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Revealing influencing factors onglobalwaste
distribution via deep-learning based
dumpsite detection from satellite imagery

Xian Sun 1,2,3,10 , Dongshuo Yin 1,2,3,10, Fei Qin 2, Hongfeng Yu1,2,3,
Wanxuan Lu 1,2,3, Fanglong Yao 1,2,3, Qibin He 1,2,3, Xingliang Huang 1,2,3,
Zhiyuan Yan1,2,3, Peijin Wang1,2,3, Chubo Deng1,3, Nayu Liu1,2,3, Yiran Yang1,2,3,
Wei Liang1, Ruiping Wang4, Cheng Wang5,6, Naoto Yokoya7,8, Ronny Hänsch9 &
Kun Fu 1,2,3

With the advancement of global civilisation, monitoring and managing
dumpsites have become essential parts of environmental governance in var-
ious countries. Dumpsite locations are difficult to obtain in a timelymanner by
local government agencies and environmental groups. TheWorld Bank shows
that governments need to spendmassive labour and economic costs to collect
illegal dumpsites to implement management. Here we show that applying
novel deep convolutional networks to high-resolution satellite images can
provide an effective, efficient, and low-cost method to detect dumpsites. In
sampled areas of 28 cities around the world, our model detects nearly 1000
dumpsites that appeared around 2021. This approach reduces the investiga-
tion time by more than 96.8% compared with the manual method. With this
novel and powerful methodology, it is now capable of analysing the relation-
ship between dumpsites and various social attributes on a global scale, tem-
porally and spatially.

With the global surge inwaste production,management and discharge
of dumpsites are receiving more attention than ever before. At the
same time, carbon neutrality has been a goal of many governments
over the years, with many countries already committed to achieving
zero emissions bymid-century1. Greenhouse gas emissions from post-
consumer waste account for 3% of global man-made greenhouse gas
and 18% of the global anthropogenic CH4 emissions2. As the World
Bank noted in 2018, “the world is on a trajectory where waste gen-
eration will drastically outpace population growth by more than

double by 2050”3. Due to the rapid growth of global waste production,
the supervision of both legal and illegal dumpsites is significant to
global environmental governance. In fact, those produced waste will
initially pile up into dumpsites, including large dumpsites and some
small illegal dumps. Large dumpsites can result in the formation and
spread of infectious diseases4–7, which may endanger the lives of
scavengers8–10, prey hyenas11, bears12,13, birds14,15 living around. Some
scholars also hold the opinion that targeted monitoring and manage-
ment of large dumpsites could better increase the income level of
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scavengers around dumpsites16 and enhance the efficiency of waste
recycling17. For small ones, World Bank pointed out that “unregulated
or illegal dumpsites serve about 4 billion people and hold over 40% of
the world’s waste”18. Scholars claim that illegal dumpsites are caused
by illegal dumping by nearby residents3, making it difficult to track
their location on a regular basis. Dumpsite information can positively
affect research into human behaviour, geoscience, environmental
protection, and more.

The primary task of dumpsite monitoring is to regularly confirm
their locations, which the environmental department often does at
enormous labour cost19. Globally 33%ofwaste is openly dumped, while
this percentage in upper-middle and low-income countries is 30% and
93%, respectively3. Johannesburg collects 4500 tonnes of new illegally
dumped waste every week and produces 1.56 million tonnes of waste
every year20. It is challenging tomanually locate small illegal dumpsites
following classical method. As a result, these illegal dumpsites are
usually reported by residents or discovered by the government after
accumulating a certain volume. In addition, the peculiar smell and
unhealthiness of dumpsites are also unfriendly to information collec-
tors, so it is almost impossible to locate dumpsites on a global scale
using manual methods. In fact, satellite imaging technology has
become a powerful basis for earth observation in the last decade.
Several works aim to use satellite images to locate dumpsites with
manual and semi-manual methods21–23. Limited by the inflexibility of
traditional algorithms and the low resolution of previous satellite
images, labour costs are still very high in early attempts. Thus, there is
an urgent need for an automated method with superior performance
to apply advanced earth observation technology to dumpsite detec-
tion. Scholars employ Unmanned Aerial Vehicles (UAVs)24 to detect
dumpsites with promising results, yet UAV is still inefficient for rapid
detection on a global scale. Several works combine deep learning and
earth observation for dumpsite detection, where data is collected
locally in regions of a certain country, including Shanghai25,
Johannesburg20, and cities in Italy26,27. Recent literature28 annotates
major landfills at the pixel level in several countries and implements
semantic segmentation with specific models, but only 13 mutually
independent landfills are included. All the above remarkable works do
not include publicly available dumpsite datasets. BigEarthNet29 con-
tains a small number of unclassified dumpsites but is more commonly
used for general landuseclassification28. Overall, existing literature has
not publicly released specific global datasets for classified dumpsites,
making it challenging for academics and institutions wishing to
investigate further.

