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Structural insights into the human niacin
receptor HCA2-Gi signalling complex

Yang Yang 1,2,3,9, Hye Jin Kang4,5,9, Ruogu Gao 2,3,9, Jingjing Wang1,
Gye Won Han6, Jeffrey F. DiBerto4, Lijie Wu1, Jiahui Tong1, Lu Qu1, Yiran Wu 1,
Ryan Pileski4,8, Xuemei Li2,3, Xuejun Cai Zhang 2,3, Suwen Zhao 1,
Terry Kenakin4, Quan Wang 2, Raymond C. Stevens1, Wei Peng 7 ,
Bryan L. Roth 4 , Zihe Rao 2,3 & Zhi-Jie Liu 1

The hydroxycarboxylic acid receptor 2 (HCA2) agonist niacin has been used as
treatment for dyslipidemia for several decades albeit with skin flushing as a
common side-effect in treated individuals. Extensive efforts have been made
to identify HCA2 targeting lipid lowering agents with fewer adverse effects,
despite little being known about the molecular basis of HCA2 mediated sig-
nalling. Here, we report the cryo-electronmicroscopy structure of theHCA2-Gi

signalling complex with the potent agonist MK-6892, along with crystal
structures of HCA2 in inactive state. These structures, together with compre-
hensive pharmacological analysis, reveal the ligand binding mode and acti-
vation and signallingmechanismsofHCA2. This study elucidates the structural
determinants essential for HCA2 mediated signalling and provides insights
into ligand discovery for HCA2 and related receptors.

G-protein coupled receptors (GPCRs) represent a class of integral
membrane proteins that interact with a vast array of neuro-
transmitters, hormones, odorants, lipids, ions and metabolites1,2.
HCA2, also known as GPR109A or niacin receptor, is a prototypical
metabolite-sensing receptor3 and also have long represented the
molecular target for the anti-dyslipidemic actions of niacin and the
endogenous ligand 3-hydroxy-butyric acid4–7, being enriched on adi-
pocytes. Many high-affinity ligand have been developed by academia
and industries to mimic niacin’s antilipolytic effect. Compounds, such
asMK-1903 and acifran, were developed as selective high affinityHCA2
agonists andwere demonstrated to lower free fatty acids in humans8. A
more recently developed compound, MK-6892 represents one of the
most potent HCA2 agonists discovered9. In addition to the efforts to
develop high-affinity ligand, the field also tried to develop safer drug
since niacin use was limited by its well-known side effect, skin flushing.

Therefore niacin analogues, such as MK-0354 with reduced flushing
profile9–11, were generated, also suggesting there may be relationship
between β-arrestin signalling and skin flushing effect although more
studies are necessary to demonstrate this conclusively12,13. While the
understanding of HCA2 signalling is important14, its activation and
signalling mechanisms are still illusive due in part to the lack of elu-
cidation of structure-function relationship for any of the HCA1-3 and
relevent receptors (i.e. 5-oxo-ETE receptor, OXER1 or GPR31).

HCA2 is an important receptor to understand since it regulates
homeostasis during physiological and pathophysiological conditions
implicated in a variety of diseases, including cardiovascular diseases,
multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, neurolo-
gical diseases and colon cancer3,15–19. In addition, HCA2 plays crucial
role in nutrient sensing and anti-inflammatory effect using various
signaling mechanisms20–24. Therefore, many developed ligands with
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high affinity or reduced arrestin signaling would be useful tool to
understand the role of HCA2 in those diverse diseases.

In this work, we present the 2.7 Å inactive HCA2 crystal structures
and a 3.1 Å cryo-electron microscopy (cryo-EM) HCA2-Gi complex
structure with the potent compoundMK-6892 and antibody fragment
ScFv16, together with results from G-protein and β-arrestin signaling
functional analysis. This study reveals the active and inactive states of
the receptor and illuminates potential mechanisms for HCA2
activation.

Results
HCA2 exclusively couples to Gi/o family
HCA2 is known to couple to members of the Gi/o family of hetero-
trimeric Gproteins4–7, but there has not been a comprehensive analysis
of its coupling preferences either amongmembers of this family or for
non-Gi/o proteins. Therefore, we measured the potential of HCA2 to
activate 14 different Gα subunits representing all four G protein
families (G12/13, Gi/o, Gq/11, and Gs/olf) using our BRET-based TRUPATH
platform25. We observed robust coupling of HCA2 to Gi/o family
members in response to both niacin and MK-6892 activation, but
negligible coupling to non-Gi/o family proteins (Supplementary
Fig. 1a–c). Importantly, the most potent coupler to MK-6892-bound
HCA2 was Gi1, and thus we sought obtainment of this complex for
structural determination.

MK-6892 is one of the most potent HCA2 ligands
Many HCA2 agonists were generated as selective and high affinity
ligands andMK-6892 was developedmost recent. Our data and others
confirmed that MK-6892 is one of the most potent HCA2 agonists
either in cAMP Gi activation or β-arrestin recruitment13 (Supplemen-
tary Fig. 1d). The strong arrestin recruitment properties of MK-6892
are interesting since MK-6892, which also has reduced skin flushing9,
showed strong arrestin activation, although the weak arrestin activa-
tion of MK-0354 was postulated to be relevant to reduced skin flush-
ing. This means that the correlation between arrestin signalling and
skin flushing requires further research (Supplementary Fig. 1d).

