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Integrated transcriptome study of the tumor
microenvironment for treatment response
prediction in male predominant hypophar-
yngeal carcinoma

Yang Zhang 1,4 , Gan Liu 2,3,4 , Minzhen Tao 2,4, Hui Ning2, Wei Guo1,
Gaofei Yin1, Wen Gao1, Lifei Feng 1, Jin Gu 2, Zhen Xie 2 &
Zhigang Huang 1

The efficacy of the first-line treatment for hypopharyngeal carcinoma (HPC), a
predominantly male cancer, at advanced stage is only about 50% without
reliable molecular indicators for its prognosis. In this study, HPC biopsy
samples collected before and after the first-line treatment are classified into
different groups according to treatment responses.We analyze the changes of
HPC tumor microenvironment (TME) at the single-cell level in response to the
treatment and identify three gene modules associated with advanced HPC
prognosis. We estimate cell constitutions based on bulk RNA-seq of our HPC
samples and build a binary classifier model based on non-malignant cell sub-
type abundance in TME, which can be used to accurately identify treatment-
resistant advancedHPCpatients in time and enlarge the possibility to preserve
their laryngeal function. In summary, we provide a useful approach to identify
genemodules and a classifiermodel as reliable indicators to predict treatment
responses in HPC.

Head and neck cancer, one of the most common cancers worldwide,
with nearly 870,000 new cases and 440,000 deaths occurring each
year1, ~90% of which are head and neck squamous cell carcinoma
(HNSCC)2, including cancers in the lip and oral cavity, larynx, naso-
pharynx, oropharynx and hypopharynx3. Anatomically, the hypo-
pharynx is commonly defined by its subsites, including the lateral
pharynx, posterior pharyngeal wall, piriform sinuses, and the post-
cricoid region leading to the esophageal inlet. Hypopharyngeal carci-
noma (HPC) ismostly diagnosed inmales, and the difference in late-life
incidence betweenmenandwomen ismore than tenfold in East Asian4.
In addition, due to its hidden sites and being asymptomatic at early

stage, HPC is often diagnosed at advanced stage. Therefore, HPC is a
relatively rare cancer and accounts for ~3% of all HNSCCs, but it has the
worst prognosis among all HNSCCswith a 5-year overall survival rate at
about 30–35%5. In addition, the 3-year and 5-year survival rates of
advanced HPC are 22.86% and 11.43%, respectively, according to ret-
rospective researches in Beijing Tongren Hospital6, which is a large
laryngeal cancer and HPC diagnosis and treatment center in North
China. Since cetuximab that targets EGFR was approved for HNSCC in
2006, it combined with radiotherapy or chemotherapy has become
the first-line therapy for the treatment of HPC5,7. In practice, we apply
TPF (taxol, cisplatin, 5-FU) induction chemotherapy plus cetuximab,
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the combined treatment, for advanced HPC patients to reduce tumor
volume, and then re-evaluate the possibility of radical surgical resec-
tion of the HPC tumor. In our former retrospective study with 63 HPC
patients, theobjective response rate to the combined treatment is only
52%, including partial and complete decreased tumor mass6. The
treatment-resistant patients’ conditions are deteriorated, and these
patients missed the best time for surgery or other possible therapies.

In the face of such a severe situation, apart from mutations of
HNSCC pan-cancer genes such as TP53, CDKN2A, EGFR and the dys-
function of WNT pathway8, no effective biomarker has been identified
to infer HPC progression, prognosis and combined treatment
response for HPV-negative patients. Pan-cancer analyses reveal that
malignant tumor cells are highly heterogeneous, which drives neo-
plastic progression and therapeutic resistance9. Therefore, recent
researches define gene modules and use the corresponding gene sets
for characterizing tumor heterogeneity and predicting prognosis10–12.
In addition, various subtypes of conserved non-malignant cells in
tumor microenvironment (TME), such as immune cells, endothelial
cells, and cancer-associated fibroblasts (CAFs) are related with tumor
prognosis13–16. For instance, the increase of CD8 +T cells in tumor-
infiltrating lymphocytes ofHPC indicates a goodprognosis17. However,
current strategies for transcriptomic analyses of HPC are primarily
based on bulk samples, and therefore these approaches lack the
resolution and accuracy to discover effective and reliable biomarkers
for risk estimation in both prognosis and clinical stratification. Recent
advances in single-cell RNA sequencing (scRNA-seq) have been utilized
for depicting heterogeneous malignant tumor cells and complex cell
constitutions in TME for several cancer types, such as melanoma, lung
adenocarcinoma, and nasopharyngeal carcinoma (NPC)11,12,18–20.

In this study, we provide a comprehensive and unique resource
revealing the landscape of HPC TME at single-cell resolution. Through
systematic analyses based on scRNA-seq and bulk RNA-seq data from
clinical samples of predominantly male participants, we uncover three
functional gene modules of malignant tumor cells associated with
prognosis, and establish the relationship between non-malignant
subtypes’ composition and patients’ responses to the combined
therapy, which offer important clinical implications and may help
avoid treatment delays in practice in future.

Results
Clinical features and single-cell landscapes of collected HPC
samples from different groups
In clinical practices, treatment-naive HPC patients diagnosed by
pathological phenotypes and corresponding CT scanning, usually
accepted TPF induction chemotherapy plus cetuximab. After
6–8 weeks of one combined treatment cycle, the patients received the
second CT scanning to evaluate the curative effect and to determine
the following therapeutic strategy. Based on responses of patients to
the combined treatment, clinical collected samples were divided into
four groups: called responder before treatment (RBT), responder after
treatment (RAT), non-responder before treatment (NBT), and non-
responder after treatment (NAT) groups (Fig. 1a). Because HPC is a
relatively rare cancer, it consumed us several years to establish our
ownHPC cohort, in which 44 samples from44 individual patients were
collected and divided into above four groups (Supplementary Table 1)
with transcriptomic quantification by bulk RNA-seq. Survival analysis
showed that patients in the RBT group had significantly increased
survival rates than those in the NBT group (Fig. 1b and Supplementary
Fig. 1). In order to capture features of heterogeneousmalignant tumor
cells and complex TME in HPC for potential effective biomarkers
identification, we collected additional samples for scRNA-seq and
combined with the above cohort to do systematic bioinformatics
analyses and related validations (Fig. 1c).

We generated scRNA-seq profiles from 12 advanced HPC tumor
samples, 1 lymph metastasis sample, and 2 samples of non-malignant

tissues (NT), totally 15 clinical samples from8patients (Supplementary
Tables 2 and 3). Fresh biopsies were rapidly digested into single-cell
suspensions and quantitated by droplet-based 10x Genomics Chro-
mium scRNA-seq platform. Overall, we captured the transcriptomes of
6 major cell types with 89,094 cells after qualifying control filters (see
“Methods”; Supplementary Fig. 2 and Supplementary Table 3).
According to the expression of canonical marker genes, 19456
EPCAM+ epithelial cells, 6859 CLDN5 + endothelial cells, 9115
COL1A1 + fibroblast cells, 16012 CD79A+B cells, 12210 LYZ +myeloid
cells, 25442 CD3E + T and NCAM1+NK cells were identified (Fig. 1d, e
and Supplementary Fig. 3a, b).More expressed genes were detected in
epithelial cells, endothelial cells and fibroblast cells than those in
immune cells (Supplementary Fig. 3c). Moreover, the majority cells in
the groups of Lymph and NT were T cells and B cells, whereas various
cell subtypeswere enriched in tumor samples (Supplementary Fig. 3d).
Multiplex immunohistochemistry (mIHC) results confirmed the exis-
tence of these cell types (Fig. 1f). With mIHC plots, we observed that
there were more infiltrating immune cells in groups of RBT and RAT
(30.16% and 29.34%, respectively), compared with those in NBT and
NAT groups (0.42% and 2.65%, respectively). Moreover, most of the
stained epithelial cells were identified as tumor cells according to the
downstream scRNA-seq data analyses. The large patch of stained epi-
thelial cells in RBTwas split into small clumps after effective combined
treatment in RAT, with no significant change in cell proportions
(31.33% and 34.85% in RBT and RAT, respectively). However, stained
epithelial cells weremore abundant in groups of NBT and NAT (55.19%
and 80.99%, respectively).