In order to assist academics and government environmental
authorities in their studies of dumpsites globally, we adopt deep
learning to reduce labour costs and the difficulties of locating
dumpsites. Deep learning has been proven in many fields to achieve
satisfactory results with automatic mechanisms, including computer
vision30, remote sensing31, agriculture32, medicine33 and so on. To
better apply deep learning to dumpsite detection, we carry out this
work in terms of data and model. After long-term field research (see
supplementary materials), we first construct a global dumpsite
dataset (including numerous illegal dumps and a few regulated
landfills) by manually labelling about 2500 dumpsites in nearly
4800 square kilometres of satellite images with high resolutions
from 0.3m to 1m per pixel worldwide. We select areas of several
representative cities in the world with larger populations and lower-
rankingof environmental performancewith the helpof theworld city
population rankings in the 2016 World Cities Report34, the Global
National Environmental Performance Index (EPI)35 rankings released
by Yale University in 2020, and extensive literature and online
resources. Figure 1b, c show the geographical distribution of selected
cities and the proportion of dumpsites in each country. More
importantly, we classify dumpsites into domesticwaste, construction
waste, agricultural waste, and covered waste without exception

based on Fig. 1d and label their categories in the dataset. Agricultural
waste, construction waste and domestic waste are common and well
understood, which are made up of crops, construction debris and
residential waste respectively and differ considerably in how they are
disposed of and their appearance. Another less common class is the
covered waste, which is covered with dark films (e.g., high density
polyethene (HDPE) films) after being disposed of by professional
waste management. Recent literature suggests that films can sig-
nificantly reduce the concentration of volatile compounds (VOCs)
and inhibit the production of waste permeate in the vicinity36–38,
thereby reducing the health risks to nearby residents and the soil.
Covered waste is vital for waste management, so we include it as a
separate category anddetect this class with advanced imbalance data
countermeasures (see “Long-tailed distribution problem” in the
supplementarymaterials for similar examples of data imbalance). It is
worth noting that some other objects, including covered farming
tools or construction equipment, may have similar outlooking of
covered waste, e.g. with HDPE films. However, these objects are
usually small in size and can be easily distinguished in the deep fea-
ture space. We have verified all the covered wastes on a case-by-case
basis to ensure authenticity. To the best of our knowledge, previous
studies20–29 do not include a case for fine-grained classification of
global dumpsites from the perspective of satellite imagery which
may help the government and related scholars conduct more fine-
grained dumpsite supervision and research. Figure 1d illustrates the
appearance of four types of dumpsites.

Considering the characteristics of the dumpsite and the limita-
tions of the current typical deep learning model detailed in the
subsequent Model section, we propose a novel deep model for
dumpsite detection named BCA-Net. Experimental results indicate
that our model can detect more than 98% of dumpsites, and the
supplementary materials also demonstrate that our model outper-
forms other existing models in the task of dumpsite detection. With
this powerful method, we are now able to analyse the dependence
between the number of dumpsites and various social attributes from
a spatial and temporal perspective. We perform large-scale global
dumpsite detection and statistical analysis in areas out of the data-
set. Spatially, we conduct a statistical analysis on the number of
dumpsites on the satellite images of the central areas of 28 cities
around 2021 and performed correlation analyses with 18 attributes
obtained from official public data such as the World Bank and the
United Nations. Several factors, such as different continents, level of
development, population, and latitude, are considered to make the
28 cities globally representative. Every continent is included in our
scope, and countries within the same continent are significantly
different from each other in terms of development. Spatial analysis
results reveal that the quantity of illegal dumpsites is relevant to
development, urbanisation, sanitation, while interestingly, not sta-
tistically related to population, education, and technology. Tempo-
rally, we select central areas of several typical cities on multiple
continents in our discussion, namely Munich, Tokyo, Kampala, and
Shanghai, from 2015 to 2019 and tried to describe their changes. The
time-series changes in those areas hint at the influence of policies like
waste classification on the formation of illegal dumpsites. Overall, it
is the first time researchers can detect classified dumpsites globally
in an efficient and automated manner, as well as demonstrate a
global correlation between the number of dumpsites and economic
development, urbanisation progress, sanitation management, and
policies.