Structures of HCA2-Gi complex and inactive HCA2
For cryo-EM studies, the stable complex was successfully constituted
by co-expressing engineered HCA2 receptor with N-terminus BRIL
fusion, agonist MK-6892, Gi (Gαi1β1γ2) protein and antibody fragment
ScFv1626. The cryo-EM analysis yielded the HCA2-MK-6892-Gi-
scFv16 (HCA2-Gi) complex structure at a global resolution of 3.1 Å with
most regions of HCA2, MK-6892, Gα, Gβ, Gγ and ScFv16 visible (Fig. 1,
Supplementary Fig. 2, Supplementary Tables 1, 2). All transmembrane
helices of HCA2 aremodeled in themapwith the contour level at 3.0σ
(Supplementary Fig. 3a). Agonist MK-6892 is modeled into the
orthosteric binding pocket below the extracellular loop 2 (ECL2) based
on the EM map (Supplementary Fig. 3b).

In parallel, the crystal structures of mutation induced inactive
HCA2, which were expressed in mammalian and insect expression
systems, were both solved at 2.7 Å resolution (Supplementary Fig. 4,
construct ID 8519 and 3378) and share identical structures with RMSD
of Cα atoms below 0.5Å, with no differences for the bound lipids. The
engineeredHCA2molecule is not capableof binding [3H]-nicotinic acid
based on saturation binding assay or mediating ligand induced sig-
nalling and it is likely that one of the thermostabilizing mutations,
S2877.46V (superscripts denote Ballesteros-Weinstein numbering),
locks HCA2 into an inactive state (Supplementary Fig. 4g, Supple-
mentary Table 3).

Comparing theHCA2 receptor in different states, upon activation,
the agonist MK-6892 forms close interactions with helix V and ECL2,
and initiates substantial conformational changes in HCA2. The helix V
converges in extracellular portion about 4.9 Å (main chain) andmoves
outwards in intracellular region, while helix VI near extracellular region

moves inward about 1.9Å (Supplementary Fig. 5), where MK-6892
binding pocket shrinks with the movement of helix V, as represented
by W1885.38, H1895.39, F1935.43 (Fig. 1c). Thus, although there is no
obvious movement of TM3 from inactive to active states in
HCA2 structures, the side chain of key residue R1113.36 moves 6.5 Å
towards MK-6892 with a correspondingly large conformational
change, which is different from the lysine conformation change in
many class A GPCRs such as A2a27–29, M2R30–32, μOR33–35 by residue R3.50.

Agonist MK-6892 recognition in HCA2
In HCA2-Gi complex structure, several hydrophobic and hydrophilic
interactions are observed between HCA2 andMK-6892 (Fig. 1c, d). The
bindingpocket is tightly formedby residues fromECL2, helix II, helix III
and helix VII, including the hydrophilic interactions betweenMK-6892
andR1113.36, S178ECL2, S179ELC2 andQ1123.37 (Fig. 1c). The carboxylic group
of MK-6892 interacts with R1113.36 by strong ionic interactions. Our
mutagenesis data supports this binding mode, as the R1113.36A mutant
abolishes MK-6892’s agonist activity (Fig. 1e) while its cell surface
expression level is comparable toWT’s one (Supplementary Fig. 6). In a
similar manner, the agonist niacin and other tested agonists lose
agonist activity probablydue to the impaired interactionbetween their
carboxylic acid group or its isostere (tetrazole moiety of MK-0354)
with R1113.36, which is consistencewith previousmodelling reports4,36,37.
In addition, the residue Q1123.37 forms a hydrogen bond with the
hydroxyl group attached to pyridine ring of MK-6892. This is sup-
ported by our mutational study that Q1123.37A decreased MK-6892’s
potency by 40-fold. (Fig. 1e, Supplementary Table 3).

Interestingly, the Q1123.37A mutation showed ligand specific effect
since it decreases MK-6892’s activity significantly (Fig. 1e), but doesn’t
affect niacin and other tested agonists’ activities to a similar extent
(Supplementary Table 4). These results are supportedby the structural
finding that Q1123.37 interacts with the hydroxyl-pyridine ring of MK-
6892, but this moiety is absent at other HCA2 ligands explaining why
Q1123.37A mutation has lesser effect on these HCA2 agonists than on
MK-6892 (Fig. 1c, Fig. 4).

The non-polar interactions between MK-6892 and residues
L1073.32 are supported by our mutational data. The mutation L1073.32A
or L1073.32F decreases the potency of MK-6892 by 3- or 6-fold,
respectively, indicating L1073.32 interacts with MK-6892 through weak
VanderWaals interactions (Fig. 1f). This observation could implicate to
structural based drug design for ligands with better interaction with
residue L1073.32.

To identify the molecular determinants responsible for MK-6892
signalling, we also performed extensive alanine scanning mutagenesis
on 38 residues using Gi/o-mediated cAMP inhibition assay. Strikingly,
mutational profile in response to MK-6892 appears quite different
from that of niacin. Niacin’s response was diminished more than 10-
fold for the 21out of 38mutations comparingwithWT (Supplementary
Fig. 7a,b). The residues which showed ΔΔlog (Emax/EC50)) larger than 1
(the difference between niacin and MK-6892) turned out to be the
three residues, Q1123.37A, S1143.39A and F2326.36A, indicating their
important role in MK-6892 specific signalling (Supplementary
Fig. 7c,d). Apart from the alanine mutations of residues Q1123.37 and
S1143.39 directly influencing the interactions with MK-6892, the
F2326.36A mutant resulted in the decrease of MK-6892 mediated G
protein signaling, inwhich the side chain of F2326.36 tilt about 90° in the
active state and altered the interaction between HCA2 receptor and G
protein.

