortex remain largely unknown22,61. Prior MRI studies
leveraged the knowledge of twin-based heritability to deduce the
macroscale genetic patterning of brain morphology including CT and
surface area, both of which formed orthogonal axes to each other in
cortical organization (dorsal–ventral axis versus anterior–posterior
axis)25,26. Importantly, genetic contributions to CT and surface area has
been reported prominently distinct3,25. Moreover, using neuroimaging
data of human twins and macaque monkeys, the macroscale organi-
zation principle of genetic influences on CT was found comparable in
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primates21, indicating a phylogenetically conserved trait. Here we used
alternative approaches ofWGCNA analysis and clustering based on the
neurotransmitter signaling associated genes to examine the topo-
graphic relationship of transcriptional variations between subdivisions
of the frontal lobe. A mosaic transcriptomic pattern was observed in
the frontal lobe, which was consistent with the broad subdivision
networks in the prefrontal cortex described by Saleem et al.62 and
topographically distinguished by a dorsolateral-ventromedial gra-
dient. To a certain extent, this spatially varying pattern of expression
profiles resembles the sensorimotor-to-transmodal gradient in the
human cerebral cortex12. Interestingly, hub genes and enriched func-
tional annotations for the dorsal module have been linked to axonal
loss and circuit dysfunction of the motor cortex, thereby shedding
light on genetic predisposition to neurodegenerative diseases63,64.

As a highly heritable trait, genetic influences on regional varia-
tions in the cortical thickness of the human brain have been exten-
sively investigated under a variety of conditions. In our study, we
found a constant relationship between regional morphological dif-
ferences and gene expression. Among 1005 genes identified related to
CT, somegenes have been reported involved in structural components
of myelin (CNP, MOBP, PLLP, MOG, MAL), synthesis of myelin con-
stituents (ASPA, UGT8), regulation of myelin formation (DOK4, KLK6),
oligodendrocyte differentiation (ERBB3) and transcription factors
(SOX10) regulating other myelination-related genes65–68. Prior studies
have found a significant amount of myelin reside as small bundles of
fibers that run within the layers of the cortical gray matter based on
ex vivo myelin-stained sections and MRI-estimated myelin volume
fraction map in the superficial brain69,70, and this cortical myelination
presumably speeds the conductionof signals to the input layer of areas
that require fast responses. Moreover, the overlap of myelination-
related genes and hub genes (i.e., CNP, PLP1, UGT8) of the module
enriched in motor areas -- highly myelinated primary cortices, sup-
ports the myelin content map in primates observed with MRI
contrasts22,71.

Rapid advances in spatial transcriptomic analysis now allow
mapping of gene expression topography over the whole brain at sin-
gle-cell/nucleus resolution. Identification of stably or uniquely
expressed genes would help to define a cell type and further integrate
transcriptome-based and connectome-based subtype classification as
they may constitute a unique connectome pattern. Cell-type-specific
contributions to spatial variation of CT with reference to cell type-
specific signature genes have been assessed in human subjects27. Here
we observed some of the consensus CT-related genes were associated
with multiple aspects of neuronal function whereas others were enri-
ched for oligodendrocytes and OPCs, which may explain an intricate
relationship betweenCT and intracorticalmyelination13,29,37. It has been
proposed that mature oligodendrocytes generate myelin sheaths that
speed up nerve impulse conduction and providemetabolic support to
axons, while OPCs generatemyelinating oligodendrocytes throughout
life, and likely serve yet-to-be-identified roles in circuit formation and
function72. These results indicate that myelination-related genes may
be evolutionarily conserved and mediate the biological processes
linked to molecular and structural architectures in both macaque and
human brains.

