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Epigenetic and transcriptomic characteriza-
tion reveals progression markers and
essential pathways in clear cell renal
cell carcinoma

A list of authors and their affiliations appears at the end of the paper

Identifying tumor-cell-specific markers and elucidating their epigenetic reg-
ulation and spatial heterogeneity provides mechanistic insights into cancer
etiology. Here, we perform snRNA-seq and snATAC-seq in 34 and 28 human
clear cell renal cell carcinoma (ccRCC) specimens, respectively, with matched
bulk proteogenomics data. By identifying 20 tumor-specificmarkers through a
multi-omics tiered approach, we reveal an association between higher cer-
uloplasmin (CP) expression and reduced survival. CP knockdown, combined
with spatial transcriptomics, suggests a role for CP in regulating hyalinized
stroma and tumor-stroma interactions in ccRCC. Intratumoral heterogeneity
analysis portrays tumor cell-intrinsic inflammation and epithelial-
mesenchymal transition (EMT) as two distinguishing features of tumor sub-
populations. Finally,BAP1mutations are associatedwithwidespread reduction
of chromatin accessibility, while PBRM1 mutations generally increase accessi-
bility, with the former affecting five times more accessible peaks than the
latter. These integrated analyses reveal the cellular architecture of ccRCC,
providing insights into key markers and pathways in ccRCC tumorigenesis.

Renal cell carcinoma encompasses a variety of subtypes, among
which clear cell renal cell carcinoma (ccRCC) is the most common
form, comprising roughly 70% of cases1. Reliable tumor-cell markers
are required for diagnosis and prognosis. Only a few immunohisto-
chemical markers, such as carbonic anhydrase IX (CA9), vimentin
(VIM), and CD10 have been used for the diagnosis of ccRCC2,3.
So far, bulk gene expression profiling has helped discover bio-
markers for renal tumor diagnosis3. As CAR T-cell therapy for ccRCC
is emerging4,5 (NCT04696731, NCT04969354), there is a need for
markers with specific expression in tumor cells6. Single-cell (sc)
or single-nucleus (sn) RNA-seq helps overcome the issue of the
averaged signal by bulk profiling methods, allowing for systematic
evaluation of tumor markers within and across samples. Further-
more, spatial transcriptomics enables the characterization of the
spatial heterogeneity of the transcriptome in conjunction with

histopathological features, which was inaccessible by the bulk pro-
filing methods.

ccRCC is considered a metabolic disease, accompanied by repro-
gramming of glucose and fatty acid metabolism7–11. Studies using
genomic12, proteomic7,8,13, and metabolomic14,15 profiling have uncov-
eredmetabolic shifts in aggressive ccRCCs that involve the tricarboxylic
acid cycle (TCA), pentose phosphate, and phosphoinositide 3-kinase
pathways. However, our understanding of how some of the critical
metabolic enzymes are up/down-regulated, specifically through tran-
scriptional regulation in ccRCC, remains incomplete. Moreover, it is
unclearwhether tumor subpopulations aremetabolically distinct and in
which pathways.

VHL loss, the most frequent molecular alteration of ccRCC12,
has been implicated to cause pervasive enhancer malfunction16.
In addition, 80% of ccRCC tumors also carry non-synonymous
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mutations in epigenetic regulators and chromatin remodeling genes17.
BAP1 (BRCA1-associatedprotein 1) and PBRM1 (Polybromo1) are twoof
the most recurrently mutated genes in ccRCC after VHL. Mutations
in them tend to be mutually exclusive18–21, although double mutants
have been observed12. BAP1 is a deubiquitinase enzyme and a tumor
suppressor protein. It removes Polycomb-mediated H2AK119ub1, an
epigenetic mark essential for maintaining transcriptional repression22.
BAP1 loss is associated with the accumulation of H2AK119ub1 and
global chromatin condensation23,24. On the other hand, PBRM1 encodes
the tumor suppressor BAF180, which is a subunit of the nucleosome
remodeling complex PBAF. Work by Kakarougkas et al. showed that
the BAF180 is essential for the repair of DNA double-strand breaks by
inhibiting transcription globally25. Previous studies have suggested
that BAP1 and PBRM1 mutations are associated with non-overlapping
gene expression signatures, differential mTORC1 activation, and dif-
ferent patient outcomes18,19, the former associated with worse survival
than the latter. However, the consequences of BAP1 and PBRM1
mutations on overall tumor cell chromatin accessibility and associated
transcriptome changes in ccRCC are largely unknown.

Aside from these regulation and remodeling dynamics, ccRCC is
known for its substantial genetic heterogeneity, parallel evolution of
subclones26, and abundant genetic alterations, as revealed by bulk
sequencing-based studies27,28. However, whether there are corre-
spondingly high levels of heterogeneity in the transcriptome and
chromatin accessibilities in ccRCC cells remains largely unknown, as do
themost distinguishing features of intrapatient tumor subpopulations.
So far, scRNA-seq studies of relatively small numbers of ccRCC samples
have been reported, shedding light on the molecular attributes of
tumor cells of origin29,30, tumormicroenvironments, tumormarkers29,31,
and therapeutic targets32. However, scRNA-seq has been limited by the
availability of fresh tissue, especially since clinical samples are normally
cryo-preserved33. Single nucleus RNA-seq (snRNA-seq) can analyze
frozen specimens and avoids the cell dissociation process that pro-
motes stress-related alterations34.

In this work, we integrate snRNA-seq, snATAC-seq, bulk omics
(including proteomics), and spatial transcriptomics (ST) to investigate
the epigenetic and transcriptomic landscape of ccRCC.We identify key
markers specifically altered both epigenetically and transcriptionally in
tumor cells, particularly CP. Using spatial transcriptomics and CP-
knockdown cell lines, we find that spatial distribution of CP gene
expression is associated with COL4A1 expression and hyalinized
stroma. We discover transcription factors regulating CP and glycolytic
genes,which aredifferentially accessible andexpressedbetween tumor
cells and normal proximal tubule cells. We also map tumor sub-
populations and demonstrate the differential activity and epigenetic
regulation of a few key pathways. Finally, we dissect chromatin acces-
sibility changes associated with BAP1 and PBRM1 mutations, further
illustrating the multi-level interplay between mutational, global, and
specific epigenetic alterations, and transcriptomic changes in ccRCC.

Results
Overview of clinical features and datasets
We performed snRNA-seq on 34 samples (25 patients) and matched
snATAC-seq on 28 of these samples (24 patients) from the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) ccRCC collection13

(Supplementary Data 1). Source materials were procured from the
same pools of pulverized powder that previously produced WES, bulk
RNA-seq, and proteomics data for these samples (Fig. 1a, Supplemen-
tary Fig. 1a). Common sourcing ensures the highest level of compar-
ability among datasets from different platforms and enables tight
integration of diverse omics datasets. We also performed spatial
transcriptomics (ST) on 2 patient tumor samples collected in-house
using the FFPE Visium ST platform (10x Genomics).

Regarding snRNA-seq data, we obtained 141,950 nuclei from
34 samples, comprising 30 primary tumor samples and 4 normal

adjacent tissue (NAT) samples (Fig. 1b). These samples displayed dis-
tinct tumor, immune, and stromal populations based on canonical
markers curated from the literature (Supplementary Data 2). Con-
firmation of known mutational and transcriptional alterations in
ccRCC cells (Supplementary Fig. 1b–d) validates these single-nuclei
methods as powerful tools to study cancer cell behavior at high
resolution. The snRNA-seq data indicated tumor cell content averaged
71% per sample, which correlated strongly with the bulk mRNA data
estimate (Pearson’s R =0.58,P <0.001, SupplementaryFig. 1e).We also
generated snATAC-seq data for 211,497 nuclei from 24 of these same
tumors and 4 NATs (Fig. 1b). We detected peaks of accessible chro-
matin in snATAC-seq data across all samples, ranging from 86K to
220K instances per sample. As expected35, the majority of peaks
appeared in intronic and intergenic regions, while an average of 24 K
peaks were located in gene promoter regions (Supplementary Fig. 1f).
snRNA and snATAC paired samples yielded comparable cell type
content estimates (Pearson’s R = 0.77, P < 0.0001, Supplemen-
tary Fig. 1e).

Single-cell-based ccRCC tumormarker discovery and epigenetic
regulation of tumor markers
Although bulk sequencing studies have reported markers altered
between ccRCC and adjacent normal tissue that presumably reflect
changes in tumor cells12, those studies were limited by confounding
effects from non-tumor cells or had limited discovery power for sub-
populations of tumor cells expressing unique markers. We sought to
discover tumor-cell markers that are specific to ccRCC tumor cells and
may have prognostic/diagnostic values or potential therapeutic tar-
gets. Here, we performed a 4-stage process to identify bona fide
markers for ccRCC by leveraging snRNA-seq, snATAC-seq, bulk RNA-
seq, and proteomics data (Supplementary Fig. 2a). We identified 324
ccRCC tumor-cell-specific markers from the snRNA-seq analysis (Sup-
plementary Data 3), among which we prioritized 20 markers (Fig. 1c)
that are significantly higher in tumor cells than proximal tubule cells
(considered the ccRCC cell of origin; “Methods”). 19 of these showed
higher chromatin accessibility (gene activity, fold change (FC) > 1) in
tumor cells using snATAC-seq data, suggesting higher chromatin
accessibility may contribute to their higher expression in tumor cells.
Of these, 17 were further supported by the bulk RNA-seq and pro-
teomics data (n = 103), as evidenced by comparing the tumors to the
normal adjacent tissues of a larger cohort (Fig. 1c).

Two interesting examples are ceruloplasmin (CP) and Proprotein
Convertase Subtilisin/Kexin Type 6 (PCSK6). CP is a reported tumor
marker for ccRCC36–38 but PCSK6 is not. Their tumor cell-specific
expressions using snRNA-seq (tumor cells vs. non-tumor cells fold
change = 3.6 and 3.7, respectively) are illustrated in Fig. 1d. Co-
localization of CP and CA9 proteins using IF staining validated tumor
cell-specific CP expression (Fig. 1e, f). We also validated the tumor cell
expression of PCSK6 (Fig. 1f). High tumor-cell expression levels of CP
and PCSK6 (from snRNA-seq) are associated with higher tumor grades
(FDR < 1e−10; G3 and G4 vs. G1 and G2). A significant difference in CP
level was also observed between high-grade and low-grade tumors
using bulk RNA-seq data (FDR <0.01), but not for PCSK6 (Supple-
mentary Fig. 2b–d). High CP expression is also associated with shorter
overall survival in this study cohort and the larger ccRCC CPTAC
cohort with bulk RNA-seq data (Supplementary Fig. 2e). However,
PCSK6 expression is not significantly associated with patient survival
using snRNA-seq data (Supplementary Fig. 2f). These results suggest
that PCSK6 and CP are promising tumor cell markers and CP, in parti-
cular, could be of potential diagnostic and prognostic values in ccRCC.

CP in mediating tumor extracellular matrix and tumor-stroma
interaction in ccRCC
Tounderstand the spatial distribution of tumormarkers,we generated
spatial transcriptomics (ST) data to validate selected tumormarkers in
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two ccRCC tumor tissue samples. CP expression exhibited a spatially-
dependent enrichment pattern in both samples (Fig. 2a). Tumor 293
displayed enriched CP expression in an area showing a relative sparsity
of tumor cells embedded in an abundant background of hyalinized
stroma (location A) compared to the rest of the tumor (location B).
Tumor 282 also showed higher CP expression in an area showing a
higher hyalinization-to-cell ratio (location C) than in the rest of the
cancer (location D), indicating partial regressive changes. These

observations suggest CP may have a role in the hyalinization of the
tumor microenvironment and possibly mediating tumor-stroma
interactions.

Despite being a ccRCC tumor marker, we know little about the
molecular pathways and genes regulated by CP in ccRCC. Therefore,
we generated two derivatives of Caki-1 cell lines with reduced CP
expression using shRNA-mediated gene suppression. Caki-1 cells
expressing CP shRNA constructs (sh-CP-C1 and sh-CP-C2) had reduced
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CP transcripts (Fig. 2b bottom panel) and protein abundance (Fig. 2b
top panel) compared to the non-transduced control (sh-NT1). We
identified 4400 differentially expressed genes (DEGs; FDR <0.05, |
log2FC| > 1) between Caki-1 cells with or without CP knockdown
(Fig. 2c, Supplementary Data 3) using bulk RNA-seq. Gene sets most
enriched in downregulated genes include matrisome-associated,
epithelial–mesenchymal transition, TNF-α signaling via NF-κB,
interferon-gamma response, and inflammatory response (Fig. 2d).

Down-regulation of matrisome-associated and inflammatory
response genes associated with CP knockdown supported our
hypothesis that CP may have a role in mediating tumor-stroma inter-
actions. Here, collagen type IV alpha1 chain (COL4A1) showed
decreased expression in CP-knockdown lines (Fig. 2e), which also
showed enrichment inCP-high regions in the ST data (Fig. 2f). Collagen
IV is the primary extracellular matrix material contributing to hyali-
nized stroma39. These observations suggest that high CP expression in
ccRCC tumor cells mediates the secretion of collagen IV, contributing
to a more hyalinized stroma. In addition, the oncostatin M receptor
(OSMR) is downregulated with CP knockdown (Fig. 2e). OSMR showed
relatively high expression in tumor cells compared to other cell types
(Fig. 2g). Our snRNA-seq data also showed that macrophages express
OSMR’s major ligand oncostatin M (OSM) (Fig. 2g), suggesting that
ccRCC tumor cells may interact with macrophages through OSM sig-
naling transduction.OSMR is highly expressed inCP-high regions in the
ST data (Fig. 2f), while OSM expression is less spatially enriched
(Supplementary Fig. 2g). These results suggest that tumor marker CP
may regulate OSM-OSMR signaling between tumor cells and macro-
phages. Similarly, we also observed an association between CP and
TGM2-FN1 signaling between tumor cells and myofibroblasts
(Fig. 2e–g). TGM2 is downstream of OSMR signaling40. As TGM2-FN1
signaling and COL4A1 are also associated with cell migration and
invasion in cancer40,41, CP may also have a role in influencing the
migration of ccRCC cells. Our results extend beyond the current
knowledge about CP being a ccRCC tumor marker and shed light on
the molecular functions of CP in promoting ccRCC pathogenesis.

