
Article https://doi.org/10.1038/s41467-023-37207-3

Heating a dipolar quantum fluid into a solid

J. Sánchez-Baena 1,2 , C. Politi 3,4, F. Maucher 1,5, F. Ferlaino 3,4 &
T. Pohl 1

Raising the temperature of a material enhances the thermal motion of parti-
cles. Such an increase in thermal energy commonly leads to the melting of a
solid into a fluid and eventually vaporises the liquid into a gaseous phase of
matter. Here, we study the finite-temperature physics of dipolar quantum
fluids and find surprising deviations from this general phenomenology. In
particular, we describe how heating a dipolar superfluid from near-zero tem-
peratures can induce a phase transition to a supersolid state with a broken
translational symmetry. We discuss the observation of this effect in experi-
ments on ultracold dysprosium atoms, which opens the door for exploring the
unusual thermodynamics of dipolar quantum fluids.

A supersolid is an exotic phase of matter in which particles develop
regular spatial order and simultaneously support the frictionless flow
of a superfluid. Having evaded experimental verification for several
decades1, supersolidity can now be observed in Bose–Einstein con-
densates of ultracold atoms with finite-range interactions2–6. Sponta-
neous symmetry breaking in these systems occurs in the form of
regular periodic patterns of the condensate density as first predicted
by Gross in 19577. One would thus expect the lowest possible tem-
peratures to provide optimal conditions for supersolidity by ensuring
a high degree of phase coherence and maximal population of the
Bose–Einstein condensate. On the contrary, we demonstrate here that
thermal fluctuations in dipolar condensates do not merely diminish
global phase coherence but can instead facilitate the formation of
periodic modulations of the condensate density. This finding sheds
light on recent experimental observations8 and reveals an unusual
fluid-solid phase transition, whereby a supersolid state of matter
emerges upon increasing the temperature.

As we shall see below, this surprising behavior arises from the
anisotropic nature of the dipole–dipole interaction

VddðrÞ=
C3

4π
1� 3 cos2θ

r3
, ð1Þ

which has repulsive as well as attractive contributions, depending on
the angle θ between the dipolar orientation and the distance vector r
of the two atoms. The interaction strength C3 and the atomic mass m
define a length scale ad =mC3/(12π_

2) that competes with the

scattering length a of the short-range interaction between the atoms.
This competition between ad and a >0 can cause the condensate to
collapse when the stabilizing short-range repulsion is not sufficient to
overcome the attractive part of the dipole–dipole interaction between
the atoms9–11. Subsequent experiments12–14 have however found a
higher level of stability, which arises from quantum fluctuations15,16

that prevent the otherwise inevitable collapse of the condensate17–19. In
fact, the balance of attraction and repulsion effectively enhances the
role of quantum fluctuations18 beyond the semiclassical mean-field
physics of weakly interacting quantum gases. This yields a unique
setting that has revealed rich physics and a host of new quantum
states, from self-bound quantum droplets13,14,20 and supersolid
phases3–5,21–23 to complex patterns in two-dimensional fluids24,25.

Given this striking role of quantum fluctuations in dipolar
Bose–Einstein condensates, one may also anticipate significant effects
of thermal fluctuations despite the ultralow temperatures that are
required to reach quantum degeneracy. Here, we demonstrate that
this is indeed the case and show how increasing thermal fluctuations
can drive an unusual phase transition to a supersolid state.

Results and discussion
Thermodynamics of dipolar Bose–Einstein condensates
Let us first consider the grand canonical potentialΩ of the system at a
finite temperature T. For a weakly interacting gas with a high fraction
of atoms in the condensate, one can use Bogoliubov theory to deter-
mine Ω. This yields simple expressions for infinitely extended homo-
geneous systems26 that can be applied to describe trapped
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inhomogeneous gases within a local density approximation. Hereby,
one determines the Bogoliubov excitation spectrum and all relevant
observables for a homogeneous particle density ρ, which is then
identified as ρ ≡ ∣ψ(r)∣2 with the local condensate wave function ψ(r) at
a given position r. This permits to express the grand canonical
potential as

