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Robust automated backbone triple
resonance NMR assignments of proteins
using Bayesian-based simulated annealing

Anthony C. Bishop 1, Glorisé Torres-Montalvo 1, Sravya Kotaru 2,
Kyle Mimun 1 & A. Joshua Wand 1,2,3,4

Assignment of resonances of nuclear magnetic resonance (NMR) spectra to
specific atoms within a protein remains a labor-intensive and challenging task.
Automation of the assignment process often remains a bottleneck in the
exploitation of solution NMR spectroscopy for the study of protein structure-
dynamics-function relationships.Wepresent an approach to the assignment of
backbone triple resonance spectra of proteins. ABayesian statistical analysis of
predicted and observed chemical shifts is used in conjunction with inter-spin
connectivities provided by triple resonance spectroscopy to calculate a
pseudo-energy potential that drives a simulated annealing search for themost
optimal set of resonance assignments. Termed Bayesian Assisted Assignments
by Simulated Annealing (BARASA), a C++ program implementation is tested
against systems ranging in size to over 450 amino acids including examples of
intrinsically disordered proteins. BARASA is fast, robust, accommodates
incomplete and incorrect information, and outperforms current algorithms –
especially in cases of sparse data and is sufficiently fast to allow for real-time
evaluation during data acquisition.

Nuclear magnetic resonance (NMR) spectroscopy is unique in its
ability to provide simultaneous and comprehensive structural and
dynamical atomic-scale information about macromolecules such as
proteins in solution1–4. Unfortunately, however, anobserved resonance
frequency in an NMR spectrum cannot yet be directly assigned to the
individual atom(s)within the protein fromwhich they arisewithout the
time-intensive collection and analysis of additional spectra. Compre-
hensive mapping of individual resonances comprising nuclear mag-
netic resonance (NMR) spectra to specific atoms within a protein
molecule is a general prerequisite for the successful analysis of the
structure and dynamics of proteins by NMR spectroscopy. Early
applications ofmulti-dimensional homonuclear 1H NMRdata to the so-
called resonance assignment problem relied heavily on human inter-
vention. The first comprehensive approach was the sequential
assignmentmethod,whichcenteredon identification of J-coupled spin

systems5 that are then assembled through connections provided by
short distances revealed by the nuclear Overhauser effect (NOE)
interactions between sequential residues using the identity of side
chains to error-check against the primary structure6,7. The subsequent
main chain directed (MCD) assignment strategy8,9 formalized self-
correcting cyclic patterns of backbone 1H-1H NOE interactions and
provided a more robust algorithmic framework that relieved some-
what the complexity of identifying side chain resonances10,11. While the
MCD approach did lead to the first fully automated assignment of 1H
resonances to backbone hydrogens11, automation of 1H-based reso-
nance assignments was generally frustrated by the overwhelming
spectral degeneracy of multidimensional 1H spectra of proteins and
the interference of technical attributes such as a prominent diagonal.
The introduction of heteronuclear triple resonance spectroscopy12–17

completely changed the landscape of the resonance assignment task
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by providing much greater resolution, generally higher quality data,
and, most importantly, definitive rules with very precise meanings for
making connectivities (correlations) between backbone resonances.
Triple resonance assignments of the protein backbone permit access,
either directly or by tethering to side chain resonance assignments, to
awide range ofdynamicphenomena17,18 and structural information19–21.

Automated triple resonance algorithms have led to effectively
complete backbone resonance assignments of smaller proteins with
little human intervention and greatly aided the assignment of larger
systems22–24. Yet, even with the advent of transverse relaxation opti-
mized spectroscopy (TROSY)25, the comprehensive assignment of
systems larger than 30 kDa remains remarkably rare. The limitations
are quite analogous to that summarized for earlier assignment stra-
tegies based exclusively on 1H-1H scalar and NOE interactions:
increasing ambiguity in connectivities due to degeneracy, loss of
resonances due to relaxation or artifact, and other confounding
spectral attributes are simply not sufficiently accommodated by cur-
rent automated assignment strategies.

Here, we strive to overcome the issue of data sparseness and
ambiguity by appealing to the statistics of Bayes to utilize available
information more effectively via the calculation of explicit prob-
abilities. Importantly, this formalism also allows for a flexible and
adaptable incorporation of chemical shift prediction and structural
knowledge into the assignmentprocess.By implementing theBayesian
analysis within a simulated annealing engine, we develop a robust and
efficient search for optimal solutions. Protein assignment algorithms
utilizing simulated annealing have been developed in the past26.
However, the stochastic algorithm described here takes advantage of
readily available pre-existing structural models, both experimentally-
determined and predicted, and in doing so more effectively exploits
the rich information contained within structure-based predicted che-
mical shifts. We demonstrate how these invaluable restraints greatly
aid the resonance assignment process, especially in cases where data
may be otherwise sparse or even incorrect. We also compare the
overall performance of BARASA against three highly cited assignment
algorithms on a variety of experimental datasets.

Results and discussion
Bayesian assisted resonance assignments by simulated anneal-
ing (BARASA)
Wedesigned an algorithm, termed BARASA, which utilizes a simulated
annealing approach27 to efficiently search the immense solution space
for the optimal set of resonance assignments starting with a set of raw
crosspeaks derived from triple resonance type spectra. The objective
is to find the correct mapping of individual resonances to specific
atoms within the protein molecule. The algorithm first assembles an
initial set of spin systems based on an analysis of crosspeak lists and
the connectivity rules of the particular triple resonance experiments
employed. This process may not yield an unambiguous nor complete
set of spin systems due to inherent degeneracy and missing or arti-
factual peaks (See Methods). As a result, a given crosspeak could be
associatedwithmultiple, spectrally-overlapping spin systems; inwhich
case, the crosspeak is randomly placed in one of the overlapping spin
systems. The simulated annealing search engine then randomly dis-
tributes the starting set of spin systems to specific residue positions. If
there are more spin systems than residue positions, then the excess
spin systems are placed in a cache for later use as described below. The
energy of this initial state is calculated as the sumof the energies of the
individual spin systems currently placed in residue positions. Each spin
systemenergy is composedof two terms: the adjacencyenergy and the
chemical shift energy. The adjacency energy describes the interaction
between two spin systemsmapped to adjacent locations on the amino
acid sequence. This energy is minimized if the Cα(i), Cβ(i), and C’(i)
shifts of the spin system match the Cα(i-1), Cβ(i-1), and C’(i-1) of the
spin system at the following residue in the sequence. In contrast, the

chemical shift energy describes the interaction between a spin system
and its current residue position i.e., it is defined by the local sequence
and structure. This energy is minimized when the resonances of the
spin system closely match the predicted values of the current residue
position, while also failing to match the predicted values at all other
residue positions. Application of Bayes’ theorem then provides a
posterior probability of assigning each spin system at each location in
the sequence that is based on the predicted and experimental shifts.
Using this probability, the chemical shift energy is calculated (see
Methods for a more detailed description). After the initial calculation
of energy, a spin system or individual crosspeak is randomly chosen. A
spin system is either moved to an unoccupied residue position,
swapped with another spin system, or added to the cache. Spin sys-
tems or cross peaks deposited to their respective caches have no
priority and are randomly selected from the cache. Similarly, if a
chosen crosspeak can be productively added to the crosspeak cache,
swapped with another crosspeak in an overlapping spin system, or
moved to an overlapping spin system, the move is made. With every
crosspeak/spin system swap, the decision to accept the proposed
move is made based on the energy of the system before and after the
proposed swap. Using an effective temperature T, the Metropolis
criterion28 is applied (Eq. 1).

Paccept =min 1,expð�4E=TÞ� �
ð1Þ

Paccept is the probability of accepting the swap and ΔE is the
change in energy due to the proposed swap. If ΔE ≤0 then Paccept is set
to 1. If ΔE > 0, then 0< Paccept<1 and a uniformly distributed random
number r such that 0 ≤ r ≤ 1 is generated. If r ≤ Paccept then the swap is
accepted. Otherwise, the swap is rejected and the system state is left
unchanged. Random swap attempts are continued until the average
energy of system does not vary significantly. T is then decreased by
following a highly optimized schedule based on a quantity analogous
to the specific heat of the system (see Methods). The system is further
cooled and equilibrated in this manner until a set of termination cri-
teria are achieved and the annealing protocol is ended. Finally, to
ensure that the system has reached a minimum in energy, a proposed
swap of each spin systemwith every other spin system as well as every
crosspeak with every other possible crosspeak is then attempted with
only decreasing energy changes being accepted. This post-annealing
minimization routine is repeated 100 times. The entire procedure,
starting from initialization and ending with minimization, is repeated
20 times. The algorithm then chooses the spin system that was
assigned to each residue location in a majority of the annealing runs
(if any) and builds a consensus assignment set. The consensus
assignment set is further curated using criteria defined below to pro-
duce the final assignment set. The overall BARASA algorithm is out-
lined in Figs. 1 and 2.