Three functional gene modules in heterogeneous malignant
tumor cells of HPC
Malignant tumor cells were distinguished by inferring large-scale
chromosomal copy-number variations (CNVs) within epithelial cells in
each tumor and lymph sample, in which epithelial cells fromNT group
were used as reference (Fig. 2a)21. Totally, 19,207malignant tumor cells
from 13 samples were identified. Clustering ofmalignant cells revealed
sample-specific clusters, indicating a high degree of inter-tumoral
heterogeneity (Fig. 2b and Supplementary Fig. 4a). Considering the
small percentage of malignant cells in RAT and lymph groups, we
excluded these cells for further analyses (Supplementary Fig. 4b). Then
we groupedmalignant tumor cells from groups of RBT, NBT, andNAT,
which exhibited improved clustering (Fig. 2c). Although the featured
genes of each sample were different, they had similar expression
pattern in biological functionmodules (Fig. 2d). For example, immune-
related genes such as HLA-A, BCL6, S100P showed relatively high
expressed in RBTgroup,whereas expression levels of genes associated
with stemness and drug-resistance were increased in NBT and NAT
groups. Notably,with the lowest expression level of tumor-suppressive
genes in NBT, the representative gene CDKN2A was related with poor
prognosis in both our HPC cohort and public NPC cohort22 (Supple-
mentary Fig. 4c). Pathway analyses revealed further differences among
malignant cells in these three groups. Cells from the RBT group were
highly activated in epidermal cell differentiation pathways, while those
in the NBT group were enriched in Ribosome and DNA replication
pathways (Supplementary Fig. 4d). As for malignant cells in NAT,
several immunological pathways were reactivated after drug treat-
ment (Supplementary Fig. 4d). These results suggested that functional
genemodules, rather than individual genes,weremore appropriate for
depicting tumor transcriptional variability.

We applied non-negative matrix factorization (NMF) tomalignant
tumor cells fromRBT,NBTandNATgroups for decipheringunderlying
gene modules with R package NMF23. With suitable preprocessing and
rank selections (Supplementary Fig. 5a), we extracted 5 functional
gene modules through hierarchical clustering, including Epi_develop-
ment, EMT_extended, Cell-cycle, Immunity and Ribosome modules
(Fig. 2e and Supplementary Table 4). Compared to RBT group, the
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expression score of the Ribosome module was relatively increased in
theNBTgroup anddecreased inNATgroup (Supplementary Fig. 5b, c).
However, the transcriptional pattern of Immunity module showed in a
reverse way. Samples in NBT groups had significantly low scores
(Supplementary Fig. 5d, e), suggesting that a stronger interaction
between immune cells and tumor cells may serve as a potential indi-
cator for effective response to combined therapy. For the other three

functional gene modules, they exhibited the same trends in both
scRNA-seq and bulk RNA-seq expression datasets separately
(Fig. 2f–k). Specifically, the scores of EMT_extended and Cell-cycle
modules showed an increased trend in NBT group than that in RBT
group (Fig. 2f, i, g, j and Supplementary Fig. 5f, g), whereas the activity
of the Epi_development module was significantly lower than that in
RBT group (Fig. 2h, k and Supplementary Fig. 5h). Furthermore,

I
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survival analyses revealed that three gene modules could be used for
prognosis prediction for both HPC (Fig. 2l–n and Supplementary
Fig. 6a–c) and NPC cohorts (Supplementary Fig. 6d), in which patients
with higher expression of EMT_extended and Cell-cycle modules,
lower expression of Epi_development module were associated with
poor prognosis. The above results indicate that these three functional
gene modules have the potential to serve as predictive biomarkers in
clinical.

T-cell clustering and state analysis in HPC
Immune cells are composed of three major types, namely B cell, T/NK
cell, andmyeloidcell. Subclusteringanalyses identifieddistinct subtypes
(Fig. 3a and Supplementary Fig. 10a). In the subset of T and NK cells,
apart from the traditional four cell types (Supplementary Fig. 7a–c), we
further categorized them into 14 subtypes based on scRNA-seq profiles,
including 7 subtypes of CD8+T cells (C1_CD8_naive, C2_CD8_memory,
C3_CD8_cytotoxic1, C4_ CD8_cytotoxic2, C5_ CD8_cytotoxic3, C6_
CD8_exhaust and C7_ CD8_Ebo), 6 subtypes of CD4+T cells (C8_Treg_-
naive, C9_Treg_act, C10_Treg_Ebo, C11_Th_naive, C12_Th_act, and
C13_Th_exhaust), and 1 NK cell subtype (C14_NK) (Fig. 3a).

For CD8 +T cells, naive (CD8_C1; TCF7, LEF1), Ebo (CD8_C7;
MKI67, NUSAP1)24, cytotoxic (C3_CD8, C4_CD8, C5_CD8; GZMA,
GZMK) and exhausted subtypes (CD8_C6; PDCD1, TIGIT) were identi-
fied according to expressions of marker genes (Fig. 3b and Supple-
mentary Fig. 7d)11,20. The inferred developmental trajectory of
CD8 + T cells exhibited a branched structure, with C1_CD8_naive as the
root, C3_CD8_cytotoxic1, C4_CD8_cytotoxic2, C5_CD8_cytotoxic3 as
intermediate states and two kinds of exhausted subtypes as the ends
(Supplementary Fig. 7e). In addition,we scored the expression levels of
genes related to corresponding functional pathways in four closely
related CD8+ T subtypes (Supplementary Table 4), in which gradually
increased cytotoxic scores from C3_CD8_cytotoxic1, C4_CD8_cyto-
toxic2, C5_CD8_cytotoxic3 to C6_CD8_exhaust, as well as high
exhausted scores in C5_CD8_cytotoxic3 and C6_CD8_exhaust were
revealed (Fig. 3c). These observations suggested that C4_CD8_cyto-
toxic2 should function as the main cytotoxic subtype and
C5_CD8_cytotoxic3 was in an intermediate transition state towards
exhaustion. Regulon25,26 and GSVA pathway analyses also supported
the above inference (Fig. 3d and Supplementary Fig. 7f). To be specific,
C4_CD8_cytotoxic2 exhibited high expression levels in effectors such
as EOMES and STAT1/227,28, while pathways of lymphocyte activation
and negative regulation of immune were enriched in C6_CD8_exhaust.
When comparing the proportions of subtypes among groups, we
found that C1_CD8_naive was the majority in the lymph group and C3_
CD8_cytotoxic1 accounted for the largest proportion in NT and RAT
(Supplementary Fig. 7g). For samples from RBT, NBT and NAT, higher
percentages of C4_CD8_cytotoxic2 and C6_CD8_exhaust were
observed in RBT and NAT groups respectively (Fig. 3e and Supple-
mentary Fig. 7g). In addition, cells with higher cytotoxic score and
lower exhausted score were most abundant in RBT among the three
groups (Q4: 53.66% vs 36.93%, and 41.97%), indicating a more activate
state of RBT group (Fig. 3f).