Ω= E0 +
kBT

ð2πÞ3
Z

dr
Z

dk ln 1� e�
εk ðrÞ
kBT

� �
, ð2Þ

where kB denotes the Boltzmann constant and E0 is the zero-
temperature grand canonical energy that contains the mean-field
interaction energy and leading order corrections due to quantum
fluctuations15, i.e. small occupations of excited states above the formed

Bose–Einstein condensate. The dispersion εk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τkðτk +2∣ψðrÞ∣2 ~V ðkÞÞ

q
of these excitations is determined by the kinetic energy τk = _2k2/(2m)

of the atoms and the Fourier transform ~V ðkÞ= 4π_2a
m + ~VddðkÞ of their

total interaction potential.
Minimizing Ω with respect to ψ(r) then yields a nonlinear wave

equation that accounts for quantum as well as thermal fluctuations
(see “Methods” section). At zero temperature, it describes the mean-
field physics of the condensate and captures leading-order effects of
quantum fluctuations through an effective density-dependent poten-
tial Hqu

18 that increases the energy of the system. The second term in
Eq. (2) yields an additional potential

HthðrÞ =
R

dk
ð2πÞ3

~V ðkÞ f kðrÞ τk
εkðrÞ , ð3Þ

that accounts for finite-temperature effects. It describes the interac-
tion between the condensate and thermally created excitations that
populate Bogoliubov modes according to the Bose distribution
f k = 1=ðeεk=kBT � 1Þ. The resulting form of the finite-temperature
extended Gross–Pitaevskii equation (TeGPE) agrees with the result of
Hartree–Fock Bogoliubov theory26,27, and includes relevant fluctuation
terms that are commonly neglected within the Popov approximation28

(see the “Methods” section).

Temperature effects in the thermodynamic limit
We can now use this framework to study an elongated atomic gas that
is confined harmonically in the x − y plane and extends infinitely in the
z-direction without confinement along the z-axis. Figure 1a shows the
thermodynamic phase diagram obtained by simulating the imaginary
time evolution of the TeGPE at a fixed chemical potential μ (see
“Methods” section). At zero temperature, we find a superfluid-
supersolid quantum phase transition, with a co-existence region that
is expected for a first-order phase transition29. While increasing the
temperaturemaygenerallybe expected tomelt the supersolid phase30,
we find instead that it shifts the transition towards weaker
dipole–dipole interactions. As a result, heating the system effectively
drives a phase transition from a fluid into a solid phase.

We can understand this effect from the excitation spectrumof the
condensate in the superfluid phase. To this end, we solve the time-
dependent TeGPE within linear response theory to find the excitation
spectrumωkz

for periodic plane-wave excitations along the z-direction.
As shown in Fig. 2, the obtained dispersion exhibits the expected
roton-maxon form31–35, known from low-temperature helium36 and
Bose-Einstein condensates with finite-range interactions37–40. The local
minimum at finite momenta supports the formation of roton quasi-
particles, which were introduced by Landau as elementary vortices to
describe superfluidity in 4He36. Experiments show that the roton
minimum in helium decreases with increasing temperature41 due to
roton-roton scattering42. Yet, the roton energy remains sizable at the
transition to a normal-fluid phase41, beyondwhich it only varies weakly
with temperature. The presence of a Bose–Einstein condensate in

dilute dipolar superfluids, however, enhances the effect of thermal
fluctuations due to the larger energy scale of the interaction between
Bogoliubov excitations and the condensate. A similar effect is found
for atoms with light-induced interactions and predicted to lower the
roton minimum and cause enhanced condensate depletion43. In the
present case, we find a thermal softening of the roton mode that can
drive an instability of the superfluid and thereby cause the formation
of a supersolid phase with increasing temperature. Hereby, the
depicted lowering of the rotonminimum renders densitymodulations
energetically more favorable as the temperature increases, which
eventually triggers a transition to a periodically modulated phase.