BARASA is accurate, robust, and fast
We tested BARASA against a test set of six different folded protein
systems ranging in size and topology: human interleukin-1 receptor
antagonist C66A, C122A (IL-1Ra, 152 residues, 17.1 kDa), human
interleukin-1β (IL-1β, 154 residues, 17.5 kDa), S. solfataricus indole-3-
glycerol phosphate synthase R43S (IGPS, 248 residues, 28.4 kDa), E.
coli maltose binding protein (MBP, 371 residues, 40.8 kDa), the first
cyclization domain from the Y. pestis yersiniabactin non-ribosomal
peptide synthetase (Cy1, 453 residues, 51.9 kDa), and E. coli thymidy-
late synthase (ecTS, 264 residues, 61.0 kDa homodimer). In addition,
we challenged the algorithmwith two so-called intrinsically disordered
proteins (IDPs). These include the V5 domain (residues 606-672) of
human protein kinase C (V5dm, 68 residues, 7.7 kDa) and the intrinsi-
cally disordered region of human ANP32A (hIDD, 110 residues,
12.8 kDa). All crosspeak lists were derived from triple resonance data
(Table 1). Crosspeak positions used were pulled from the canonical
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triple resonance spectra used for protein assignment (i.e., HSQC,
HNCO29, HN(CA)CO30, HNCA31, HN(CO)CA31,HNCACB32, HN(CO)CACB/
CBCA(CO)NH33) (see Supplementary Table S1) with the exception of
hIDD in which crosspeaks were derived from provided spin systems.
To generate crosspeaks from the spin systems of hIDD, Gaussian error
was added to the resonance values to create the chemical shifts of
simulated crosspeaks. (see Methods). Four of the data sets (IL-1Ra, IL-
1β, IGPS, andMBP) were obtained in our laboratory. Crosspeak lists for
Cy1, ecTS, V5dm, and spin systems for hIDD were kindly provided by
Drs. Dominque Frueh (Johns Hopkins University), Andrew Lee (Uni-
versity of North Carolina at Chapel Hill), Tatyana Igumenova (Texas
A&M University) and Martin Blackledge (Institut de Biologie Structur-
ale), respectively.

The results from BARASA were compared to reference assign-
ments to assess programperformance. Reference assignments were
obtained from either the BMRB, directly from another lab, or
manually determined by us (Table 1). Deposited assignments were
manually mapped to the acquired spectra for comparison. A small
movement in crosspeak positions between the deposited assign-
ments and the acquired spectra was permitted to account for dif-
ferences in experimental conditions. In addition, a small number of
resonances assigned in the deposited data sets were not present in
the acquired spectra of IL-1β. These were removed from the refer-
ence assignments and considered unassigned when assessing
algorithm performance (Supplementary Table 3). For themost part,
reference assignments were considered complete though in a few
cases BARASA identified a small number of additional assignments
that were confirmed manually and included in the reference
assignments (Supplementary Tables 6–9). For each residue posi-
tion, BARASA either outputs the spin system and its associated
resonances that were assigned to that residue position ormarks it as
unassigned. The assignment given to each residue in the protein

sequence by BARASA was determined to either be matching, miss-
ing, or mismatching its counterpart in the reference assignments. A
residue was considered to have a matching assignment if the amide
group assigned to it by the algorithmwas the same as the reference.
A residue was also considered to match the reference if it was
unassigned both by BARASA and in the reference assignments. A
residue was designated missing if an amide group was assigned to
that location in the reference assignments, but BARASA did not
assign that residue position. Lastly, a residue was labeled as mis-
matching if BARASA assigned an amide group and it did not match
that in the reference assignments or if the residue was unassigned in
the reference assignments.

In general, BARASA’s performance when utilizing structure-based
chemical shifts and crosspeak lists derived from a comprehensive set
of triple resonance experiments is marked by (nearly) complete
assignments when compared to the manually curated reference
assignments and, most importantly, produced very few errors
(Fig. 3 & Supplementary Table 2). Individual statistics for each
assignment are listed in Supplementary Tables 3–10. BARASA had
relatively more difficulty with the Cy1 and IGPS examples. This is likely
due to a higher degree of variance in resonance chemical shifts of the
backbone spins among the different spectra relative to the test cases
because of the employment of multiple independently prepared
samples, but the performance overall remained very good (Fig. 3). In
the case of hIDD, a relatively high apparent mismatch rate is observed.
Upon closer examination, the mismatching assignments made by
BARASA were all assignments not previously reported as assigned.
Many of these previously unreported assignments fall within regions
of the sequence with low complexity (Supplementary Table 10) which
is likely why they were difficult to assign manually. While there are no
independent data supporting their veracity, these assignments pro-
posed by BARASA and, as we discuss more below, by the next best
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Fig. 1 | Outline of the BARASA triple resonance assignment algorithm. a The
search engine rests on a Bayesian-based simulated annealing protocol that uses a
specific-heat mechanism to guide cooling. Crosspeaks lists drawn from triple
resonance spectra are assembled into putative spin systems, which are then ran-
domly assigned to positions within the primary sequenceof the protein. Sequential
adjacency in the primary sequence is provided by apparent connectivities derived
from triple resonance NMR spectra. Predicted chemical shifts, based on a high-
resolution structural model or gleaned from empirical amino acid-specific dis-
tributions, are incorporated into the system energy using Bayesian statistics.
Throughout annealing, crosspeaks may move among spin systems with over-
lapping resonances, changing the energies of the affected spin systems. Annealing

involvesMonte Carlo swapping of both crosspeak assignments to spin systems and
spin system assignments to locations in the sequence. The concept of dynamic
swapping of individual crosspeaks or entire spin systems is outlined in Fig. 2.
Annealing continues until energy equilibration is achieved. The temperature is then
lowered and the systemre-equilibrated. Annealing is stoppedwhen the termination
criteria are met and a local minimization routine is performed. b The final reso-
nance assignments are developed from results of multiple independent simulated
annealing runs. c Shown is a ribbon representationofmaltose binding protein (PDB
code: 1DMB [https://doi.org/10.2210/pdb1DMB/pdb]) color-coded according to
assignment status following analysisbyBARASA: correctly assigned residues (blue);
unassigned residues (white), prolines (red). See main text for further details.
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Fig. 2 | Dynamic assembly of spin systems during simulated annealing. a Spin
systems (orange puzzle pieces) begin in the cache (black box) and are initialized by
random assignment to the sequence (purple pieces). Spin systems can then be
swapped with others or moved to different locations of the sequence or to the
cache. Spin systems or cross peaks in their respective caches have no priority and
are randomly selected. Swaps are accepted or rejected with a probability based on

the change in energy of the proposed swap. b The energy of each spin system
depends on how it fits with the adjacent spin system (adjacency energy) and with
the predicted shifts for that residue location (chemical shift energy). Exchange of
crosspeaks between spin systems can be thought of as changing the puzzle piece
shape. See main text and supplementary material for details.

Table 1 | Proteins employed to evaluate BARASA

Protein MW (kDa) Sequence length Data source Reference assignments (%)a

IL-1βb 17.5 154 This work 95.9

IL-1Rac

(C66A,C122A)
17.1 152 This work 92.4

IGPS(R43S)d 28.4 248 This work 88.0

MBPe 40.8 371 This work 95.1

6xHis -CY1f 51.9 453 Frueh lab correspondence 90.0

ecTSg 61.0 264 Lee lab correspondence 91.2

V5dmh 7.7 68 Igumenova Lab
correspondence

96.7

hIDDi 12.8 110 Blackledge Lab correspondence 70.4
aPercentage of non-proline residues assigned a spin system in the reference assignments.
bReference assignments14: BMRB 434. Four previously assigned amide groups did not yield cross peaks in the acquired spectra here and were removed from the reference assignments (See
Supplementary Table 3). Reference structure: PDB 9ILB.
cDeposited to BMRB under accession code 51352. Reference structure: PDB 2IRT.
dDeposited to BMRB under accession code 51347. Reference Structure: PDB 1IGS. PDB file was modified using the PYMOL mutation wizard to reflect the R43S substitution.
eReference assignments54: BMRB 4354. Ten additional amide group assignments were determined by BARASA and added to the reference assignment set (see Supplementary Table 6). Reference
structure: PDB 1DMB.
fReference assignments were provided via Frueh lab correspondence. Reference structure: PDB 7RY6.
gMolecular weight corresponds to the symmetric homodimerwhich is present under experimental conditions. Reference assignments55: BMRB 19082. Ten additional amide group resonances were
determined by BARASA and added to the reference assignments (see Supplementary Table 8). Reference structure: PDB 1AOB.
hReference assignments56: BMRB 18927. One additional amide group assignmentwas determinedby BARASA and added to the reference assignment set (see Supplementary Table 9). No reference
structure was used as it is an intrinsically disordered protein.
iCross peak lists were derived from experimentally-determined spin systems by adding simulated noise (see Methods). Reference assignments57: BMRB 28135. BARASA extended the assignments
considerably but these additional assignments, in contrast to MBP, ecTS, and V5dm, were not included in the reference assignments to avoidmisinterpretation (Fig. 3, Supplementary Table 10). No
reference structure was used as it is an intrinsically disordered protein.
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performing automated assignment algorithm FLYA34 are highly similar
and are likely to be largely correct.