Previous studies have demonstrated that HIF1A and PAX8 acti-
vate the transcription of the CP gene42,43. Here, our data suggested
KLF9 may also be a transcription factor (TF) regulating CP tran-
scription: we found a KLF9 binding motif in a CP open promoter
region (Fig. 2h), which is more accessible in ccRCC cells compared to
their normal counterparts (proximal tubule cells). KLF9 motif bind-
ing accessibility is significantly enriched in ccRCC cells based on
snATAC-seq data (Fig. 2h), suggesting that KLF9 is an active tran-
scription factor in ccRCC cells.Wegenerated a derivativeof theRCC4
cell line with shRNA-mediated knockdown of KLF9 expression (sh-
KLF9; Fig. 2i–k), reducing the KLF9 protein by 70% of that in RCC4
cells expressing a control scrambled shRNA (sh-NC; P = 0.0025). We
observed a concomitant decrease in CP transcript and protein in the
KLF9-knockdown line compared to the scrambled control, although
the p-value is not significant (P = 0.11). These data nominate KLF9 as a
transcription regulator of CP and warrant its further experimental
validation.

Transcription factors mediating glycolytic genes in ccRCC cells
To ascertain the closest normal epithelial counterparts for ccRCCcells,
we examined transcription factor (TF) motif enrichment in different
epithelial cell types based on TF motif binding accessibility (“Meth-
ods”). This differs from previous strategies that use gene expression
and mutational analyses to identify the cell of origin for ccRCC cells.
We found that ccRCC tumor cells had the strongest correlations with
proximal tubule cells in TF binding accessibility (Supplementary
Fig. 3a, left panel). This was supported by correlation analysis using
snRNA-seq data (Supplementary Fig. 3a, right panel). Our data thus
support the hypothesis that ccRCC derives from PT cells29,44 by using
similarity in epigenetic regulation between tumor cells and PT cells,
which adds to other approaches using gene expression andmutational
analyses.

We further identified 16 TF motifs that are most consistently
enriched in tumor cells, including HIF1A/ARNT, NF-κB TFs (NFKB1,
NFKB2, REL, RELA), RBPJ, MXI1, KLF9, ZNF75D, HSF2, NEUROD1,
SREBF2, NEUROG2, RREB1, and TBXT (Fig. 3a). High HIF1A motif
accessibility is consistent with the activation of HIF1A downstream
transcriptional programs associated with VHL loss45. 14 of the 16
tumor-cell-specific TF motifs (except for SREBF2 and TBXT) were
ccRCC-specific using the TCGA pan-cancer bulk ATAC-seq data46

(Supplementary Fig. 3b). We found that the expressions of MXI1 and
RBPJ were significantly upregulated in ccRCC cells using snRNA-seq
data (Fig. 3b) and that the upregulation of RBPJ was further supported
by bulk protein data (Supplementary Data 3). It appears that the
activity of these TFs in ccRCC is not only enhanced by increased
binding accessibility but also by increased TF abundance. Finally, HNF
andRXR family TFs,whichweremore enriched inPT cells compared to
ccRCC cells (Fig. 3a), were previously associated with ccRCC by bulk
ATAC analysis46 (Supplementary Fig. 3c). These results highlight the
utility of snATAC-seq in discerning motifs specific to tumor cells, as
bulk ATAC analysis may confuse TFs specific to the normal PT cells
with TFs specific to tumor cells.

To further investigate genes regulated by ccRCC-specific TFs, we
identified 1161 overexpressed and 171 downregulated genes in ccRCC
tumor cells in comparison to PT cells (Fig. 3b; Supplementary Data 3).
The tumor-cell-overexpressing genes were enriched in glycolysis,
hypoxia, solute carrier (SLC) transporter disorder, RNA degradation,
and glucocorticoid receptor pathways (Fig. 3c). Because ccRCC is
characteristic of theWarburgeffect and is known tohave glycogen and
lipid accumulation47, we further investigated the transcriptional reg-
ulations for genes in glycolysis, TCA cycle, and glycogen and fatty acid
synthesis pathways. A majority of the glycolysis enzymes were over-
expressed in ccRCC cells, aswas PDK1, which inhibits the conversion of
pyruvate to acetyl-CoA in the mitochondria. It is worth noting that
several gluconeogenesis enzymes, including fructose-1,6-bispho-
sphatase (FBP1) and pyruvate carboxylase (PC), were downregulated in
ccRCC cells (Supplementary Data 3). These results support the view
that glycolysis is activated in ccRCC cells48,49.

Previous studies have demonstrated that transcription factors,
such as HIF-1, c-MYC, p5350, and SIX151 play direct roles in regulating

Fig. 1 | snRNA-seq analysis identifies tumor-cell-specific markers. a Schematic
for integrating snRNA-seq, snATAC-seq, bulk omics, and spatial transcriptomics
data, and validating the omics findings with immunofluorescence staining and
shRNA-mediated knockdown experiments (image is created with BioRender.com.
b UMAP visualization of 141,950 nuclei and 211,497 nuclei profiled by snRNA-seq
and snATAC-seq, respectively, colored bymajor cell groups. The cell group named
“immune others” includes basophils, mast cells, lymphoid lineage immune cells
with proliferating signature, and immune cells with ambiguous myeloid/lymphoid
identity. cDot plot showing the fold changes of expressionof tumor-cellmarkers in
ccRCC (capped at 10). Red dots denote the gene expression fold changes between
tumor cells vs. non-tumor cells using snRNA-seq data.Orange dots denote the gene
accessibility fold changes between tumor cells vs. non-tumor cells using snATAC-

seq data. Green dots denote the gene expression fold changes between bulk tumor
and normal adjacent tissue (NAT) samples using bulk RNA-seq data. Purple dots
denote thebulkprotein level changes (spectrum intensity) between tumors vs. NAT
samples.dDotplot showing the expression levels ofCA9,CP, and PCSK6 in each cell
type and each sample (non-log space). Expression levels for tumor cells are high-
lighted by black outlined circles. Immunofluorescence (IF) staining of a ccRCC
e patient tumor sample (ID: 293) and f patient-derived xenograft tumor (ID: RESL5).
Left panel, markers CP (red), CA9 (green), and DAPI (nucleus, blue). Right panel,
markers PCSK6 (red), CA9 (green), and DAPI (nucleus, blue). Scale bars in the (e, f)
are 100 μm. Three independent experiments were performed with similar results.
Scale Source data are provided as a Source data file.
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aerobic glycolysis. In our snATAC-seq data, we also observedmotifs of
HIF1A in thePFKP, ENO2, andHK1openpromoter regions that aremore
accessible in tumor cells, consistent with the previous reports of HIF1A
regulating these genes52–55 (Fig. 3d, Supplementary Data 3). In addition,
we predicted thatMXI1might regulate the transcription forHK2, based
on the presence of the MXI1 motif in an HK2 open intronic region
(Fig. 3d). We also predicted that KLF9 might regulate PFKP, ENO2, and

HK2 transcription, asweobservedKLF9motifs in the promoter regions
of these genes. We generated an MXI1-knockdown cell line (Supple-
mentary Fig. 3d, e) and performed RNA-seq. Here, the MXI1-knock-
down lines showed lowerMXI1 andHK2 expression than the scrambled
control, suggesting HK2 is regulated by MXI1. On the other hand, the
KLF9-knockdown cell line showed an increase in HK2, PFKP, and ENO2
expression compared to the control (Fig. 3g). Previous studies found
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that KLF9 could function as a transcription suppressor56,57. Thus KLF9
may be responsible for inhibiting the transcription of glycolytic genes
(HK2, PFKP, and ENO2) in ccRCC. These results nominate candidate
transcription factors regulating glycolytic genes in ccRCC and addi-
tional experimental validations are warranted.

Transcriptome-based tumor-cell subclusters may represent
genomically distinct subclones
To search for intrapatient heterogeneity of tumor-cell transcriptomes,
we identified 90 total clusters of tumor cells (over 50 cells per cluster)
among the 30 tumor samples, with substantial inter-cluster tran-
scriptional differences (“Methods”). Each sample averaged 3 tumor-
cell clusters (Fig. 4a; examples in Fig. 4b).We sought to assess whether
these transcriptome-based tumor subclusters represented genomi-
cally distinct subclones by systematically evaluating copy number
variations (CNVs) across tumor subclusters inferred from the snRNA-
seq data (Supplementary Fig. 4a). Specifically, we focused on knownor
candidate pathogenic targets in the regions with frequent arm-level
and focal CNV events reported by the previous studies12,13,58–61. Some
patients showed similar copy number profiles between tumor clusters,
while others showed dramatically different copy numbers (Supple-
mentary Fig. 4a).

One interesting example is patient C3N-01200, who displayed
potentially genomically distinct tumor subclusters among the three
tumor pieces profiled by snRNA-seq. The T1 piece (grade 2) harbored
fourmajor tumor subclusters (>50 cells), designatedC1, C2, C3, andC4
(Fig. 4c). Most C1 and C4 cells showed copy number loss in chromo-
some 3p genes (VHL, SETD2), but no gains in chromosome 5q genes
(SQSTM1, RACK1). C2 tumor cells showed both 3p loss and 5q gain. In
contrast, C3 cells predominantly showed only 5q gain, not 3p loss.
Tumor clusters from the other two tumor pieces (C3N-01200-T2 and
C3N-01200-T3; both grade 4) also mostly showed 5q gain, but not 3p
loss, similar to C3 from C3N-01200-T1.

Integration of tumor clusters mentioned above reveals that
tumor cells of C3 from C3N-01200-T1 co-clustered with C3N-01200-
T2 and C3N-01200-T3 tumor cells (Fig. 4d), which are primarily
associated with 5q gain, not 3p loss (Fig. 4e). C2 cells from the
T1 tumor piece, which showed 3p loss and 5q gain, remained a rela-
tively distinct cluster in the integrated data. In this case, the tumor
cells having only 5q gain but not 3p loss (C3 of T1, C1 and C2 of T2,
and C1 of T3), the tumor cells with 3p loss but not 5q gain (C1 and
C4 of T1), and the tumor cells with 3p loss and 5q gain (C2 of T1)
may represent genetically distinct subclones. Additional experi-
mental validation is needed to confirm the co-existence of tumor
subpopulations with these specific CNV statuses as well as their
transcriptome differences.

Intratumor signaling heterogeneity revealed by single-cell
tumor subclustering
For those genes and pathways most differentially expressed among
intrapatient tumor subclusters, we performed an unbiased search
across theMSigDB “Hallmark”gene sets (“Methods”).We found 38 sets
differentially expressed among intrapatient tumor clusters relating to
proliferation, immune, DNA damage, metabolism, development, and
other signaling pathways (Fig. 4f). The most frequently differentially
expressed gene sets include the proliferation pathways (mitotic spin-
dle, E2F targets, and G2M checkpoint), genes downregulated in UV
response, allograft rejection, and the epithelial–mesenchymal transi-
tion (EMT)pathways. Somepathways, like EMT,might be thefirst steps
for tumor metastasis62,63, while others, such as the proliferation and
DNA damage repair pathways, are important drivers for cancer
progression64,65. Their differential representations between tumor cells
within the same patients may indicate key roles in producing and
amplifying tumor heterogeneity and driving clonal evolution during
ccRCC progression.

To prioritize the gene sets important for tumor progression, we
scored the above 38 gene sets across tumor clusters (Fig. 4f) and
identified seven gene sets that are significantly associated with higher
tumor stage (FDR <0.1), namely inflammatory response (Fig. 4g),
unfolded protein response, TGF-β signaling, TNF-α signaling via NF-κB,
IL2-STAT5 signaling, IL6-JAK-STAT3 signaling, and apical junction. The
tumor subclusters expressing high inflammation scores resemble
cancer-cell-intrinsic inflammation. In this process, cancer cells alter the
immune landscape by secreting inflammation-related cytokines or
chemokines and subsequently promote cancer progression and
metastasis66. We observed an upregulation of β2-microglobulin (B2M)
expression in those cancer-cell-intrinsic inflammatory tumor sub-
clusters (clusters with top inflammation score) vs. those with the
lowest scores (log2FC = 0.91; Fig. 2h). B2M is a component of the MHC
class I complex, and B2M expression on tumor cells protects them
from phagocytosis67. This protection is mediated by the inhibitory
receptor LILRB1, which ismost highly expressed in themacrophages in
our snRNA-seq dataset (Supplementary Fig. 4b). Macrophages in
tumors with the top inflammatory response scores showed an upre-
gulation of LILRB1 expression (log2FC =0.89; Fig. 4i). These results
suggest that inflammatory tumor subclusters might suppress macro-
phages through the B2M-LILRB1 interaction. In addition, cancer-cell-
intrinsic inflammatory tumor subclusters also showed an upregulation
of C1R (log2FC =0.86), C1S (log2FC =0.46), and C3 (log2FC =0.48),
while the correspondingmacrophages showed an upregulation of C1q
genes (C1QA,C1QB,C1QC). Based on previous studies68,69, the potential
interaction betweenC1R andC1qwe identifiedmay indicate tumor-cell
hijacking of macrophage-produced C1q to promote tumor growth.