There are several practical limitations to this study when inter-
preting our results. Firstly, the present snRNA-seq data was solely
sampled from V1 where the gene expression profiles are strikingly
different from the rest of cortical regions. Therefore, we have utilized
two recently published snRNA-seq data to cross-validate the cell type
annotations for the frontal modules and consensus CT-related genes.
Moreover, we performed sensitivity analyses for each individual cell
type across the whole brain. Importantly, we identified V1 specific cell
type markers such as DNAH5, ABO and CNR1 (Supplementary Fig. 19)
when performing subtype enrichment in excitatory and inhibitory
neurons. Secondly, given the current lack of spatially fine-grained

cortical expression in developing monkeys, we determined consensus
CT-related genes by persistently tracking regional variation of CT
regardless of their ages. It calls for future investigation of identifying
candidate genes that may selectively drive CT variations at specific
brain regions during certain developmental period. Nevertheless, we
verified this set of CT-related 1005 genes by taking account of the
effects of age and sex. Thirdly, although the current work focused
mainly on one of the MRI-derived phenotypes, with the present tran-
scriptome atlas, one is allowed to explore new possibilities such as the
relationship between structural connectivity and gene expression at a
fine spatial scale. Here, we presented an example which demonstrates
the spatial correspondence between the tracer-derived structural
connectivity matrix and regional gene co-expression (Supplementary
Fig. 20). Importantly, the spatialmapping of the present transcriptome
data canbe readily converted to anyother parcellation schemes for the
primate brain73, especially when one is interested in integrating with
other data modalities or probing cross-species comparison questions
in one common stereotactic space74.

In short, this study presents a comprehensive transcriptomics
resource for the macaque brain based on region-specific bulk RNA-seq
in MRI coordinates, which enables an integrative analysis of single-cell/
nucleus RNA-seq and multimodal brain imaging data. Given phyloge-
netic and central nervous system developmental proximity between
nonhuman primates and humans, the present analysis strategy
demonstrates a broadly applicable roadmap of probing interspecies
evolutionarymechanisms froman imaging-transcriptomicsperspective.

Methods
Animals
Nine adult cynomolgus monkeys (Macaca fascicularis; mean ± s.d.,
13.6 ± 7.8 years, 8 males and 1 female) weighing 4.2–12.0 kg
(8.6 ± 2.6 kg) were used for the study. All animal experimental proce-
dures were approved by the Animal Care and Use Committee of CAS
Center for Excellence in Brain Science and Intelligence Technology,
Chinese Academy of Sciences, and conformed to National Institutes of
Health guidelines for the humane care and use of laboratory animals.

Brain tissue collection and RNA sequencing
A complete description of animal handling procedures can be found in
our previous work40,75–77 and is briefly summarized here. Animals were
euthanized with an overdose of ketamine (30–40mg/kg) and iso-
flurane (3–5%), and perfused transcardially with ice-chilled sucrose-
based artificial cerebrospinal fluid containing 234mMsucrose, 2.5mM
KCl, 1.25mM NaH2PO4, 10mM MgSO4·7H2O, 0.5mM CaCl2·2H2O,
26mMNaHCO3, and 11mMD-(+)-glucose61,78. Brains were immediately
extracted and transferred into liquid nitrogen until frozen. Frozen
brains were serially cryosectioned into coronal slices (2mm thick) and
placed on freezing, barcoded plates for storage at liquid nitrogen
temperature. A small quantity of tissue samples (~100mg/sample)
were collected from anatomically distinct areas in each slice according
to the brain atlas of cynomolgus macaques40 and then photographed
by a digital camera, which allowed to identify the specific location
(coordinates) of sampled areas with reference to MRI images of the
monkey brain. Dissected tissue was used to extract total RNA using
Trizol (Invitrogen) following the manufacturer’s directions. Note that
all surgical instruments were treated with Diethyl pyrocarbonate for
overnight to removeRNase and sterilized in advance. During the tissue
collection, RNaseZap (Thermo Fisher Scientific) was carefully applied
to the surface of surgical instruments for inactivation of exogenous
RNases.Quality andquantitymeasurements of the extractedRNAwere
performed using NanoDrop (Thermo Fisher Scientific) and a Qubit
Fluorometer (Thermo Fisher Scientific), respectively, and RNA integ-
rity numbers (RIN) were determined using a Bioanalyzer RNA 6000
Nano Kit (Agilent, USA). Samples that passed the criteria of RIN ≥ 7 and
RNA concentration ≥ 80ng/μl were kept for subsequent bulk RNA-seq.
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A paired-end sequencing library was designed on the Illumina
Paired-end 150sequencingplatform. For each sample, 15Gof datawere
generated by bulk RNA-seq. A total of 878 tissue samples were
acquired across 111 regions defined by the brain template of cyno-
molgus macaques.