BARASA utilized SHIFTX+35 predicted chemical shifts for the
globular test proteins, whereas the algorithm utilized random coil
chemical shifts36,37 for the so-called IDP examples as predicted shift
restraints during annealing (see Methods). SHIFTX+ was chosen as it
appears to be among the best-reported chemical shift prediction
algorithm based solely on three-dimensional structural information
and other physical parameters (i.e., temperature, pH). The related
algorithm SHIFTX2, though it gives more accurate predictions, relies
on the analysis of shifts fromhomologous proteins aswell as the three-
dimensional structural inputs specific to the protein being analyzed. It
was our concern that the accuracy of SHIFTX2 would vary with the
number of homologs available and, under circumstances of sparse
homologs, result in significantly larger errors than are reported for the
average case. As accurate estimation of prediction error is crucial to
the Bayesian analysis (Methods), inaccurate and/or unaccounted for
variance in prediction errors could compromise performance. Fur-
thermore, as SHIFTX2performs searches for the known chemical shifts
of homologous sequences as part of its prediction, it would utilize the
previously assigned shifts of our test proteins to present the BMRB in
the generation of the predicted shifts. Such shifts would not be gen-
erally available for the de novo assignment of a protein andwould thus
be an invalid test of BARASA. We also note that using predicted che-
mical shifts generated by SPARTA+38 gave similar results (Supple-
mentary Table 11) as when using those predicted by SHIFTX+.

In this regard, it is important to appreciate that it is statistically
anticipated from the distributions of chemical shifts, either predicted
or documented in the BMRB, that values outside the error rangewill be
encountered. For example, if the distribution were taken as Gaussian
and employing the standard deviation as the prediction error (see
Methods), approximately 32% of all predictions would be expected to
be outside of the considered error range. This is what is observed.

Supplementary Tables 3–10 contain the likelihoods of the spin systems
for the various test proteins. These likelihoods represent the prob-
ability of observing the experimental shifts given that the assignment
is correct and ranges from 0 to 1. Likelihoods lower than 0.32 corre-
spond to spin systems with predicted resonance chemical shifts that
are, on average, beyond the specified error range but are nevertheless
well accommodated by BARASA.

Finally, BARASA also produces a curated set of assignments from
20 annealing runs within 1 hour for each system tested (see Supple-
mentaryTable 12).With high accuracy and runtimes under an hour, the
advantages of BARASA becomeevenmore apparent when considering
large proteins with suboptimal data sets.

The performance of BARASA with suboptimal data sets
The rather complete crosspeak lists from an extensive set of triple
resonance experiments for each test protein provide valuable bench-
marks for the validation of BARASA, but are arguably not fully illus-
trative of the difficult protein systems often challenging current
applications of protein NMR spectroscopy. To examine the perfor-
mance of BARASA in cases of missing data and to illuminate the most
impactful triple resonance information, individual crosspeaks or all
crosspeaks of entire spin systems from the MBP and ecTS data sets
were randomly discarded to generate compromised data sets, emu-
lating data collection on challenging protein systems. Individual
crosspeaks were randomly retained in the data set with a probability
based on the crosspeak type (i.e., Cα, Cβ, or CO resonance). This
process was done over a wide range of retention probabilities to
produce amultitude of distinct data sets that represent awide range of
data completeness. These depleted peaks lists were then used as input
to BARASA the results of which are provided in Supplementary
Tables 13 and 14. In thisway, the relative importance and completeness
of different types of spectral data as well as the effects of entirely
missing spin systems could be probed. In addition, a key question was
to learn the extent to which structure-based chemical shifts, as
opposed to general BMRB residue-specific statistics, can rescue the
assignment and aid the assignment process.

Figure 4 illustrates the robustness of BARASA when analyzing
conditions ofmissing spectral data. This specific examplewas generated
using retention probabilities of 88% and 25% for the Cα- and Cβ-based
information, respectively, and with retention probabilities of either 0%
or 75% for theCO-based information. Relianceon theBMRBdatabase for
predicted shifts, as opposed to structure-based shifts, yielded poor
performance. In brief, the use of structure-based SHIFTX+35 predictions
entirely rescues the resonance assignment. These data indicate that the
availability of the structure-based chemical shift predictions serves as a
powerful restraint in protein assignment - large enough to potentially
surpass the information provided by the CO experimental pair under
many circumstances. This is likely due to the fact that spin system
adjacency is established adequately with the Cα and Cβ spectral infor-
mation and the remaining assignment ambiguity is due to residue type
matching; CO resonances provide little residue type information and
offer little help in this respect. We do not believe this observation to be
anartifact of theparameterizationof the energy function since carbonyl-
derived connectivities are weighted roughly the same as the chemical
shift probability (Methods). As such, the energy provided by CO con-
nectivity information would be of a similar magnitude of the total che-
mical shift energy of the spin system.

Randomly retained spin system data sets were generated in
two ways: by allowing all crosspeaks of any spin system assigned
in the reference assignments to be randomly discarded from the
input data set until only the indicated fraction of the assigned spin
systems remained or by discarding the crosspeaks of random spin
systems in the same manner, with the added condition that only
those from sets of five random, but contiguous in sequence, spin
systems are discarded. The latter condition was performed to

IL-1β IL-1Ra IGPS MBP Cy1 ecTS V5dm hIDD

0.0

0.2

0.4

0.6

0.8

1.0

Matching Missing Mismatching

F
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Fig. 3 | Performance of BARASA using a comprehensive set of triple resonance
experiments. Comparison of automated assignment algorithms. Results of auto-
mated resonance assignments by BARASA utilizing raw crosspeak lists drawn from
a relatively comprehensive set of triple resonance experiments. Compared to
manually curated resonance assignments obtained for eight test proteins:
interleukin-1β (IL-1β), interleukin-1 receptor antagonist (C66A, C122A) (IL-1Ra);
indole-3-glycerol phosphate synthase (R43S) (IGPS), maltose binding protein
(MBP), non-ribosomal peptide synthetase (Cy1), thymidylate synthase (ecTS), V5
domain of protein kinase C (V5dm), and intrinsically disordered region of human
ANP32A (hIDD). Shown are the fractions of residues that are accurately matched
(green),mismatched (magenta), ormissing (i.e., unassigned) (blue) to the reference
assignments. *In the case of hIDD, a number of de novo assignments were indicated
by BARASA and are included as mismatching with the reference assignments. See
main text and Table 1. Source data are provided in the Source Data file.
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simulate the performance of BARASA under the common situation
where exchange broadening arising from physical motion of
contiguous stretches of sequence (e.g., loops) results in loss of
amide resonances. In both cases, BARASA is still able to produce
the overwhelming majority of the possible assignments without
errors even when up to 40% of the spin systems are missing
(Fig. 4). There is little difference in performance whether the
missing data is localized or distributed across the sequence. The
performance of BARASA when challenged with artifact peaks,
which often arises from low-concentration or unstable samples or

instrumentation, was also examined. In this case, a depleted data
set from above was augmented with randomly generated artifact
peaks. Only a modest decrease in performance is observed even
when the crosspeak list is contaminated with 20% artifactual
entries (Supplementary Fig. 1).