Signalling cascade of HCA2 in δ-branch GPCRs
HCA2 belongs to δ-branch in class A GPCR family, which also contains
P2Y1, P2Y12, PAR1/2 and SUCNR1with solved structures, but less known
about their complex with G proteins. Our HCA2 complex shows some
hints about δ-branch GPCR activation by investigating the conforma-
tion of conserved motifs, including P5.50 I3.40 F6.44, and CF(W)6.48xP
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motifs38–41. In HCA2, the activation induced signalling cascade trans-
mits through three layers (Fig. 2). Firstly, in the binding pocket layer,
the agonist MK-6892 triggers the side chain of R1113.36 flip towards the
center of orthorsteric binding pocket, which induces the conforma-
tional change of L1073.32 and Q1123.37 in helix III (Fig. 1c). In the mean-
time, the movement of F1935.43 induces helix V kinks towards the
orthosteric pocket as well (Fig. 1c). Secondly, comparing HCA2 s-
tructures with active and inactive states P2Y12 structures, as expected,
the conformations of CF6.48 xP of HCA2 structures are very similar to
that of the corresponding residues in P2Y12, indicating that δ-branch
GPCRmay have similar activation processes (Fig. 2b). In class AGPCRs,
the equivalent residue at position 6.48 is tryptophan as a key com-
ponent for activation42, but in many δ-branch GPCRs, such as HCA2,
P2Y1 and P2Y12, the position 6.48 is occupied by Phe, displaying

phenalene movement in active state structures instead of W6.48 rota-
tion in other GPCRs. Thus, the synergetic upward movement of F6.48
along with the flipping of R1113.36 initiate the activation of HCA2,
resembling the ‘twin toggle switch’ reported in CB143. In class A GPCRs,
typically the P5.50 leads to a kinked helix V in the transducer coupled
conformation. While in our active state HCA2 and P2Y12 (N

5.50) struc-
tures, helix V showed no kink in the helix (Fig. 2a, c). Thirdly, following
the ligand binding induced conformation change, the center motifs
undergo flip and translocation in the inner layer of DR3.50Y and
DPxxY7.53 motifs (Fig. 2d). In the active structure of HCA2, the Y2947.53

establishes interactions with R1253.50, V1213.46, and L662.43. In summary,
through those interaction network of relatively conserved residues,
HCA2 transmits the signal from extracellular part to the intracellular
portion.

HCA2 HCA2 MK6892
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Fig. 1 | Cryo-EM structure and binding pocket of HCA2-Gi complex. a Cryo-EM
map of HCA2-Gi complex colored by subunit (HCA2, light purple; MK-6892, red;
heterotrimeric Gi, orange, pink and green for α, β and γ, respectively; ScFv16,
velvet). Box indicates zoomed in viewofMK-6892.bDetermined cryo-EMstructure
of HCA2-Gi complex in model cartoon performance. c Zoom in superposition of
MK-6892 bound state and inactive state HCA2 structures with the conformation

change of the binding pocket and helix V. Several obvious pairs of residue move-
ments are indicated by arrows. MK-6892 bound state in purple and inactive state in
grey. d MK-6892 bound to HCA2 orthosteric binding pocket interacts with
hydrophobic residues. e MK-6892 induced Gαi/o-mediated signalling at WT, R111A,
S178A and Q112A/E. f MK-6892 induced Gαi/o-mediated signalling at WT L107A/F.
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The interactions between HCA2 and Gi

To date, there are several class A GPCR - Gαi/o complex structures
reported32,44–50. Structural comparisonofHCA2-Gαi with other complex
structures are shown in Supplementary Fig. 8 and Fig. 3. Among them,
HCA2-Gαi is very similar to CB1-Gαi with a small conformation shift of
α5 and αN in terms of orientations and movements (Fig. 3). In the
HCA2-Gi complex structure, the main interaction interface is formed
by helix III, helix V, helix VI, intracellular loop 2 (ICL2) and ICL3 of the
receptor with α5 and αN of the Gαi protein (Fig. 3b, c).

The C-terminal helix of Gαi (H5) acts as key interface between
HCA2 and Gαi. Specifically, H13334.51 of HCA2 forms hydrophobic
interactions withα5 of the Gαi1 subunit, which is also observed in other
GPCR-Gprotein complexes, suchas theCB1-Gi

44,45 (Fig. 3d, e),MOR-Gi
49

andβ2AR-Gs complexes51. BothH13334.51 at HCA2 andL22234.51 atCB1 are
positioned in the hydrophobic pockets (Supplementary Fig. 9a–d).
Indeed, our mutagenesis data showed that H13334.51E mutation
decreased the Gi activity of both MK-6892 and niacin, but H13334.51F
retains the activities of MK-6892 (Fig. 3f) and niacin (Supplementary
Fig. 9f) indicating that a polar interaction is not favored in this
hydrophobic pocket, rather the aromaticity of histidine is likely to play
a role tomediate Gi signalling. These results are quite striking since the
position of ICL234.51(which corresponds to H13334.51 of HCA2) has been
stated to play a key role in Gαs and Gαq coupling, but not Gαi/o

52–54.