We can gain further intuition about the underlyingmechanism by
closer inspection of the two fluctuation energiesHqu andHth that both
contribute a local nonlinearity to the wave equation for ψ(r).Hqu > 0 is
the Lee–Huang–Yang correction to the equation of state15,16, and raises
the ground state energy due to the small condensate depletion caused
by the atomic interactions. It therefore increases for higher particle
densities and stronger interactions, as shown in Fig. 2b. Consequently,
Hqu generates an effective repulsion that stabilizes the condensate
against collapse18, and shifts the roton instability towards higher den-
sities and stronger dipole-dipole interactions. On the contrary, Hth

increases as we lower the density of the condensate [see Fig. 2b]. This
behavior is readily understood as follows.

Decreasing the condensate density increases the fraction of
thermally excited, non-condensed atoms27. In the limit where this
fraction remains small, such an increase implies a larger potential
energy due to interactions with the thermal atoms. It therefore con-
tributes a positive energy correction that decreases upon increasing
the density ρ = ∣ψ∣2 of the condensate. As a result, thermal fluctuations
energetically favor higher condensate densities, such that Hth has a
focusing effect on the condensate wave function which lowers the

Fig. 1 | Temperature-driven formation of supersolidity. Heating a dipolar
quantum fluid can lead to the emergence of a supersolid phase of matter, as illu-
strated schematically in c. a This is demonstrated in the thermodynamic phase
diagram for an infinitely elongated Bose–Einstein condensate in a radial harmonic
trap without axial confinement. In between the superfluid (blue) and supersolid
(red) region, both phases coexist (purple region) as characteristic for a first-order
phase transition. The calculations were performed for a fixed chemical potential
μ/ϵd = 1, where ϵd = _

2=ðð12πÞ2ma2
dÞ parametrizes the characteristic energy scale of

the dipole-dipole interactions. Measurements of supersolid formation during the
cooling of a gas of dysprosium atoms8 indicate the temperature-driven emergence
of supersolidity. The color of the dots in b indicates the measured density mod-
ulation M whereby orange dots correspond to a large contrast M>0:2 and blue
corresponds to an unmodulated condensate with M<0:2. Our observations agree
well with the theoretically predicted transition (purple line) and show that super-
solidity indeed arises with increasing temperaturewhile keeping the number,Nc, of
condensed atoms as well as the interaction strengths (ad/a = 1.46 and a = 4.7 nm)
fixed. The error bars in b indicate the statistical uncertainty (one standard devia-
tion) of the measured number of condensed atoms (horizontal error bars) and the
temperature (vertical error bars).
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roton energy and facilitates the formation of a density-modulated
phase, as illustrated in Fig. 2c, d.

Experimental observations in confined dipolar quantum fluids
We recently observed experimental signatures of this effect by
studying the cooling–heating lifecycle of bosonic dysprosiumatoms at

ultralow temperatures8. The experiment starts from a thermal cloud of
105 atoms in an optical dipole trap with trap frequencies
ωx,y,z = 2π × (88, 141, 36) s−1 that is elongated along the z-axis. A mag-
netic field is applied along the y-direction and defines the orientation
of the atomicdipoles.Wehave traced the timeevolutionof the gas as it
is cooled evaporatively to quantum degeneracy by lowering the depth
of the trap. During the continual cooling and thermalization, we
observed the expected emergence of supersolidity, and studied the
equilibrium states of the quantum fluid across the supersolid phase
transition. The measured density profiles indicate a higher degree of
modulation at higher temperatures. While this has cast mystery on the
origin of the observations, they can now be used to corroborate and
benchmark our theoretical understanding. In Fig. 1b, we trace the
measured contrast of the axial density modulations (see Methods
Section) during the cooling process for different temperatures and
condensed atom numbers. The results confirm the formation of a
supersolid phase with increasing temperature in good agreement with
the theoretical transition line obtained numerically by the TeGPE.
Moreover, Fig. 3 compares our theoretical prediction to the measured
axial density, ρ∣∣(z), for a given temperature and atom number during
the cooling process8. The predicted zero-temperature ground state
corresponds to an unstructured superfluid and deviates qualitatively
from the observed supersolid state. The result of our finite-
temperature TeGPE simulation, however, agrees with the experiment
and reproduces quantitatively the period and amplitude of the mea-
sured density modulations. This remarkable level of agreement offers
strong indication that the observed supersolid has indeed been gen-
erated by the finite temperature of the atoms.