Fig. 2 | Ceruloplasmin (CP) spatial expressionpatternandCPknockdowneffect
on the transcriptome in ccRCC cells. a Spatial transcriptomics and H&E histology
of two ccRCC specimens. Regions showing high-CP (regions A and C) and low-CP
(regions B and D) expression were indicated. Scale bars are 1mm. b Top: Western
blot of CP and β-tubulin on proteins from Caki-1 cells expressing CP shRNA (sh-CP-
C1, sh-CP-C2) and non-transduced Caki-1 cells (sh-NT1). Three independent
experimentswere performed that showed similar results. Bottom: Bar plot showing
normalized bulk gene expression of CP. c Volcano plot showing differentially
expressed genes between Caki-1 cells with CP knockdown (sh-CP-C1 and sh-CP-C2)
vs. cells without CP knockdown (sh-NT1 and sh-NT2). Statistical evaluation was
performed using two-sided edgeR analysis with glmQLFTest followed by multiple
testing correction (Benjamini–Hochberg). d Bubble plot showing the pathways
over-represented in genes downregulated (top) in the CP-knockdown lines (sh-CP-
C1 and sh-CP-C2) vs. controls (sh-NT1 and sh-NT2). The p.adjust represents
Benjamini–Hochberg adjusted P-value fromone-sided Fisher’s exact test. eBar plot
showing normalized bulk gene expression ofCOL4A1,OSMR, andTGM2 in sh-CP-C1,
sh-CP-C2, sh-NT1, and sh-NT2. f Spatial transcriptomics for CA9, CP, COL4A1,OSMR,
and TGM2. g Heatmap showing scaled snRNA-seq expression of CP, OSMR, OSM,

TGM2, and FN1 across cell types. h Left: Genomic region near CP gene promoter (in
ccRCC cells). The plots show the normalized accessibility by snATAC-seq around
these regions in proximal tubule cells (green; n = 123,35) from NAT samples and
tumor cells (pink; n = 119,191) from tumor samples. Top right: Violin plot showing
the distribution of KLF9 motif enrichment scores in tumor cells (n = 119,191) and
PT cells (n = 123,35). The box bounds the interquartile range divided by themedian,
with the whiskers extending to a maximum of 1.5 times the interquartile range
beyond the box. Outliers are shown as dots. Student’s T-test; P value is two-sided.
Bottom right: position weight matrix for KLF9 motif. i Bar plot showing western
blot densitometry of KLF9 and CP proteins in RCC4 cells expressing KLF9 shRNA
(sh-KLF9) and RCC4 cells expressing scrambled control (sh-NC). The error bar
represents the standard deviation of themean from four independent experiments
performed.Wilcoxon rank-sum tests; P values are two-sided. jBar plot showing%of
normalized gene expression of KLF9 and CP compared to the control. k Western
blot showing KLF9, CP, and β-tubulin protein levels in sh-NC and sh-KLF9. Four
independent experiments were repeated and showed similar results (as shown in i).
Source data are provided as a Source data file.
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Finally, cancer-cell-intrinsic inflammatory tumor subclusters also
showed an upregulation of the ectonucleotidase CD39 (ENTPD1;
log2FC=0.47), which is associated with resistance to immune-
checkpoint blockade70 and worse prognosis71 in ccRCC.

Surveying the microenvironment of tumors with cancer-cell-
intrinsic inflammatory tumor clusters, we observed a moderate asso-
ciation between tumor-cluster inflammatory score and macrophage

content (R = 0.41, FDR =0.11) and a significant upregulation of PDL2
(PDCD1LG2; log2FC =0.19) in tumors with top inflammatory scores
(Fig. 4i). We also observed a significant upregulation of PDL1 (CD274;
log2FC= 1.0) and PDL2 (log2FC = 1.25) in classical dendritic cells
(cDC) in tumors having top inflammatory scores. Of note, macro-
phages and cDCs account for 18.1% and 0.3% of cells in the tumor
samples, respectively. Ourfindings suggest the activated inflammatory
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transcriptional program in ccRCC cancer cells might recruit and
induce PDL2 +macrophages and PDL1/2+ cDCs, which in turn might
inhibit T cell expansion and activity. Finally, we generated a cancer-
cell-intrinsic inflammation gene signature by overlapping the tumor-
cell-specific markers and the markers defining tumor clusters with the
highest inflammatory score. The cancer-cell-intrinsic inflammation
gene signature is associated with reduced overall survival in a larger
patient cohort (n = 103) using bulk RNA-seq (Fig. 4j), suggesting this
gene signature may characterize a more aggressive ccRCC. We also
performed a similar analysis for the six other gene sets associated with
higher tumor stages. Among them, TNF-α signaling via NF-κB and
apical junction pathway signature scores are also significantly asso-
ciated with worse overall survival (FDR<0.05).

While previous studies based on human cells and mouse models
showed cancer-cell-intrinsic inflammation was mainly caused by
mutations in driver genes66,72–74, here we did not find any significant
association between harboring top inflammatory tumor cluster and
sample-level mutation in established ccRCC driver genes, such as VHL,
BAP1, PBRM1, or SETD2 (P >0.3). However, we did observe that cluster-
level copy number gain in chromosome 5q35.3 (includes SQSTM1 and
RACK1), as well as gain in 3q26.2 (includes PRKCI and MECOM), are
positively associated with interferon-alpha response scores (FDR<
0.01), which in turn is also correlated with inflammatory response
scores (Pearson’s r =0.65, P <0.05). One example is the case of patient
C3N-1200. In this patient, the three tumor subclusters, includingC1 and
C2 from T2 and C1 from T3, all showed copy number gain in 5q and 3q
genes (Fig. 4f) and high scores in interferon-alpha signaling and
inflammatory response. Interestingly, these clusters, which account for
26.5% of the cells sampled from this patient, also showed outlier scores
in EMT, proliferation-related, PI3K-AKT-MTOR signaling, and TGF-β
signaling pathways, suggesting strong metastatic potential. Finally, we
also identified meta-clusters, which represent shared variations in the
tumor-cell transcriptome across patients. We found that 84% of the 38
gene sets differentially expressed among intrapatient tumor clusters
are also significant distinguishing features of the meta-clusters,
including inflammatory response and EMT pathways, supporting our
analysis described above (Supplementary Fig. 5, SupplementaryNotes).

Tumor subgroups with distinct epithelial and mesenchymal
features
The EMT pathway, which can increase tumor-initiating and metastatic
potential for tumor cells75,76, is one of the top differentially expressed

gene sets among the intrapatient tumor-cell clusters. Furthermore,
high EMT scores were associated with advanced tumor stages (Fig. 4g;
P <0.05, FDR =0.11), suggesting higher EMT pathway expression in
tumor subclusters is indicative of RCC progression. To better under-
stand and characterize EMT in ccRCC progression, we assembled a
panel of markers to calculate mesenchymal and epithelial feature
scores for 90 tumor-cell clusters and 9 proximal-tubule clusters
(Fig. 5a, “Methods”, Supplementary Data 4). We identified 4 major
tumor subgroups, including three subgroups with strong, medium,
and low epithelial features, all of which have relatively low mesench-
ymal features (denoted as Epi-H, Epi-M, and Epi-L tumor clusters,
respectively); and one subgroup with outlier mesenchymal feature
scores (denoted as EMT tumor clusters). The continuum of epithelial
and mesenchymal features across tumor clusters was further sup-
ported by the chromatin-accessibility-based gene activities derived
from snATAC-seq data. Specifically, five Epi-H tumor clusters with high
epithelial gene expression scores showed high epithelial gene activity
scores, and two EMT tumor clusters also showed similarmesenchymal
gene activity scores (Fig. 5a). Regardlessof the epithelial/mesenchymal
feature scores, the tumor subgroups overall showed higher expression
of tumor-cell markers, such as CA9, CP, and PCSK6, while PT clusters
overall showed higher proximal tubulemarkers, such as CUBN,GLYAT,
and LRP2.

To further identify genes that characterize the tumor subgroups
above, we compared gene expression profiles between the EMT tumor
clusters and the Epi-H tumor clusters that were supported by both
snRNA-seq and snATAC-seq data. We detected many known EMT
regulators upregulated in the EMT tumor population (Fig. 5b), such as
SERPINE177, TGFBI78,WNT5B79, vimentin80 (VIM), and fibronectin81 (FN1).
These upregulated genes indicate that the EMT population possesses
strong mesenchymal potential and may represent a pre-metastatic
tumor population. In addition, we validated vimentin and WNT5B
using immunofluorescence staining in a tumor with EMT tumor cells
compared to another tumor without EMT tumor cells (Fig. 5c).

We hypothesized that key genes defining the epithelial–
mesenchymal scores are epigenetically regulated due to the correla-
tion between the upregulation of these genes and their promoter
accessibility. Indeed, the gene expression changes between the two
tumor groups showed a significant positive correlation with their
promoter accessibility changes. SERPINE1 and TGFBI had the highest
increased promoter accessibility and gene expression in EMT tumor
clusters (fold change >2). 8 genes, namely LRP2, EPB41L4A, SLC6A3,

Fig. 3 | The glycolysis pathway displays significant changes in ccRCC tumor
cells compared to the proximal tubule cells. a Volcano plot showing differen-
tially enriched TFmotifs between ccRCC (tumor) cells (n = 118,409) from 30 tumor
samples and the combined proximal tubule (PT) cells from the four NATs
(n = 9676). The X-axis shows the motif score difference, while the Y-axis shows the
−log10(adjusted P-value). Statistical evaluation was performed using a two-sided
Wilcoxon rank-sum test, applying Benjamini–Hochberg correction for the resulting
P-values. Color denotes whether a motif is consistently higher or lower in tumor
cells when tumor cells from individual tumor samples were compared to the
PT cells or if it has insignificant or inconsistent fold changes (“Methods”). The
motifs that have consistent higher/lower TF binding accessibilities in all compar-
isons of individual tumor vs. PT cells are highlighted. b Volcano plot showing
differentially expressed genes between ccRCC cells (n = 88,536) and the combined
PT cells from the NATs (n = 4269). The X-axis shows the log2(fold change) of the sn
gene expression of the ccRCC cells compared to PT cells; the Y-axis shows the
−log10(adjusted P-value). Statistical evaluation was performed using a two-sided
Wilcoxon rank-sum test, applying Bonferroni correction for the resulting P-values.
Color denotes whether a gene is consistently expressed higher or lower in tumor
cells, or has insignificant or inconsistent fold changes (“Methods”). Genes for
ccRCC-specific TFs and selected metabolic genes with significant fold changes are
highlighted. c Bubble plot showing the pathways over-represented in genes upre-
gulated (top) and downregulated (bottom) in ccRCC cells compared to the PT cells.

The FDR represents Benjamini–Hochberg adjusted P-value from one-sided Fisher’s
exact test. d Genomic regions near three upregulated genes in ccRCC cells com-
pared to PT cells. The plots show the normalized accessibility by snATAC-seq
around these regions inproximal tubule cells (green) fromNAT samples and ccRCC
cells (pink) from tumor samples. e When viewed in the context of important
metabolic pathways in ccRCC, ccRCC cells displayed an overall upregulation of
genes encoding glycolysis enzymes as well as other metabolic proteins (rounded
rectangle) at sn gene expression level (red and blue filled colors represent sig-
nificantly increased or decreased sn expression in ccRCC cells vs. proximal tubule
cells). Among them, genes showing increased promoter accessibility are high-
lighted by the yellow border. Ellipses with green borders represent transcription
factors with significantly enriched accessibility binding in ccRCC cells vs. PT cells.
Lines connecting TFs and genes represent TF-target relations inferred by the pre-
sence of the TF motif in the more accessible promoter region of the genes using
snATAC-seq. Black dotted lines denote inferred TF-target relation based on the
snATAC-seq data in this study. Orange dotted lines denote those relations with
literature support. Red solid lines denote those relations with experimental vali-
dation done in this study. Createdwith BioRender.com. f Bar plot showing the bulk
RNA-seq expression of RCC4 cells with and without MXI1 knockdown. g Bar plot
showing the bulk RNA-seq expression of RCC4 cells with or without KLF9 knock-
down. Source data are provided as a Source data file.

Article https://doi.org/10.1038/s41467-023-37211-7

Nature Communications |         (2023) 14:1681 8



FRMD3, PTGER3, ABI3BP, SLC28A1, and CIT showed over 2-fold changes
in increased promoter accessibility and expression in Epi-H tumor
clusters (Fig. 5d). To understand which TFs may regulate the tran-
scription of the above genes, we compared the TF binding accessi-
bilities between the EMT tumor clusters and the Epi-H tumor cluster,
prioritizing TFs that were differentially expressed between the two
groups (Fig. 5e). The EMT tumor population showed increased binding

accessibility for known positive regulators of EMT, such as TWIST1 and
JUN (Fig. 5e, SupplementaryData 4). We also observed increasedmotif
accessibility for the hepatocyte nuclear factors (HNF4A andHNF4G) in
the Epi-H tumor clusters. These transcription factors are known to
regulate kidney development82,83. To connect these differentially
enriched TFs to the differentially expressed genes, we subsequently
searched for thebindingmotifs of these TFs in the promoter regions of
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these genes. One example is TGFBI, which showed increased promoter
accessibility and gene expression in the two EMT tumor clusters. The
TGFBI open promoter region harbors motifs for TWIST1 and JUN,
consistent with the reported roles of these TFs regulating TGFBI
transcription84,85. Conversely, EPB41L4A showed increased promoter
accessibility and gene expression in the Epi-H tumor clusters. Taken
together, these data indicate that many genes distinguish tumor
groups with distinct epithelial and mesenchymal features, such as
WNT5B, as well as EPB41L4A and TGFBI, controlled epigenetically by an
array of transcriptional factors delineated above and chromatin
accessibility changes.