For CD4 +T cell, we identified three Treg cell subtypes
(C8_Treg_naive, C9_Treg_act, C10_Treg_Ebo; FOXP3, IL2RA) and three
Th subtypes (C11_Th_naive, C12_Th_act, C13_Th_exhaust) (Fig. 3a and
Supplementary Fig. 8). C8_Treg_naive had higher naive scores, while

C9_Treg_activity showed higher expression levels of TregStability and
chemokines than that of C10_Treg_Ebo (Fig. 3g and Supplementary
Table 4).When comparing the proportions of CD4 +Treg subtypes, we
found that RBT grouppossessed fewer cells with high feature scores of
TregStabillity and chemokines (Q1:24.08% vs 35.46%) in contrast to
NBT group, suggesting a less immune-suppressive state of RBT
group (Fig. 3h).

Myeloid and B-cell clustering and state analysis in HPC
We analyzed the single-cell transcriptomes of 12,210 myeloid cells and
then grouped them into 9 subtypes based on the expression of cano-
nical markers, including Myeloid_C1_neutrophil, Myeloid_C2_mast,
Myeloid_C3_monocyte, Myeloid_C4_pDC, Myeloid_C5_moDC, Mye-
loid_C6_cDC1, Myeloid_C7_cDC2, Myeloid_C8_macrophageM1 and
Myeloid_C9_macrophageM2 (Fig. 3a and Supplementary Fig. 9a)20,29,30.
For the subset of myeloid cells, the inferred developmental trajectory
exhibited a branched structure, with monocyte as the root and two
kinds of macrophage subtypes as the ends separately (Supplementary
Fig. 9b). Calculating theM1 andM2 signature scores based on reported
marker genes31, we found M1-like pro-inflammatory signature scores
were almost similar between macrophageM1 and macrophageM2
subtypes, while macrophageM2 had obviously higher immune-
suppressive signature scores (Fig. 3i). M2-like marker genes, such as
CD16332, MSR133, and angiogenesis marker genes, like MMP9, VEGFA29,
were specifically drawn for presentation by violin plots (Fig. 3j). When
coming the comparison of macrophage proportions among groups,
we observed that the percentage ofmacrophage cells with both higher
M1 and M2 signature scores was higher in NBT group than that of RBT
group (Q1: 53.05% vs 37.84%) (Fig. 3k), and there existed more mac-
rophageM2 inNBTandNATcompared to those in RBTandRATgroups
(Supplementary Fig. 9c). As for four subtypes of DC cells, gene set
enrichment analysis and expression level estimation of functional gene
sets showed that pDC was a GZMB-mediated killer subset34 and cDC2
tended to be a well-matured immunosuppressive DC subset with high
expression of LAMP3, while moDC and cDC1 were DC subsets mainly
responsible for antigen presentation and they had a relatively higher
cell proportions in RBT group (Supplementary Fig. 9a, d–f)20.

16,012 B cells were detected and annotated into 5 cell subtypes,
including Bcell_C1_GC, Bcell_C2_MemoryInter, Bcell_C3_memory,
Bcell_C4_plasama_IgA, and Bcell_C5_plasma_IgG (Supplementary
Fig. 10a, b). Bcell_C1_GC cells were germinal center cells with high
enrichment of pathways related to cell division and DNA replication,
Bcell_C2_MemoInter and Bcell_C3_memory cells functioned as immu-
nological memory cells with specific high expressions of CD19, LTB
and IGHD, and Bcell_C4_plasma_IgA and Bcell_ C5_plasma_IgG cells
played an immunological killing effect with specific high expressions
of XBP1, IGHG and IGHA (Supplementary Fig. 10b, c). A rational
developmental trajectory was depicted for these B cells (Supplemen-
tary Fig. 10d). Moreover, Bcell_C1_GC, Bcell_C2_MemoryInter were
abundant in lymph andNT groups as expectations, while various types
of B cells existed in NBT group, indicating B cells might play a role in
TME of NBT group (Supplementary Fig. 10e).

Two featured endothelial subtypes identified in HPC
Apart from infiltrating immune cells, the TME is also composed of a
complex milieu of cell types including CAFs which make up the tumor

Fig. 1 | Clinical features and single-cell landscapes of collected HPC samples
fromdifferent groups. aRadiological features of patients with different responses
to one cycle of the combined treatment enrolled in the study. Red boxes indicate
the tumor lesions, and tags show the names of groups. b Kaplan–Meier plot of
survival analysis for patients in RBT and NBT groups. P value was calculated by the
log-rank test. c An experimental scheme diagram highlighting the overall study
design anddownstreamanalyses.d t-SNE plot of overall 89094 single cells grouped
into six major cell types. Each dot represents one single cell, colored according to

cell type. e Normalized expressions of canonical marker genes for each cell type.
The depth of color from gray to red represents low to high expression.
f Representative images of multiplex immunohistochemistry (mIHC) for HPC
tumor samples from RBT, NBT, RAT, and NAT groups. Samples were performed
with anti-EPCAM, anti-CD31, anti-FAP, and anti-CD45 antibodies for epithelial cells,
endothelial cells, fibroblast cells and immune cells identification separately. DAPI
was used as a nuclear counterstain. Images are representative of three biological
replicates.
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stroma, and endothelial cells (ECs) which line the lumens of blood and
lymphatic vessels. Recent advances reveal that vascular endothelial
cells are heterogenous and can function in different ways35–37. Some
prioritize to sprout and migrate from a blood vessel (so-called tip-like
cells), and others are relatively more static (so-called stalk-like cells)35.
For endothelial cells, we identified one lymphoid endothelial subtype
(Endo_C1_EndoLym) with high expression of PDPN, PROX1, LYVE1, and

two vascular endothelial subtypes (Endo_C2_EndoBlood1, Endo_-
C3_EndoBlood2) with high expression of FLT1, CD34, PLVAP (Fig. 4a, b
and Supplementary Fig. 11a)38. Here EndoBlood2 cells highly expressed
tip-like markers such as RGCC, COL4A1and NOTCH4, whereas the
expression levels of genes associated with stalk-like feature and
immunity activation19,36,39 such as ICAM1, HLA-DQB1and CCL2 were
obviously increased in EndoBlood1 (Fig. 4c). In addition, when testing
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themarkers for TA-HECs critical for anti-tumor immunity bymediating
lymphocyte entry into tumors37, we observed EndoBlood1 had rela-
tively higher expressions of its type-specific genes like LGALS3 and
CTSC, along with other expression patterns similar to TA-HECs (Fig. 4c
and Supplementary Fig. 11b). Further regulon40,41 and signaling pathway
enrichment analyses were done (Fig. 4d and Supplementary Fig. 11c),
suggesting that EndoBlood1 was involved in pro-inflammatory and
antigen presentation processes and Endoblood2 functioned in pro-
tumor way by cell migration and angiogenesis. When pairwise com-
paring RBT with RAT and NBT with NAT, we found the proportions of
cells with low StalkEC score but high TipEC score in Q4 decreased in
both two conditions, from 55.84 (RBT) to 15.79% (RAT) for treatment-
sensitive samples and from 51.52 (NBT) to 42.48% (NAT) for treatment-
resistant samples (Fig. 4d). These results suggested the combined
treatment could remodel the vascular endothelium in TMEby reducing
cells, which would be likely to migration and form new vessels.