The possibility to make detailed comparisons between theory
and experiments opens up several directions for exploring the sur-
prising thermodynamic behavior of quantum ferrofluids. Already,
the ground state phase diagram exhibits a rich structure, including
first-order as well as second-order quantum phase transitions in one
and two-dimensional systems29,44,45. This offers a promising starting
point for investigating how thermal fluctuations influence the nature
of the fluid-solid phase transition and may affect the physics of
higher dimensional supersolids46,47, which can come in a diverse
range of complex patterns24,25,44. Our present findings motivate
future experiments to systematically explore the thermodynamic
phase diagram, e.g., by actively heating the condensate across the
superfluid-supersolid phase transition. Suchmeasurements as well as
first-principle simulations48,49 would permit to expand the phase
diagram of Fig. 1 into the high-temperature domain and draw a direct
connection to the more familiar physics of liquid–solid phase tran-
sitions in the absence of superfluidity. Such numerical approaches
may also reveal how the present phenomenology extends into the
regime of strong interactions, which is becoming accessible in
experiments with ultracold polar molecules23,33,50–52. Equally impor-
tant, an improved understanding of finite-temperature effects in
dipolar quantum fluids could help resolving current questions about
quantitative discrepancies between measurements and theory3,34.

Methods
The nonlinear wave equation
The grand canonical potential is minimal in equilibrium such that we
can minimize Eq. (2) with respect to the condensate wave function
ψ(r). This yields the nonlinear wave equation

μψðrÞ= � _2∇2

2m
+UðrÞ+ 4π_2a

m
∣ψðrÞ∣2

 

+
Z

dr0Vddðr� r0Þ∣ψðr0Þ∣2 +HquðrÞ+HthðrÞ
�
ψðrÞ,

ð4Þ

Fig. 2 | Roton softening by thermal fluctuations. Raising the temperature of a
dipolar quantum fluid can induce a pronounced roton-maxon spectrum of its
collective excitations, as shown ina for an infinitely elongatedcondensate along the
z-axis [see Fig. 1c]. Heating thefluid tends to lower the energyof the rotonminimum
andeventually softens the rotonexcitation as the temperature increases. This effect
can be traced back to the density dependence of the energy correction caused by
fluctuations, shown in b. While quantum fluctuations yield an energy Hqu (dashed
line) that increases with a rising condensate density ρ = ∣ψ∣2, the contribution Hth

from thermal fluctuations decreases (solid lines). The thermal energy correction
Hth(r), therefore, acts as a focusing nonlinearity that supports the formation of
regular density modulations. This is illustrated in c, d, where we show the axial
density ρ∣∣(z) = ∫dxdyρ(r) along with the axial potential �Hth =ρ

�1
∣∣
R
dxdyρðrÞ�HthðrÞ,

respectively. The calculations are performed for a/ad = 0.7 and μ = εd.

Fig. 3 | Emergence of density modulations in trapped condensates. Our mea-
sured axial density ∣ψ∣∣(z)∣2 (orange points), observed for T = 76.5 nK and Nc = 13,400
condensate atoms, demonstrates the formationof a supersolid state and agreeswell
with the numerical simulation of the TeGPE (red line). On the other hand, equivalent
simulations at zero temperature (blue line) disagree qualitatively and instead yield
an unmodulated superfluid phase. The vertical error bars indicate the statistical
uncertainties (one standard deviation) of the experimentally measured density.

Article https://doi.org/10.1038/s41467-023-37207-3

Nature Communications |         (2023) 14:1868 3



which determines the equilibrium state of the condensate for a given
chemical potential μ. We consider a harmonic trapping potential
UðrÞ= m

2 ðωxx
2 +ωyy

2 +ωzz
2Þ, with trapping frequencies ωx,y,z along

the three cartesian axes. The first four terms correspond to the
Gross–Pitaevskii equation that describes the mean-field physics of
the condensate at zero temperature. The next term is given by
Hqu(r) = γqu∣ψ(r)∣3 and accounts for leading order effects of quantum
fluctuations with a strength γqu that increases with a and ad15,16,18 (see
also Supplementary Information). Finite-temperature effects are
captured by the last termas given in Eq. (3). Amore detailed derivation
of Eq. (4) is discussed in the Supplementary Information.We note here
that the applied local-density approximation can cause an infrared
divergence of the momentum integral in Eq. (3). However, the finite
system size of trapped systems yields a natural momentum cutoff that
ensures converged results. Indeed, we find that our calculated
condensate wave functions are not sensitive to the precise choice of
the momentum cutoff for relevant trap geometries (see Supplemen-
tary Information).