Specially, it was reported that the CB1 mutation L22234.51F showed
minimal Gi activity while increasing basal activity of Gs

44,45,52. The cor-
responding residue mutation at CB2 (P13934.51F) also increased the Gs

activity53 which is consistent with the β2AR residue F139 that has an
extended hydrophobic interaction with Gs protein51. Based on our
data, we conclude that ICL234.51 plays an important role in G protein
coupling.

Additionally, hydrophobic interactions between L348 of α5 and
V1293.54 of HCA2 are observed by mutational studies, indicating that
HCA2mutationV1293.54N decreased the efficacy of niacin andMK-6892
by 50% and V1293.54D significantly decreased activities of the two
ligands while V1293.54A retains the activities, indicating V1293.54 is
engaged in the interaction of Gαi1 through hydrophobic interaction
(Fig. 3g). TheGαi mutation L348A also decrease the activity ofMK-6892
or niacin (Fig. 3h, i), indicating that interaction between L348 ofα5 and
V1293.54 of HCA2 play an important role to stabilize the Gαi/HCA2
interaction by non-polar interaction.

Conserved key residues for HCA2 ligand recognition
To understand the molecular basis of interactions between HCA2
and other ligands, we performed induced fit docking of wild type
HCA2 with niacin, acifran, MK-1903, and MK-0354 (Fig. 4). Our
HCA2-Gi-MK-6892 complex identified R1113.36 in the binding pocket
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Fig. 2 | HCA2 activation and conformation changes. a Side view of
active HCA2 aligned with inactive HCA2, membrane boundaries are marked as
dashed lines. Significant local rotation and translation are observed on helix V and
VI. b Structural comparison of CF(W)xP motif between P2Y12 (active PDB: 4PXZ
[https://doi.org/10.2210/pdb4PXZ/pdb], orange; inactive PDB: 4NTJ [https://doi.
org/10.2210/pdb4NTJ/pdb], teal) andHCA2 (active: light purple; apo: grey) in active

and inactive states, aligned on helix VI. c Structural comparison of PIF motif in
active and inactive state between HCA2 and P2Y12, aligned on helix III. d Structural
comparison of DPxxY motif in active and inactive state between HCA2 and β2-AR
(active PDB: 3SN6 [https://doi.org/10.2210/pdb3SN6/pdb], blue; inactive PDB: 2RH1
[https://doi.org/10.2210/pdb2RH1/pdb], green).
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plays a key role to interact with -COOH of MK-6892. The MK-6892
activated complex structure and docking poses of HCA2 with other
ligands reveal that R1113.36 is the key residue for ligand recognition,
which is consistent withmutagenesis data (Supplementary Table 4).
The carboxylate moiety of niacin, acifran and MK-1903 form salt
bridges or hydrogen bonds with the side chain of residue R1113.36,
and contributes to a larger binding pocket for these small ligands.
R1113.36 also forms interaction networks with other residues like
Q1123.37, E1965.46, thus it would have a more structural impact on
binding. The residue R2516.55 in docking results also show binding
with ligands, but as surrounded by F1935.43, F2556.59 and F2767.34,
there would be less space for R2516.55 to make conformation change
to trigger downstream signalling. The docking pose of MK-0354,
which has tetrazole moiety, a COOH isostere, resembles that of
niacin, it helps explain why MK-0354 is weaker than niacin. The
bulkier tetrazole head pushes the guanidino group of R1113.36 taking
the “down” conformation, which weakens the interaction between
them (Supplementary Fig. 10a, b). It is also reported that the

stability of tetrazole-amidine complex is lower than that of
carboxylate-amidine complex55.

Indeed, R1113.36 is conserved across all HCA family (Supplementary
Fig. 10c). Another hydrophilic interaction partner Q1123.37 plays a role
of ligand specificity (Supplementary Fig. 10d, Supplementary Table 4).
Structural and mutational studies reveal Q1123.37 interacts with
hydroxyl-group attached to pyridine ring of MK-6892 through
hydrogen bond interaction. The fact that this extended chemical
moiety of MK-6892 which is absent in other HCA2 ligands suggested
Q1123.37 may specifically interact with MK-6892.

In this study, we present the HCA2-Gi signalling complex and
mutation induced inactive state HCA2 structures, providing compre-
hensive molecular insights into HCA2 ligand selectivity and receptor
activation which may share unique activation mechanism with δ-
branchmembers. Thus, structure-based analysis of the significant role
of R1113.36 as a carboxylate moiety recognition residue, together with
Q1123.37 as the extension of hydroxyl-group binding site shed light to
uncover ligand selectivity of hydrocarboxylic acid receptor. Taken
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Fig. 3 | Comparison of HCA2-Gi complex with CB1-Gi complex in Gi protein
binding. a Relative position of Gαi from HCA2-Gi complex (orange) and CB1-Gi

complex (blue), aligned on receptor. The zoomed in view of Gi and receptor
interface is shown on the right. b, c The binding interface of HCA2 (light purple)
with Gαi (orange) and interacting residues fromα5 helix of Gαi and adjacent ICL and
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byMK-6892.h, i BRET validation of Gαi1 interfacemutation byMK-6892 and niacin,
respectively.
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together, this study should accelerate the design of ligands for HCA2
and related receptorsboth in hydrocarboxylic acid receptor family and
δ-branch GPCRs.