Single-nucleus sample preparation
We isolated nuclei for dissected tissues sampled from the primary
visual cortex by transferring tomicrocentrifuge tubes, snap frozen in a
slurry of dry ice and stored at −80 °C until the time of use. Frozen
tissues were initially treated with a homogenization buffer that con-
sisted of 10mMTris pH 8.0, 250mMsucrose, 25mMKCl, 5mMMgCl2,
0.1% Triton X-100 (Sigma-Aldrich), 0.5% RNasin Plus RNase inhibitor
(Promega), 1× protease inhibitor (Promega), and 0.1mM DTT (Sigma-
Aldrich). Tissues were placed into a 1ml dounce homogenizer
(Wheaton) and homogenized using 11 strokes of dounce pestle to
liberate nuclei. Homogenate was strained through a 30mm cell strai-
ner (Miltenyi Biotech) and centrifuged at 900 × g for 10min at 4 °C to
pellet nuclei. Nuclei were then resuspended in staining buffer con-
taining 1× PBS (SangonBiotech) supplementedwith 0.8%nuclease free
BSA (BioVision) and 0.5% RNasin Plus RNase inhibitor. Mouse anti-
NeuN antibody Alexa Fluor 555 conjugated (Millipore, MAB377A5) was
added to the nuclei at a dilution of 1:1000 and nuclei suspensions were
incubated at 4 °C for 30min at dark place. After incubation in the
antibody, nuclei suspensionswere centrifuged at 400 × g for 5min and
resuspended in clean staining buffer. Prior to fluorescence-activated
cell sorting, 4′6-diamidino-2-phenylindole was applied to nuclei sus-
pensions at a final concentration of 0.1mg/ml and nuclei suspensions
were filtered through a 35mm nylon mesh to remove aggregates.
Single-nucleus sorting was carried out on a BD MoFlo XDP Cell Sorter
instrument to exclude debris and doublets. Single nucleus from neu-
ron cells were collected by gating on Alexa Fluor 594 (NeuN) positive
signal, nonneuronal nucleus were collected by gating on NeuN-
negative signal. Strip tubes containing isolated single nuclei after cell
sorting were then briefly centrifuged, removed the supernatant and
diluted into 300 nuclei/µl using 1× PBS, 0.8% BSA, and 0.5% RNasin
Plus. NeuN-positive nuclei and NeuN-negative nuclei were combined
using a volume ratio of 9:1 and sent to sequencing center for 10x
Chromium Single-Cell v3 loading following 15 cycles of cDNA
amplification.

Read alignment and quality control
High-quality reads (with averaged sequencing depth 52.8million reads
per sample) were mapped to the cynomolgus macaque genome
Ensembl M. fascicularis (version: Macaca_fascicularis_5.0). FASTA and
annotation files were downloaded from the Ensembl database (https://
www.ensembl.org)79. This ensembl annotation comprises a total of
29,324 genes, including 21,584 protein-coding genes, 738 long
non-coding RNAs, 6700 small RNAs (small non-coding RNAs and
miscellaneous RNAs), and 302 pseudogenes.