Even with the considerable time-savings introduced by non-
uniform sampling39, collection of NMR data on proteins is still time
intensive. The superior performance of BARASA on missing data
within a comprehensive set of triple resonance experiments raised
the possibility that BARASA could tolerate a reduced set of triple

Fig. 4 | Performance of BARASA under data sparse conditions. Shown are the
fractions of residues that are accurately matched (green), mismatched (magenta)
or missing (i.e., unassigned) (blue) to the reference assignments. Panels
a–d correspond to results from input data sets where entire spin systems were
discarded from the crosspeak lists. The ordinate axis is the fraction of retained spin
systems and the dashed lines indicate the maximum fraction of possible matching
assignments. The effects of random spin system depletion on the analysis of MBP
both randomly (a) and as stretchesoffive consecutive residuesbeing discarded (b).
A similar analysis of ecTS with either individual (c) or groups of five consecutive
spin systems being discarded (d). For the conditions 0.8 and 0.6 fractions retained,
ten random data sets retaining the indicated fraction of spin systems were gener-
ated. The performanceof BARASAoneachdata set is shown as a singleorange solid
circle, with the bar height representing the arithmeticmean. The full data set (“1.0”

condition) results were taken from Fig. 3. Only one result with the full data set was
measured to avoid the comparison of run-to-run variation with variation due to
differences in the input data set. The effects of restricting connectivity information
by utilizing only a single pair of triple resonance experiments with either residue-
type statistics (BMRB) (e) or structure-based (SHIFTX+ ) (f) chemical shift predic-
tions for MBP. Similarly, for ecTS using only residue-type statistics (BMRB) (g) or
structure-based (SHIFTX + ) (h) chemical shift predictions. The effect of random
depletion of crosspeaks from the comprehensive set of triple resonance experi-
ments where the indicated percentages each type of crosspeak that are retained is
illustrated for theMBP (i) and ecTS (j) data sets andusedwith residue-type statistics
(BMRB) or structure-based (SHIFTX+) predicted chemical shifts. Results of ten
individual runs (n = 10) are plotted as solid orange circles and bar heights represent
the arithmetic mean. Source data are provided as a Source Data file.
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resonance experiments. We tested this hypothesis using ecTS and
MBPwhere information from a single triple resonance experimental
pair (e.g., HNCA and HN(CO)CA) combined with BMRB or
SHIFTX + predicted shifts were analyzed. The Cα- and Cβ-type triple
resonance pairs are equally useful in the BARASA assignment pro-
cess when provided SHIFTX+ shifts, but the Cβ information
becomes relatively more effective when relying on BMRB amino
acid distributions (Fig. 4). This is clearly due to the higher residue
type information intrinsic to the Cβ resonance. Overall, BARASA
performs extremely well with either the Cα -or Cβ-type triple
resonance experimental pairs only. In contrast, the CO-type triple
resonance experimental pair when used alone ismuch less effective,
likely due to the reduced sensitivity of carbonyl carbon shifts to
amino acid type and local structure.

Comparison to alternate automated resonance assignment
algorithms
Computer-assisted resonance assignment strategies for analysis of
triple resonance spectra have been employed for over two decades.
For the sake of comparison, three highly-cited algorithms were com-
pared to BARASA: FLYA, AutoAssign22, and I-PINE40. The same cross-
peak lists derived from the comprehensive set of triple resonance
experiments were used for all four algorithms (Fig. 5). BARASA
achieved the highest percent matching among all the algorithms
against the reference assignments in all test cases. BARASA out-
performed AutoAssign and I-PINE by considerable margins, most
notably with the two IDPs examined, while offering only marginal
improvement over FLYA (Supplementary Table 2). Importantly, BAR-
ASA made few mismatching assignments (<3%) while I-PINE had up to
20% mismatches meaning that about 1 in 5 assignments made were
incorrect. For these reasons, AutoAssign and I-PINEwerenot examined
further.

The marginal advantage of BARASA over FLYA when utilizing a
comprehensive triple resonance data set prompted us to examine
their behavior in the more challenging situations commonly encoun-
tered. BARASA’s performance in settings where there is a significant
amount of missing data was compared against FLYA. MBP and ecTS
crosspeak listswith varying retentionprobabilitiesweregenerated and
used as input for BARASA and FLYA (Fig. 6). BARASA was able to
generate a higher assignment match rate in all scenarios with the dif-
ference in performance between the algorithms growing as the data
became increasingly sparse. In addition, the mismatch rate between
the algorithms remained similar. These results demonstrate that
BARASA has excellent outcomes in circumstances where there is a
large quantity of missing data – greatly outperforming existing
algorithms.

Use of predicted versus experimentally determined structural
models
It is clear from Fig. 4 that use of structure-based chemical shift pre-
dications provides significant advantages over simple residue-type
predictions derived from empirical distributions. This is particularly
true in the case of Cy1, which is perhaps an exemplar of the challenges
facing modern protein NMR and required a battery of experimental
spectra and labeling schemes41. The sheer number of samples and
experiments required resulted in a relatively high variation in reso-
nance positions among the spectra. The resonance assignment was
carried out in the absence of an experimentally determined structural
modelwith the closest homolog having only 38% identity. Accordingly,
the resonance assignment of Cy1 must be considered a significant
achievement.

The absence of an experimentally-determined atomic-resolu-
tion structure of the protein of interest is a common occurrence
and can severely limit the resonance assignment process. However,
powerful structure-prediction algorithms have recently been

Fig. 5 | Comparison of BARASA against other assignment algorithms. Perfor-
mance of BARASA, FLYA, AutoAssign (AA), and I-PINE against reference triple
resonance assignments of six protein systems: a IL-1β; b IL-1Ra; c IGPS; d MBP;
e CY1; f ecTS; g V5dm; h hIDD. Shown are the fractions of residues that are accu-
rately matched to the reference assignments (green), incorrectly matched

(magenta) or missing (i.e., unassigned) (blue). *BARASA and, to a lesser extent,
FLYA extended the reference assignments for hIDD considerably (Supplementary
Table 10). The extended assignments are therefore denoted here as mismatching.
Source data are provided as a Source Data file.
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introduced42 and we sought to learn how the availability of struc-
tures predicted by the AlphaFold2 algorithm influence the perfor-
mance of BARASA. Chemical shifts predicted by SHIFTX+ using the
structure of Cy1 predicted by AlphaFold2 were used for analysis by
BARASA. Using only residue-type information based on the BMRB
resulted in poor performance. However, when utilizing the pre-
dicted chemical shifts from the predicted structure of Cy1, BARASA
recapitulated its performance based on the NMR-derived structure
and a comprehensive set of triple resonance experiments. In addi-
tion, BARASA performed very well using subsets of triple resonance
experiment pairs and significantly outperformed FLYA (Fig. 7). This
level of success of BARASA using SHIFTX+ in concert with struc-
tures predicted by AlphaFold2 was observed across the test data
sets (Supplementary Table 15). Taken together these data suggest
that the lack of an experimental structure is unlikely to hinder the
full capability of the BARASA algorithm.

In summary, we have demonstrated that Bayesian-based
simulated annealing combining sequential relationships derived
from triple resonance spectra and chemical shift information pre-
dicted from a high-resolution structural model can greatly facilitate
the triple-resonance backbone assignment of proteins. The imple-
mentation of this strategy in BARASA is robust to incompleteness of
spin system definition (sparseness) and overall complexity of the
resonance assignment challenge (protein size). Importantly, BAR-
ASA is relatively conservative and makes few errors. An optimized
annealing strategy utilizing a specific heat approach to guide

temperature cooling results in a very rapid analysis. The speed of
analysis combined with its aforementioned robustness clearly
positions BARASA to inform on the real time data acquisition side of
the resonance assignment process. This becomes increasingly fea-
sible with the utilization of automated crosspeak picking. Iterative
examination by BARASA of sequentially acquired triple resonance
spectra could, in principle, allow the user to determine if a satis-
factory level of assignment can be achieved without further data
acquisition and thereby save valuable spectrometer time. In sum-
mary, the BARASA algorithm provides the ability to easily and
robustly assign unusually difficult protein systems and simplify this
otherwise challenging task. The combination of fast and robust
backbone resonance assignments with structure-based methyl
resonance assignments43–48 will reduce the resonance assignment
barrier considerably and allow greater application of the power of
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Fig. 6 | Performance of BARASA and FLYA with depleted crosspeak lists. The
effects of random crosspeak depletion on the analysis of MBP (a) and ecTS (b)
comprehensive triple resonance data sets with partial retention of the indicated
crosspeak types (see text and Fig. 4). Shown are the fractions of residues that are
accurately matched (green), mismatched (magenta) or missing (i.e., unassigned)
(blue) to the reference assignments. Ten independent data sets (n = 10) were ran-
domly generated for each depletion condition. The results of analysis by BARASA
for each data set are shown as solid orange circles and the bar heights correspond
to the mean. Source data are provided as a Source Data file. Fig. 7 | Sensitivity of automated resonance assignment of Cy1 to breadth of

triple resonance experimental foundation and chemical shift prediction pre-
cision. The resonance assignment by BARASA using the indicated cross cross-
peak types from the triple resonance spectra and, residue-type (BMRB)
chemical shift statistics (a) or chemical shifts predicted by SHIFTX + based on a
structural model provided by AlphaFold2 (b). Triple resonance data sets
include the peaks from the following spectra: HNCA/HN(CO)CA (Cα), HN(CA)
CB/HN(COCA)CB (Cβ) and HNCO/HN(CA)CO (CO). Bar heights indicate the
fractions of residues that are accurately matched (green), mismatched
(magenta) or missing (i.e., unassigned) (blue) to the reference assignments.
Equivalent runs with FLYA (c) using the data set of (b) reinforce the conclusion
that BARASA is more robust to non-ideal data. Source data are provided as a
Source Data file.
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NMR spectroscopy to be applied in a facile manner to otherwise
challenging proteins.