Methods
Protein engineering for HCA2 crystallography
For HCA2 crystallography we designed a thermostabilized construct
mimetic suitable for structural studies with mutations A702.47V and
S2877.46V on the trans-membrane (TM) regions, a BRIL fusion on the
ICL3 loop, and 38 residues truncated from the C-terminal as previously
described56. These thermostabilizing mutations, fusion insertion and
truncations improved protein homogeneity and thermostability.
Three disulfide bonds kept the loops less flexible and may have
maintained the receptor in a stable state (Supplementary Fig. 4).

A panel of C-terminal truncation, ICL3 replacedwith BRIL (Protein
Data Bank accession code 1M6T) and two mutants (A702.47V and
S2877.46V) of HCA2 were designed to obtain a stable protein for crys-
tallization. Two HCA2 constructs were designed for two expression
systems: construct 3378 was reconstructed to a pFastBac1 vector for
insect cell expression; and construct 8519 was reconstructed to a pTT5
vector formammaliancell expression. 3378had anN-terminus Flag-tag
and C-terminus His-tag with a TEV cleavage site. 8519 had an
N-terminus Flag and His-tag with TEV cleavage site at the beginning of
the receptor. Proteins were obtained by 50mM Tris-HCl pH 7.5,
500mM NaCl, and 0.5% (w/v) n-dodecyl-b-D-maltopyranoside (DDM)
extraction and their expression levels and stability were assayed by
size-exclusion chromatography (SEC). During optimization, the con-
struct with 38 truncated residues showed promising stability. In par-
allel, a panel of ICL3 BRIL insertions was determined in a similar
fashion, indicating the insertion between residues 219 and 220 as the
most suitable fusion based on SEC examination. Thermostable muta-
tions were designed into the construct by the Quickchangemethod to
improve the temperature melting (Tm) value. Crystals could then be
obtained from this construct after screening the crystallization
conditions.

Expression and purification of HCA2 receptor
The two HCA2 constructs 3378 and 8519 were expressed in Spo-
doptera frugiperda (Sf9) Baculovirus Expression System (Invitrogen)
and HEK293 (American Type Culture Collection, ATCC CRL-11268)
mammalian expression system using the Bac to Bac and BacMam
systems, respectively. The sf9 expression was processed at 27 °C for
48 h. The mammalian expression was processed at 37 °C, 8.0% CO2,
and 130 r.p.m. for 48 h. Cell pellets were harvested by centrifugation,
snap-frozen in liquid Nitrogen and stored at −80 °C. The frozen cell
pellets were thawed and resuspended in hypotonic buffer supple-
mented with a 1:100 (v: v) dilution of mammalian protease inhibitor
cocktail (Roche). The membrane was washed repeatedly using a
hypotonic buffer with low and high salt, and then suspended in low
salt. Before solubilization, purified membranes were incubated with
2mg/ml iodoacetamide and 100uM ligand (niacin) and protease
inhibitor for 1 h at 4 °C. The HCA2 protein was extracted from the
membrane by adding a final concentration of 0.5% (w/v)DDMand0.1%
(w/v) cholesteryl hemisuccinate (CHS) to the membrane solution and
was solubilized at 4 °C for 3 h. The supernatant was separated by
centrifugation at 160,000 g for 30min, and incubated in TALON IMAC
resin at 4 °C overnight. The protein-bound resin was washed with
twenty column volumes of 50mMHEPES, pH 7.5, 0.5MNaCl, 10% (v/v)
glycerol, 0.05% (w/v) DDM, 0.01% (w/v) CHS, and 30mM imidazole.
The protein was eluted with 5 column volumes of 50mM HEPES, pH
7.5, 0.5M NaCl, 10% (v/v) glycerol, 0.05% (w/v) DDM, 0.01% (w/v) CHS,
300mM imidazole, and 200μM of corresponding ligand. The desalt-
ing process to remove imidazole was carried by using a PD MiniTrap
G-25 column (GE Healthcare). The HCA2-3378 and 8519 proteins were
then treated with His-tagged TEV protease (20mg per 500ml of
expressed material) and His-tagged PNGase F (20mg per 500ml of
expressed material) to remove the His-tag and de-glycosylate the
receptor. TEV protease, PNGase F, and the cleaved His-tag were
removed by reverse binding Ni-NTA superflow resin (Qiagen). The
proteins were further concentrated to 20–30mg/ml using a 100 kDa
molecular mass cut-off concentrator (Millipore).
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Fig. 4 | HCA2 key residue with ligands recognition. Key residue and ligands are
shown as sticks and spheres. Inactive state HCA2 in orange color, active state cryo-
EM structure of HCA2 with MK-6892 and Gi complex in green and grey,

respectively. Docking structure with niacin in cyan, acifran in purple, MK-1903 in
pink, and MK-0354 in magenta.
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Crystallization in LCP (liquid cubic phase)
Crystallization trials were performed with the lipid cubic phase
method, which is used inmany cases of GPCR structure determination.
The ratio of protein to lipid (10% (w/w) cholesterol, 90% (w/w)
monoolein) was 2:3. The protein-lipid mixture was dispensed in 40 nL
drops onto glass sandwich plates and overlaid with 800 nL precipitant
solution using a NT8 LCP robot. The crystallization conditions were
optimized by screening the pH, PEG400 concentration, salt conditions
and adding additives. Crystals grew after 4 days in 100mM
pH5.4 sodium citrate, 60mM ammonium citrate, 36% PEG400, and 3%
Additive 80 (40% PPG), and they reached their full size
(80 × 20 × 20mm3) within 3 weeks. Crystals were harvested directly
from LCP using 50–100mmmicromounts (MiTeGen) and flash frozen
in liquid nitrogen.