Two featured fibroblast subtypes identified in HPC
For a total of 9115 fibroblast cells, we also identified five cell subtypes,
including one proliferative subtype (Fib_C1_proFib; MKI67, NUSAP1,
PLK1), one myofibroblast (Fib_C2_MyoFib; ACTA2, PDGFA, CDH6) and
three CAFs (Fib_C3_CAF1, Fib_C4_CAF2, and Fib_C5_CAF3; FAP, PDPN,
PDGFRA) (Fig. 4e, f and Supplementary Fig. 12a)42,43. CAF1 highly
expressed inflammatory CAF (iCAF) marker genes such as CFD,
CXCL14, IGF1, while CAF2 and CAF3 showed similarly high gene
expressions such as POSTN, CTHRC1, MMP14 and COL12A1 signatured
by matrix CAF (mCAF) (Fig. 4g)44. Through the comparisons by stress-
related genes such as MTIX and DDIT445,46 and pathway activation in
extracellular matrix organization and collagen metabolic process, we
further capture different signatures between CAF2 and CAF3 (Fig. 4h,
i). Considering both the above differences and CAF3’s unique sample
origin (Supplementary Fig. 12b), we excluded CAF3 for downstream
analyses. Consistent with previous research47, the inferred develop-
mental trajectory showed myofibroblast cells could evolve towards
both tumor-promoting and tumor-suppressive directions (Supple-
mentary Fig. 12c). When comparing the proportions of fibroblast
subtypes among groups, we found CAF1 was abundant in RBT group
and CAF2 was abundant in NBT group. Meanwhile, the percentage of
CAF2 decreased fromRBT to RAT, whereas the proportion was slightly
increased from NBT to NAT, indicating CAF2 in TME could be better
remodeled by effective combined treatment in treatment-sensitive
groups of RBT and RAT (Fig. 4j and Supplementary Fig. 12d).

Comparison of intercellular interactions among different
groups in HPC
To characterize and compare intercellular interactions among RBT,
NBT, and NAT groups in HPC, we inferred putative cell-to-cell inter-
actions with CellPhoneDB from high-resolution scRNA-seq data48,49.
Different cell cross-talk profiles were described among the three
groups (Supplementary Fig. 13a). More intercellular interaction links

existed between EndoBlood and CAF, as well as between CAF and
CD4Treg in NBT. In contrast, the molecular interactions likely for
tumor killing and antigen presentation between CD8T and malig-
nant epithelial (MalignantEpi) cells, as well as DC, weremore abundant
in the RBT group (Fig. 5a and Supplementary Fig. 13b–e).

Interactional pairs related to specific biological functions were
further assessed in detail. We observed more intensive interactions
related to immunologicalmobilization (IFNγ-Type II IFNR, CD28-CD86,
CD55-ADGRE5) in the RBT group than that in NBT (Fig. 5b)11,50,51. In
contrast, MalignantEpi cells were predicted to interact with CD8T and
CD4Treg through classical immune-suppressive pairs such as CD99-
PILKα, PVR-TIGIT, and NECTIN3-TIGIT11,52,53, which showed higher
expression levels in NBT and NAT groups (Fig. 5c). As for function of
angiogenesis represented by interaction pairs including LAMC1-A6b1,
FN1-A3b1, ADRB2-VEGFB, KDR-VEGFC54–58, the overall activation was
lowest in RBT group and highest in NBT (Fig. 5d). Interactions related
to lymphocyte recruitment signaling to exhibit anti-tumor effect
between CD8 +T/NK and CAF(CXCR3-CXCL949, CXCR3-CCL1959) were
most intensive in RBT group, while the pro-tumor state was most
enhanced by interactions between Treg and CAF in NBT group
(Fig. 5e). In addition, the cross-talk focusing on extracellular matrix
(ECM)modeling (COL4A2-A2b1, COL1A2-a1b1)60–63 wasmore abundant
in NBT group than that in RBT group, and its strengthwas decreased in
NAT group after treatment (Fig. 5f). Taken together, ligand-receptor
interaction analyses suggested that RBT group had more favorable
TMEwithmore immunological stimulating signaling, while NBT group
showed a complex state with high levels of angiogenesis, ECM remo-
deling and immunological inhibitory signaling.

The classifier model trained to predict responses of the com-
bined therapy in HPC
With both of single-cell and bulk RNA data in hand, we tried to take
advantage of advanced tools like CIBERSORTx or BayesPrism to infer
cellular compositions for further explorations64–66. Considering
applicability of above tools to our detailed characterized cell subtypes,
we finally used CIBERSORTx for extraction of subtype signaturematrix
from HPC scRNA-seq data, and then deconvolved our corresponding
HPC cohort of bulk RNA-seq data to test whether there would exist a
relationship between cellular compositions and treatment efficacy65.

After the pre-test of input subtypes (Supplementary Fig. 14), we
finally chose 15 well-characterized subtypes above to digitally estimate
the non-malignant cell abundance via CIBERSORTx. We grouped
15 subtypes into two groups named “tumor-suppressive group” and
“tumor-promoting group”. The former group included cell subtypes of
Endoblood1, CAF1, CD8T_naive, CD8T_cytotoxic, CD4Th, monocyte,
pDC,moDC, and cDC1,while the latter consisted of EndoBlood2, CAF2,
CD8T_exhaust, CD4Treg, cDC2 andmacrophageM2 (Fig. 6a). Grouped
by radioactive and histochemical diagnostic information, 44 samples
from four groups showed different subtype composition profiles
(Fig. 6a, b). Compared with samples in NBT, those in RBT had more

Fig. 2 | Characterization of functional gene modules from heterogeneous
malignant tumor cells. a Chromosomal landscape of inferred large-scale CNVs
distinguishingmalignant tumor cells fromnon-malignant epithelial cells in samples
of T4-1 and T4-2. Amplifications (red) or deletions (blue) were inferredby averaging
expression over 100-gene stretches on the indicated chromosomes. b t-SNE plot of
19207 malignant tumor cells colored by sample origins. c t-SNE plot of malignant
tumor cells from RBT, NBT, and NAT colored by annotation groups. d Featured
gene expression profiles of tumor cells across different samples from RBT, NBT,
and NAT groups, separated by dashed vertical lines. e Heatmap depicting pairwise
correlations of metagenes derived from 11 tumor samples from RBT, NBT and NAT
groups. Clustering identified five underlying functional genemodules in malignant
cells across samples. The dot size is proportional to the value of the correlation.
Sourcedata are provided asa SourceDatafile. f–hBoxplots ofmodule score in each
sample across RBT (n = 3), NBT (n = 4) and NAT (n = 4) groups for EMT_extended

module (f), Cell-cycle module (g), and Epi_development module (h) separately,
using scRNA-seq data. i–k Boxplots of module score in each sample across RBT
(n = 15), NBT (n = 15), and NAT (n = 7) groups for EMT_extended module (i), Cell-
cycle module (j) and Epi_development module (k) separately, using bulk RNA-seq
data. P values were calculated by two-sided Student’s t test, P values ≤0.05 are
represented as *, and ≤0.01 as **; the centers of boxplots correspond to median
values, with the boxes and whiskers corresponding to the corresponding inter-
quartile ranges and 1.5× interquartile ranges; colored dots denote each samples;
source data are provided as a Source Data file (f–k). l–n Survival analyses of 30
patients fromtreatment-naive in ourHPCcohortwithhighor lowexpression scores
of EMT_extended module (l), Cell-cycle module (m), and Epi_development module
(n) separately. Patients were stratified by the mean module scores. P values were
calculated by log-rank test.
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tumor-suppressive cells (58.7% vs 44.7%) and fewer tumor-promoting
cells (41.3% vs 55.3%) (Fig. 6b). In the meanwhile, there was an increase
of tumor-suppressive cells and decrease of tumor-promoting cells for
samples in NAT group compared to those inNBT group, indicating the
combined treatment could improve the state of anti-tumor activity in
TME through cell type compositions. Subsequently, we explored the
prognostic roles of these subtypes’ signatures in HPC (Supplementary

Fig. 15 and Supplementary Table 4). Generally, high scores of tumor-
suppressive and tumor-promoting subtypes’ signatures had positive
and negative correlations with survival, respectively.