Chromatin accessibility changes in BAP1 and PBRM1 mutant
tumors
We next sought to understand the expression signatures of tumors
harboring BAP1 and PBRM1 mutations and the impact of these muta-
tions on chromatin accessibility that may underpin such expression
signatures. For snATAC-seq analysis, we selected 4 BAP1-mutant
tumors, 9 PBRM1-mutant tumors, 2 tumors with both BAP1 and PBRM1
mutations, and 8 tumors without mutations in either PBRM1 or BAP1
(Supplementary Fig. 6a). All of these samples have matching snRNA-
seq data, and almost all mutant samples carry the VHL mutation (all
except for one with VHL promoter hypermethylation) and 3p loss
opposite to the mutated alleles (Supplementary Figs. 1a, 6a).

To understand the impact of BAP1 deficiency on chromatin
accessibility, we used snATAC-seq data to analyze differentially
accessible chromatin regions (DACRs) by comparing the tumor cells of
BAP1-mutants versus tumor cells from tumors without PBRM1 or BAP1
mutations.We identified4554 suchDACRs. Interestingly,most of these
regions (84%, 3829 peaks) showed reduced accessibility in BAP1-
mutants (Fig. 6a, Supplementary Data 5), which is consistent with
previous reports that BAP1 loss induces chromatin condensation23,24.
We also analyzedDACRs for PBRM1mutants (9 tumors, not including 2
with both BAP1 and PBRM1 mutations) versus tumors without PBRM1
or BAP1 mutations (again using only tumor cells). We identified 646
DACRs, with the majority (87%, 561 DACRs) having increased accessi-
bility in PBRM1-mutants (Fig. 6a, Supplementary Data 5). Moreover,
BAP1 mutation seems to have a dominant effect compared to PBRM1
mutation, as the two tumors with both BAP1 and PBRM1 mutations
showed more similar patterns in chromatin accessibility to BAP1-only
mutated tumors (mean Pearson’s r = 0.47) than the PBRM1-only
mutated tumors (mean Pearson’s r = −0.12; Fig. 6a). Through these
analyses of snATAC-seq data, we observed that BAP1-deficient tumors
undergo more global changes in chromatin accessibility compared to
the PBRM1-deficient tumors in ccRCC.

Impact of BAP1 mutations on the transcriptional network
in ccRCC
BAP1-associated DACRs with decreased accessibility are distributed
across all chromosomes, with hotspots in chromosomes 11 and 19

(Supplementary Fig. 6b), overlapping genes such as DIXDC1 and LGI4
(Fig. 6b). DACRs with increased accessibility in BAP1-mutants were
more sparsely distributed, with hotspots in chromosome 5 (Supple-
mentary Fig. 6b). We further focused our analysis on those genes’
expression changes associated with BAP1 mutations that could be
linked to the changes in DNA accessibility. We compared the tumor-
cell expression profiles of BAP1-mutant tumors versus non-BAP1 and
non-PBRM1-mutant tumors using snRNA-seq data and identified 563
differentially expressed genes (Fig. 7a; Supplementary Data 5). As
expected, the changes in gene expression and associated promoter/
enhancer peak accessibility are significantly positively correlated
(Fig. 7b). Figure 7c highlighted some of the genes with both decreased
accessibility and expression in BAP1 mutants, which were most enri-
ched in the nuclear receptor meta-pathway (CES3, PDK4, SERPINA1,
SLC5A1, and TGFBR3), the RhoA GTPase cycle (DLC1, ARHGAP24/28/32/
42), and genes downregulated by KRAS activation (PTPRJ, CDH16,
CPEB3, NR6A1, and ZBTB16), among others. Genes with increased
accessibility and expression in BAP1 mutants include known ccRCC-
associated genes (RAPGEF5 and SQSTM1) and EPHA signaling genes
(EPHA6 and EFNA5). We also performed a similar analysis for PBRM1
mutants (Supplementary Fig. 6c).

We used the larger bulk gene expression and protein datasets
(n = 103) toprioritize identifiedBAP1-specificDEGs (bold gene symbols
in Fig. 6b). We found that 224 DEGs were consistently down/upregu-
lated in bulk gene expression and that 21 of them also showed con-
sistent patterns in bulk protein data (Supplementary Data 5). One of
the most striking examples from this analysis was CES3, which showed
both reduced gene expression and reduced accessibilities of asso-
ciated enhancer peak in BAP1-mutant tumor cells (Fig. 7b). We identi-
fied a potentialCES3 enhancer peak located ~5 kb upstreamof theCES3
transcriptional start site (TSS), displaying consistently lower accessi-
bility in tumor cells of all BAP1mutants as comparedwith other tumors
(Fig. 7d) and PT cells from NATs (Supplementary Fig. 6d). We found
that reduced CES3 DNA accessibility and gene expression were asso-
ciated with BAP1mutations, supported by both bulk RNA and protein
data. CES3 encodes a carboxylesterase with crucial roles in xenobiotic
metabolism. CES3 down-regulation affects lipid metabolism86 and
might promote tumor progression in BAP1-mutants. We utilized a pair
of isogenic ccRCC cell lines derived from SKRC-42 (BAP1 null) to
validate our observation regarding CES3. First, we confirmed the
BAP1 status of these lines using a western blot (Fig. 7e). Next, we found
that CES3 expression in the SKRC-42-control (BAP1 null) is 42% of that
in the BAP1-reconstituted derivative in our bulk RNA-seq data (Fig. 7f),
supporting our observation from snRNA-seq data.

Together, we developed a working model to illustrate the effects
of BAP1 mutations on ccRCC transcriptome through chromatin
accessibility changes (Fig. 7g). Compared to PBRM1 mutations, BAP1
mutations seem to exert moderate but more widespread effects on
chromatin accessibility. The predominant BAP1 mutation effect on
chromatin appears to be decreasing chromatin accessibility. In

Fig. 4 | Intratumor signaling heterogeneity revealed by single-cell tumor sub-
clustering. a Bar plot showing the number of tumor-cell clusters per sample.
b UMAP illustration of the tumor-cell clusters for four tumor samples, colored by
the cluster name. cUMAP showing tumor clusters of three tumor samples from the
same patient, colored by the copy number status of VHL and SQSTM1. d UMAP
showingmerged data for tumor cells from the above three tumor samples, colored
by the original tumor cluster name. e UMAP showing the copy number status of
VHL and SQSTM for themerged data shown in (d). fHeatmap showing the gene set
scores for 90 tumor subclusters (columns). Tumor subclusters are grouped by
patient and separated by white lines. g Violin plot showingmaximum inflammatory
response score (top) and EMTscore (bottom)per tumor sample, groupedby tumor
stage (stage I/II: n = 12; stage III/IV: n = 22). The box bounds the interquartile range
divided by the median, with the whiskers extending to a maximum of 1.5 times the
interquartile range beyond the box. Outliers are shown as dots. Wilcoxon rank-sum

tests; P values are two-sided. hVolcano plot showing differentially expressed genes
between tumor clusters with top 10% quantile inflammatory scores vs. those with
the bottom 10% quantile inflammatory scores (annotated in f). i Volcano plot
showing differentially expressed genes between macrophages in tumors with top
10% quantile inflammatory tumor-cluster scores vs. macrophages in tumors with
the bottom 10% quantile inflammatory tumor-cluster scores (annotated in f).
j Kaplan–Meier survival analysis showing overall survival after initial pathological
diagnosis. Statistical evaluation was performed using a two-sided log-rank test.
Patients with high tumor-cell-intrinsic inflammation score (n = 26, top 25% per-
centile) displayed significantly lower chance of survival compared to patients with
low inflammation score (n = 26, bottom 25% percentile) using bulk RNA-seq data. In
h and i, statistical evaluation was performed using a two-sided Wilcoxon rank-sum
test, applying Bonferroni correction for the resulting P-values. Source data are
provided as a Source data file.
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contrast, PBRM1 mutation is mainly associated with increased chro-
matin accessibility (Fig. 6a). Furthermore, we observed many genes
downregulated in BAP1-mutants could be linked to the widespread
decreased chromatin accessibility associated with BAP1 mutations
(Figs. 6b, 7b, c), and experimentally validated one of them being the
CES3 gene.

Discussion
This report describes findings of a combined application of snRNA-seq
and snATAC-seq in ccRCC to study transcriptional profiles and chro-
matin accessibility patterns at the single-nucleus level. We identified

324 tumor-cell-specific markers compared to other cell types, a
majority of which were supported by other published ccRCC single-
cell datasets (Supplementary Notes). Of the 20 prioritized markers,
four have been associatedwith ccRCCbut not evaluated in a single-cell
context (ABCC387, KCTD388, SEMA6A89, PLEKHA190) and nine are known
tumor markers of ccRCC (TGFA91, PLIN292, FTO93, SLC6A394, NDRG195,
CP96, EGFR97, ENPP398, COL23A199). Seven markers (SNAP25, PHKA2,
EPHA6, ABLIM3, SHISA9, PCSK6, UBE2D2) do not have well-defined
functions in ccRCC. Even in cases where these genes have been pre-
viously identified, the added value of current technologies is that we
have been able to compare the expression of these markers in tumor
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cells to non-tumor cell types; our analysis supports these genes as
tumor-cell-specific markers for ccRCC.

We chose to focus on ceruloplasmin (CP) because it predicted
worse survival and displayed an interesting spatial expression pattern
associated with hyalinized stroma. Known CP functions mainly involve
copper transport, ferroxidase activity, angiogenesis, and regulating
oxidative stress100. Bulk and scRNA-seq studies showed that CP is
overexpressed in ccRCC compared to normal adjacent tissue31,37,38 and
other RCC subtypes101. Several studies showed associations between
CP and higher grades and poor prognosis in ccRCC36,96, and one study
suggested that CP knockdown impaired the cell invasion capability of
RCC cells38. To date, few studies have undertaken functional investi-
gations of CP in ccRCC. Here, we observed that EMT pathway genes,
including CD44 and TGFBI, were downregulated after CP knockdown
(Supplemental Data 3), suggesting CP is required for cell invasion. We
also observed a down-regulation of inflammatory response genes
associatedwithCPknockdown (Fig. 2d), consistentwith reports ofCP’s
role in inflammation. CP is a HIF1A target and helps stabilize the HIF1A
protein102,103. Indeed, our study shows that hypoxia response genes
were enriched in genes downregulated after CP knockdown, including
IGFBP3 andANGPTL4 (SupplementalData 3). Furthermore,we revealed
the spatial heterogeneity of CP using spatial transcriptomics and CP’s
potential role in mediating tumor-stroma interactions in ccRCC with
the snRNA-seq data of ccRCC tumor tissue and RNA-seq data of cells in
which CP was suppressed by shRNA. We also found that the KLF9
transcription factor may regulate CP transcription. Together, these
results further our understanding of CP in ccRCC96.

We also demonstrate the utility of considering epigenetic reg-
ulation in understanding the cell origin of cancer cells. For example,
while previous studies relied on mutational and transcriptional simi-
larities in support of PT as the cell of origin for ccRCC44,104–106, we find
strong epigenetic evidence suggesting this aswell.Whenwe compared
chromatin accessibility patterns between tumor cells and normal
PT cells, we uncovered many tumor-cell-specific TFs beyond the well-
known TF – HIF1A: MXI1, KLF9, RBPJ, and NFKB1/2 have been pre-
viously implicated in renal cancer tumorigenesis107–112; and HSF2 and
SREBF2 were linked to renal tubular cell injury113,114. As expected115, we
observed a dozen genes upregulated in the glycolysis pathway in
ccRCC cells compared to normal PT cells. Studies have shown that
transcription factors, such as HIF-1, c-MYC, p5350, and SIX151 play direct
roles in regulating aerobic glycolysis. We report several TFs that may
regulate glycolytic genes in ccRCC, particularlyMXI1 andKLF9.MXI1, a
member of the Mad family proteins known to antagonize c-MYC-
dependent transcription, has a potential oncogenic role in RCC, as
MXI1 knockdown impaired kidney cancer xenograft formation in nude
mice107. Our results suggest that MXI1 promotes ccRCC cell growth by
activating the transcription of hexokinase 2 (HK2). KLF9 is a Krupple-
like transcription factor (KLF) andwas shown to transactivateKCNQ1110

and SNX5109, inhibiting ccRCC cell proliferation. In snRNA-seq data,
KLF9 is not significantly differentially expressedbetween ccRCC tumor
cells vs. PT cells. Nonetheless, KLF9 knockdown is associated with a

concomitant upregulation of many glycolytic genes, such as HK2,
PFKP, and ENO2. Our results warrantmore experimental investigations
to validate the transcriptional regulation and test whether KLF9 affects
the metabolic flux.

In evaluating tumor cell heterogeneity, many patients exhibited
3–4 distinct tumor-cell clusters. We acknowledge that the number of
clusters per cancer may be influenced by the analysis parameters and
subdivisions of existing clusters can be achieved without the samples
changing their intrinsic heterogeneity. We identified cases where
tumor subclusters display distinct copy number statuses (inferred
based on snRNA-seq data). Several clusters from one patient, C3N-
01200, showed almost no 3p loss and only 5q gain, both frequent
alterations in ccRCC12,116. Our observations suggest two possibilities: (1)
some ccRCC cells may initiate by 5q gain; (2) some ccRCC cells may
initiate by silencing the 3p genes through non-CNVmechanisms (such
as mutations) and co-exist with other subclones who initiate by 3p
copy loss. Future studies using single-cell WES may be able to provide
additional insights since mutation mapping by snRNA-seq was sparse
(Supplementary Fig. 7).

We identified four distinct tumor subgroups in terms of epi-
thelial and mesenchymal features. Epithelial tumor clusters are
sporadic concerning the traditional PT S1/2 and S3 group classifica-
tionmarkers, suggesting these tumor cells might not come from one
group of S1/2 or S3 proximal tubule cells. We additionally observed
WNT5B upregulation in the ccRCC EMT tumor subpopulation.
WNT5B is a member of the WNT5 protein subfamily and signals
through the non-canonical beta-catenin-independent pathway117. It is
required for cell migration, proliferation, and differentiation inmany
cell types117 and has an emerging role in mediating EMT and cell
migration in breast, pancreatic, and colorectal cancers118–120. How-
ever, the role of WNT5B in ccRCC is unclear. We showed WNT5B
upregulation in ccRCC tumor subpopulations with EMT features. We
validated the WNT5B protein expression in a patient tumor with the
EMT signature population (Fig. 5c), suggesting WNT5B might med-
iate the EMT process in ccRCC.