Data collection, structure solution and refinement of
crystallography
TheX-ray diffraction data ofHCA2were collected at the SPring-8 beam
line 41XU, Hyogo, Japan, using a Rayonix MX225HE detector (X-ray

wavelength, 0.9162 Å and 1.0000Å) at 100K. The crystals were
exposed to a 10mmminibeam for 1 s and 1 u oscillation per frame, and
a rastering 11 × 8mm2 minibeam system was used to find the best dif-
fracting parts of single crystals. Most crystals of HCA2 diffracted to
3.3–2.5 Å resolution. Data from individual crystals were processed
using XDS57 and a complete data set was merged using the data col-
lection strategy option of the program Xscale58. The HCA2 structure
was solved with Phaser59 by molecular replacement (MR) with the
structures of Bril and the human P2Y12 receptor as the initial search
models. The structure was refined to 2.7Å with good refinement sta-
tistics using PHENIX60, Buster61 and COOT62. The 8519 structure was
solved by 3378 as aMR searchmodel. Ramachandran statistics of 3378
is 98.71% in favored region and 8519 is 97.45% in favored region,
respectively. There are no outliers found in both structures. Model
statistics are given in Tables 1 and 2.

Expression and purification of HCA2 with Gi-protein and anti-
body complex for cryo-EM
The HCA2 construct for cryo-EM study was containing a BRIL fusion
and flag tag epitope at the N terminus, and hexahistidine tag at C
terminus. The heterotrimeric Gαi1β1γ2 was constructed same with the
previous research63, which means Gαi1 was cloned in pFastbac vector,
Gβ1 and Gγ2 were cloned into another pFastBac Dual vector without
hexahistidine tag. The three kinds of plasmids were used for expres-
sion in Bac-to-Bac system (Invitrogen). With the baculoviral method,
the viruses ratio of HCA2, Gαi1, Gβ1 and Gγ2 was optimized and the best
one is 1:1:1 in co-expression sf9 insect cells. The expression was pro-
cessed at 27 °C for 48 h.

The cells were harvested and lysed in hypotonic buffer with
20mM HEPES, pH 7.5, 10mM NaCl, 5mM MgCl2, a pill of cocktail,
100μM MK-6892 and 10% glycerol. For 1 liter of cell pellets, 5 U of

Table 1 | Cryo-EM data collection, refinement and validation
statistics of HCA2-Gi complex

HCA2-Gi complex (EMD-33241)
(PDB 7XK2)

Data collection and processing

Magnification 105k

Voltage (kV) 300

Electron exposure (e–/Å2) 60

Defocus range (μm) −1.0 ~ −2.0

Pixel size (Å) 1.04

Symmetry imposed C1

Initial particle images (no.) 3685029

Final particle images (no.) 273841

Map resolution (Å) 3.1

FSC threshold 0.143

Map resolution range (Å) 2.9–5.5

Refinement

Initial model used (PDB code) 6N4B

Model resolution (Å) 3.1

FSC threshold 0.5

Map sharpening B factor (Å2) −100

Model composition

Non-hydrogen atoms 8791

Protein residues 1128

Ligands 1

B factors (Å2)

Protein 77

Ligand 86

R.m.s. deviations

Bond lengths (Å) 0.004

Bond angles (°) 0.94

Validation

MolProbity score 1.72

Clashscore 5.94

Poor rotamers (%) 0.53

Ramachandran plot

Favored (%) 94.17

Allowed (%) 5.83

Disallowed (%) 0.00

Table 2 | Data collection and refinement statistics of crystal
structures (molecular replacement)

HCA2 3378 (Insect) HCA2 8519
(mammalian)

Data collection

Space group P21212 P21212

Cell dimensions

a, b, c (Å) 81.01, 82.15, 86.31 80.88, 81.99,85.78

α, β, γ (°) 90, 90, 90 90, 90, 90

Resolution (Å) 47.97–2.70
(2.75 –2.70)*

47.8–2.7 (2.80–2.70)*

Rsym or Rmerge 0.09 (0.59) 0.12 (0.71)

I/σI 10.18 (1.76) 10.91 (2.03)

Completeness (%) 95.76 (92.24) 98.71 (97.84)

Redundancy 5.6 (4.3) 5.9 (4.2)