Adapters of all sequenced reads were firstly trimmed by Trim
Galore (version 0.6.0) with parameters: -a AGATCGGAAGAGCACA
CGTCTGAACTCCAGTCAC -a2 AGATCGGAAGAGCGTCGTGTAGGGAA
AGAGTGT --paired --stringency 3 --fastqc --phred33. Then fastx_trimmer
(FASTX Toolkit version 0.0.14) was used to cut the first 10 bp of reads
to remove poor quality sequences. The clean reads were aligned to the
gene assembly using STAR (version 2.7.3a)80 with command line “—

runMode genomeGenerate” to build the sequence index. For example,
the alignment of sample A is given below: --runMode alignReads
--runThreadN 16 –genomeDir crab-eating-macaque-mfas5 --read-
FilesCommand zcat --readFilesIn sampleA_R1.fastq.gz sampleA_
R2.fastq.gz --outFileNamePrefix sampleA --outSAMattributes All --out-
SAMtype BAM SortedByCoordinate --limitBAMsortRAM 62000000000
--outSAMunmapped Within. The entire mRNA mapping information
were wrapped in the BAM format alignments.

After read alignment, quality control analysis was implemented to
remove samples with poor quality. The number and percentage of
uniquely mapped reads were calculated for each sample. In addition,
sequencing metrics, such as %High-quality Aligned Reads, %mRNA
Bases, %Intergenic Bases, Median 5′ to 3′ Bias, GC (guanine-cytosine)
dropout rate, and AT (adenine-thymine) dropout rate, were computed
by using PicardTools (version 2.21.2, http://broadinstitute.github.io/
picard/, commands CollectAlignmnetSummaryMetrics, CollectRnaSeq-
Metrics, CollectGcBiasMetrics). To detect outlier samples, a quality z
score was calculated for each metric. Samples with low quality (%
uniquemapping <50%, Z > 2 for%Intergenic Bases, GCDropout rate, or
AT Dropout rate and Z < −2 for %High-quality Aligned Reads, %mRNA
Bases, or Median 5′ to 3′ Bias) in this matrix were identified as outliers,
and any sample with greater than two outlier indexes was removed20.
Thus, 52 of the initial 878 samples were removed after performing
quality control procedures.

The number of reads uniquely mapped to each gene were coun-
ted using featureCounts81. And the gene expression level was quanti-
fied by RNA-Seq by Expectation Maximization (RSEM) to get
transcripts per million82. Afterwards, removeBatchEffect function of
limma package was used to remove batch effects83. Based on the
normalized expression values, principal component analysis (plotPCA
in DESeq2 package) and hierarchical clustering analysis (hclust func-
tion in stats package) were performed to visualize the relations among
all RNA-seq samples. This analysis also identified additional 7 samples
as outliers that were excluded. Hence, the remaining 819 samples
spanning 110 brain regions (757 samples from 100 cortical areas and
62 samples from 10 subcortical areas, pooling across hemispheres)
were used for evaluating the gene expression (Supplementary Data 1).
Genes were considered robustly expressed if they are expressed in
≥10% samples. Thus, 23,605 and 23,613 genes (80.50% and 80.52% of
29,324 annotated genes) were obtained across whole-brain areas and
in the cortical regions, respectively. The Pearson correlation coeffi-
cient between any pair of samples was calculated to construct an 819 ×
819 expression matrix.

Differential expression analysis
Using DESeq2 package84, pairwise differential expression gene (DEG)
analysis was performed between any two brain regions which had at
least three records of sequencing data passing quality control to
improve the statistical power, including 102 discrete brain structures
that comprised of 94 cortical regions and 8 subcortical areas for
subsequent analysis. Notably, dense sampling over the entire brain
allowed to uncover the subtle transcriptome-wide molecular-struc-
tural differences. The GC-content that was controlled by using condi-
tional quantile normalization package85 was incorporated into the
differential expression analysis. The reportedp valuewas corrected for
multiple testing using the Benjamini–Hochberg procedure to estimate
the false discovery rate (FDR). Genes with fold change ≥2 and FDR-
corrected p < 0.05 was identified as DEGs. Moreover, genes retained
across different combinations of minimum count and minimum
number of samples were examined (Supplementary Fig. 16).