BAP1 and PBRM1 mutations are associated with distinct overall
survival, leading to the first molecular classification of sporadic
ccRCC18,19. However, we knew little about the epigenetic alterations
brought upon by BAP1 and PBRM1 mutation leading to the distinct
phenotypes in ccRCC. Our snATAC-seq analysis revealed a large por-
tion of genomic loci displaying decreased accessibility in ccRCC with
BAP1 mutations, consistent with the role of BAP1 in the global chro-
matin condensation and transcriptional activation reported in non-
RCC contexts121. The presence of both increases and decreases in
chromatin accessibility suggests that the BAP1-mediated regulation of
chromatin accessibility depends on the epigenetic landscape. In
addition, we delineated genes whose expression levels are affected by
BAP1 mutation and could be attributed to their altered chromatin
accessibility, validating one such gene, CES3. On the other hand,
PBRM1 encodesBAF180, a subunit of nucleosome remodeling complex
PBAF. In contrast to the BAP1mutation, PBRM1mutation was primarily

Fig. 5 | Four tumor subgroups with distinct epithelial and mesenchymal fea-
tures. a Left: Heatmap showing gene expression of the epithelial andmesenchymal
marker genes for tumor clusters and proximal tubule (PT) clusters (>50 cells) using
snRNA-seq data. Right: Heatmap showing gene activity of the epithelial and
mesenchymal marker genes for tumor clusters and PT clusters (>50 cells) using
snATAC-seq data. b Volcano plot showing differentially expressed genes between
the EMT tumor clusters and Epi-H tumor clusters highlighted in (a). Labels on the
right denote known mesenchymal markers, while those on the left denote known
markers for PT cells. Statistical evaluation was performed using a two-sided Wil-
coxon rank-sum test, applying Bonferroni correction for the resulting P-values.
c Immunofluorescence staining of vimentin (VIM), CA9, WNT5A/B, and DAPI,
showing VIM and WNT5A/B in CA9 + cells in the cross-sections of the tumor with
EMT tumor cells (C3N-01200-T2), but not in the control tumor (C3N-00242-T1).

Two independent experiments were performed with similar results. Scale bar, 100
μm. d Scatter plot displaying the log2 transformed fold change for gene promoter
accessibility versus log2 transformed fold change for gene expression in EMT
tumor clusters vs. Epi-H tumor clusters (shown in b). The P-value is derived from a
two-sided Spearman rank correlation test (P-value = 9.2e−72). e Volcano plot
showing differentially accessible TF motifs between the EMT tumor clusters and
Epi-H tumor clusters. Asterisks denote the var.2 version of the TF motif based on
the JASPAR database. Statistical evaluation was performed using a two-sided Wil-
coxon rank-sum test, applying Benjamini–Hochberg correction for the resulting P-
values. f Genomic regions near TGFBI (upregulated in EMT tumor clusters) and
EPB41L4A (upregulated in Epi-H tumor clusters). The plots show the normalized
accessibility by snATAC-seq around these regions in EMT tumor clusters (red) and
Epi-H tumor clusters (blue). Source data are provided as a Source data file.
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associated with ATAC-peaks exhibiting increased accessibility, sug-
gesting PBRM1 may have a role in gene silencing, consistent with a
previous report using osteosarcoma cells25. These results provide
hypotheses for future functional studies of BAP1 and PBRM1 in ccRCC.

Our study provides a resource of single-nucleus epigenomic,
transcriptomic, and spatial transcriptomics data where we explored
heterogeneous signaling activities and epigenetic regulation of tumor

subpopulations in ccRCC. Compared to single-cell RNA-seq, snRNA-
seq can be used to analyze archival specimens and minimize stress
responses from cell dissociation necessary for scRNA-seq. It should be
noted that the single-nucleus approach generally does not cover
transcripts from the small mitochondrial genome. Unlike scRNA-seq
surveying the total RNA in a cell, snRNA-seq captures the nuclear RNA,
closely reflecting current transcriptional regulation in the cell.
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In summary, our comprehensive integrative analyses of a broad
range of multi-omics data, especially with the inclusion of epigenetic
and spatial omics results, allowed us to identify ccRCC tumor markers
valuable for diagnosis, prognosis, and development of future therapies,
including CAR-T therapy. In the case of known tumor marker CP, while
CP knockdown in ccRCC has been done previously38, our experimental
datahereprovided specific candidategenespotentially regulatedbyCP,
such asCOL4A1 andOSMR, thatwarrant follow-up studies tounderstand
CP’s function. As for the transcriptional regulation of CP, future studies
usingChIP-seq and 3Cexperimentsmayprovide direct evidence for TFs
that bind and regulate CP expression. Similarly, the chromatin accessi-
bility changes associatedwith the chromatinmodifiers BAP1 andPBRM1
described in this manuscript will benefit from additional epigenetic
assays such as ChIP-seq and transposase-directed transposon insertion
mapping to ascertain the direct effect of BAP1 and PBRM1 on the can-
didate affected genes. Finally, in addition to enhancing our under-
standing of the molecular features and the oncogenic mechanism of
ccRCC, we hope the discoveries described above and the large volume
of data generatedwill empower a wide range of follow-up studies in the
RCC community and beyond.

Methods
Human tissue specimens and clinical data
We obtained 34 specimens (used in the CPTAC ccRCC discovery
study13) from the CPTAC Biospecimen Core Resource to perform
snRNA-seq and snATAC-seq experiments. Institutional Review Boards
(IRBs) of Spectrum Health Services, University of Pittsburgh IRB,
Beaumont Health Biobank, International Institute for Molecular
Oncology, BioPartners and Asterand Bioscience reviewed protocols
and consent documentation, in adherence to the CPTAC guidelines.
Informed written consent was obtained from all participants for
sharing individual-level data.We selected 34 samples from this corpus,
with a balanced representation of mutation status, immune subtypes,
and druggable events. More specifically, we selected comparable
numbers of samples with PBRM1 and BAP1 mutations alone and sam-
ples without mutations in either of these genes, samples with immune
inflamed and immune dessert subtypes, and samples with c-MET
overexpression, the last being a promising druggable target in the lab.
Finally, we requested the remaining cryo-pulverized tissue (the very
same pool of tissue powder that was used for the original bulk
sequencing) for single nuclei RNA-seq (snRNA-seq) and single nuclei
ATAC-seq (snATAC-seq). Additional tumor segments were selected by
the CPTAC Biospecimen Core Resource based on availability. Addi-
tional tumor segments processed for snRNA-seq were selected based
on the successes of the original tumor segment snRNA-seq, the weight
of additional tumor samples, and mutation status (the four cases
selected had different PBRM1 and BAP1 mutation statuses).

Demographics, histopathologic information, and treatment details
were collected by the CPTAC consortium and were retrieved via the
CPTAC Data Portal at: https://cptac-data-portal.georgetown.edu/
study-summary/S044. Self-reported gender information was col-
lected by CPTAC. Altogether, we have 18 male and 7 female partici-
pants based on self-reported gender information. The age distribution
is 30–49 (16%), 50–69 (68%), and 70–74 (16%). None of the study
participants was compensated.

Cell lysis
15–25mg of pulverized tissue was placed in a 5mL Eppendorf tube on
ice. Using a wide-bore pipette tip (Rainin), a lysis buffer prepared from
the Nuclei Isolation protocol (10x Genomics) and SuperRNase inhi-
bitor (Invitrogen)was added to the tube. The tissue solutionwasgently
pipetted until the lysis liquid turned a slightly cloudy color. (The
number of pipetting iterations depended on the specific tissue.) The
tissue homogenate was then filtered through a 40-micron strainer
(pluriSelect) and washed with a BSA wash buffer (2% BSA + 1× PBS+
RNase inhibitor). The filtrate was collected, centrifuged at 500 × g for
6min at 4 °C, and resuspended with a BSA wash buffer.

Fluorescence-activated cell sorting (FACS)
100 µL of cell lysis solution was set aside for unstained reference, while
the restwas stainedwithDRAQ5or 7AAD forRNAorATACsequencing,
respectively. Namely, snRNA-seq nuclei were stained with 1 µL of
DRAQ5 per 300 µL of the sample, and snATAC-seq nuclei were stained
with 1 µL of 7AAD per 500 µL of the sample. Sorting gates were based
on size, granularity, and dye staining signal (Supplementary Fig. 8).

10x library preparation and sequencing of snRNA-seq and
snATAC-seq
Nuclei and barcoded beads were isolated in oil droplets via the 10x
Genomics Chromium instrument. Single nuclei suspensions were
counted and adjusted to a range of 500 to 1800 nuclei/µL using a
hemocytometer. Reverse transcription was subsequently performed
to incorporate cell and transcript-specific barcodes. All snRNA-seq
samples were run using the ChromiumNext GEM Single Cell 3’ Library
and Gel Bead Kit v3.1 (10x Genomics). For snATAC-seq, Chromium
Next GEM Single Cell ATAC Library and Gel Bead Kit v1.1 prep (10x
Genomics) were used for all samples. Barcoded libraries were then
pooled and sequenced on the Illumina NovaSeq 6000 system with
specific flow cell types (snRNA-seq: S4; snATAC-seq: S1).

Patient-derived xenograft tumor specimen collection and
preparation
The tumor materials for the patient-derived xenograft (PDX) model
were obtained from patients either via core needle biopsy or surgical

Fig. 6 | Chromatin accessibility landscape of BAP1 and PBRM1mutant tumors.
a Heatmap showing the relative changes in ATAC-peak accessibility for peaks dif-
ferentially accessible between the tumor cells of BAP1-mutated tumors (6 tumors,
including 2 BAP1- and PBRM1-mutated tumors, 29,366 cells) vs. non-BAP1/PBRM1-
mutated tumors (8 tumors; non-mutants) and peaks differentially accessible
between tumor cells of PBRM1-mutated tumors (9 tumors, 32,255 cells) vs. non-
BAP1/PBRM1-mutated tumors (non-mutants). Each column is an ATAC peak, and
only significantly and consistently changed peaks are plotted (FDR<0.05, “Meth-
ods”). Only samples with >8%mutation VAF in BAP1 or PBRM1 are shown (1 sample
excluded). b Circos plot showing the genome-wide chromatin accessibility, gene
expression, and protein abundance changes associated with BAP1 mutation. The
green circle contains significantly different ATAC peaks in BAP1-mutated vs. non-
BAP1-mutated tumors, with each dot representing one ATAC peak. The labeled
y-axis represents the fold changes of the peak accessibility change. Red and blue
dots denote peaks with higher and lower accessibility peaks in BAP1-mutated vs.
non-BAP1-mutated tumors, respectively. The yellow circle plots the fold changes of
the differentially expressed genes (DEGs) associated with BAP1 mutation

discovered by snRNA-seq data (FDR <0.05), with each dot representing one gene.
The orange circle displays the fold changes of the DEGs associated with BAP1
mutation (FDR< 1e−04, |log2FC| > 1) discovered by the CPTAC bulk RNA-seq data
(n = 103). The innermost purple circle plots the fold changes of differentially
expressed proteins associated with BAP1 mutation (FDR <0.05) discovered by the
CPTAC bulk proteomics data (n = 103). Similarly, the red and blue colors for the
dots denote higher and lower expression for the genes/proteins in BAP1-mutated
vs. non-BAP1-mutated tumors. The gene symbols highlighted outside the circles
represent genes showing the consistent direction of snRNA-seq and snATAC-seq
changes in BAP1 mutants vs. non-mutants (absolute log2 fold change >=0.3). Red
gene symbols represent genes with increased promoter/enhancer accessibility and
gene expression in BAP1 mutants. Blue gene symbols represent genes with
decreased promoter/enhancer accessibility and gene expression in BAP1 mutants.
Gene symbols in bold font represent the genes mentioned above with consistent
expression change in either bulk RNA-seq or bulk protein data. Source data are
provided as a Source data file.
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resection after informed consent. All human tissues acquired for
experiments were processed in compliance with NIH regulations and
institutional guidelines, as approved by the Institutional Review Board
at Washington University in St. Louis (WUSTL). All animal procedures
were reviewed by and received ethical approval from the Institutional
Animal Care and Use Committee (IACUC) at WUSTL. Our animal pro-
tocol sets the maximal tumor size at 2 cm diameter. In these studies,

this limit has not been exceeded. For implantation, 6–8-week-old
female immunodeficient NSG mice (Strain: NOD.Cg-Prkdcscid Il2rgtm1Wjl/
SzJ, Stock No: 005557) were purchased from The Jackson Laboratory.
The sex assignmentwasdoneby the Jackson Laboratory. The sexof the
animal was not considered in the study design as the study only focus
on the characteristics of the human tumor, whichwas implanted in the
immunodeficientNSGmice. Furthermore, only femalemicewere used.
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Thus, sex-based analyses for the mice were not performed. Mice were
housed in a temperature-controlled facility (68–72 °F and 45–55%
relative humidity) on a 12–12-h light-dark schedule with normal food
and sterile water supplies. Anesthesia was given before tumor
implantation subcutaneously on both flanks. Animals were euthanized
using CO2 per NIH Institutional Animal Care and Use Committee
(IACUC) guidelines and tumors were harvested from mice once they
reached 2 cm in volume. 4% paraformaldehyde was used to fix the
tumor at 4 °C and was processed the next day before embedding in
paraffin wax; small pieces (3mm cubes) were frozen in 10% dimethyl-
sulfoxide (DMSO) (Sigma-Aldrich, D2660) and 90% fetal bovine serum
(Gibco, 10437028) at –80 °C and later transferred to liquidnitrogen for
future implantation.