Refinement

Resolution (Å) 2.70 2.70

No. reflections 23069 16017

Rwork/Rfree 0.25/0.28 0.25/0.27

No. atoms

Protein 3168 3100

B-factors

Total 91.54 77.29

Protein 91.21 77.31

R.m.s. deviations

Bond lengths (Å) 0.003 0.004

Bond angles (°) 0.47 0.62
*Number of xtals for 3378 structure is 2 and 8519 structure is 6. *Values in parentheses are for
highest-resolution shell.
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apyrase, 400μg scFv16 were added and then incubating at room
temperature (25 °C) for 2 h. The supernatant was centrifuged at
160,000 g for 30min to collect the precipitants. The precipitants were
washed by homogenization and solubilized in 50mM HEPES, pH 7.5,
300mM NaCl, 10% glycerol, 0.75% (w/v) lauryl maltose neopentyl
glycol (LMNG, Anatrace), 0.15% CHS, and 100μM MK-6892 for 2 h at
4 °C. The supernatant was isolated by centrifugation at 60,000 g for
40min, and thenwas incubatedwith TALON IMAC resin at 4 °C for 6 h.
After binding, the complex purification process is the same
with crystallography study ofHCA2with final concentration of 100μM
MK-6892 in purification buffer. The elution HCA2-Gi complex was
concentrated and added 100 μg scFv16 to further stabilize the com-
plex. Then buffer was exchanged to 20mM HEPES, pH 7.5, 100mM
NaCl, 0.00075% LMNG, 0.00015%CHS, 0.00025% GDN, and 100uM
MK-6892. The HCA2–Gi complex sample was centrifuged and loaded
onto Superdex 200 10/300 GL column and the fractions for the
monomeric complex were separated from contaminants and con-
centrated to about 1.5mg/ml individually for electron microscopy
experiments. The complex samples are further validated with SDS
PAGE and Blue-Native PAGE.

Cryo-EM sample preparation and data acquisition
For grid preparation, complex samples were used either at a con-
centration of 1.2mg/ml or 1.6mg/ml with the same exchanged buffer
as described above. The sample (3.5μl) was applied to glow-
discharged holey carbon grid (CryoMatrix Amorphous alloy film
R1.2/1.3, 300 mesh) and subsequently vitrified using an FEI Vitrobot
Mark IV at 4 °C and 100% humidity. The grids were blotted for 2.5 s at a
forceof −1 and vitrified byplunge freezing into liquid ethane cooled by
liquid nitrogen at −180 °C.

Cryo-EM data were collected on an FEI Titan Krios microscope
using a K2 camera positioned post a Gatan GIF quantum energy filter,
with a slit width of 20 eV. Micrographs were recorded in super-
resolution mode at a magnified physical pixel size of 0.52Å, with
defocus values ranging from −1.0 to −2.0μm. The total exposure time
was 8.0 s and intermediate frames were recorded in an accumulated
dose of 60 electrons per Å2 and a total of 40 frames per micrograph.
Data acquisition was done using SerialEM64.

Image processing and 3D reconstructions
Among all raw cryo-EM stacks, 13,534 micrographs were selected and
processed by MotionCor265, on which 5,326,757 particles were picked
out using Gautomatch and Ctf estimation was done by Gctf66. These
particles were fed to a series of 2D and 3D classifications using
cryoSPARC67 and RELION 368, refined with EMD-0339 as reference,
which eventually ended upwith a 3.5 Å (gold-standard FSC) EMdensity
map with severe preferred orientation and flattened transmembrane
helices. As a remedy, 3,685,029 particles were picked from newly
collected 4620micrographs using template picker of cryoSPARC, then
subjected to two cycles 2D classifications in cryoSPARC and 726,362
particles were selected for further 3D process. 4 initial models, gen-
erated in Ab-initio Reconstruction of cryoSPARC, were used as tem-
plate model in Heterogeneous Refinement of cryoSPARC. Finally,
273,841 particles were used to do Homogeneous refinement and Non-
Uniform refinement in cryoSPARC, and yield a map of 3.1 Å resolution
with sharpened B factor of 132.7. Local resolution variations were
estimated by cryoSPARC. More details in Supplementary Fig. 2 Sup-
plementary Fig. 4.

Model building and refinement
TheGi and scFv16 of Cannabinoid Receptor 1-G Protein Complex (PDB:
6N4B) [https://doi.org/10.2210/pdb6N4B/pdb] and HCA2 crystal
structure in this work were selected as initial models and docked into
EM density map using Chimera69. The BRIL is not cleaved during the
experiment, but the density is missing in the final structure. Then

followed real-space refinements using PHENIX and manual adjust-
ments using COOT, aided by secondary structure predictions from
Phyre270. Model validation was done by comprehensive validation in
PHENIX. More details shown in Table 1.

Quickchange mutagenesis
Mutations on either the HCA2 Tango construct, which was generated
as previously described71, or theHCA2de-tangonized construct (where
the V2 tail was deleted from the Tango construct) were generated
according to QuickChange II XL-Site-Directed Mutagenesis protocol.
In short, PCR was performed using PrimeStarMax DNA polymerase
(Clontech) with parental DNA as the HCA2 Tango or HCA2 de-tango-
nized construct. PCR amplification products were digested with Dpn1
(New England BioLabs) for 1 h in a 37 °C water bath followed by
transformation at GC-10 cells (Sigma-Aldrich, G2794). Colonies iso-
lated on an Ampicillin-resistant agar plate that were cultured and
prepped using miniprep (QIAprep Spin Miniprep Kit) and midiprep
kits (OrigenePowerPrep and HP Plasmid Midiprep, respectively).
Sequences were confirmed using a sequencing service (EtonBio or
Genescript).