Methods
NMR sample production
A vector encoding the gene for Interleukin 1- β (IL-1β) was transformed
into E. coli BL21DE3 cells and expressed in 1 L of 95% D2O M9 media
containing 15NH4Cl and

2H,13C glucose as the sole nitrogen and carbon
sources, respectively. Cells were grown at 37 °C to anOD600 of 0.9 and
induced with 1mM IPTG. Induction continued for 4 hrs at 37 °C until
harvesting via centrifugation at 3500xg and frozen overnight. The cell
pellet was then thawed, resuspended in 10mM potassium phosphate
pH 8.0, 0.2mM EDTA, 5mMDTT and 1mM PMSF. The cells were then
lysed by sonication and centrifuged at 32,000xg for 30min at 4 °C.
Lysate was then brought to 80% saturation with NH4SO4 and allowed
to stir for 1 hr at 4 °C. The suspension was then centrifuged for 30min
at 32,000 x g 4 °C and the pellet was resuspended in 25mM ammo-
nium acetate pH 4.5, 1mMBME and dialyzed overnight (8 kDaMWCO)
in the samebuffer at 4 °C. The dialyzed protein was then loaded onto a
HiTrap Capto S column (Cytiva Life Sciences) equilibrated in 25mM
ammonium acetate pH 4.5, 1mMBME and elutedwith a linear gradient
up to 500mM ammonium acetate pH 4.5, 1mMBME. Protein was then
frozen and lyophilized. The lyophilized protein was dissolved in
20mMTris pH 8.0, 7M urea, 20mMDTT and added drop wise to 20x
volumeof 20mM tris, 100mMNaCl, 5mMDTTpH8.0 under constant
stirring. The refolded proteinwas then dialyzed against 50mMsodium
acetate pH 5.0, 5mM DTT and concentrated to 0.67mM. To this
sample 0.02% NaN3, 100μM DSS and 5% D2O was added. Triple reso-
nance spectra were acquired at 23 °C on an 800MHz (1H) Bruker NEO
spectrometer running TopSpin and equipped with a CryoProbe.

A vector encoding the gene human interleukin-1 receptor
antagonist (IL-1Ra) containing C66A/C122A amino acid substitutions
was expressed using E. coli BL21(DE3) cells in M9 minimal media. The
M9 minimal media contained 15NH4Cl and 13C-glucose as the sole
nitrogen and carbon sources respectively. The culture was centrifuged
at 5000 rpm, and the cell pellet was resuspended in 20mM Tris,
500mMNaCl, 20mM imidazole, pH 7.9 for sonication. Sonicated cells
were centrifuged at 15000 rpm, and supernatant was loaded onto a
His60 column (Takara Bio USA). The column was washed with 20mM
Tris, 500mM NaCl, 40mM imidazole, pH 7.9; and protein was eluted
with 20mM Tris, 500mM NaCl, 500mM imidazole, pH 7.9. The col-
lected protein fraction was buffer exchanged to 12.5mM HEPES,
50mM NaCl, 5mM CaCl2, pH 6.5 for His-tag removal by FXa protease
(New England Biolabs) and further purified both by affinity (His60
resin) and size exclusion chromatography (S-75 Sephadex, Cytiva Life
Sciences). The NMR sample was prepared by buffer exchanging the
protein into 100mM NaCl, 25mM MES, pH 6.0 and concentrated to
1mM, with the addition of 100μM DSS, 5% D2O, and 0.02% NaN3
(Supplementary Table 1). Triple resonance assignment experiments
were acquired at 35 °C on either a 500MHz Bruker Avance spectro-
meter or an 800MHZ (1H) Bruker NEO spectrometer both equipped
with a Cryoprobe.

A R43S variant of the gene for indole-3-glycerol phosphate syn-
thase from S. solfataricus (IGPS) was cloned in a modified pGS-21a
vector downstream of an N-terminal His-tag and TEV protease site.
This expression plasmid was a gift from the lab of Professor Robert
Matthews, University of Massachusetts Medical School, Worcester.
IGPS R43S protein was expressed in BL21(DE3) competent cells with
ampicillin antibiotic selection. Cells were grown at 37 °C until they
reached an OD600nm of 0.6 and 1mM IPTG was added to induce
expression for 16-20h at 25 °C. To isotopically label the protein for
NMR spectroscopy, cells were grown in M9 minimal medium with
15NH4Cl and

13C-glucose as the nitrogen and carbon sources, respec-
tively. Cells were lysed in 100mM potassium phosphate, pH 7.5,
50mMKCl, 5mM imidazole by sonication. The lysate was loaded onto

a Ni2+-NTA column pre-equilibrated with the lysis buffer. Impurities
weakly bound to the column were washed away with 100mM potas-
sium phosphate, pH 7.5, 150mM KCl, 75mM imidazole, followed by
equilibration into the low salt buffer 100mM potassium phosphate,
pH 7.5, 50mMKCl, 75mM imidazole. Protein was eluted with 100mM
potassium phosphate, pH 7.5, 50mM KCl, 500mM imidazole and
dialyzed into lysis buffer. PurifiedHis-taggedproteinwas concentrated
to 5mL, and tag was cleaved with TEV protease added at 1:30 mass
ratio andmixing at RT overnight. Untagged protein was separated TEV
protease and uncleaved protein by Ni2+-affinity chromatography. Pro-
tein aliquots were flash frozen and stored at −80 °C. NMR samples of
15N13C-labeled IGPS were prepared at 250 µM concentration in 60mM
potassium phosphate, pH 7.2, 50mM KCl, 5% D2O, 100μM DSS. All
data were collected on a 750MHz (1H) Bruker AVANCE III NMR spec-
trometer equipped with a CryoProbe at 50 °C.

A vector encoding maltose binding protein (MBP) was trans-
formed into BL21DE3 cells and expressed in 1 L of 95% D2O M9 media
containing 15NH4Cl and

2H,13C glucose as the sole nitrogen and carbon
sources respectively. Cells were grown at 37 °C to an OD600 of 0.9 and
induced with 1mM IPTG. Induction continued for 4 hrs at 37 °C until
harvesting via centrifugation at 3500 × g. The cell pellet was frozen
overnight and resuspended in 20mM Tris-HCl, 20mM NaCl pH 8.0,
1mM DTT. 6mg of Lysozyme was added and was incubated under
stirring for 30min at room temperature. Cells were further lysed by
sonication and centrifuged at 32000× g for 30min at 4 °C. Clarified
lysate was filtered (0.45 um pore size) and loaded onto a 25ml DEAE
column equilibrated in 20mM Tris, 20mM NaCl, pH 8.0, 1mM DTT.
The protein was eluted using a gradient to 20mM Tris, 500mMNaCl.
Protein was concentrated to 1-2ml and run on a 112ml Superdex 75
column equilibrated in 20mM Tris, 20mM NaCl, 2mM DTT pH 8.0.
The protein was pooled and unfolded by dialysis in 4MGuCHl, 20mM
Tris-HCl, 1mM DTT pH 7.5. Protein was refolded by repeated 10x
dilution with 20mM sodium phosphate pH 7.1, 1mM EDTA, 2mM β-
cyclodextrin, 0.02% NaN3, 100μM DSS 5%D2O followed by con-
centration (4 times). From this a 0.5mM sample of MBP was created.
Spectra were acquired at 37 °C on an 800MHz (1H) Bruker NEO NMR
spectrometer. NMR data acquisition and processing parameters
recorded by us for IL-1β, IL-1Ra, IGPS and MBP are summarized in
Supplementary Table 1. Poisson gap NUS spectra were reconstructed
using hmsIST39 and all spectra were processed with NMRpipe49 on
NMRBox50. Spin systems were built by manual peaking picking using
NMRFAM-SPARKY51 and referenced using DSS.