Finite-temperature simulations
We have calculated the condensate wave function at finite tempera-
tures by simulating the imaginary time evolution of the wave equation
(4).More concretely, we replace μψ by − ∂tψ in Eq. (4) and simulate the
time evolution until ψ(r, t) reaches a steady state for a given norm
Nc = ∫dr∣ψ(r, t)∣2. Nc corresponds to the number of condensate atoms
under 3D confinement as considered in Figs. 1(b) and 3, and yields the
axial density Nc=L= L

�1 R dxdy R L0 dz∣ψðr,tÞ∣2 for a given length L of
the periodic simulation box as considered in Figs. 1a and 2. Finally, we
determine the chemical potential from Eq. (4) in order to construct
the thermodynamic phase diagram shown in Fig. 1a. The results shown
in Figs. 1b and 3 are obtained for the experimental trap parameters ωx/
2π = 88Hz, ωy/2π = 141 Hz, and ωz/2π = 36Hz, and a scattering length
a = 4.7 nm. The simulations of Figs. 1a and 2 have been performed for
wx =0.0717εd, wy = 0.142εd, and wz =0. In all cases, the dipoles are
considered to be polarized along the y-axis .

Experimental determination of the density, temperature and
atom number
We probe the atomic cloud using two different imaging techniques: (i)
absorption imaging in time-of-flight measurements after releasing the
atoms from the trap, and (ii) in situ measurements of the atomic
density in the trap via phase-contrast imaging.

Absorption imaging. We turn off the optical dipole trap and probe the
atomic cloud via absorption imaging after a time of flight of 26ms.
Within this expansion time the density has decreased sufficiently to
perform accurate absorption measurements with resonant laser light
that we shine horizontally. The recorded absorption images exhibit a
characteristic bimodal profile, consisting of a broad distribution, that
stems from the thermal atoms, and a narrower pattern that reflects the
momentum distribution of the Bose-Einstein condensate. The broad
thermal distribution permits to extract the temperature T and the
number Nth of thermal atoms by fitting to a 2D Bose-enhanced
Gaussian53. Since the total number, N, of atoms can be determined by
integrating the total absorption signal, we can also obtain the number
Nc =N −Nth of condensed atoms, as used in Figs. 1b and 3.

Phase-contrast imaging. In order to measure the in-situ density pro-
file of the trapped atoms, we use far-detuned laser light and probe the
atomic density profile via Faraday phase-contrast imaging54 with a
vertically propagating probe beam (along the y-axis). We integrate the
recorded signal along the x-axis to obtain an image of the 1D axial
density. The position of the atomic cloud in a given image fluctuates
from shot to shot. We correct for such unavoidable center-of-mass
fluctuations, by realigning the central maximum of each image in the

supersolid phase to the origin, z =0. By averaging over many such
images, we obtain the axial density ρ∣∣(z) of the atoms, as shown in
Fig. 3. Despite the large frequency detuning of the probe light, the high
atomic density and high density gradients in the supersolid phase can
cause lensing effects around the droplets. The resulting image dis-
tortion can generate spurious negative values of the observed optical
density in the low-density regions between the droplets, as can be seen
in Fig. 3. Yet, in our measurements, this distortion effect remains suf-
ficiently small to reliable detect the transition to amodulated state and
to enable direct comparisons of its characteristic length scale and
modulation contrast with the theoretical predictions.