Next, we tried to test whether subtype compositions in TMEcould
be utilized to predict curative effects of the combined therapy quan-
titatively in HPC. Here, we used the matrix data of subtype composi-
tions and treatment response labels from samples in RBT and NBT
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groups, training a non-linear support vector machine (SVM) binary
classifier model for prediction of the combined treatment response
(Fig. 6c). The model had a relatively high prediction accuracy, with
AUC =0.86 tested in our HPC cohort (Fig. 6d). In order to validate the
efficiency of the prediction model, we conducted a small-scale pro-
spective trial with additional 12 treatment-naive samples, 7 samples of
which were from RBT group (Supplementary Table 5). After the
deconvolution for these samples, we checked prediction results by
comparing SVM outputs with clinical true labels, and then found the
overall correction rate was 10/12 (Fig. 6e). The favorable results pro-
vided an exciting expectation that we could use the model to assess
the sensitivity of the combined treatment for advanced treatment-
naive HPC patients, which would enlarge the possibility to preserve
their laryngeal function before health condition deteriorated (Sup-
plementary Fig. 16).

In addition, we explored the pipeline of deconvolution and pre-
diction in NPC for further checking. Dissecting the public cohort of
NPC with 88 samples, we could grouped them into 3 clusters by sub-
type composition profiles (Supplementary Fig. 17a), with decreasing
percentages of tumor-promoting subtypes from group I to group III
(Supplementary Fig. 17b). Moreover, group I had better progression-
free survival rate than group III (Supplementary Fig. 17c), indicating the
method captured certain underlying features for predicting tumor
progression.

Furthermore, we proposed some potential therapeutic approa-
ches for samples in NBT and NAT groups with an in silico exploration
via Beyondcell67. Following its instructions, we subset all malignant
tumor cells from RBT, NBT, and NAT, and used the drug sensitivity
collection (SSc) for potential drugs finding. Due to the high hetero-
geneity of malignant cells, we could only get high-sensitivity drugs
with median switch points (Supplementary Fig. 18). With drug sensi-
tivity scores of malignant cells and drugs’ mechanisms, it is believed
that patients in NBT and NAT groups could benefit from RO-3306 and
CAL-101, respectively (Fig. 6f, g). RO-3306, whose sensitive scoreswere
relatively highest in NBT malignant cells, could block the cell cycle in
the G2/M phase and induce apoptosis in cancer cells as a CDK1
inhibitor68. And CAL-101, also named as Idelalisib and sold under the
brand of Zydelig, is a medication used to treat certain blood cancers
and could be used as the secondary strategy for treatment-resistant
HPC patients with further validations69.

Discussion
Combining high-resolution scRNA-seqdatawith bulk RNA-seqdata,we
not only described a single-cell landscape of clinical advanced samples
for HPC, but also provided potential indicators for clinical prognosis
and diagnosis (Fig. 7). On the one hand, we established the relationship
between functional gene sets from malignant cells and tumor prog-
nosis. Considering tumor heterogeneity, our data confirmed the
notion that gene modules, rather than individual genes, are more
robust and appropriate as underlying units for describing tumor
transcriptional variability10. On the other hand, non-malignant cell
compositions in TME deconvoluted from bulk RNA-seq data were

trained for a quantitative SVM model to predict the response of
combined treatments with satisfactory correction rates.

In detail, we identified five characteristic functional genemodules
from heterogenous tumor cells. The genes in Ribosome module were
involved in almost all aspects of biological processes, making it diffi-
cult to restrict its application in a specific biological function. Similarly,
the genes in the Immunity module were hard to apply in bulk RNA-seq
data in the perspective of tumor cells, because they are also expressed
by immune cells. Therefore, we mainly used gene sets from other 3
modules, namely “Epi_development”, “Cell-cycle”, and “EMT_ex-
tended”, to establish the correlations with tumor prognosis. In addi-
tion, bulk RNA-seq data of our HPC cohort was dissected by the
bioinformatic algorithm to obtain various cell compositions in TME
and then trained for treatment response prediction. For this purpose,
the way to separate biopsies for RNA-seq is important70,71. We applied
the same criteria72,73 to obtain samples with both tumor and non-
malignant parts to ensure that the cell compositions in TME were
representative. In the pre-test for CIBERSORTx deconvolution, we
found that macrophageM1, mast cells, NK cells, and MyoFib con-
tributed little in distinguishing sample differences (Supplementary
Fig. 14). Therefore, we excluded them and used other cell subtypes to
train and establish classifier model based on SVM machine learning
algorithm, focusing the differences between RBT and NBT groups.
The training result was satisfactory in limited samples with the cor-
rection rate at 10/12, suggesting its potential to provide therapeutical
advice for HPC patients in the future. Although there existed differ-
ences in etiology and histopathology between NPC and HPC, con-
sidering the lack of various non-malignant subtypes in public single-
cell datasets of NPC, we applied the signature matrix of conserved
non-malignant cell subtypes fromHPC to decouple and group public
NPC data for validation of our methodology. Our analysis revealed
the signatures of Endblood1 and CAF1 were also related to poor
prognosis in NPC, and there existed less Endblood1 and CAF1 cells in
group III, which had longer progress-free survival rates. The results
suggested our method possessed the potential to predict tumor
prognosis in NPC as well.

In this study, we combined the radiological information, scRNA-
seq data, and a cohort with bulk RNA-seq data to establish a binary
classifier model. Although the present classifier model showed favor-
able prediction results in small-size samples, it was built and tested in a
cohort of predominantly male patients, and more HPC patients with
gender differences were needed to enroll in prospective trials to
improve and confirm the efficacy of the classifier model in treatment
response prediction of the combined therapy. In addition, the com-
bined treatment could cause double effects. On the one hand, acti-
vated gene expressions and enriched signaling pathways related to
anti-tumor effects in NAT group, suggesting treatment lysed tumor
cells to release tumor-specific antigens to activate anti-tumor cells. On
the other hand, decreased immunological cell numbers were also
observed, indicating the treatment killed immune cells simulta-
neously. Therefore, it’s necessary for further exploration to test whe-
ther patients of NBT group would benefit from the treatment of

Fig. 3 | Detailed characterization of immune cells in TMEofHPC. a Identification
of cell subtypes in immune cells. b Average gene expression heatmap of functional
markers in T/NK subtypes. c Violin plots showing the expression scores of naive,
cytotoxic, and inhibitory/exhausted signature gene sets of four CD8+ T-cell sub-
types (n = 9989). Inside black points denote median values, and lines denote the
corresponding interquartile ranges. dHeatmap showing the activity of TF regulons
across four CD8 + T-cell subtypes. e Proportion differences of all CD8 + T subtypes
among RBT, NBT, and NAT groups. f 2D density dot plots showing the changes of
the cytotoxicity and exhaustion states of all CD8 + T cells amongRBT, NBTandNAT
groups. Cells were partitioned into four parts according to the mean scores of two
states with quadrantal percentages shown in the plots. g Violin plots showing the
expression scores of naive,TregStability and relatedchemokine signaturegene sets

of three CD4 + Treg cell subtypes (n = 4103). Inside black points denote median
values and lines denote the corresponding interquartile ranges. Source data are
provided as a Source Data file. h 2D density dot plots showing the changes of the
TregStability and chemokines states of all Treg cells among RBT, NBT and NAT
groups. Cells were partitioned into four parts according to the mean scores of two
states, with quadrantal percentages shown in the plots. i Scatter plot showing the
scores ofM1 andM2 signatures for eachmacrophage cell. jViolin plots showing the
expression levels of different marker genes between subtypes of macrophageM1
and macrophageM2. k 2D density dot plots showing the changes of the M1 and
M2 signature states of all macrophages among RBT, NBT, and NAT groups. Cells
were partitioned into four parts according to the mean scores of two states, with
quadrantal percentages shown in the plots.
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“chemotherapy plus immunotherapy”, which would protect and
enhance immunological functions by immunological drugs after
tumor lysis caused by chemotherapy. In the future, the ideal applica-
tion scenario is to divide advanced treatment-naive HPC patients into
two groups after their RNA-seq data are assessed by the classifier
model. Patients tagged as “sensitivity”will be recommended to use the
“classical combined therapy”, and the others predicted as “resistance”,

who have less potential to benefit from conventional therapeutical
scheme, could choose clinical trials or other aggressive therapy to
purse beneficial hopes (Supplementary Fig. 16).