Origin of protein test data sets
Triple resonance data acquired in our laboratorywere processed using
the NMRPipe49 installed on NMRbox50. The crosspeak lists were con-
structed fromdata acquired in our laboratory (seeTable 1) bymanually
crosspeak picking using NMRFAM-SPARKY51 (i.e., not reconstructed
from deposited assignments) (see Table 1). Crosspeak lists for ecTS,
Cy1 and V5dm were provided by Professors Andrew Lee (University of
North Carolina, Chapel Hill), Dominique Frueh (Johns Hopkins Uni-
versity), and Tatyana Igumenova (Texas A&MUniversity), respectively,
and were used without further adjustment. Crosspeaks for hIDD were
generated from spin systems provided by ProfessorMartin Blackledge
(Institut de Biologie Structurale) in the following manner. Each pro-
vided spin system consisted of an amide proton (H) and amide nitro-
gen (N) chemical shift as well as chemical shifts for Cα, Cα(i-1), CO and
CO(i-1) resonances (though a complete set of carbon resonances were
not present for each spin system). HNCA, HN(CO)CA, HNCO, and
HN(CA)CO crosspeak lists were generated from the spin system data
by adding the following crosspeaks to the indicated crosspeak list
from each spin system: H-N-Cα(i-1), H-N-Cα for the HNCA; H-N-CO and
H-N-CO(i-1) for the HN(CA)CO; H-N-CO for the HNCO and H-N-Cα(i-1)
for the HN(CO)CA. The resonance values for the crosspeak positions
were drawn from a normal distribution with a mean given by the value
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of the resonance in the spin system and a standard deviation of 0.003,
0.04, and 0.04 ppm for hydrogen, nitrogen and carbon resonances,
respectively.

BARASA algorithm description
The algorithmbegins by reading in the crosspeak lists to assemble spin
systems. Within the crosspeak lists, the user provides the possible
crosspeak types that are produced by the experiment. For example,
theHNCAwould produce possible crosspeak types ofH-N-CA(i) andH-
N-CA(i-1). The user also specifies cutoff values for each spectral
dimension that dictate the range over which chemical shifts will be
matched during spin system construction. The provided crosspeak
types dictatewhich dimensions have resonances of ambiguous type. In
the exampleof theHNCA, thefirst twodimensions areof unambiguous
type (H and N resonances respectively). However, the third dimension
is ambiguous (CA(i) or CA(i-1)).

BARASA builds crosspeak lists by first arbitrarily choosing a
crosspeak to seed the construction of the spin system. All other
crosspeaks are searched to find those that have at least two resonances
of unambiguous type thatmatch the resonances of the seed crosspeak,
both in terms of their chemical shift (i.e., fall within a tolerance cutoff
specified by the user) and resonance type. After each subsequent
addition, BARASA attempts to resolve ambiguous resonance types
based on known chemical shifts already present in the spin system. For
example, if a spin system has a Cα(i-1) value of 56.0 ppm (with a tol-
erance of 0.3 ppm) and a HNCA crosspeak, which is added (which
could have a resonance type of Cα or Cα(i-1)) with a value of 58.0 ppm,
then the algorithmwill resolve the type of the new crosspeak as the Cα
as it is not within the 0.3 ppm tolerance of the 56.0 ppm Cα(i-1). After
adding the crosspeak and resolving type, the algorithm then iterates
through the entire list of remaining crosspeaks and repeats the above
addition procedure. Once no more peaks can be added to the spin
system, a new crosspeak is arbitrarily chosen from the list of remaining
peaks to seed the construction of additional spin systems. This con-
tinues until all peaks have been added to a spin system.

If BARASA finds a crosspeak that has two unambiguous reso-
nances that match those already present in a spin system, but
contains additional resonances that have shifts which conflict with
those that are already present in the spin system, then an additional
spin system in which to place the incongruent crosspeak is created.
Such as situation arises due to spectral degeneracy (e.g., two spin
systems with the same or similar amide shifts). The algorithm will
then attempt to add the remaining peaks to both spin systems. Any
further clashes are resolved by the generation of a new spin system.
This continues until no more crosspeaks can be added to any spin
system. The crosspeaks within this group of spin systems are then
marked by the algorithm to be allowed to exchange to any other
spin system within the group during the annealing process. In
addition, the user has the option to allow the algorithm to use a
crosspeak cache to which low intensity peaks (lowest 5%) can be
added to over the course of the annealing run to provide a
mechanism to eliminate potential artifactual crosspeaks.

Once all the crosspeaks to a spin system have been added, all
possible resonance type sets are generated for that spin system. A
resonance type set is a complete designation of each atom typeof each
crosspeak in a spin system. If a spin systemonly contains peakswith no
ambiguous resonance types, then the spin system has only one pos-
sible resonance type set. This is the case for themajority of data sets as
experiments with ambiguous resonance types are often paired with
experiments that resolve this ambiguity (e.g., HNCA, HN(CO)CA
experimental pair). However, if ambiguous resonance types are pre-
sent in a spin system, then the spin system will contain all possible
resonance type sets. A distinct set of average resonance values for the
spin system are calculated for each resonance type set; all of whichwill
be considered over the course of the annealing run.

The resonance assignment analysis is then initialized by randomly
assigning the spin systems to the protein sequence. Often there are
more spin systems than are residue positions (e.g., spin systems cor-
related to a side-chain amide group and not the backbone are also
present in the data set). Any spin systems that were not randomly
placed on the sequence, are placed in a spin system cache andmay be
assigned to the sequence over the course of the run. The simulation
temperature is initialized at 1000 arbitrary units and a spin system or
crosspeak is chosen at randomto swap. Theprobability that a swapwill
be a crosspeak swap is set at 0.01 (which was found to be a good
compromise between sampling and algorithm speed) with the
remaining swaps being spin system swaps. A chosen spin system will
have the ability to be added to the spin system cache, swap positions
with another spin system, or move to an empty position in the
sequence, making its former position available. Whenever a spin sys-
tem is moved, a random resonance type set is chosen from among
those possible. In addition, the algorithm may attempt to change the
current resonance type set andkeep the current spin system inplace. If
a crosspeak is chosen to swap, it has the potential to be added to the
crosspeak cache (if it is of low intensity), added to another spin system
within its spin system group, or swap places with any crosspeakwithin
its spin system group. Upon moving/swapping cross peaks, the affec-
ted spin systems are evaluated for clashes. If there are none, the
crosspeak swap is allowed to continue, otherwise the swap is rejected.
In addition, a crosspeak move/swap will trigger the affected spin sys-
tems to generate all new resonance type sets and choose one at ran-
dom from the possibilities. This forces a recalculation of average
chemical shifts for each resonance type set of each spin system reso-
nance, as well as the Bayesian probabilities described below for
sequence position determination.

If the swap is not immediately rejected due to a crosspeak clash,
the change in energy of the system due to the swap is calculated using
the energy function described below. The swap is then accepted or
rejected at a frequency corresponding to a probability generated by
applying the Metropolis criterion (Eq. 1). After each successful swap,
the energy of the state is recorded and stored as a part of a sample of
energy values. Once the sample reaches a particular size, the sample
mean and standard error are calculated and an additional sample is
generated by continued swapping. A Student’s two tailed t-test is
performed to compare the sample means of the two samples. The
system is considered to have equilibrated at the current temperature if
the p-value of the t-test is greater than a user supplied value (default
p >0.5). If equilibration has not been reached, more swaps are per-
formed to generate an additional sample and the t-test is repeatedwith
the two most recent samples. If equilibration has been reached, then
the energy values are used to estimate the specific heat at the current
temperature:

d Eh i=dT = hE2i � Eh i2
� �

=T2 ð2Þ

WhereT is the current temperature in arbitrary units, E is the energy of
the system and the angled brackets indicate the sample mean. Large
drops in average ensemble energy due to oversized temperature steps
can lead to the system becoming trapped in a local minimum. By
deciding on a target energy drop that is unlikely to lead to a frustrated
state, we can utilize the specific heat calculated at each temperature to
estimate the temperature drop needed to achieve the target change in
energy. This is done in the following manner:

Tnext =T +4 Eh itarget=
d Eh i
dT

� �
ð3Þ

Where 4 Eh itarget is a user-controlled parameter and is kept at −2000
for this study. Decreasing the magnitude of the target energy drop,
in situations where the system is becoming trapped in a frustrated
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state can lead to better results at the expense of longer simulation
time. If T � Tnext is greater than 10, then the temperature decrease is
limited to 10 units to prevent overcooling the system. The use of the
specific heat in this manner results in smaller temperature steps at
temperatures where the system is rapidly decreasing in energy, while
allowing for larger steps when drops in temperature have a modest
effect on the ensemble. The resulting schedule avoids system
quenching while simultaneously minimizing unproductive swaps at
temperatures that are either too high or too low for effective
annealing. After decreasing the temperature, the annealing run will
terminate if any of the following criteria are met: the temperature is
less than 1, the product of the temperature and the last specific heat
calculated is less than 200, or the ratio of unsuccessful swaps to
successful swaps while collecting the last sample is greater than
10,000. The rational for the criteria are as follows: Given the standard
energyparameterization, productive annealing is unlikely to happen at
temperatures below 1; the product of specific heat and current
temperature (at low temperatures) provides a crude estimate as to the
amount of energy between the current ensemble and globalminimum
(i.e. the thermodynamic ensemble at T = 0, which should correspond
to a single state) and approximately 200 energy units is negligible; and
at this ratio of unsuccessful to successful swaps, the system is near a
minimum and further sampling is inefficient. If termination is not
achieved, a new sample size is defined using the following equation:

S= min max N
d Eh i=dT� �1:5

300
, 10000

 !
, 100000

 !
ð4Þ

WhereN is the number of residues in the sequence. This equation
permits increases in sample size when sampling at temperatures with
high specific heats, which is where the most productive swaps occur.
This approach also permits scaling of sampling for larger proteins. The
parameters of this equation were found empirically to be a good
compromise between sufficient sampling and speed. Samples are then
drawnat the new temperature todetermine equilibration and the cycle
is continued. Upon termination of the annealing protocol, a steepest-
descent type search is performed to locally minimize the system
energy and refine the assignments, discarding potentially bad assign-
ments that were left over from the run. This is done by attempting to
place (or swap) every spin system/peak at every possible location in
the sequence/spin systemgroup (including the cache, if allowed).Only
spin system/peak swaps/placements that decrease the system energy
are accepted. This is repeated 100 times.

This entire process of simulated annealing is independently
repeated with a number of different random starting conditions. Here
we have used 20. A consensus set of assignments is generated by
calculating the frequencywithwhicheach spin system is placed at each
amino acid location. The spin system assigned to each residue location
in amajority of the runs (if any) is kept as the consensus spin system. A
curated set of assignments is generated from this consensus analysis.
The curation procedure is as follows: the consensus spin system at
each residuewas chosen as the tentative assignment for that particular
residue. Residues without a consensus spin system (i.e. did not have
the same spin system assigned to it greater than 50% of the time) were
marked as unassigned. Tentatively assigned spin systems are then
evaluated by the posterior probabilities as well as the number of
connectivities defined as amatching resonance between adjacent spin
systems. Assignments were accepted if they met any of the following
criteria: 1) the assigned spin system has at least two connectivities with
adjacent spin systems, 2) the assigned spin system has at least 1 con-
nectivity with adjacent spin systems and a posterior probability at least
three times higher than the quantity 1/N, or 3) the assigned spin system
has a posterior probability > 50%. Residues with tentative assignments
that did not satisfy any of these criteria were then marked as
unassigned.

The energy function used in the annealing routine is calculated as
the sumof all the energies of the constituent spin systems (Etot) (Eq. 5).
At any given step during the annealing protocol, spin systems are
either tentatively assigned to a position in the sequence or placed in
the cache. Cached spin systems are defined as having zero energy (i.e.,
Em =0).

Etot =
XM
m=0

Em ð5Þ

The energy of each spin system tentatively assigned to a specific
place in the amino acid sequence is comprised of the adjacency energy
(Eadj

m ) and the chemical shift energy (Ecs
m):

Em = Eadj
m + Ecs

m ð6Þ

The adjacency energy is related to the degree of correspondence
between the averages of the Cα, Cβ and CO resonances of the current
spin system and the averages of the Cα (i-1), Cβ (i-1) and CO (i-1)
resonances of the spin system tentatively assigned to the subsequent
position in the sequence. Each average resonance value in a spin sys-
tem is calculated as the arithmetic mean of all resonance chemical
shifts of the indicated type from all of the crosspeaks that contain that
resonance currently in the spin system. Eadj

m therefore, captures the
process of evaluating spin system adjacency and is based on the
number of potential connectivities between adjacent spin systems
tentatively assigned to the sequence. For example, if spin system m is
assigned to a residue position immediately prior to that of spin system
l, then the adjacency energy is given by:

Eadj =
X

k
c0 exp

1
2

δm
kðiÞ � δl

kði�1Þ
σk

" #20
@

1
A+ c1

2
4

3
5 ð7Þ

Where δm
k ið Þ is the chemical shift of resonance k(i) (either Cα(i), Cβ(i) or

CO(i)) of spin systemm and δl
k i�1ð Þ is the chemical shift of resonance k(i

−1) (either Cα (i −1), Cβ (i −1) or CO(i −1)) of spin system l). σk is related
to the estimated precision of the measured chemical shifts. The Eadj is
the sum of inverted Gaussians when c0 < 0. Previous assignment
algorithms have used functions of this form to good effect for esti-
mating adjacency26. In the limit of well-matched connectivities, the
sum of inverted Gaussian functions will have a minimum value of
K(c0 + c1) where K is the number of connectivities whereas, for poorly
matched putative connectivities, the adjacent energy will tend to a
limit of Kc1. Importantly, when an expected element of spin system m
or l is missing, that contribution to the adjacency energy is set to zero.
Similarly, if the subsequent position in the sequence is not currently
assigned a spin system, then Eadj =0. Here, c0 and c1 were set to −100
and +50, respectively. This results in an energy of −50 if the difference
in chemical shifts is 0 and approaches +50 as the magnitude of the
difference in chemical shifts approaches infinity. The value σk is
influenced by the properties of the NMR spectra from which the spin
systems are built. For all runs described, σk was chosen so that the
function has an abscissa-intercept at a chemical shift difference of 0.2
ppm for all nuclei k.

The second term of the spin system energy, Ecs
m , evaluates the

degree of correspondence of the observed chemical shifts to those
predicted. It is this term that makes use of the ability of Bayesian
statistics to incorporate diverse degrees of knowledge of the local
structure of the protein. These include relatively structureless infor-
mation encoded in the simple empirical distributions of chemical
shifts of the amino acids observed inproteins or specific chemical shift
predictions basedon thehigh-resolution structure of theprotein being
examined. For the former, we utilize the BMRB52 database. For the
latter, we use SHIFTX + predictions derived from either

Article https://doi.org/10.1038/s41467-023-37219-z

Nature Communications |         (2023) 14:1556 11



crystallographic structures available in the PDB53 or structures pre-
dicted by AlphaFold242. Or in the case of the IDPs V5dm and hIDD, we
use calculated, sequence-specific random coil chemical shifts36,37 as
prediction. Ecs

m is ultimately calculated from the Bayesian posterior
probability of a proposed assignment given the observed chemical
shifts:

P An,m \ Qmi
∣Bm

� �
=
P Bm∣An,m \ Qmi

� �
P An,m \ Qmi

� �
P Bm

� � ð8Þ

The subscripts n and m index over all residue positions and the
provided spin systems, respectively. The condition An,m refers to
where spin systemm is correctly assigned to sequence position n. The
condition Bm refers to the observed chemical shifts of spin system m.
ConditionQmi

refers to where resonance type set i of spin systemm is
the correct resonance type set. Because it is possible for the spin
system to have ambiguous resonance crosspeak types, the probability
calculation explicitly considers each resonance type set of a spin sys-
tem within the context of each residue location. Thus, an assignment
entails both the placement of a spin system at a residue location and
choice of resonance type set.

The prior probability P An,m \ Qmi

� �
refers to the initial prob-

ability of the assignment of spin system m to residue n being correct
and that the resonance type set i is correct for spin system m. If Im

represents the number of possible resonance type sets of spin system
m then the total number of combinations of residue type sets and
residue locations for spin systemm is the product ImN. However, given
the constraints provided by the amino acid sequence of the protein,
not all combinations of sequence location and residue type sets are
possible. For example, a resonance type set with a defined amide
proton would be impossible to place at a proline. To encode the
impossibility of certain resonance type set/residue location combina-
tions, these assignments are assigned a prior probability of 0. The
remaining prior probability is then evenly distributed among the
remaining locations:

PðAn,m \Qmi
Þ=
�
0; at all valuesn,mi that are impossible
1
C ; at all possible combinations of n,mi

ð9Þ

Where C is the number of possible combinations of n and mi in the
sequence.