Determination of the modulation contrast
The density modulation is quantified by the Fourier transform,
~ρ∣∣ðkÞ=

R
e�ikz zρ∣∣ðzÞdz of the axial density. We obtain the modulation

contrast M as the ratio between the modulus of the Fourier compo-
nent at themodulationwave vector and the density ∣~ρ∣∣ð0Þ∣ at kz = 0.We
apply this procedure to to our measured and numerically simulated
density profiles, from which we obtain the theoretical and experi-
mental transition shown in Fig. 1b. Hereby, the modulated states are
characterized by a contrastM>0:2, while unmodulated condensates
yield smaller values ofM<0:2, (see also Supplementary Information).

Data availability
The data on which the plots in this paper are based and other findings
of this study are available from the authors upon request.

Code availability
The codes on which the calculations within this paper are based and
other findings of this study are available from the corresponding
author, J.B., upon reasonable request.

References
1. Chan,M. H.W., Hallock, R. B. & Reatto, L. Overview on solid 4He and

the issue of supersolidity. J. Low Temp. Phys. 172, 317 (2013).
2. Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T.

Supersolid formation in a quantum gas breaking a continuous
translational symmetry. Nature 543, 87 (2017).

3. Böttcher, F. et al. Transient supersolid properties in an array of
dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).

4. Chomaz, L. et al. Long-lived and transient supersolid behaviors in
dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).

5. Tanzi, L. et al. Observation of a dipolar quantum gas with meta-
stable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

6. Schuster, S. C., Wolf, P., Ostermann, S., Slama, S. & Zimmermann,
C. Supersolid properties of a Bose-Einstein condensate in a ring
resonator. Phys. Rev. Lett. 124, 143602 (2020).

7. Gross, E. P. Unified theory of interacting Bosons. Phys. Rev. 106,
161–162 (1957).

8. Sohmen, M. et al. Birth, life, and death of a dipolar supersolid. Phys.
Rev. Lett. 126, 233401 (2021).

9. Santos, L., Shlyapnikov, G. V., Zoller, P. & Lewenstein, M. Bose-
Einstein condensation in trapped dipolar gases. Phys. Rev. Lett. 85,
1791 (2000).

10. O’Dell, D. H. J., Giovanazzi, S. & Eberlein, C. Exact hydrodynamics of
a trapped dipolar Bose-Einstein condensate. Phys. Rev. Lett. 92,
250401 (2004).

11. Bortolotti, D. C. E., Ronen, S., Bohn, J. L. & Blume, D. Scattering
length instability in dipolar Bose-Einstein condensates. Phys. Rev.
Lett. 97, 160402 (2006).

12. Kadau, H. et al. Observing the Rosensweig instability of a quantum
ferrofluid. Nature 530, 194 (2016).

13. Schmitt, M., Wenzel, M., Böttcher, F., Ferrier-Barbut, I. & Pfau, T.
Self-bound droplets of a dilute magnetic quantum liquid. Nature
539, 259 (2016).

Article https://doi.org/10.1038/s41467-023-37207-3

Nature Communications |         (2023) 14:1868 4



14. Chomaz, L. et al. Quantum-fluctuation-driven crossover from a
dilute Bose-Einstein condensate to a macrodroplet in a dipolar
quantum fluid. Phys. Rev. X 6, 041039 (2016).

15. Lima, A. R. P. & Pelster, A. Quantum fluctuations in dipolar Bose
gases. Phys. Rev. A 84, 041604 (2011).

16. Lima, A. R. P. & Pelster, A. Beyond mean-field low-lying excitations
of dipolar Bose gases. Phys. Rev. A 86, 063609 (2012).

17. Petrov, D. S. Quantum mechanical stabilization of a collapsing
Bose-Bose mixture. Phys. Rev. Lett. 115, 155302 (2015).

18. Wächtler, F. &Santos, L.Quantumfilaments indipolar Bose-Einstein
condensates. Phys. Rev. A 93, 061603 (2016).

19. Cabrera, C. R. et al. Quantum liquid droplets in a mixture of Bose-
Einstein condensates. Science 359, 301 (2018).

20. Böttcher, F. et al. Dilute dipolar quantum droplets beyond the
extended Gross-Pitaevskii equation. Phys. Rev. Res. 1,
033088 (2019).

21. Tanzi, L. et al. Supersolid symmetry breaking from compressional
oscillations in a dipolar quantum gas. Nature 574, 382 (2019).