In conclusion, our study identified certain functional gene sets to
infer tumor prognosis, and established a quantitative classifier to
predict responses of the combined therapy, both of which used only
bulk RNA-seq and would be convenient and economic to provide
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diagnostic and therapeutical advice for advanced male predominate
HPC patients.

Methods
Patient recruitment and sample collection
Eight male patients who were radiologically and pathologically
diagnosed with advanced hypopharyngeal carcinoma (HPC) were
enrolled in this study between December 2019 and January 2021.
Totally 15 fresh clinical samples were obtained from the patients
(Supplementary Tables 2 and 3), followed immediately by single-cell
preparation as described below. Additionally, 44 HPC samples of our
HPC cohort and another 12 HPC samples for respective researchwere
collected for bulk RNA-seq profiles. Above 56 samples sent for bulk
RNA-seq were derived from 56 individual patients (with 3 female
patients) between July 2016 and August 2022. According to the pre-
vious statistics on the difference in the late-life incidence of HPC
between men and women4, the gender rate of our samples was
roughly consistent, so we did not take sex and gender into account in
our study. In addition, this information was reflected in the title,
abstract and throughout the manuscript to avoid ambiguity. All
patients’ clinical characteristics are summarized in Supplementary
Tables 1, 2, and 5. All the above clinical samples were collected at the
Department of Otolaryngology Head and Neck Surgery, Beijing
Tongren Hospital. Written informed consent was obtained from all
participants for sample collection and analysis as well as for
publishing-related information such as gender, age and TMN stage in
necessary scientific researches. Ethical approval was obtained from
the Ethics Committee of Beijing Tongren Hospital, Capital Medical
University (TRECKY2016-025 and TRECKY2021-049).

Collection and preparation of samples for bulk RNA-seq
The specimens with only tumor cells would lead to the loss of non-
malignant cells, and the core part of tumor, occupied with necrotic
cells, would cause low RNA-seq quality. It is a more recommended
method to take the junction covering both tumor and adjacent sam-
ples, which could help to obtain tumor cells and other cell constitu-
tions in TME together. For bulk RNA-seq, specimens obtained from
Tongren hospital were subjected to total RNA isolation using a com-
mercial RNA extraction kit (Takara). After whole-transcriptome
amplification, library construction was performed using the Truseq
RNA Library Prep kit v2 (Illumina) following the manufacturer’s
recommendations. Samples were sequenced using the Illumina HiSeq
2000 platform to generate 150-bp paired-end reads.

Preparation of single-cell suspensions for droplet-based 10x
scRNA-seq
The samples for scRNA-seq were also collected as above description
and washed with phosphate-buffered saline (PBS; Solarbio), placed on
ice, cut into small pieces (<1mm3) and transferred to 5mL Dulbecco’s
modified Eagle’smedium (DMEM;ThermoFisher Scientific) containing
collagenase IV (1mg/mL) (ThermoFisher Scientific), DNase I (20U/mL)
(Invitrogen), Hyaluronidase (0.1mg/mL) (Merch), and Dispase (1mg/
mL) (Gibco). The samples were transferred into gentleMACS C tube

(Miltenyi Biotec), and ran h_TDK_3 program according to User Manual
of MACSmix Tube Rotator (Miltenyi Biotec) and then filtered twice
using a 40-µm nylon mesh (Thermo Fisher Scientific). After cen-
trifugation (500×g, 4 °C, 5min), the pelleted cellswere suspendedwith
ice-cold red blood cell lysis buffer (Solarbio) and filtered with a 40-μm
nylon mesh. Last, the pelleted cells were suspended with 1ml of Dul-
becco’s PBS (Solarbio), and the concentrations of live cells and
clumped cells were determined using an automated cell counter (Luna
fl). During the dissociation procedure, the cells were kept on ice
whenever possible, and the entire procedure was completed in
<90min (generally ~70min) to avoid the dissociation-associated arti-
facts recently described. A positive signal for a dissociation signature
that reflects dissociation-associated changes in gene expression was
obtained in <1% of the cells. Cell count and cell viability weremeasured
before library construction and deep-sequencing, which was per-
formed on Illumina NovaSeq 6000 by Annoroad Gene Technol-
ogy Co., Ltd.

Multiplex IHC staining assays
Multiplex IHC staining assays were performed on 4-mm-thick, for-
malin-fixed, paraffin-embedded slides using an Opal multiplex IHC
system (NEL811001KT, PerkinElmer) according to the manufacturer’s
instructions. Briefly, after slide preparation and heat-induced epitope
retrieval, slides were blockedwith PerkinElmer Antibody Diluent Block
buffer. In all, 100 µl antibodies were used after dilution as follows: anti-
CD31 (CST no. 3528, 1/300), anti-FAP (Abcam, no. 207178, 1/100), anti-
EPCAM (Abcam, no. 223582, 1/100) and anti-CD45 (CST, no. 13917, 1/
400). Each slide was baked in the oven at 75 °C for 1 h. Then, the slides
were deparaffinized with xylene and rehydrated through a graded
series of ethanol solutions. After antigen retrieval in a microwave, the
slides were washed in TBST wash buffer. After blocking, the sections
were incubated with primary antibodies for 1 h and then incubated
with 100 µl polymer HRP Ms+Rb as the secondary antibody (GT no.
GK600711-B) for 10min at room temperature. Opal fluorophores were
pipetted onto each slide for 10min at room temperature, and the
slides weremicrowaved to strip the primary and secondary antibodies
(Step 1). Then, we repeated the same protocol using the next primary
antibody targets (Steps 2–6). Finally, DAPIwaspipetted onto each slide
for 10min at room temperature (Step 7). The slides were covered with
VECTASHIELD, and images were taken using a Vectra Polaris auto-
mated quantitative pathology system. The images were analyzed by
inForm 2.3.0 software (PerkinElmer, Waltham, USA).

Process of a small-scale prospective trial of additional 12 HPC
samples
Overall, 12 specimens from treatment-naive HPC patients were per-
formed for bulk RNA-seq to obtain subtype compositions in TME by
CIBERSORTx after first CT scanning. Then they were predicted as
sensitive or resistant sample by the classifier model (denoted as pre-
dicted labels). Then, the patients performed the second radiological
test after one cycle of the combined therapy, and the changes of tumor
mass were confirmed by comparing two radiological results to get the
true labels of these samples.