In this work, our contributions are four-fold:
• Webuild a global fine-grained dumpsite detection dataset which

can be used to train efficient deep learning networks.
• Wedesign a novel deep convolutionalmodel, BCA-Net, based on

the characteristics of dumpsites. BCA-Net can detect more than
98% of dumpsites.
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• We detect the number of dumpsites in the central areas of 28
cities based on our method and validate the generalisation of
our method.

• We uncover statistical correlations between the number of
dumpsites and development, urbanisation and sanitation.

Results
The result is expanded into two parts: validation of our approach and
spatial analysis in a global view with this approach.

Validity and rationality
The illegal dumpsite’s composition is complicated, and its shapes are
irregular, posing significant challenges to the deepmodel. In addition,
the uneven distribution of the number of various categories in the
training set will also reduce the overall performance. In order to prove
that the proposed model can effectively detect dumpsites, we

illustrate themodel’s performance in this part.We split thedataset into
a training set, a validation set and a test set in the typical ratio of
60:20:2039–41. Both k-fold (k = 5) and early stopping techniques are
applied to increase the robustness of the results. Due to the problemof
severe sample imbalance in the dumpsite dataset (Fig. 1a), we propose
two training strategies, data augmentation (vertical flipping, hor-
izontal flipping, forward 90° rotation and reverse 90° rotation) and
category balancing, to ensure the model’s efficiency during the train-
ing process (see themethods and supplementarymaterials for details).
Two issues in dumpsite detection are very worthy of attention. The
first and most important thing is the sensitivity of the model to illegal
dumpsites. The higher this sensitivity, the more illegal dumpsites can
be detected. The second aspect of model evaluation is precision. The
higher precision of the model for dumpsites means fewer misjudg-
ments will appear in prediction results. Here, the sensitivity and pre-
cision of the model to the dumpsite are defined as:

Sensitivity =
No: correctlypredicteddumpsites

No: all labelleddumpsites
ð1Þ

Precision=
No: correct dumpsite predictions

No: all dumpsite predictions
ð2Þ

Typically, higher sensitivity in geospatial detection requires a
highermodel tolerance,whichmeans that the results aremore likely to
have lower precision. Table 1 illustrates the results of themodel on the

Table 1 | Model performance on four types of dumpsites

Sensitivity Precision

Domestic waste 0.975 0.680

Construction waste 0.982 0.593

Covered waste 0.991 0.967

Agricultural waste 0.973 0.558

Average 0.980 0.701

Delhi, India

Lagos, Nigeria

Western Province, 

Sri Lanka

Dhaka, 

Bangladesh

Assam, India

Kinshasa, DR Congo

...

Beijing, Anhui, Tianjin, 

Fujian, etc. in China

Construction WasteAgricultural Waste Covered Domestic 

Large size

Distinguishable

Demolition

Concrete

Middle size

Irregular shaped

Small size

Complicated

Large size

Distinguishable

Organics

Crop waste

Plastics

Municipal solid waste

Black film

Small quantity

Selected Cities

Domestic 

Covered 

Construction Waste

Agricultural Waste

Colombo, Sri Lanka

Cities in China

Dhaka, Bangladesh

Guwahati, India Kinshasa, Congo

Lagos, Nigeria New Delhi, India

Fig. 1 | Basic information of dumpsite dataset and typical examples of four
categories. a The proportion of the four categories. b Quantity distribution of
dumpsite samples in different countries. (The number of dumpsites in China is
relatively large since data in China is easier to obtain in thiswork, andour validation

results show that theproposedmethodhas the generalisability todetectdumpsites
globally.) c Geographic location of all selected cities in our dataset for training and
verification. d Typical examples and characteristics of the four types of dumpsites.
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test set. Although global dumpsites’ irregular shape and appearance
pose tremendous challenges to deep learning systems, our model still
has an average sensitivity of over 98%. Interestingly, previous work42

demonstrates that humans have a sensitivity of 94.9% for image clas-
sification, yet our model achieves a sensitivity of 98% over that of
humans in more challenging image detection (98% is based on 100%
sensitivity of the annotators, which is demonstrated by the annotation
process in supplementary materials). As the differences between dis-
tinct types of dumpsites are small and the same type of dumpsites can
have significant morphological differences, the precision of themodel
has the potential to be improved with the advancement of satellite
resolution in the future. It is worth noting that our model can be
deployed to a personal laptop in a very short time and locate the
dumpsites in the whole test set (162 square kilometres) in <30 s.
Combining the sensitivity and precision of the model, we convert the
high-cost method of manually positioning dumpsites into a low-cost
and automated approach.