22. Guo, M. et al. The low-energy Goldstone mode in a trapped dipolar
supersolid. Nature 574, 386 (2019).

23. Ilzhöfer, P. et al. Phase coherence in out-of-equilibrium supersolid
states of ultracold dipolar atoms. Nat. Phys. 17, 356–361 (2021).

24. Zhang, Y.-C., Pohl, T. & Maucher, F. Phases of supersolids in con-
fined dipolar Bose-Einstein condensates. Phys. Rev. A 104,
013310 (2021).

25. Hertkorn, J. et al. Pattern formation in quantum ferrofluids: from
supersolids to superglasses. Phys. Rev. Res. 3, 033125 (2021).

26. Giorgini, S., Pitaevskii, L. P. & Stringari, S. Thermodynamics of a
trapped Bose-condensed gas. J. Low Temp. Phys. 109, 309
(1997).

27. Aybar, E. & Oktel, M. Ö. Temperature-dependent density profiles of
dipolar droplets. Phys. Rev. A 99, 013620 (2019).

28. Griffin, A. Conserving and gapless approximations for an inhomo-
geneous Bose gas at finite temperatures. Phys. Rev. B 53,
9341 (1996).

29. Blakie, P. B., Baillie, D., Chomaz, L. & Ferlaino, F. Supersolidity in an
elongated dipolar condensate. Phys. Rev. Res. 2, 043318 (2020).

30. Cinti, F., Boninsegni, M. & Pohl, T. Exchange-induced crystallization
of soft-core Bosons. N. J. Phys. 16, 033038 (2014).

31. Santos, L., Shlyapnikov, G. V. & Lewenstein, M. Roton-maxon
spectrum and stability of trapped dipolar Bose-Einstein con-
densates. Phys. Rev. Lett. 90, 250403 (2003).

32. Wilson, R. M., Ronen, S., Bohn, J. L. & Pu, H. Manifestations of the
roton mode in dipolar Bose-Einstein condensates. Phys. Rev. Lett.
100, 245302 (2008).

33. Chomaz, L. et al. Observation of rotonmode population in a dipolar
quantum gas. Nat. Phys. 14, 442 (2018).

34. Petter, D. et al. Probing the roton excitation spectrum of a stable
dipolar Bose gas. Phys. Rev. Lett. 122, 183401 (2019).

35. Schmidt, J.-N. et al. Roton excitations in an oblate dipolar quantum
gas. Phys. Rev. Lett. 126, 193002 (2021).

36. Landau, L. On the theory of superfluidity. Phys. Rev. 75, 884
(1949).

37. O’Dell, D. H. J., Giovanazzi, S. & Kurizki, G. Rotons in gaseous Bose-
Einstein condensates irradiated by a laser. Phys. Rev. Lett. 90,
110402 (2003).

38. Henkel, N., Nath, R. & Pohl, T. Three-dimensional roton excitations
and supersolid formation in Rydberg-excited Bose-Einstein con-
densates. Phys. Rev. Lett. 104, 195302 (2010).

39. Mottl, R. et al. Roton-type mode softening in a quantum gas with
cavity-mediated long-range interactions. Science 336, 1570 (2012).

40. Zhang, Y.-C., Walther, V. & Pohl, T. Long-range interactions and
symmetry breaking in quantum gases through optical feedback.
Phys. Rev. Lett. 121, 073604 (2018).

41. Dietrich, O. W., Graf, E. H., Huang, C. H. & Passell, L. Neutron
scattering by rotons in liquid helium. Phys. Rev. A 5, 1377 (1972).

42. Kebukawa, T. The temperature dependence of phonon velocity and
roton minimum in liquid He II. Prog. Theor. Phys. 49, 388
(1973).

43. Mazets, I. E., O’Dell, D. H. J., Kurizki, G., Davidson, N. & Schleich, W.
P. Depletion of a Bose-Einstein condensate by laser-induceddipole-
dipole interactions. J. Phys. B At. Mol. Opt. Phys. 37, S155 (2004).