Pairwise differential exon usage (DEU) analysis was conducted
between any pair of brain regions using Subread_to_DEXSeq package.
First, routine dexseq_prepare_annotation2.py was run to produce a
featureCounts-readable GTF file. Second, count reads were quantified
using the GTF file of cynomolgus macaque and then submitted to the
DEXSeq package for DEU analyses85. Statistical significance level was
adjusted for multiple testing using Benjamini-Hochberg to estimate
the FDR and only significant DEUs with FDR-corrected p <0.05 was
used for further analysis.

Visualization of neurotransmitters expression patterns
Gene panels related to 8 neurotransmitters (serotonin, acetylcholine,
dopamine, epinephrine, gamma-aminobutyric acid (GABA), glutamate,
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glycine and norepinephrine,) were created in the light of previous
human results85. Then the expression value for a given gene in each
anatomical region was averaged and the median expression value was
subtracted, followed by an exponential transformation (2x) between
different genes.We retained 3 brain regions (24a, 36c, TF) with at least
two samples to better visualize the whole-brain expression pattern.
The MATLAB function bar3 was used for brain visualization.

Weighted gene co-expression network analysis
Following the standard procedures of weighted gene co-expression
network analysis (WGCNA)49,50, we constructed co-expression network
based on normalized cortical gene expression data. Briefly, we filtered
for protein-coding genes, lncRNAs and microRNAs and hence exclu-
ded the bottom5% lowly expressed genes from further analysis. It gave
rise to 19,971 genes from cortical regions that were used to estimate
pairwise correlations using the biweight midcorrelation86. Then, co-
expressionmodules consisting of positively correlatedgeneswith high
topological overlap were identified based on the signed weighted
correlation matrix (blockwiseModules function in WGCNA package,
softpower = 12)50. Modules were defined as branches of a hierarchical
cluster tree using the dynamic tree cut method87 and the minimal
module size was set to 50. Module eigengene (ME), defined as the first
principal component of the expression matrix, was used to represent
the expression pattern for each module. Pairs of similar modules (ME
correlation r > 0.8) were merged and 20 modules were identified.

These identified modules were characterized with several ways.
First, modules were annotated by gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway via g:Profiler88.
Second,moduleswere annotatedbyover-represented analysis for cell-
type high expression genes and neurotransmitter-related genes. Neu-
rotransmitter genes were derived from a previous human study8.
Third, the Pearson correlation between each gene and each ME was
calculated to construct the module network. Hence hub genes with
high gene-module eigengene correlation (kME) for each module were
visualized.

MRI datasets and data processing
The structural MRI dataset of 162 cynomolgus macaques (3.5 ± 1.8
years, 72 females and90males)werecollectedon3.0TMRI scanners at
the Institute of Neuroscience (n = 29) and Kunming Institute of Zool-
ogy (n = 133), Chinese Academy of Sciences, as described in our recent
work40. High-resolution T1-weighted anatomical images of macaque
brain were acquired with key parameters as follows: TR= 2300ms;
TE = 3ms; inversion time = 1000ms; flip angle = 9°; acquisition voxel
size = 0.5 × 0.5 × 0.5 mm3. Five to 7 whole-brain anatomical volumes
were recorded for each subject. After preprocessing of monkey MRI
data40,77, the thickness of the macaque cerebral cortex sheet was esti-
mated for each subject using the diffeomorphic registration-based CT
approach, which is a reliable volume-based technique for estimating
voxel- and regional-wise thickness information (http://stnava.github.
io/ANTs/)89 and yields similar results as that using surface-based
algorithms90. To perform imaging-transcriptomics analysis in all age
groups, we averaged the CT of each region for animals at the same age
and obtained 7 imaging variables ranging between 2 and 8 years (only
one subject at age 9 was excluded hence). As such, data from a total of
161 monkeys were used in this study.