Figure 2 shows the authenticity and rationality of our method. In
order to ensure the authenticity of our detection results, we confirm
some dumpsites found in satellite images on the spot. Figure 2a, b are
the real photo and the satellite image of the same domestic waste

found in Beijing. Figure 2c, f show the “class activationmap” (CAM)43 of
the model in the inference process. The brighter part represents the
possible location where the model predicts the dumpsite may exist. It
can be seen from Fig. 2 that the trained model focuses on the interior
and edges of the dumpsite. Figure 2b shows a car park (Supplementary
Fig. 6 provides an enlarged picture), which looks similar to dumpsites.
The model is also interested in this area, which has been shown with a
light red area underneath the dumpsite in Fig. 2c. But due to the
model’s sensitivity to detailed features, the area is ultimately not
misclassified as a dumpsite because of the low confidence level. CAM
reveals the internal working mechanism of the deep learning model
and also explains the rationality of this approach, which is also detailed
in supplementary materials (see “Insights through the BCA-Net” sec-
tion). Figures 2d–g illustrate the flow of our method and the detection
results at the regional level. Each dumpsite in subsequent results goes
through the process of Fig. 2e–g to obtain the final location box and
category label.

Spatial analysis
To analyse the relationship between illegal dumpsites and social
attributes, we conduct extensive dumpsite detection and statistics

ShanghaiShanghai

0 500 1,000 2,0000 500 1,000 2,000
Agricultural WasteAgricultural Waste Domestic GarbageDomestic Garbage

d

Agricultural 

Waste

Construction WasteConstruction Waste

a b c

e f g

To the model

Fig. 2 | Presentation and confirmation of dumpsite detection results. a–c Photo
of a domestic waste dump located in Beijing and its feature distribution in the
model, which are shown with the owner’s permission. Supplementary Figure 6

provides an enlarged view of the highlighted areas in c. d Geographic distribution
of dumpsites in the selected area in Shanghai. e–g Our model extracts the char-
acteristics of an agricultural waste and uses a rectangular box to mark its location.
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with a global view to explore the potential conditions that affect the
formation of dumpsites. Considering the latitude, development
level, health ranking, income level, etc., we select 28 areas out of the
dataset with a large population of 15 countries for quantitative ana-
lysis. In addition, we investigate two areas in most countries to ana-
lyse the difference between areas with different levels of
development within a country. One of them is a well-developed
metropolis, and the other is an ordinary city with a large population
(only one city is investigated in India and Nigeria considering the
accessibility of suitable remote sensing images). Analysis materials
are satellite images of these areas around 2021 (about 160 square
kilometres per area). Supplementary Figures 7–13 mark all dumpsite
locations in several areas. Figure 3a presents the geographical dis-
tribution of 28 areas. Red and black represent the relatively

progressive and ordinary city in each city pair, and the circular area
reflects the number of dumpsites detected in an area. In order to
construct a simple and intuitive global evaluation indicator, we
propose a new Global Dumpsite Index (GDI) to represent the quan-
titative level of dumpsites in city centre areas. GDI is positively cor-
related with the number of dumpsites (logarithm of the number of
dumpsites to the base 2), and the details of GDI will be discussed in
the method part. Figure 3b shows the GDI in 28 areas and the per-
centage of different dumpsites (Supplementary Fig. 9 shows specific
numbers). Figure 3a illustrates that the total number of dumpsites in
more progressive cities (within the same country) is relatively small
and that inmoredeveloped countries is relatively small as well. These
two phenomena suggest that the more advanced the area, the
smaller the probability of the formation of dumpsites.
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Fig. 3 | Geographical distribution and Global Dumpsite Index (GDI) of selected
areas for spatial statistics experiments. a Global distribution and quantity
comparison of 28 areas for spatial analysis. Red and black circles represent two
areas of the same country, and the area of the circle represents the number of