44. Zhang, Y.-C., Maucher, F. & Pohl, T. Supersolidity around a critical
point in dipolar Bose-Einstein condensates. Phys. Rev. Lett. 123,
015301 (2019).

45. Biagioni, G. et al. Dimensional crossover in the superfluid-
supersolid quantum phase transition. Phys. Rev. X 12,
021019 (2022).

46. Norcia, M. A. et al. Two-dimensional supersolidity in a dipolar
quantum gas. Nature 596, 357 (2021).

47. Tanzi, L. et al. Evidence of superfluidity in a dipolar supersolid from
nonclassical rotational inertia. Science 371, 1162 (2021).

48. Macia, A., Sánchez-Baena, J., Boronat, J. & Mazzanti, F. Droplets of
trapped quantum dipolar Bosons. Phys. Rev. Lett. 117, 205301
(2016).

49. Cinti, F., Cappellaro, A., Salasnich, L. & Macrì, T. Superfluid fila-
ments of dipolar Bosons in free space. Phys. Rev. Lett. 119,
215302 (2017).

50. Anderegg, L. et al. Observation of microwave shielding of ultracold
molecules. Science 373, 779 (2021).

51. Schindewolf, A. et al. Evaporation of microwave-shielded polar
molecules to quantum degeneracy. Nature 607, 677 (2022).

52. Schmidt, M., Lassablière, L., Quéméner, G. & Langen, T. Self-bound
dipolar droplets and supersolids in molecular Bose-Einstein con-
densates. Phys. Rev. Res. 4, 013235 (2022).

53. Ketterle, W., Durfee, D. S. & Stamper-Kurn, D. M., Making, probing
and understanding Bose-Einstein condensates, in Proceedings of
the International School of Physics “Enrico Fermi” 67–176 (IOS
Press, 1999).

54. Bradley, C. C., Sackett, C. A. & Hulet, R. G. Bose-Einstein con-
densation of lithium: observation of limited condensate number.
Phys. Rev. Lett. 78, 985–989 (1997).

Acknowledgements
We thank Yongchang Zhang, Georg Bruun, and Jordi Boronat for valu-
able discussions and the Er-Dy team in Innsbruck for experimental
support. This work was supported by the DNRF through the Center of
Excellence forComplexQuantumSystems (CCQ) (Grant agreement no.:
DNRF156), by the Carlsberg Foundation through the ‘Semper Ardens’
Research Project QCooL, and by the DFG through the SPP1929 GiRyd.
F.M. acknowledge support through the grant PID2021-128910NB-I00 of
the Ministerio de Ciencia e Innovación. J.S.-B. acknowledges funding by
the European Union, by the Spanish Ministry of Universities and by the
Recovery, Transformation and Resilience Plan through a grant from
Universitat Politècnica de Catalunya. F.F. and C.P. acknowledge support
through an ERC Consolidator Grant (RARE, No. 681432), the QuantERA
grant MAQS (No. I4391-N), and the FOR grant (2247/PI2790) by the
Austrian Science Fund FWF.

Author contributions
This project was conceived by F.F. and T.P. The theoretical aspects of
this work were developed by J.B. and F.M.; J.B. conducted the numerical
calculations. The experimental analysis was performed by C.P. All
authors contributed to the technical discussions and the writing of the
manuscript.

Competing interests
The authors declare no competing interests.

Article https://doi.org/10.1038/s41467-023-37207-3

Nature Communications |         (2023) 14:1868 5



Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-37207-3.

Correspondence and requests for materials should be addressed
to J. Sánchez-Baena or T. Pohl.

Peer review information Nature Communications thanks Nikolaos
Proukakis, Florian Schäfer and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports
are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-37207-3

Nature Communications |         (2023) 14:1868 6

https://doi.org/10.1038/s41467-023-37207-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Heating a dipolar quantum fluid into a solid
	Results and discussion
	Thermodynamics of dipolar Bose–Einstein condensates
	Temperature effects in the thermodynamic limit
	Experimental observations in confined dipolar quantum fluids

	Methods
	The nonlinear wave equation
	Finite-temperature simulations
	Experimental determination of the density, temperature and atom number
	Absorption imaging
	Phase-contrast imaging
	Determination of the modulation contrast

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