Imaging-transcriptomics analysis
Here MRI-derived CT in each region was considered as response vari-
ables while several thousands of genes in each region was used as
predictor variables. The first PLS component (PLS1) was the linear
combination of gene expression values that was most strongly corre-
lated with regional CT, and the statistical significance of the PLS1
explained variancewas evaluated by permuting the response variables
10,000 times. Bootstrapping was used to estimate the error of each

gene’s PLS1 weight (resampling with replacement of the 97 cortical
regions), and the ratio of the weight of each gene to its bootstrap
standard error was used to calculate the Z-scores and rank the genes
according to their contributions to PLS1. The gene sets with Z > 3
(PLS1+, positively weighted) or Z < −3 (PLS1−, negatively weighted)
were considered CT-related. This procedurewas repeated for different
ages from 2 to 8, and genes that exhibited persistent associations with
CT across all age groups were assembled as consensus PLS1 genes. In
addition, we identified the gene list out of all cortical genes showing
significant correlations with CT (|Pearson correlation coefficient| > 0.3,
FDR-corrected p < 0.05 at each age, CT-correlated genes). To explore
the contribution of CT-related genes in the PLS analysis, we obtained
the overlapped genes from consensus PLS1 genes and CT-correlated
gene list, which was named consensus CT-related PLS1 genes including
positively (PLS1+) and negatively (PLS−) weighted genes. PLS1+ gene
expression weights were positively correlated with variations in CT,
indicating these genes were overexpressed in regions where CT was
increased inmonkeys. By contrast, PLS1− genes were overexpressed in
regions where CT was decreased in monkeys.

To examine the effect of sex on our results, we replicated the
above analyses using male-only imaging and transcriptome data. Fur-
thermore, additional analyses were conducted to test the robustness
of our results. Briefly, we fitted a linearmodel considering the effect of
age for each region and regarded the sets of intercept and beta coef-
ficients as inputs to the PLS. The regional intercept represents regional
differences in CT and the beta coefficient for age captures the regional
variation in the effects of age on CT. We also modeled the CT at each
region as a function of age withmale-only imaging data and put sets of
intercept and beta coefficients as inputs to the PLS against the male-
only transcriptomic data.

To better understand the biological significance of the positive
and negative gene sets, Metascape database57 was used to conduct GO
and KEGG pathway enrichment analyses. Both PLS1+ (Z > 3) or PLS1−
(Z < −3) gene sets were input into the Metascape website (https://
metascape.org/gp/index.html#/main/step1) and the obtained enrich-
ment GO term and KEGG pathways (FDR-corrected p <0.05) were
visualized via enrichment network to show intra-cluster and inter-
cluster similarities. To determine the biological processes including
spine, dendrite, myelin32 and neuron projection in which consensus
CT-related PLS1 gene sets are most involved, four gene panels were
utilized: (1) spine panel contains genes related to spines structure and
function; (2) dendrite panel contains genes related to structure and
function of the entire dendritic arbor; (3) myelin panel captures genes
associated with myelin structure and function; (4) neuron-projection
panel includes genes related to structure and function of neuron
projection (Supplementary Data 12). Specifically, human genes for
each selected GO term were then downloaded from AmiGO2 website.

Single-nucleus transcriptome data analysis
17,509 single nuclei acquired from the monkey cortex were processed
using the default 10X Genomics CellRanger pipeline (Version 6.1.1).
The reference genome was constructed based on Ensembl M. fasci-
cularis using function cellranger mkref. And reads were mapped and
processed by the function cellranger count to generate count matrix.
The mean reads per nuclei were 47,133 and the median number of
genes of nuclei was 3642.Nuclei with detected genes less than 500 and
more than 7500 were removed for further analysis. The preprocessed
gene expression data of 14,952nuclei were then analyzed by the Seurat
(version 4.1.0) package91 and the following steps were performed in
order: data normalization and transformation, highly variable gene
selection, principal component analysis (PCA) and clustering. The
count matrix was first normalized and transformed using function
SCTransform. The top 3000 highly variable genes were then obtained
by FindVariableGenes with the default variance stabilizing process.
We further embedded ensuing nuclei in the PCA dimensions followed

Article https://doi.org/10.1038/s41467-023-37246-w

Nature Communications |         (2023) 14:1499 12

http://stnava.github.io/ANTs/
http://stnava.github.io/ANTs/
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
http://amigo.geneontology.org/amigo/landing


by Uniform Manifold Approximation and Projection (UMAP)
visualization92. Top 30 principal components were used for nuclei
clustering and the resolution of FindClusters was set to 0.8.