dumpsites. b GDI and percentage of different types of dumpsites in 28 areas. The
order is determined by GDI, and different colours represent different types of
dumpsites.
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To explore which factors are related to the number of illegal
dumpsites, we analyse the correlation between the number of dump-
sites and 18 valid attributes of the selected cities or countries obtained
fromofficial public data such as theWorldBank and theUnitedNations.
Supplementary Table 10 shows the values and sources of the 18 attri-
butes. Table 2 shows the name of 18 social attributes and their Spear-
man correlations with the number of dumpsites. Spearman correlation
has been widely used in correlation analysis44–48. In detail, the analysis
results of total dumpsites (ALL), domestic waste (DW), construction
waste (CW) and agricultural waste (AW) are provided. The mark * in
Table 2 indicates a statistical correlation between two variables, while
** indicates a strong correlation (see Supplementary Table 11 for more
details). The results demonstrate that the total number of dumpsites is
statistically correlated with the urbanisation process, income level,
developed or developing country, latitude, and health ranking. The
number of single-type dumpsites is mostly linearly related to these
attributes as well. Statistical results can be listed as follows:
(a) Development: countries with higher development levelsmay have

more mature dumpsite treatment plans, which can help avoid the
formation of large dumpsites and make cities tidier.

(b) Urbanisation: process of urbanisation affects the formation of
dumpsites to a certain extent. Normally, more urbanised coun-
tries have stricter regulations on city appearance and are less
likely to form a massive dumpsites. Conversely, less urbanised
areas with fewer regulations may have a higher tolerance for
large dumpsites.

(c) Sanitation: the number of dumpsites shows a strong statistical
correlation with the national sanitation level ranking, which
implies that the number of dumpsites can also be an indicator to
measure the health level of a region/country.

(d) Others: interestingly, there is no direct correlation between the
number of dumpsites (in city centres) and population, education
rankings, and technology rankings. This finding suggests that
population, education, and technology level do not ultimately
impact the number of dumpsites in city centres.We speculate that
the government’s policy regulation and implementationmay have
a more profound impact on the number of dumpsites.
The spatial analysis demonstrates that our method can be a

quantitative tool for evaluating regional dumpsite management. By
comparing the absolute number and distribution density of dumpsites
in multiple regions, the government can analyse the dumpsite man-
agement in these regions, compare them from a policy perspective
and even give guidance. We believe that this automated method will
greatly optimise the management of dumpsites. Furthermore, an
intelligent management system will significantly reduce carbon emis-
sions and infectious diseases around dumpsites as well as improve
their recycling rate and sustainability.

Discussion
This section will discuss the factors that influence the formation of
dumpsites from a temporal perspective. In addition, we also sum-
marise the contribution and potential significance of this work.

Temporal discussion
Here, we attempt to discuss which human factors may have relation-
ships with the formation of illegal dumpsites from a temporal per-
spective. Specifically, four representative areas are selected as
discussed areas: Munich in Germany (48° 7′55.46″N 11° 34′52.01″E,
about 156 square kilometres), Tokyo in Japan (35∘42′12.07″N 139∘42′
47.65″E, about 158 square kilometres), Shanghai in China (31∘9′5.90″N
121∘27′19.98″E, about 166 square kilometres), Kampala in Uganda (0∘19′
30.66″N32∘35′23.61″E). Eachof them is one of themost advanced cities
in the country, but they have significantly different wastemanagement
policies. Munich and Tokyo have well-developed waste management
policies, and Shanghai has recently been optimising its management
policies, while Kampala’s waste management policies are relatively
poor. Given the possible influence of resolution on the results (see
supplementarymaterials), we set a uniform resolution of 0.6m for the
satellite images used in this section. Figure 4 shows the trend of three
types of dumpsites and the total amount of dumpsites in five years.
The results of Fig. 4 are summarised as follows with our discussion:
(a) There are relatively more dumpsites in Shanghai and Kampala.

Over time, the number of dumpsites in Shanghai is slowly
approaching Tokyo and Munich, while Kampala seems to be
maintaining an overall upward trend. Relevant materials mention
that Shanghai implemented a large-scale urban renewal pro-
gramme in 201449, and many old buildings have undergone
demolition and reconstruction since that year. From Fig. 4, many
“constructionwaste” and “agricultural waste” existed from2015 to
2016. In addition, Shanghai began to advocate a waste classifica-
tion plan in 2018, which was officially implemented in 2019. The
amount of “domestic waste” in this area had maintained an
upward trend from 2015 to 2017 while decreased significantly
from 2017 to 2019, which may reflect a possible link between the
waste classification policy and the number of dumpsites to a
certain extent. For Kampala, scholars stated that poverty and
backward consciousness have greatly restricted Kampala’s waste
management revolution around 202050,51. Most residents do not
segregate their waste, which leads to a low waste collection rate.
Moreover, the inefficient implementation of waste management
policies also caused the formation of dumpsites50. The joint
placement ofmedical waste and other waste poses a certain safety
hazard to surrounding animals and humans51. The low urbanisa-
tion rate50 makes construction waste less, but domestic waste in
Kampala exceeds the sum of the other three cities and continues