Fig. 4 | Detailed characterization of endothelial cells and fibroblasts in TME of
HPC. a t-SNE plot of endothelial cells annotated into three subtypes. Each dot
represents one single cell, colored according to cell subtype. b Normalized
expressions of canonical marker genes to distinguish lymphatic and vascular
endothelium. The depth of color from gray to red represents low to high expres-
sion. c Violin plots showing the expression levels of TipEC-like, StalkEC-like,
immune-related, and TA-HECs-related markers in subtypes of Endoblood1 and
Endoblood2. d 2D density dot plots showing the changes of the StalkEC and TipEC
states of Endoblood cells among RBT, NBT, and NATgroups. Cells were partitioned
into four parts according to the mean scores of two states, with quadrantal

percentages shown in the plots. e t-SNE plot of fibroblast cells annotated into five
subtypes. Each dot representing one single cell, colored according to cell subtype.
f Normalized expressions of canonical marker genes to distinguish MyoFib and
CAF. Thedepth of color fromgray to red represents low to highexpression.gViolin
plots showing the expression levels of iCAF andmCAFmarkers in subtypes of CAF1,
CAF2, and CAF3. h Violin plots showing the expression levels of classifier markers
among CAF1, CAF2, and CAF3. i Heatmap showing the selected signaling pathways
(rows) with significant enrichment of GO and KEGG terms for CAF1, CAF2, and
CAF3. Source data are provided as a Source Data file. j Cell proportion differences
of three focused fibroblast subtypes among RBT, NBT, RAT, and NAT groups.
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Single-cell gene expression quantification and removal of
unqualified events
We used CellRanger (version 4.0.0) to generate a raw gene expres-
sion matrix for each scRNA-seq sample. Then as shown in Supple-
mentary Fig 2a, quality control (QC) filters of scRNA-seq data
consisted of basic and detailed parts. In the Basic QC, filtering of cells
was firstly performed to remove the ones with <201 or >7500
expressed genes and with more than 25% unique molecular identi-
fiers (UMIs) derived from the mitochondrial genome by Seurat R

package (version 3.2.2)74,75. Multiple primary-filtered expression
matrices were directly merged with merge() function embedded in
Seurat package. After the typical data process for scRNA-seq data, six
major cell types were identified with featured markers. Next, we
extracted cells from each group one-by-one for detailed QC. In this
part, we comprehensively considered the characteristics of doublet
event, as well as bad effects from dissociation, cell cycle, and con-
tamination. We used package Scrublet and DoubletDecon to infer
cell doublets76,77 and checked the profiles of dissociation and cell-

Fig. 5 | Comparison of intercellular interactions among three groups in HPC.
aBar plots showing different intercellular interactionnumbers among three groups
for four cell type pairs, including EndoBlood and CAF, CAF and Treg, malignant
epithelial (MalignantEpi) cells and CD8 + T cells, as well as CD8 + T cells and DCs.
b–f Selected ligand-receptor interaction profiles for five important biological
functions, including immune stimulation (b), immune inhibition (c), angiogenesis

(d), immune homing attracted by CAF (e), and extracellularmatrix (ECM)modeling
(f).The dot color from dark blue to dark red indicates the level of interaction. P
values are presented by circle size (getting from one-sided permutation test). The
means of the average expression levels of interacting molecule 1 in cluster 1 and
interacting molecule 2 in cluster 2 are indicated by color. Source data are provided
as a Source Data file.
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cycle with histograms and reduction t-SNE plots according to related
researches75,78. In our study, we specifically found some con-
taminated cells, which had dual features fromdefinitely two different
cell types and mainly originated from the samples with relatively low
cell viability in the measurement before sequencing. Finally, all
qualified cells were obtained and merged for downstream analyses.

Identification of the major cell types and their subtypes
For all qualified cells, gene expressionmatrices were log normalized to
total cellular read counts and mitochondrial read counts by linear

regression implemented using the ScaleData() function embedded in
Seuratpackage.Major cell typeswere annotated to knowncell lineages
using well-recognized marker genes with projection in the two-
dimensional t-SNE representation.

For the identification of subpopulations for each major cell type,
we repeated the above-mentioned steps, including normalization,
dimensionality reduction, and clustering. We adjusted and checked
the resolutions of clustering repeatedly according to averaged
expressions of feature genes from literatures with help of single-cell
auto-classification software SingleR (version 1.0.6)79.
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CNV analysis and identification of malignant epithelial cells
To identify malignant epithelial cells, we identified evidence for
somatic alterations of large-scale chromosomal copy-number variants
(CNV), either gains or losses, in a single cell using inferCNV software
(https://github.com/broadinstitute/inferCNV). The raw single-cell
gene expression data of epithelial cells in each sample was extracted
from the Seuratobject for testing. The single-cell data of epithelial cells
from NT group were used as reference cells. We preformed inferCNV
analysis with the default parameters.

Identification of functional gene modules embedded in hetero-
genous malignant tumor cells and extraction of the corre-
sponding gene sets
Focusing on the malignant tumor cells from RBT, NBT, and NAT
groups, NMFwas used to identify expressed functional genemodules.
Using the NMF R package (version 0.23)23, we applied NMF to the
normalized gene expression matrix of each sample, in which genes
with standard deviations of expression <0.5 were excluded. We
selected five or six as the factorization parameter (rank) according to
cophenetic correlation coefficients in corresponding samples after
pre-test for rank selection (Supplementary Fig 5a) and used extra-
ctFeatures() function for genes extraction of each meta-signature.
Finally, a total of 61 metagenes were identified across the 11 tumors.

The all metagenes were used for calculation of module scores in
malignant cells, and then compared by Pearson correlation before
further clustering. Five clusters of biological modules were identified
manually. For each module, we extract genes from meta-signatures
that commonly expressed in at least three samples with considering
their function in early researches. Finally, we got about 20 feature
genes for each module (Supplementary Table 4).

Pseudotime trajectory analysis
We applied the Monocle2 R package to determine the potential
development lineages in the T cell, B cell, myeloid, and fibroblast
subpopulations80. The differentially expressed genes across the
clusters were identified by dispersionTable() function in Monocle2
with default filtering parameters. The cells were ordered in pseu-
dotime, where the best trajectory tree was fit after the reduction of
dimensionality of the data by Reversed Graph Embedding
algorithm.

SCENIC analysis
SCENIC analysis was conducted with the pySCENIC package (version
0.9.9)26, a lightning-fast python implementation of the SCENIC pipe-
line. Twogene-motif rankings (10 kb around the transcription start site
(TSS) or 500 bp upstream of the TSS) were used to determine the

Fig. 6 | Prediction of the combined treatment response based on non-
malignant subtype compositions. a Heatmap of the normalized cell abundance
with fifteen subtypes estimated via CIBERSORTx and clinical records in our HPC
cohort. All 44 samples from RBT, NBT, RAT, and NAT groups were deconvolved for
estimation. b Average cell compositions in TME among four groups by dividing
fifteen subtypes into two groups named as tumor-promoting subtypes and tumor-
suppressive types. Error bars represent standard errors of cell constitutions in
corresponding groups. The biological independent sample numbers in the four
groups were 15, 15, 7, and 7, respectively. c Cartoon plot illustrating the processes
for SVM construction from our HPC cohort and application for prospective trails in
HPC. dMeasurement for the prediction performance of SVM classifier model. The
area under receive operating characteristic curve is 0.86 on the training samples.
e Heatmap of the normalized cell abundance with 15 subtypes for additional
12 samples. Tag of correct represented the labels from prediction model and true

clinical result were identical, while tag of incorrect represented the labels from the
prediction model and true clinical result were different. A summary table was
shown to summarize the separate and total correction rates. Source data are pro-
vided as a Source Data file. f Drug sensitivity of RO-3306 in malignant tumor cells
among RBT, NBT, and NAT groups. t-SNE plots of tumor cells annotated into three
groups (left top) and colored by normalized sensitivity scores (left bottom). His-
togram plots show the distribution of normalized sensitivity scores for tumor cells
in three groups, with dashed vertical lines representing the corresponding median
scores. gDrug sensitivity of CAL-101 inmalignant tumor cells among RBT, NBT and
NAT groups. t-SNE plots of tumor cells annotated into three groups (left top) and
colored by normalized sensitivity scores (left bottom). Histogram plots show the
distribution of normalized sensitivity scores for tumor cells in three groups, with
dashed vertical lines representing the corresponding median scores.