Cyclic AMP assay
In order to measure HCA2 Gi/o-mediated cAMP inhibition, CHO cells
were transfected with 1μg of receptor and 1μg of GloSensor DNA (a
luciferase-based cAMP sensor, Promega) using TransIT20/20 trans-
fection reagent (Mirus). The next day, transfected CHO cells were
plated in the white 384 well plate with Ham’s F-12 media that is com-
posed of 1% dialyzed FBS media, and 0.5% penicillin-streptomycin.
2-day post-transfection, the cell media was decanted and loaded with
20μL of drug buffer (20mM HEPES, 1X HBSS, 0.1% bovine serum
albumin (BSA), and 100μM 3-isobutyl-1-methylxanthine (IBMX),
pH7.4) followed by 10μl of 3X drug solution incubated for 15–20min.
Then 10μl per well of Luciferin and 20μM of forskolin (final con-
centration) was added for another 15–20min. Luminescence was read
on a Spectra Max luminescence reader. Data were analyzed in Graph-
Pad Prism 5.0.

BRET recruitment assay
To measure G protein recruitment BRET assay, CHO cells were co-
transfected in a 1:1:1:1 ratio of Gαi3-RLuc, Gβ3, GFP2-Gγ9, and WT or
mutant H133E (de-tangoized constructs) respectively. After 24 h,
transfected cells wereplated in poly-L-lysine coated 96-well white clear
bottom cell culture plates with DMEM containing 1% dialyzed FBS, 100
units/ml Penicillin G, and 100μg/ml Streptomycin at a density of
40,000 cells in 200 μLperwell and incubatedovernight. The following
day, media was removed and cells were washed once with 100μl of
assay buffer (1X HBSS, 20mMHEPES, pH 7.4, 0.1% BSA). Then 60μL of
assay buffer was loaded per well followed by addition of 10μL of the
RLuc substrate, Coelenterazine 400a (Nanolight) at 5μM final con-
centration for 5mins. Drug stimulation was performed with the addi-
tion of 30μl of 3X drug dilution of MK-6892 or niacin in assay buffer
supplementedwith 0.01% (w/v) ascorbic acid perwell and incubated at
RT for another 5min. Both luminescence (400nm) and fluor-
escent GFP2 emission (515 nm) were read for the plate for 1 s per well
using Mithras LB940.

GFP2 emission (515 nm) were read for the plate for 1 s per well
using Mithras LB940. The ratio of GFP2/RLuc was calculated per well
and analyzed using “log (agonist) vs. response” in Graphpad Prism 8
(Graphpad Software Inc., San Diego, CA).

Radioligand binding assay
The HCA2 radioligand binding assay used [3H]-nicotinic acid using
Expi293F suspension cells, which express HCA2 receptor or mutants.
In brief, Expi293F suspension cells were transfected with WT
de-tangonized-HCA2 or mutants constructs for 48 h and the
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membrane protein was prepared and quantified. For the saturation
binding assay, 12.5μl of 0–100 nM [3H]-Nicotinic acid, 25μl of
50μg/wellmembrane protein, and binding buffer (50mMTris-HCl, pH
7.40) were mixed to make the final 125μl reaction, which was then
incubated for 1 h at 25 °C. For non-specific binding, 25μl of 100μM of
nicotinic acid was added. For the competitive binding assay of the WT
HCA2 receptor or mutant receptors, 50μl of membrane protein, 50μl
of 10–30nM [3H]-nicotinic acid, whose concentration was determined
from the saturation binding assay, were incubated for 1 h at RT. Then
25μl of cold-ligand solution was added to the pre-equilibrated mem-
brane-hot ligand mixtures. The reaction was halted using vacuum fil-
tration onto a 0.3% PEI soaked filter mat using a 96-well format
harvester and the filter mat was washed three times with cold binding
buffer. On top of the dried filter mat, the scintillation cocktail was
melted, and radioactivity was measured in a Micro beta counter.

Surface expression
Cell surface expression was measured using ELISA chemilumines-
cence. Briefly cells were fixed with 20μl/well 4% paraformaldehyde
for 10min at room temperature followed by washing with 40μl/well
of phosphate buffered saline (PBS). Then cells were incubated with
20μl/well 5% BSA (bovine serum albumin) in PBS for 30min followed
by incubation with an anti-FLAG–horseradish peroxidase–conjugated
antibody (Sigma-Aldrich, A8592) diluted 1/10,000 for 1 h at room
temperature. After washing three times, 20μl/well Super Signal
Enzyme-Linked Immunosorbent Assay Pico Substrate (Sigma-Aldrich)
was used for the development of signal. Signal from wild-type (WT
HCA2) -transfected cell was used for data normalization.

Molecular docking
Docking ofHCA2wasdonewithmodules in Schrödinger Suites 2018-2.
The protein and ligand preparation were done by using Protein Pre-
paration Wizard and LigPrep, respectively. Induced-fit docking was
used for ligand docking.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon request. Cryo-EM maps have been deposited in the
Electron Microscopy Data Bank (EMDB) with the accession numbers
EMD-33241 (HCA2-Gi protein complex). The atomic model has been
deposited in the Protein Data Bank (PDB) under accession number
7XK2 (HCA2-Gi protein complex). X-ray structures factors have been
deposited with the accession numbers 7ZLY (HCA2 3378 (Insect)) and
7ZL9 (HCA2 8519 (mammalian)). Previously published structures
referenced can be found under accession code 6N4B (Cannabinoid
Receptor 1-G Protein Complex) Source data are provided with
this paper.
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