Table 2 | The spearman correlation analysis results of 18
attributes and the number of dumpsites

All DW CW AW

Urbanisation ranking 0.418* 0.351 0.37 0.381*

International
innovation index

0.311 0.294 0.222 0.124

Gross national income 0.538** 0.480** 0.486** 0.455*

Developed
country or not

−0.554** −0.536** −0.403* 0.420*

Waste treatment
recycling (%)

0.133 0.109 0.117 0.218

Waste treatment
incineration (%)

−0.488 −0.515 0.103 −0.323

Waste treatment
open dump (%)

−0.214 −0.273 −0.044 −0.161

Municipal solid waste 0.036 0.071 0.037 −0.053

Global waste index −0.381 −0.395 −0.254 −0.298

Absolute latitude −0.424* −0.365 −0.312 −0.463*

Latitude −0.204 −0.144 −0.149 −0.377*

Northern/Southern
hemisphere

−0.083 −0.118 0.025 0.074

GDP per capita −0.356 −0.353 −0.230 −0.455*

National GDP 0.096 0.049 0.269 0.187

Population −0.099 −0.073 −0.129 0.032

Population density −0.188 −0.188 0.090 −0.108

Cleanest countries in
the world

0.487** 0.424* 0.475* 0.433*

Education rankings 0.366 0.351 0.382 0.294

The values in the table are correlation coefficients (not P-values). Only variablesmarkedwith * or
** in the table are statistically relevant, while other correlations are not statistically relevant.
P < 0.05 indicates a statistically linear correlation, which is marked with *. P < 0.01 indicates a
strong correlation, which is marked with ** (Supplementary Table 10 includes the P-values of
these correlations).
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to rise. According to the above literature, the relative back-
wardness of the Kampala government’s waste management
policies and supervision may be one of the social factors behind
these big numbers. Based on our findings in the spatial analysis,
poor urbanisation and economic development factors also
contribute to the formation of dumps in Kampala. It is not easy
to analyse the many social factors of dumpsite formation, and
more supportivedatamaybe available to study them in the future.

(b) Munich and Tokyo, which are also large and advanced cities like
Shanghai, have far fewer dumpsites thanShanghai, reflecting from
a macro perspective that these two selected areas’ environmental
governance and urbanisation are better than Shanghai based on
our previous conclusions. According to the census, the population
density of Tokyo, Japan, andMunich, Germany in 2020were about
6363 and 520 people per square kilometre, respectively. However,
the number of dumpsites in the selected area of Tokyo is less than
that of Munich, suggesting that the selected area of Tokyo does
well in urban dumpsite management to some extent. From the
perspective of waste management policies, the Japanese and
German governments entered the era of waste sorting by for-
mulating environmental-related legal documents earlier than
most countries52,53 and have achieved satisfactory results in
treatment and recycling of waste even in 2000, which might be
a potential promoting factor to the stationary low dumpsite
distributions in the inspected period from 2015 to 2019. It will be
interesting to study the correlation between effective waste
treatment policies (especially waste classification and circular
economy) and the number of dumpsites, which is one of the
studies we are planning.
After observing a large number of dumpsites, we are very inter-

ested in the reasons for the formation of dumpsites and their future
changes, so we display the five-year changes in the location of four
dumpsites in Fig. 5. Line I illustrates that a piece of construction waste
in Shanghai was formed as the house had been demolished and dis-
appeared as the lawn had been built. Line II shows an illegal dumpsite
in Shanghai that had been transformed into a green belt in 2019. The

formation of dumpsites in Line I reflects the implementation of the
large-scale urban renewal programme, while the twodumpsites in Line
I and Line II finally turned into green spaces, which is in line with
Shanghai’s green space regulations. Line III shows a dedicated dump-
site inMunich that has not changedmuch in five years. Line IV displays
an old building demolished and replaced by a modern office building
in Munich. The time-series discussion suggests that large-scale urban
construction programmes and the implementation of waste classifi-
cation policies may potentially affect the number of dumpsites.