Fig. 7 | Schematic diagram of single-cell landscapes in HPC for analyses of
prognosis and treatment response. The complex landscape of TME in HPC was
illustrated by high-solution scRNA-seq data, including heterogenous malignant
tumor cells and various non-malignant cell types, which functioned in their specific
ways. On the one hand, we established the relationship between functional gene

sets from malignant cells for tumor prognosis inference. On the other hand, non-
malignant cell compositions in TME deconvoluted from bulk RNA-seq data were
trained for a quantitative SVM model to predict the response of combined treat-
ments for advanced HPC patients with satisfactory correction rates.
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search space around the TSS, and the 20-thousandmotif database was
used for RcisTarget and GENIE3.

Characterization of functional scores in single-cell data
To evaluate the potential biological functions of interested cells, we
calculated the scores of functional modules using the AddModule-
Score() function in Seurat at the single-cell level and averaged at
sample level if needed. The functional modules including five sig-
nature programs for malignant cells, naive, cytotoxic and exhausted
scores for CD8 +T cells, naive, TregStability and Treg-related chemo-
kine scores for CD4 + FOXP3 +Treg cells, M1, and M2 signature scores
for macrophages, as well was TipEC and StalkEC scores for vascular
endothelial cells. The involved gene sets are listed in Supplementary
Table 4. The calculating scores were used for comparisons of cell
subtypes or changes among different treatment groups.

Pathway enrichment analysis
To gain functional andmechanistic insights between cell subtypes, we
performed Gene Ontology (GO) and KEGG Pathway enrichment ana-
lyses using Metascape (http://metascape.org/) to identify biological
pathways that were enriched in a certain gene list more than that
would be expected by chance81. The gene lists were calculated with
lnFC >0.20 in clusters and greater than 15% expression threshold. To
compare the difference of signaling pathway enrichment in malignant
cells between samples, we performed the gene set variation analysis
(GSVA, version 1.34.0) using the selected molecular signatures82,
including hallmark pathways, GeneOntology (GO) andKEGGPathways
from MSigDB database.

Cell–cell communication analysis via CellPhoneDB
CellPhoneDB (version 2.0.6) used the cluster annotation and raw
counts from our single-cell transcriptomics data to compute cell–cell
communication within the cell subtypes49. The default ligand-receptor
pair informationwas used in this processwith considering only ligands
and receptors with expression in more than 15% of the cell subtypes.
The P values were calculated at 1000 times permutation test, and
values greater than 0.05 indicated significant enrichment of the
interacting ligand-receptor pair in each of the interacting pairs of cell
subtypes.

Analysis of bulk RNA-seq data of our HPC cohort and public NPC
cohort
Pair-end reads with high quality of 56 samples (44 samples with 12
additional ones for prospective research) were aligned to the human
genome (GRCh38) using HISAT2 (version 2.1.0) with default setting.
Software featureCounts (version 2.0.3) was used to quantitate the read
counts of each gene in samples. The expression levels of genes were
normalized by gene length and sequencing depth with edgeR (version
3.28.1) among samples. In group comparisons of malignant modules,
GSVA R package (version 1.34.0) was used to calculate module scores
of each sample with defined gene sets82.

The data of public NPC cohort was retrieved from the public GEO
database (GSE102349), including 113 NPC tissue samples profiled by
bulk RNA-seq. However, only 88 samples with clinical progression
information were used in this study. We downloaded the expression
matrix from databased and filtered the genes that did not express in at
least 50 samples for further analysis.

Survival analysis with gene expression signatures
The expressions of functional modules or signatures for specific cell
subtypes were evaluated by GSVA R package (version 1.34.0). To
assess the prognostic values of gene/module expressions, samples
from our HPC cohort were allocated into two groups with high and
low levels of specific features by in mean or median way.
Kaplan–Meier survival curves were plotted with the Survival R

package to show differences in survival time and evaluated by the
two-sided log-rank test.

Estimation of cell abundances from bulk RNA-seq data via
CIBERSORTx
Based on our single-cell sequencing data, we selected interested and
representative subtypes for generating the signature matrix. With the
reference, CIBERSORTx (version 1.1.0) (https://cibersortx.stanford.
edu/) deconvoluted bulk RNA-seq data, including both of our HPC
and public NPC cohorts into the subtype compositions in each sample
using the S-mode batch correction.

Construction of a SVM model for predicting responses of the
combined therapy in HCP
In order to harness cell compositions from our HPC cohort for the
prediction of responses to combined treatments, we trained a support
vector machine (SVM) based on 30 treatment-naive samples, half of
which were pre-defined as RBT group. To get the SVM classifier, we
first performed principal component analysis (PCA) on the training
samples and seven top principal components were selected for data
transformation. The SVM classifier was derived from Python scikit-
learn module and the non-linear sigmoid kernel was chosen with reg-
ularization parameter set as 1.5. The training error and fivefold cross-
validation error of the SVM classifier were 0.17 and 0.25, respectively,
and the area under receive operating characteristic curve (AUROC) is
0.86 on the training samples. Then we evaluated the SVM classifier
performance on another 12 HPC samples as the test dataset, whichwas
composed of 7 RBT samples and 5 NBT samples.

Statistics and reproducibility
HPC is a rare malignancy. Totally we used 15 samples for single-cell
RNA-seq analyses and 56 samples for bulk RNA-seq analyses. No sta-
tistical tests were performed for sample size calculation but it was
sufficient for this proof-of-concept study corroborated by twokinds of
data. All criteria for data exclusion were established and described as
above for quality control. All HPC patients were recruited randomly in
this study anddivided into groups according to their clinical diagnosis.
Investigators were blinded to patient identity only with coded sample
ID. All statistical analyses and presentations were performed using R
(http://www.r-project.org). All Data points were shown for bar plots
and boxplots with a sample size ≤ 10. For larger sample sizes, box and
violin plots were used to visualize the data distribution. Data were
presented as themean values ± SE in bar plots. P values were evaluated
by two-sided Student’s t test, one-sided permutation test and log-rank
test. P values > 0.05 were considered not statistically significant and
represented as ns., P values ≤0.05 were represented as *, ≤0.01 as **.
Multiplex IHC staining assays were confirmed in three biological
replicates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequence data generated frombulk and single-cell RNA-seq of
clinical samples in this study have been deposited in the Genome
Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) in
National Genomics Data Center (Nucleic Acids Res, 2022), China
National Center for Bioinformation/Beijing Institute of Genomics,
Chinese Academy of Sciences, under accession number HRA003383.
The data are available under restricted access for relevant data pro-
tection regulations considering the data contains human genetic
information, and the access can be obtained after being authorized by
its DataAccess Committee (DAC) by checking the identity andpurpose
of applicants. Generally, reasonable requests will be approved within
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2 weeks, and the download permission will be opened. The publicly
availableNPCbulk RNA sequencing data used in the study are available
in GEO with the accession number GSE10234922. The patient infor-
mation for single-cell sequencing and bulk RNA sequencing is available
in Supplementary Tables 1, 2, 3, and 5. Source data are provided with
this paper.

Code availability
The scripts are available at https://github.com/Sara0201Tao/
2022HPC83.
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