Cortical cell classes were determined based on previously known
cell type marker expression17,93. UMAP visualization and unsupervised
clustering revealed six major canonical cortical cell classes including
excitatory neurons, inhibitory neurons, microglia, astrocytes, oligo-
dendrocytes, and oligodendrocyte precursors94. Marker genes were
identified by comparing the mean expression of each gene in one cell
type againstmean of average expression in all other cell types by using
function FindAllMarkers with the parameter method =MAST in Seurat
package. To assess cell-type-specific enrichment of co-expression
modules and identified consensus CT-related PLS1 gene sets, we con-
sidered genes expressed at least twofoldhigher in one cell type thanall
other cell types (FDR-corrected p <0.05)6. Furthermore, highly
expressed genes of distinct cell types from prior single-cell/nucleus
macaque cortical data were used here for external validation6,55. The
first dataset consists 11 cell types identified in the neocortex of M.
fascicularis, including excitatory neuron, 6 subtypes of inhibitory
neurons (SST+, PVALB+, NYP+, LAMP5+, RLEN+, VIP+), microglia,
astrocyte, oligodendrocyte, OPC6. The second dataset consists
29 subtypes identified in dorsolateral prefrontal cortex (dlPFC) of
rhesus macaque, including 10 subtypes of excitatory neurons, 9 sub-
types of inhibitory neurons, 4 subtypes of glia cells and 6 non-neural
subtypes55. The highly expressed genes of each cell type were identi-
fied by the same method used above. Furthermore, the R package
AUCell was used to perform a cell-level enrichment of consensus CT-
related PLS1 genes56.

Gene ontology and enrichment analysis
GO and KEGG pathway enrichment analyses were conducted using
g:Profiler andMetascape. The significant GO term and KEGGpathways
with FDR-corrected p <0.05 were reported. The gene set enrichment
analysis was performed using a two-sided Fisher’s exact test with 95%
confidence interval (R function fisher.test). Only significant enrichment
with an odds ratio (OR) > 1 and FDR-corrected p <0.05 were used.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNA-seq data generated in this study have been deposited in the
Sequence Read Archive (SRA) under accession code PRJNA905082.
The public datasets used in this study can be accessed as described
below: The single-cell RNA-seq data of macaque neocortex is available
at https://db.cngb.org/nhpca/. The snRNA-seq data of the macaque
dlPFC is available at http://resources.sestanlab.org/PFC/. The cyno-
molgus macaque genome Ensembl Macaca_fascicularis_5.0 is available
at https://www.ensembl.org. D99 template of macaque brain is avail-
able at https://afni.nimh.nih.gov/pub/dist/atlases/macaque/. Sub-
cortical atlas of macaque used for visualization can be downloaded
from https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/nonhuman/
macaque_tempatl/atlas_sarm.html. The Cynomolgus macaque tem-
plate (Cyno162) is available at https://doi.org/10.1093/cercor/bhaa229.
Allen Human Brain Atlas data is available at https://human.brain-map.
org/. Predicted comprehensive human mRNA expression data is
available at http://www.meduniwien.ac.at/neuroimaging/mRNA.html.
Results and statistics related to main figures are provided in Supple-
mentary Data 1–15. Source data are provided with this paper.

Code availability
Custom code for data analysis is available on a GitHub repository. The
version of the code used in this study was archived in the Zenodo

repository under the accession code https://doi.org/10.5281/zenodo.
7641873.
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