Other discussions
We summarise the main contributions of this work and discuss some
difficult details here. Firstly, we hope to elaborate on the difficult
details of this work. Results in Table 1 suggested that the precision still
has room for improvement in the future, which makes the low-cost
manual screening phase takemore time (even though the time ismuch
less than previous methods). In fact, two factors limit this improve-
ment. The first is the resolution limit of current satellite imagery. The
resolution of the quality satellite images that can be obtained so far is
mostly from 0.3m to 1m per pixel, which means that only the macro
characteristics and approximate edge informationof the dumpsite can
be obtained from the satellite images, but the internal details cannot
be distinguished clearly. This limitation makes the model treat a small
number of objects similar to the macroscopic characteristics of
dumpsites as dumpsites (such as the roofs of high-rise buildings,
reflections on the sea surface, etc.). The second factor is that due to the
influence of various cultures, dumpsites in different countries do not
have a consistent appearance, whichmakes the contents of dumpsites
more complicated with irregular shapes (Please see the Model part in
the Methods section for details). Both of the above factors lead to the
low precision of the model. The low precision does not affect the
model’s sensitivity to dumpsites, only that the results require a small
amount of manual sifting, which is still very efficient compared to
relying entirely on humans.

Nevertheless, our approach can detect nearly all dumpsites and
savemost of the time compared with themanual census. For example,
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Fig. 4 | Changes in the three types of dumpsites and the total number ofdumpsites in the four selected cities from2015 to2019.The four tables record the trends of
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we spent six months searching and classifying dumpsites on satellite
images (about 4800 square kilometres), while the model only takes
less than an hour to complete the process of searching and classifying
in central areas of nearly 30 cities (about 5000 square kilometres of
satellite images). Including the time spent onmanual rechecking of the
model results, our approach takes about six days to search and classify
dumpsites on these satellite images. In other words, this approach
saves 96.8% of the time compared to manual labelling. Moreover, the
supervision of dumpsites is a global work, which means every country
needs to regularly locate and count dumpsites. It may take several
years to scan the satellite map of a single countrymanually54, so global
scanning is almost impossible to achieve manually. However, an
automated approach can capture 98% of the dumpsites and classify
themcorrectly in a very short time, whichprovides a powerful solution
to obtain the location of dumpsites worldwide.

To increase the confidence of our method, we further investigate
the authenticity of many dumpsites in our dataset through field visits
and inquiries. We present many photographs taken during the field-
work and their corresponding satellite images in Fig. 2a and Supple-
mentary Figs. 4 and 5. In addition, Supplementary Table 8 shows our
extensive field visits in China between December 2020 and May 2021.
For dumpsites out of China, we search help from familiar scholars in
Germany and Japan to identify. Furthermore, we use VR tools like

Google Street View to verify hard-to-reach dumpsites as much as
possible due to the COVID-19.

In addition, our approach can also be improved to analyse some
other interesting things. As shown in Fig. 5 Line I and IV, the con-
struction waste area generally had construction activities in those
years. The land changes before and after constructionwaste can reflect
the land use planning of those areas in recent years. Similar methods
can also be used to study issues like urban construction efficiency,
urban construction intensity and even the urban greening process.

With the further improvement of satellite imaging techniques and
deeper implementation ofwaste classificationpolicy, it will be possible
that dumpsite detection and classification can be fully automated, and
we will follow up.

Methods
Data
According to the world city population rankings in the 2016 World
Cities Report34 and the Global National Environmental Performance
Index (EPI)35 rankings released by Yale University in 2020, we selected
several typical cities to build the dataset. These selected cities have
relatively larger populations and relatively poor environmental per-
formance, which is conducive to forming a large dataset. They are
Colombo in Sri Lanka (EPI 109/180), Dhaka inBangladesh (EPI 162/180),
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Fig. 5 | Changes in the locationof four dumpsites infive years. Line I, Demolition
of houses forms construction waste, which is then built into lawns. Line II, Illegal
dumpsites are cleared and built into a green belt. Line III, A dedicated dumpsite.

Line IV, Construction waste formed by the demolition of old houses were subse-
quently built into office buildings.
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Guwahati in India (EPI 168/180), Kinshasa in the Democratic Republic
of Congo (EPI 125/180), Lagos inNigeria, NewDelhi in India, and several
cities in China (EPI 120/180).