The likelihood of assignment P Bm∣An,m \ Qmi

� �
(i.e., the prob-

ability of observing the chemical shifts of spin system m given the
assignment An,m \Qmi

) is given by Eq. 10 & 11:

P Bm∣An,m \ Qmi

� �
=CCDF X2

n,m,i

� �
ð10Þ

X2
n,mi

=
XR
r = 1

δmi
obs,r � δn

pred,r

σn
r

 !2

ð11Þ

Where δn
pred,r is the predicted chemical shift of spin r at sequence

position n; δmi
obs,r is the observed chemical shift of resonance r of

resonance type set i of spin system m and σn
r is the standard error for

the chemical shift prediction of resonance r at sequence position n.
The resonances, represented by variable r, are the following: H, N, Cα,
Cβ, CO, C(i-1), Cβ(i-1), CO(i-1). In Eqs. 10 and 11 it is assumed that the
random variable δn

pred,r is normally distributed about δm
obs,r with a

standard deviation σn
r and that the error in the chemical shift mea-

surement is much less than the error in the prediction. With these
assumptions, the randomvariableX2

n,m is a chi-square distributionwith
R degrees of freedom, where R is equal to the number of spins for
which data are provided. The likelihood is then calculated as the value

of the complementary cumulative distribution function (CCDF) of a chi
square variable of R degrees of freedom at X2

n,mi
.

The likelihoods of all other residue position/resonance type sets
being a valid assignment of spin system m are considered via the cal-
culation of the marginalization, P Bm

� �
:

P Bm

� �
=
XIm

i = 1

XN
n= 1

P Bm∣An,m \ Qmi

� �
PðAn,m \ Qmi

Þ
h i

ð12Þ

Where the summation terms are over all possible i and n combinations.
Using Bayes’ theorem as expressed above, the posterior probability
(i.e., the probability of a particular assignment being correct given the
observed data) can be calculated and then Ecs

m determined via:

Ecs
m =

Ecs
min

logðImNÞ logðPðAn,m \ Qmi
∣BmÞImNÞ ð13Þ

To avoid numerical instability in the evaluation of logarithms of
numbers near zero and to prevent a dominating influence of inaccu-
rate chemical shift predictions on the energy function, instanceswhere
Ecs
m > Ecs

max are fixed at Ecs
max. E

cs
max and Ecs

min are set to 100 and −50
respectively, for this study.

The values of the parameters for the energy functionwere chosen
to safeguard against inaccurate chemical shift predictions based on
the following reasoning: a perfectly matching connectivity between
two resonances will contribute −50 to the final energy function. Given
that a spin system with a posterior probability of 0 will contribute 100
to thefinal energy function, it would require two perfect connectivities
or three or more reasonable connectivities for that spin system to be
favorably assigned to that position vs being left in the cache. This was
done to permit the algorithm to assign a spin system to a particular
location in the event of highly inaccurate chemical shift prediction of
its resonances so long as there are sufficient resonance connectivities
to justify the assignment. Likewise, the Ecs

min parameter was chosen
such that a posterior probability of 1.0 would result in an energy
contribution of −50 and would be equal to the contribution of a single
perfect connectivity. This would require two bad connectivities to
overrule a high posterior probability and disfavor its assignment. The
user has control over these Ecs

max and Ecs
min to adjust the relative influ-

ence of chemical shift energy on the course of the annealing run.
The sourceof predicted shifts for each resonance canbe fromany

source, so long as the precision of the prediction algorithm is accu-
rately estimated. For IDPs, sequence-specific random coil chemical
shifts can be substituted (see below). In the absence of an acceptable
structural model, the average and standard deviation of the BMRB
distribution of chemical shifts for a given atom of a given residue type
areused as the predicted shift andprediction error respectively. This is
also used in regions where the sequence of interest contains a tag that
is absent in the structuralmodel used to predict chemical shifts as well
as regions that are not resolved.

Generation of predicted chemical shifts
Predicted H, N, Cα, Cβ, and CO chemical shifts were generated via
SHIFTX + using PDB entries and/or AlphaFold2 predicted structures
(Table 1). Chemical shift prediction errors for H, N, Cα, Cβ, and CO
were taken fromthe reported rootmean squareddeviations (RMSD)of
SHIFTX +predictions: 0.45, 2.4, 0.8, 0.95, and 0.9 ppm, respectively.
Sequence regions present in the NMR sample but not resolved or
present in the provided structure (e.g., loops or expression tags) were
given predicted values from their corresponding average values in the
BMRB. For the runs that were performed with SPARTA+38 predicted
shifts, the reported errors for each individual predictionwereused. For
the IDPs V5dm and hIDD, predicted shifts were provided using pre-
dicted sequence-specific random coil chemical shifts according to the
method in36,37 Prediction errorswere taken from the reported RMSDof
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the predictionmethod andwere 0.16, 1.0, 0.42, 0.37, and 0.43 ppm for
H, N, Cα, Cβ, and CO resonances, respectively. Prediction errors
associated with BMRB-derived values were taken as the standard
deviation of the corresponding resonance distribution for the parti-
cular amino acid type in the BMRB.

Comparison of resonance assignment algorithms
BARASA was compared to three triple resonance assignment algo-
rithms that are highly utilized by the NMR community. All algorithms
were provided the same crosspeak lists as BARASA, albeit in different
file formats. As FLYA can utilize predicted chemical shift data, the
algorithm was provided with the same predicted shifts and associated
errors as BARASA. Assignment results were taken from the strong
assignments generated from 20 runs. The assignment algorithm I-PINE
was run using the I-PINE server. AutoAssign was run on NMRbox using
the default parameters. For each algorithm, proposed assignments
were compared to referenceassignments. At each residueposition, the
proposed assignment was determined to have either matched, mis-
matched, or been missing when compared to the reference assign-
ments (see Results and Discussion). The same reference assignments
were used for the evaluation of all algorithms.

Generation of simulated data sets
To assess the performance of BARASA on datasets of lower quality, the
MBP crosspeak lists were processed to randomly retain spin systems
and/or individual crosspeaks at specific probabilities depending on
cross peak type. For each data quality condition 10 different inde-
pendent data sets were randomly generated and BARASA was run on
each of them. The results from each of these executions of BARASA
were generated from the curation of 20 independent annealing runs.
The performance of BARASA on data with artifactual peaks was eval-
uated using a depleted data set and adding randomly generated cross
peaks such that 20% of all Cα, Cβ, and CO cross-peaks were artifacts.
Each artifact peak was generated in the following manner. A random
residue from the protein sequence, containing an amide group and
desired peak type (Cα, Cβ, CO, C(i-1), Cβ(i-1), or CO(i-1)) was chosen.
Chemical shifts for each dimension of the cross peak were randomly
generated from a Gaussian distribution with a mean and standard
deviation equal to themean and standard deviation value of that atom
of that residue type in the BMRB. All artifact peaks were given the
maximumpeak intensity of their peak lists to ensure theywouldnot be
cached during the run.

BARASA was implemented in C++ and can be built on all major
computing platforms (MacOS, Linux, and Windows). BARASA pos-
sesses a command line interface, as well as a GUI implemented using
the wxWidgets library and utilizes the Boost libraries. For this study,
the simulations were run on 2019 6-core MacBook Pro (Intel pro-
cessor) with up to 12 annealing runs running in parallel.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Resonance assignments for IGPS and IL-1Ra have beendeposited to the
BMRB under accession numbers 51347, and 51352, respectively. Cross
peak lists and protein sequences for IL-1β, IL-1Ra, IGPS,MBP, Cy1, ecTS,
v5domain, and huIDR, which form the foundation of the analysis here,
are included in the Source Data file. BMRB statistics used to test
BARASA are also included in the Source Data file. Assignments refer-
enced in this study from the BMRB can be accessed via the following
accession codes: 434, 4354, 19082, 18927, and 28135. The experimental
structures referenced in this study from the PDB can be accessed via
the following accession codes: 9ILB, 2IRT, 1IGS, 1DMB, 7RY6, and 1AOB.
Supplementary Information is available and consists of fifteen tables

and one figure listing resonance assignments made by BARASA, sum-
mary statistics of BARASA’s performance using SPARTA+ predicated
chemical shifts, AlphaFold2 structural models or in the presence of
artifact peaks. Source data are provided with this paper.

Code availability
BARASA will be made generally available for non-commercial use
through, preferably, NMRbox50 [https://nmrbox.nmrhub.org/] or, less
preferred, by contacting barasa@wandlab.org for Linux or OSX com-
patible executables.
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