Immunofluorescence (IF) staining
5-micron thickness cut ccRCC Formalin-Fixed Paraffin-Embedded
(FFPE) sections were deparaffinized and rehydrated using xylene, high
to low percentages of ethanol, and finally placed in 1× PBS. The heat
antigen retrieval method was applied using 1mM EDTA for at least
25min. 5% Donkey serum and 1% BSA was used as blocking buffer and
as primary and secondary antibodies diluent. Antibodies for CA9
Rabbit (#NB100-417; Polyclonal; Novus Bio) at 1:350, CA9 Goat (#PA5-
47268, Polyclonal; Invitrogen) at 1:50, VIM Chicken (#NB300-223;
Polyclonal; Novus) at 1:150, WNT5a/b Rabbit (#55184-1-AP, Polyclonal;
Proteintech) at 1:100, CP Goat (#A80-124A; Polyclonal; Bethyl lab) at
1:100, and PCSK6 Rabbit (#PA5-32966; Polyclonal; Invitrogen) at 1:100
were applied on sections and later detected with specific fluorescent
secondary antibodies conjugated with Alexa Fluor 488 Donkey anti-
Rabbit #711-546-152, Alexa Fluor 488 Donkey anti-Chicken #703-606-
155, Alexa Fluor 488 Donkey anti-Goat #705-546-147, Alexa Fluor 594
Donkey anti-Rabbit #711-586-152, Alexa Fluor 594 Donkey anti-Goat
#705-586-147, Alexa Fluor 647 Donkey anti-Goat #705-607-003 from
Jackson ImmunoResearch diluted at 1:1000. All IF images were taken
using a Lecia DMi8 fluorescence microscope.

FFPE Spatial transcriptomics specimen collection and
preparation
For spatial transcriptomics, the samples were collected with informed
written consent in concordance with the Washington University
Institutional Review Board (IRB) at the Washington University School
of Medicine in St Louis (St Louis, MO). Primary clear cell renal cell
carcinoma samples were collected during surgical resection and ver-
ified by standard pathology.

TheRNAquality of FFPE tissueblockswasevaluatedby calculating
DV200 of RNA extracted from FFPE tissue sections following the Qia-
gen RNeasy FFPE Kit protocol. After the Tissue Adhesion Test, 5 μm
sections were placed on the Visium Spatial Gene Expression Slide fol-
lowing Visium Spatial Protocols-Tissue Preparation Guide (10x Geno-
mics, CG000408 Rev A). After overnight drying, slides were incubated

at 60 °C for 2 h. Deparaffinization was then performed following Vis-
ium Spatial for FFPE—Deparaffinization, H&E Staining, Imaging &
Decrosslinking Protocol (10x Genomics, CG000409 Rev A). Sections
were stained with hematoxylin and eosin and imaged at 20x magnifi-
cation using the brightfield imaging setting on a Leica DMi8 micro-
scope. After that, decrosslinking was performed immediately for H&E
stained sections. Next, humanwhole transcriptomeprobe panels were
then added to the tissue. After these probe pairs hybridized to their
target genes and ligated to one another, the ligation products were
released following RNase treatment and permeabilization. The ligated
probes were then hybridized to the spatially barcoded oligonucleo-
tides on the Capture Area. Spatial Transcriptomics libraries were
generated from the probes and sequenced on the S4 flow cell of the
Illumina NovaSeq 6000 system.

FFPE spatial transcriptomics quantification and analysis
After cDNA library construction and sequencing, weuse the short-read
probe alignment algorithm for FFPE ‘count’ method in Space Ranger
(v1.3.0) from the 10x Genomics to align probe read to the human
reference genome (GRCh38). The resulting count matrix and asso-
ciated H&E physiological images were then used by the R package
Seurat (v.4.0.4)122 for subsequent analysis. The filtered gene-count
matrices were normalized using SCTransform before being merged
into one object for joint processing and analysis using the Find-
Neighbors, and FindClusters function in Seurat using standard pro-
cessing parameters (30 PCs, original Louvain algorithm). The
expression levels of selected genes were plotted using the function
SpatialPlot and scaled to the same range.

Cell lines
RCC4 line was purchased from a certified commercial vendor Sigma
(https://www.sigmaaldrich.com/US/en/product/sigma/cb_03112702)
and authenticated by STR profiling by Sigma. Caki-1 line (catalog
numberHTB-46, https://www.atcc.org/products/htb-46) andHEK293T
(catalog number CRL-3216, https://www.atcc.org/products/crl-3216)
were purchased from a certified commercial vendor ATCC and
authenticated by STR profiling by ATCC. The SKRC-42 cells were from
co-author Dr. James Hsieh’s lab https://www.cellosaurus.org/CVCL_
6192 and were authenticated by sequencing analysis. No cell line used
in this paper is listed in the database of commonly misidentified cell
lines maintained by the International Cell Line Authentication Com-
mittee (ICLAC). All of the cell lines used here tested negative for
mycoplasma contamination using InvivoGen MycoStrip (catalog: rep-
mys-20).

Lentiviral infection for delivery of CP,MXI1, and KLF9 into RCC4
and Caki-1 cells
The MISSION shRNA Bacterial Glycerol Stocks (catalog: SHCLNG,
Sigma-Aldrich) for CP, MXI1, and KLF9 were used with two different

Fig. 7 | Impact of BAP1 mutations on chromatin accessibility and transcrip-
tional networks. a Volcano plot displaying the differentially expressed genes
(DEGs) between the tumor cells of BAP1-mutated tumors (26,806 cells) vs. tumor
cells of non-BAP1/PBRM1-mutated tumors (31,002 cells) by snRNA-seq data. Sta-
tistical evaluation was performed using a two-sided Wilcoxon rank-sum test,
applying Bonferroni correction for the resulting P-values. Dots are colored by
whether the genes showed significant and consistent fold changes in individual
comparisons of each BAP1-mutated tumor vs. non-BAP1/PBRM1-mutated tumors.
b Scatter plot showing the positive correlation of chromatin accessibility and
transcriptional changes. The log2(fold change) of the snRNA-seq expression for
each gene (mRNA) is plotted against the log2(fold change) in the relative snATAC-
seq peaks (for all the genes or promoter/enhancer peaks with significant fold
change in over 50% of the comparisons for individual BAP1-mutated tumor vs. non-
BAP1/PBRM1-mutated tumors). The P-value is derived from a two-sided Spearman
rank correlation test (P-value = 2.4e−15). Each dot represents a gene-peak pair. Dots

are colored by whether the peak overlaps the gene promoter or is a potential
enhancer (co-accessiblewith thepromoterpeak).cHeatmapshowing thepathways
associated with the BAP1-associated DEGs with promoter/enhancer accessibility
change (represented in b). d Genomic regions near the CES3 gene in BAP1-mutated
tumors vs. non-BAP1-mutated tumors. The plots show the normalized accessibility
signal by snATAC-seq around these regions in tumor cells of BAP1-mutant tumors
(purple), tumor cells of PBRM1-mutant tumors (orange), tumor cells of non-
BAP1/PBRM1-mutant tumors (pink). eWestern blot showing BAP1 and Actin protein
levels in the BAP1-reconstituted and control SKRC-42 cells. Three independent
experiments were performed that showed similar results. f Bar plot showing BAP1
and CES3 gene expression in the BAP1-reconstituted and control SKRC-42 cells.
g Schematic diagram showing the differential effects of BAP1 mutations on chro-
matin accessibility. Created with BioRender.com. Source data are provided as a
Source data file.
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constructs each as follows: CP_C1 with a target sequence being CCAGA
TAGAATTGGGAGACTA, CP_C2 with a target sequence being CCTACA
GTATTTGATGAGAAT, MXI1_C1 with a target sequence being GCT
CATTTCATGCTCTGCAAA, KLF9_C2 with a target sequence being AGT
GATTCTGGGCCCTTTATG. All the aforementioned target sequences
have been confirmed by Sanger sequencing (Genewiz). All vectors
contain bacterial (ampicillin) and mammalian (puromycin) antibiotic
resistance genes for the selection of inserts in either bacterial or
mammalian cell lines. For the scrambled shRNA, MISSION® pLKO.1-
puro Non-Mammalian shRNA Control Plasmid DNA (catalog: SHC002,
Sigma-Aldrich), 500ng/μL in TE buffer; DNA (10μg of plasmid DNA),
with mammalian (puromycin) antibiotic resistance genes. This was
purchased as plasmid DNA and directly packaged into lentiviruses
using HEK293T cells.

For the MISSION shRNA Bacterial Glycerol Stock, aliquots were
streaked in an agar plate and grown overnight in a humidified incu-
bator at 37 °C, afterwhich a single colonywas selected and amplified in
agar broth overnight in an incubator shaker, and then purified using
QiagenMini-Prep Kit for sequencing and thenQiagenMidi-Prep Kit for
DNA purification according to the manufacturer’s protocol.
HEK293T cells cultured in a complete culturing medium including
500mL GibcoTM DMEM, high glucose, GlutaMAXTM Supplement,
pyruvate with 10%GibcoTM FBSwere usedwith Lipofectamine™ 3000
Transfection Reagent (catalog: L3000015 according to the manu-
facturer’s protocol in order to package the plasmid DNA into lentiviral
particles. The transfection was done in T75 flasks of HEK293T cells at
95–99% confluency using 4.3μg of the pLenti expression vector using
ViraPower Lentiviral Packaging Mix (catalog: K497500) and Lentivirus
packaging medium (500mL GibcoTMOpti-MEMTM I Reduced Serum
Medium, GlutaMAXTM Supplement with 1mM GibcoTM Sodium Pyr-
uvate and 5% Gibco FBS). Each MISSION Control Vector was provided
as 10mg of purified plasmid DNA at a concentration of ~500 ng/mL in
10mMTris-HCl, pH 8.0, containing 1mM EDTA, with product titer (IU/
ml) for the shRNA purchased: 1 × 106 and 1 × 107 TU/mL. The multi-
plicity of infection (MOI) used for both RCC4 and Caki-1 cell lines was
≈5MOI. Puromycin was at 2μg/ml for Caki-1 and 4μg/ml for RCC4 cell
line based on the Puromycin killing curve performed. Infection was
performed using Polybrene (Catalog: TR-1003-G, Sigma-Aldrich) at a
concentration of 8μg/mL. The RCC4 and Caki-1 cell lines were main-
tained in Dulbecco’s modified Eagle medium/Nutrient Mixture F-12
(DMEM/F-12) culture medium (Gibco – 11320033) supplemented with
10% FBS (Sigma-Aldrich, F-9665) and 1% Pen Strep (Gibco, 10,000U/
mL−15140122). Puromycin selection was started 3 days post-infection
and maintained throughout the culture maintenance. Cells were cul-
tured in T75 flasks for western blot and T25 flasks for bulk RNA
extractions.

Western blotting
Cultured cells were washed with 1× PBS and lysed using 1x RIPA buffer
(#9806, CST) and then centrifuged at 17,000× g for 15min. Super-
natants were quantified using Bio-radDCprotein assay. Equal amounts
of proteins were loaded and separated using 10% polyacrylamide gel.
Proteins were transferred onto the activated PVDF membrane
(Immobilon-FL Merck Millipore) and later blocked using Odyssey
blocking buffer. Primary antibodies BTEB1 (A-5) or KLF9 (#sc-376422;
Monoclonal (A-5); Santa Cruz) at 1:250, CP (#A80–124A; Polyclonal;
Bethyl lab) at 1:1000, MXI1 (#12360-1-AP; Polyclonal; Proteintech)
at 1:50,β-Tubulin (9F3#2128S;Monoclonal;Cell SignalingTechnology)
at 1:1000, BAP1 (#sc-28383; Monoclonal (C-4); Santa Cruz) at 1:500,
β-Actin (#3700S; Monoclonal (8H10D10); Cell Signaling Technology)
at 1:5000 were incubated O/N at 4 °C and next day were incubated
with Licor IR 680 #925-32214 (Donkey anti-Goat), Licor IR 680 #926-
68072 (Donkey anti-Mouse), IR800 #926-32213 (Donkey anti-
Rabbit) fluorescent antibodies and HRP-conjugated #715-035-150
(Donkey anti-Mouse) at 1:10,000 dilution. The blot was developed

using the Bio-rad Chemidoc MP imaging system. Source data is pro-
vided as a Source data file.

Bulk copy number calling
Copy number variation was detected using BIC-seq2123, a read depth-
based CNV calling algorithm for WGS tumor data. BICseq2-norm
(v.0.2.4) is for normalizing potential biases in the sequencing
data. BICseq2-seg (v.0.7.2) is for detecting CNVs based on the nor-
malized data given by BICseq2-norm. Briefly, BIC-seq2 divides
genomic regions into disjoint bins and counts uniquely aligned reads
for each bin. It then combines neighboring bins into genomic
segments with similar copy numbers iteratively based on Bayesian
information criteria (BIC). We used paired-sample CNV calling that
takes a pair of samples as inputs and detects genomic regions
with different copy numbers between the two samples.We used a bin
size of 100 bp and a lambda of 3 (smoothing parameter for
CNV segmentation). A segment was called copy gain if log2(copy
ratio) was larger than 0.2 or copy loss if log2(copy ratio) was smaller
than −0.2, respectively. To further summarize the arm-level copy
number change, we used a weighted sum approach124, in which the
segment-level log2(copy ratio) for all the segments located in the
given arm were added up with the length of each segment being
weighted.

Sequencing read alignments and quality control (QC) of snRNA-
seq data
After single-nuclei prep and sequencing, Cell Ranger (v3.1.0) from 10x
Genomics (with Count functionality) was used for aligning reads to the
human genome reference (GRCh38) with the addition of pre-mRNA
reference (v3.0.0). The reference file was downloaded from the 10x
Genomicswebsite (https://support.10xgenomics.com/single-cell-gene-
expression/software/downloads/latest). The pre-mRNA reference
was added using the following code: awk ‘BEGIN{FS=“\t”; OFS=“\t”}
$3 == “transcript”{$3=“exon”; print}’ refdata-cellranger-GRCh38-3.
0.0/genes/genes.gtf > GRCh38-3.0.0.premrna.gtf; cellranger mkref
--genome=GRCh38-3.0.0.premrna --fasta=refdata-cellranger-GRCh38-
3.0.0/fasta/genome.fa --genes=GRCh38-3.0.0.premrna.gtf --nthreads
50. The parameters used with Count functionality include --chemis-
try=threeprime --expect-cells = 6000 --jobmode=local --localcores=20
--localmem= 350. The resulting gene-by-cell UMI count matrix was
used by the R package Seurat (v.3.1.0)122 for all subsequent processing.

Quality filters were applied to the data to remove barcodes that
fell into any of the following categories: too few genes expressed
(possible debris), too many associated UMIs (possibly more than one
cell), and too highmitochondrial gene expression (possible dead cell).
The cut-offs for these filters were based on recommendations by
Seurat package documentation and manually adjusted to keep the
number of cells after filtering under 6500 (detailed filtering para-
meters see Supplementary Data 2). Finally, doublets were filtered out
using Scrublet (v.0.2.1). Scrublet was run on each sample separately
with the following parameter settings: expected_doublet_rate = 0.06,
min_counts = 2, min_cells = 3, min_gene_variability_pctl = 85, n_prin_-
comps=30. The doublet score thresholdwas adjustedmanually, which
can separate the two peaks of a bimodal simulated doublet
score histogram (see detailed thresholds used for each sample in
Supplementary Data 2).

Normalization, feature selection, and dimensional reduction of
snRNA-seq data
The filtered gene-count matrix was normalized for sequencing depth
by dividing by the total gene counts in each cell. The value was then
log-transformed using the Seurat NormalizeData function (default
parameters). We calculated a subset of features (genes) that showed
high cell-to-cell variation for downstream analysis. For the processing
of individual samples, the Seurat function FindVariableFeatures was
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used (with default parameters) to identify the top 2000 most variable
features, which were then scaled using the Seurat function ScaleData
(with the default parameters) to have respective mean expression and
variance of 0 and 1 across cells. For the merging of datasets across all
samples, the top3000most variable featureswere identified.Here, the
features parameter for the ScaleData function was specified as all
genes in the count matrix, whereby the downstream Principle Com-
ponent Analysis (PCA) will take all features (with available scaled data)
as inputs. Tomerge snRNA data from the same patient, we applied the
Seurat function SCTransform with the parameter vars.to.regress spe-
cified as nCount_RNA and percent.mito. The scaled data were then
used directly as input for PCA using the Seurat function RunPCA (with
the default parameters). The first 30 Principal Components (PCs) were
used for downstream analysis. We also used the RunUMAP function
(with default parameters) and the first 30 PCs to perform the Uniform
Manifold Approximation and Projection (UMAP), a standard dimen-
sional reduction step, to visualize the snRNA data. For the processing
of tumor cells only in individual samples and immune cells (lymphoid
and myeloid lineage immune cells separately) of all samples, the same
functions (used ScaleData instead of SCTransform) and the same
aforementioned parameters were used.

Clustering snRNA-seq data
Cells were clustered using a graph-based clustering (default of Seurat)
approach. First, we utilized the Seurat function FindNeighbors to
embed cells in a K-nearest neighbor (KNN) graph structure, based on
the Euclidean distance in PCA space, with edges drawn between cells
having similar expression patterns. We used the previously-defined
first 30 PCs as inputs to the function, while other parameters were left
as defaults. To cluster cells, we then applied modularity optimization
techniques (using the default Louvain algorithm from the Seurat
function FindClusters) to iteratively group cells together to optimize
the standard modularity function. We set the resolution parameter at
0.5, while other parameters were left as defaults. For defining tumor
clusters with substantial transcriptional differences, tumor-cell clus-
ters initially assigned by Seurat (https://github.com/ding-lab/ccRCC_
snRNA_analysis/blob/master/recluster/recluster_tumorcells/recluster_
tumor_cells_in_selected_samples_rm_doublets_katmai.R) were visua-
lized in UMAPs and manually inspected. Tumor-cell clusters without
clear separation, suggesting a lack of transcriptional differences, were
grouped into one cluster.

Merging of snRNA-seq data across samples
We used the Seurat function merge to combine the Seurat objects
from multiple samples after quality control. Details for merging,
normalization, feature selection, dimension reduction, and clustering
of all snRNA-seq datasets can be found at https://github.com/ding-lab/
ccRCC_snRNA_analysis/blob/master/integration/seuratintegrate_34_
ccRCC_samples/reciprocalPCA_integrate_34_ccRCC_samples.R, and
details for the merging and downstream analysis for multiple samples
from the same patient can be found at merge_same_patient_segments/
merge_same_patient_segments_C3L-00088.R, both being at our
code archive https://github.com/ding-lab/ccRCC_snRNA_analysis/
blob/master/integration/.

Cell-type annotation of snRNA-seq data
We curated from the literature a list of well-known markers, including
CA9 for tumor cells (a downstream target of HIF and commonly
upregulated in ccRCC cells, but not in normal kidney cells) and LRP2
for proximal tubule cells (Supplementary Data 2). Using the merged
snRNA data, we filtered the marker genes down to those that were
expressed in at least 10% of at least one cluster. We then labeled each
cluster with cell type names by examining the expression values and
the percentages expressed of all the filtered marker genes across all
clusters (using the Dotplot function of the Seurat package). Finally, we

also corrected the cell type labels in individual samples based on
marker gene expression, mutation, and CNV mapping evidence.

Tumor cell-associated marker discovery
Tumor-specific marker discovery was done in Seurat by comparing
gene expression between tumor cells and non-tumor cells in patient
samples. Thepipeline consists of 4 steps: (1) compare expression levels
across cell types strictly within samples to discern markers char-
acteristic of tumor cells, identifying those that hold more generally
across our 30 ccRCC samples (see detailed processing parameters at
https://github.com/ding-lab/ccRCC_snRNA_analysis/blob/master/
findmarkers/tumor_specific_markers/tumor_specific_markers_
doparallel_V1.0.R), (2) narrow to those exclusive of proximal tubule
(PT) cells and epithelial cell types (as they were scarce in tumor sam-
ples), (3) confirm their chromatin accessibility changes using snATAC-
seq, and (4) validate in a larger cohort frombulk RNA and protein data,
and further characterize using spatial transcriptomes.

Using this approach, we identified 324 ccRCC tumor-cell-specific
markers from step 1. A gene is labeled tumor cell-specific if all of the
following criteria are satisfied: (1) the average expression of the gene is
higher in tumor cells compared with any other cell type, respectively,
for at least one sample, and all the differences are statistically sig-
nificant (log(Fold Change) >0; adjusted P-value < 0.05); (2) the average
expression of the gene in tumor cells is higher compared with non-
tumor cells (as a combined population) for 90% of the samples and
that such diff was statistically significant in at least 75% of the samples;
(3) the average expressionof gene in tumor cells is higher compared to
non-tumor cells in the normal tissue specifically. Finally, all P-values
were adjusted by Bonferroni correction.

To find potential antigens, we further annotated tumor cell-
specific genes by their subcellular location and tissue specificity. We
used three databases to curate the subcellular location information: (1)
Gene Ontology Term 0005886; (2) Mass Spectrometric-Derived Cell
Surface Protein Atlas125 (CSPA); (3) The Human Protein Atlas (HPA)
subcellular location data based on HPA version 19.3 and Ensembl
version 92.38. Subsequently, we identified 120 candidate surface
markers overexpressed in tumor cells compared to all the other cell
types in a majority of individual samples (step 1), prioritizing 20 that
were also overexpressed in ccRCC cells compared to normal proximal
tubule cells and other epithelial cell types (step 2; Fig. 1c, adding the
canonical ccRCCmarker CA9), thereby bolstering specificity to ccRCC.
19 of these markers showed higher chromatin accessibility (gene
activity, fold change >1) in tumor cells using snATAC-seq data, sug-
gesting higher chromatin accessibility may contribute to their higher
expression in tumor cells (step 3). 17 were further supported by the
bulk RNA-seq and proteomics data, by comparing the tumors to the
normal adjacent tissues of a larger cohort (step 4; Fig. 1c).

Average expression of given genes by cell type and sample
For this analysis, we utilized the merged Seurat object with all the
nuclei from all patients, and grouped nuclei by the combination of
sample ID and cell type (set it as the identity of the nuclei using the
Idents function). Then we used the AverageExpression function to
calculate the average expression using the SCT assay and data slot of
the Seurat object.

Survival analysis
TheRpackage survival (v. 3.2-13)wasused to perform survival analysis.
Kaplan–Meier curves of overall survival (function survfit) were used to
compare prognoses among patients with high and low expression
of tumor-cell-specific markers (https://github.com/ding-lab/ccRCC_
snRNA_analysis/blob/master/clinical_association/survival/survfit_
tumormarkers_by_tumorcell_snRNA_3groups_removemedium.R). The
expression-high and expression-low groupswere defined as thosewith
expression level of the studied gene in the top and bottom 30%
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quantile respectively. The survival data were obtained from CPTAC
clinical follow-up data as of Oct 2021.

Differential expression analysis
To compare RCC cells (Caki-1) with CP knockdown (sh-CP-C1 and sh-
CP-C2) vs. controls (sh-NT1 and sh-NT2) using bulk RNA-seq data, we
used edgeR package (default parameters) to identify differentially
expressed genes (only genes with counts > =2 in at least one sample
were used).

To compare the tumor cells of each tumor sample vs. proximal
tubule (PT) cells of four NATs using snRNA-seq data, we used the
default test (Wilcoxon Rank-Sum test) of function FindMarkers (from
the Seurat package) with the specified parameters: min.pct = 0.1,
min.diff.pct = 0.1, log(fc.threshold) = 0, and only.pos = F. In addition,
to correct for CNV, we performed a comparison of all tumor cells vs.
normal PT cells using each pre-filtered gene and the corresponding
CNV value calculated from bulk WGS data as latent variables. We
removed from the final list of genes those that were insignificant after
performing CNV correction. For comparing EMT vs. Epi-H tumor
clusters and comparing the tumor cells of each of the PBRM1-mutant
and BAP1-mutant tumors to the combined non-BAP1/PBRM1-mutated
tumors, the following specified parameters were used: min.pct = 0.1,
min.diff.pct = 0, log(fc.threshold) = 0, and only.pos = F.

For the filtering of differentially expressed genes (DEGs) con-
sistently upregulated in tumor cells of individual tumors vs. combined
PT cells, we require the DEGs to be significantly upregulated (p_val_adj
<0.05, avg_logFC >0) in ≥50%of the comparisons. The filtering of DEGs
consistently downregulated in tumor cells, and DEGs specific to BAP1-
and PBRM1-mutant tumors individually and together was similar to the
filtering strategy described above.

Pairwise correlation of the gene expression of tumor cells and
normal nephron epithelial cell types
First, wemodified the tumor-cell-associatedmarker discovery pipeline
to identify a set of markers specific to each of the 6 nephron epithelial
cell types. Then we collected the top 100 cell-type-specific marker
markers for each of the nephron epithelial cell types (see example at
https://github.com/ding-lab/ccRCC_snRNA_analysis/blob/master/
findmarkers/findmarkers_by_celltype/run_bycelltype_bysample.sh)
and tumor cell. The average expression of the genes in the united gene
list was used for the pairwise correlation of the cell groups.

Calculating the pathway activity score using snRNA-seq data
To identify the top pathways that can best explain the variations
among tumor subclusters within individual samples, we first identified
differentially expressed genes (DEGs; positive only, otherwise default
parameters) for each tumor subcluster (over 50 cells) for each tumor
using the Seurat FindMarkers function (default parameters). Secondly,
we ran over-representation tests for DEGs for each tumor subcluster
using the “Hallmark” gene set from MSigDB database (to avoid gene
redundancy) using the clusterProfiler package in R. Thirdly, we coun-
ted the frequency of a pathway over-represented in the subcluster-
associated DEGs across tumors and focused on the pathways that
enriched in at least oneDEG set of tumor subcluster. Thenwe calculate
the pathway scores for each tumor subcluster for each of the top
pathways. For this step,we ran theAverageExpression function (Seurat
package) to get the average expression of DEGs by tumor subclusters
(SCT assay, data slot). For each DEG, its expression was scaled across
all tumor clusters. And for each pathway, the pathway score is the
average of the scaled expression of the pathway-associated DEGs for
each tumor subcluster. For the pathway modules consisting of multi-
ple pathways, tumor clusters with pathway scores in the upper 25%
quantile for each member of the pathway module were considered
enriched in the corresponding pathway module. For the mTOR path-
way module, we require the tumor clusters to be in the upper 10%

quantile for the pathway score of the “HALLMARK_MTORC1_SIGNAL-
ING”gene set tobeconsidered enriched in themTORpathwaymodule.
For the EMT pathway module, we require the tumor clusters to be in
the upper 10% quantile for the pathway score of the “HALLMARK_E-
PITHELIAL_MESENCHYMAL_TRANSITION” gene set and those with
epithelial scores lower than 20% quantile to be considered enriched in
the EMT pathway module. For comparisons of the pathway scores
across patient groups,we took thehighestpathway score across tumor
subclusters in the same patient to be tested and visualized in these
figures. Wilcoxon test was used to compare pathway scores between
high tumor stage (stage III/IV) and low stage (stage I/II).

Calculating epithelial score and assigning epithelial group using
snRNA-seq expression
For the epithelial score, we used themarkers for the proximal tubule
cells and epithelial cells listed in Supplementary Data 2 that were also
downregulated in the EMT-enriched tumor clusters vs. other tumor
clusters (FDR < 0.05). We obtained their average expression by
tumor subclusters and PT clusters using the AverageExpression
function (Seurat package, SCT assay, “data” slot). The expression for
each marker was scaled across all tumor-cell and PT clusters. And
for each pathway, the epithelial score is the average of the scaled
expression of themarkers for each tumor subcluster. Tumor clusters
with epithelial scores higher than 70% quantile were assigned as Epi-
H tumor clusters. Tumor clusters with epithelial scores lower than
70% quantile and higher than 40% were assigned as Epi-M
tumor clusters. Tumor clusters that were in neither of the above
two groups nor EMT-enriched tumor clusters were assigned as Epi-L
tumor clusters.

Calculating tumor-cell-intrinsic signature scores using bulk
RNA-seq
As immune cells may be the main contributor of inflammatory
response gene expression in the bulk RNA-seq, we developed an ana-
lysis strategy to evaluate tumor-cell-intrinsic inflammatory response
signature. First, we identify tumor subclusters with the top and bottom
10% quantile inflammatory response score. Second, we compared
these two groups of tumor subclusters and identified genes over-
expressed in the tumor clusters with top inflammatory response
scores. Third, we overlapped these differentially expressed genes with
tumor-cell-specific markers identified in the “Tumor cell-associated
marker discovery” section. Finally, we calculate the signature score for
each tumor in the CPTAC cohort using bulk RNA-seq by taking
the mean value of the samplewise-scaled gene expression (log2FPKM).
We performed survival analysis by comparing patients with top and
bottom 25% quantile tumor-cell-intrinsic inflammatory response
scores. Similarly, we also conducted signature calculation and survival
analysis for six other gene sets associated with higher tumor grade.

Sequencing read alignments and quality control (QC) of
snATAC-seq
TheCell Ranger ATAC tool (v.1.2.0, 10xGenomics) was used to process
the raw snATAC-seq data (FASTQ). We utilized the cellranger-atac
count pipeline to filter and map snATAC-reads and to identify trans-
posase cut sites. The GRCh38 human reference was used for the read
mapping. Next, MACS2126 (v2.2.7.1) was used to perform peak calling.
All peaks were resized to 501 bp centered at the peak summit defined
by MACS2. After this, we combined all peaks and removed the ones
overlapping with the peaks with greater signal, to get the set of non-
overlapping peaks, as described in Schep et al.127. The resulting set of
sample peaks was used to calculate the peak-count matrix using Fea-
tureMatrix function from the R package Signac (v.1.2.0; https://github.
com/timoast/signac), which was also used for downstream analysis.
QC-filtering of the snATAC-seq data was performed using functions
from the Signac package. Filters that were applied for the cell
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calling include: 1000 <number of fragments in peaks <20,000, per-
centage of reads in peaks >15, ENCODE blacklist regions percentage
<0.05 (https://www.encodeproject.org/annotations/ENCSR636HFF/),
nucleosome banding pattern score <10, and enrichment-score for Tn5-
integration events at transcriptional start sites >2.

Normalization, feature selection, and dimension reduction of
snATAC-seq data
Thefilteredpeak-countmatrixwas normalizedusing term frequency-
inverse document frequency (TF-IDF) normalization implemented in
the Signac package (parameters: method=1, scale.factor = 10,000).
This procedure normalizes across cells, accounting for differences in
coverage across them and across peaks, giving higher values to
the more rare peaks. All the peaks were used as features for the
dimensional reduction. We used the RunSVD function from Signac
package to perform singular value decomposition on the normalized
TF-IDF matrix using all peaks, which is known as Latent Semantic
Indexing (LSI) dimension reduction. The resulting 2:30 LSI compo-
nents were used for non-linear dimension reduction using the
RunUMAP function from the Seurat package with parameter
reduction = ’lsi’.

Clustering of snATAC-seq data
The nuclei were clustered using a graph-based clustering approach
implemented in Seurat. First, we utilized the Seurat function Find-
Neighbors to construct a Shared Nearest Neighbor graph using the
2:30 LSI components and specifying reduction = ’lsi’. Next, we used the
FindClusters function to iteratively group nuclei together while opti-
mizing modularity using the SLM algorithm.

Merging of snATAC-seq data across samples
Merging of snATAC-seq datasets was performed using functions from
the Signac and Seurat packages. In order to get the set of peaks for
merging, we first combined peaks from all samples, and then for
overlapping peaks, we performed an iterative removal procedure, the
same as was used for creating individual sample sets of peaks. The
resulting list of peaks was quantified in each dataset and was used to
create a peak-cellmatrix so that the set of featureswas the sameacross
all snATAC datasets. After that, the merge function from the Seurat
package was used to merge snATAC datasets. Next, we performed TF-
IDF normalization. The LSI dimensional reduction was performed
using the RunSVD function. Non-linear dimension reduction was per-
formed using the RunUMAP function with the first 2:50 LSI
components.

Cell type label transfer from snRNA-seq to snATAC-seq data
Cell type label transferwasperformedusing functions fromSignac and
Seurat. First, we quantified chromatin accessibility associated with
each gene by summing the reads overlapping the gene body and its
upstream region of 2 kb, thus creating the gene-by-cell matrix. Coor-
dinates for the genes were used from the Ensembl database v.86
(EnsDb.Hsapiens.v86 package). Next, we performed log-normalization
of the resulting matrices using the NormaliseData function. The inte-
gration of paired snATAC-seq and snRNA-seq datasets was performed
using the FindTransferAnchors function with the Canonical Correla-
tion Analysis (CCA) option for dimensional reduction.We then utilized
the TransferData function to transfer cell type labels from the snRNA-
seq dataset to the snATAC-seq dataset using the obtained set of
anchors from the previous step.

Peak annotation
Peaks were annotated using R package ChiPseeker (v1.22.1) and the R
package TxDb.Hsapiens.UCSC.hg38.knownGene (v.3.16.0). The pro-
moter region was specified (−1000,100) relative to the transcription
start site.

Annotating differentially accessible chromatin regions (DACRs)
with cis-regulatory elements
The R package CICERO128 (v.1.10.0) was used to annotate DACRs with
cis-regulatory elements. Peaks co-accessible with the promoter peaks
(co-accessibility cutoff 0.25) were annotated as potential enhancer
elements.

Calculation of TF motif scores using snATAC-seq data
To evaluate TF binding accessibility profiles in the snATAC-seq data,
we used chromVAR127 (v1.6.0), which calculates biased-corrected
deviations (motif scores) corresponding to gain or loss of accessi-
bility for each TF motif relative to the average cell profile. Motif posi-
tion frequency matrices were obtained from the JASPAR2020 R
package (v.0.99.10).

Identifying differential TF binding accessibilities between cell
groups for snATAC-seq data
To compare the differences in the binding accessibility profiles
between cell groups, we used a two-sided Wilcoxon rank-sum test,
applying FDR correction for the resulting p-values. For the cell-type-
specific TF motifs, we compared cells from each group vs. all other
cells. For the comparison of tumor cells vs. the proximal tubule (PT)
cells, we compared tumor cells for each sample vs. the PT cells pooled
from four NAT samples. For Fig. 3a, we highlighted the motifs that are
differentially accessible in >=50% of samples with red dots (To gray
dots) and chose to further highlight motifs (in text) that are sig-
nificantly more accessible in all tumor samples, to prioritize a small
number of top significant TFs on which we concentrated our further
analyses.

Identifying ccRCC-specific TF motifs using bulk ATAC-seq data
To identify ccRCC-specific TFs in bulk ATAC-seq, we used data from
the Corces et al.46 paper to search for KIRC-cohort-specific peaks. For
this, we performed two comparisons: between samples from KIRC-
cohort and samples from all other cancer types, and between samples
from KIRC-cohort vs samples from KIRP-cohort. For downstream
analysis, we used only significant peaks with positive fold change
found in both comparisons. To calculate motif enrichment, we used
TFmotifView129 with the default parameters.

Identifying differentially accessible chromatin regions using
snATAC-seq data
To identify differentially accessible chromatin regions (DACRs)
between tumor cells and normal PT cells, we performed a compar-
ison for tumor cells from each tumor sample vs. PT cells pooled from
four NAT samples using the FindMarkers function from the Seurat
package, with logistic regression test and the fraction of fragments in
peaks as a latent variable to reduce the effect of different sequencing
depths across cells. Bonferroni correction was applied for P-value
adjustment using all peaks from the dataset. We required the peak to
be significant (FDR < 0.05) in at least 50% of comparisons, and the
same fold-change direction in all comparisons. In addition, to correct
CNV,we performed a comparison of all tumor cells vs normal PT cells
using a fraction of fragments in peaks and CNV-value calculated
from bulk WGS data as latent variables. We removed from the final
list of peaks the ones that were insignificant after performing CNV
correction.

Next, to identify DACRs specific to BAP1-mutant and PBRM1-
mutant tumors, we used the sets of samples for each category
described above. We performed comparisons for each BAP1/PBRM1-
mutant tumor sample vs pooled tumor cells fromnon-mutant samples.
DACRs specific to BAP1-mutant and PBRM1-mutant groups of samples
were selected if they were significantly more accessible in ≥50% of the
samples from the respective groups compared to the non-mutant
samples (we also required that a DACR should have the same fold-
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change direction in all comparisons). We chose to add this filter
because we have a small number of BAP1-mutated samples and it was
clear we would lack the necessary statistical power to assess whether
the resulting peaks/genes would be consistently higher in the BAP1-
mutated group. To be consistent, we applied this filtering strategy for
differentially expressed genes of both BAP1-mutated tumors and
PBRM1-mutated tumors. Finally, we removed peaks that were insig-
nificant after CNV correction.

To calculate DACRs between Epi-H and EMT tumor clusters, we
performed a comparison between the cells pooled from the two
groups, using FindMarkers with logistic regression test and the frac-
tion of fragments in peaks as a latent variable. To adjust P-values,
Bonferroni correction was applied.

Mapping TF motif to DACRs of DEGs
Then we filtered out genes lacking DACRs overlapping their
short promoter regions (−1000 to 100 relative to the TSS). Next, we
searched for motifs of top cell-type-specific TFs in the DACRs of
selected DEGs for cell types of interest. We then divided the TF-DEG
interactions into two categories based on the coordinates, relative
to TSS, of the motifs found in the DACRs overlapping a promoter:
(1) promoter motif, if the motif was found in the short promoter
region (−1000 to 100 from TSS) and (2) distant motif, if the motif
was found outside the promoter region. We used the described
procedure to study the mechanisms of transcriptional regulation
in both normal PT and tumor cells. Mapping of the motifs to the
DACRs was performed using the motifmatchr (v1.8.0) R package.

Visualizing the coverage of snATAC-seq for individual cell types
For snATAC coverage plots, we used the CoveragePlot function from
the Signac package. For tumor samples,weplotted coverage for tumor
cells only, and for NAT samples we plotted coverage for normal
PT cells only.

Over-representation test for differentially expressed genes and
differentially accessible chromatin regions
For over-representation tests other than tumor subcluster-associated
DEGs, we used the “Hallmark” gene set and the canonical gene set
(v.7.4) fromMSigDB130,131 database, and the enricher function from the
clusterProfiler R package132,133. For the over-representation test of the
DEGs between tumor cells and PT cells, genes that are expressed in at
least 10% of either cell group were used as background. For the over-
representation test for the DEGS with differentially accessible peaks
associated with BAP1 and PBRM1 mutations, the nearest genes asso-
ciated with all detected peaks were used as background. BAP1-
associated pathways were selected by selecting gene sets with P-
value <0.05 (<50% overlap).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw snRNA-seq and snATAC-seq data files generated in this study
have been deposited at the NCI Genomic Data Commons (GDC) and
Cancer Data Service (CDS) under dbGAP accession code phs001287.
v16.p6. Raw spatial transcriptomics and associated imaging data
generated for this study have been deposited at the Human Tumor
Atlas Network (HTAN) Data Coordinating Center Data Portal (https://
data.humantumoratlas.org/), specifically HTAN WUSTL Atlas, under
dbGAP accession code phs002371.v2.p1. Access to the raw data
mentioned above requires dbGAP authorization, so as to protect the
privacy and intent of research participants and to restrict data access
to scientific investigators pursuing research questions consistent
with the informed consent agreements provided by individual

research participants. The requested raw data will be available as
soon as dbGAP access has been granted. Additional requests for
processed data can be addressed to L.D. (lding@wustl.edu) and will
be responded to within one month. The publicly available raw and
processed bulk WES and RNA-seq data files (generated by Clark
et al.13) can be accessed through the GDC data portal under the
CPTAC project page (https://portal.gdc.cancer.gov/projects/CPTAC-
3). The publicly available raw and processed proteomics data and
clinical data (generated by Clark et al.13) are available via the NCI
Proteomics Data Commons. The publicly available processed bulk
mutation, tumor purity, and immune subtype data were downloaded
from theClark et al. CPTAC study13. The human genome reference file
was downloaded from the 10x Genomics website (https://support.
10xgenomics.com/single-cell-gene-expression/software/downloads/
latest). The subcellular location information can be retrieved from
three databases: (1) Gene Ontology Term 0005886; (2) Mass
Spectrometric-Derived Cell Surface Protein Atlas125 (CSPA); (3) The
Human Protein Atlas (HPA) subcellular location data based on HPA
version 19.3 and Ensembl version 92.38. The “Hallmark” and curated
gene sets were downloaded fromMSigDB. The processed data for re-
generating all major figures are available through our public GitHub
repository at https://github.com/ding-lab/ccRCC_sn_publication/
tree/main/plot_data. The remaining data are available within the
Article, Supplementary Information, or Source data file. Source data
are provided with this paper.

Code availability
The analysis codes for re-generating all major figures are available
through the public GitHub repository at https://github.com/ding-lab/
ccRCC_sn_publication.
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