We spent almost six months from December 2020 to May 2021
with twelve experts on these satellite images to thoroughly search and
label the dumpsites. The PASCAL VOC data annotation format55, which
is often used in computer vision, is selected as the annotation format
of the dumpsite dataset. We performed a series of preprocessing on
images of the dataset. Considering the memory consumption of the
model and some other factors, we divided the large-area satellite
images into 2219 tile images size of 1024 × 1024 pixels, and the area of
each picture is about 614 × 614m2, which is enough to hold a giant
dumpsite. For the same city, the image resolution is the same. After
that, we classified all dumpsites without exception into domestic
waste, construction waste, agricultural waste, and covered waste,
depending on the different sources and forms of distribution. Typi-
cally, domestic waste is small and complex, while construction waste,
agricultural waste, and covered waste have relatively distinct char-
acteristics. (All images and the annotations in this work can be used for
academic purposes only, but any commercial use is prohibited.)

Model
For themodel,wepropose anewdeep convolutional network, Blocked
Channel Attention Network (BCA-Net). In order to effectively extract
features from the dumpsite dataset, the two-stage56 object detection
network, Faster-RCNN, which has been widely used in computer
vision57–60, is employed as a baseline model for learning dumpsites.
Faster-RCNN extracts features from the training set through themulti-
level convolutional encoder of the backbone network and then deli-
vers the features to the Region Proposal Network (RPN). After that,
regression and SoftMax loss are designed in the RPN network to learn
the parameters of the background classifier and the foreground
bounding box regressor. Finally, the features extracted by the back-
bone network, combined with the foreground classification detection
results of the RPN, are sent to the final object classification and
bounding box regressionmodule. Similarly, two losses are designed to
obtain more refined bounding boxes and classification results.

The size of the dumpsite in our dataset varies from hundreds to
thousands of squaremetres, whichmeans the area of a large dumpsite
may be several hundred times that of a small one. However, Faster-
RCNNonly uses the high-level features of the last several stages so that
features of smaller dumpsites are often missed after multiple con-
volutionoperations, whichmakes thisnetwork structure insufficient to
detect small dumpsites. To avoid this weakness, the Feature Pyramid
Networks (FPN) structure61, which aims at preserving multi-scale fea-
tures of dumpsites, is added to our model. Supplementary Table 6
demonstrates that although the model has added multiple layers of
feature information, the training process can still be completed within
a few hours.

When observing the inference results, we found that existing
models could not solve two difficulties in the dumpsite dataset.
On the one hand, the colours of dumpsites in satellite images are
often similar to their background environment, and the bound-
aries of dumpsites differ significantly from their inner parts,
which make it challenging to define the edge of the dumpsite and
the background environment in the satellite images. On the other
hand, the morphological characteristics of several types of
dumpsites are not significantly different in the macroscopic view
as shown in Fig. 2, which means it is difficult to distinguish the
correct category without observing the detailed features from
multiple aspects. In deep convolutional models, each output
channel in each layer computed during the feature extraction
process represents the model’s understanding of the dataset in
different perspectives. Even different regions within the same
channel have features with different importance. However,

conventional models, including the Faster-RCNN-FPN, SE-net62

and CBAM63, do not consider the different importance of these
features. In other words, the importance of all N regions in dif-
ferent channels are the same, which means the proportion coef-
ficients are all 1/N. Consequently, even if the model could extract
important characteristic information of dumpsites in specific
regions of some feature channels, such typical information will
also be concealed by comparatively indistinguishable features
during the inferring process. This limitation will reduce the per-
formance of the model on the dumpsite dataset.

Therefore, the “Blocked Channel Attention” (BCA) module is
introduced to emphasise the critical feature information in feature
channels. The concept of attention first appeared in the field of Natural
Language Processing64. In recent years, attention-based methods have
also beenused in computer vision, including SE-Net, CBAM, etc., which
positively affect the conventional structure. SE-Net is one of the pio-
neers of attentional mechanisms in computer vision, whose attention
layers exist on different convolutional channels. SE-Net has a small size
and is plug-and-play for most convolutional structures. CBAM adds
attentionmechanisms to both the channel and spatial dimensions. For
channel attention, CBAM uses a similar structure in SE-Net. For spatial
attention, CBAM turns each C ×H ×W layer into two 1 ×H ×W features
through a pooling operation. After that, spatial attention is computed
by convolution operations. However, both remarkable attention
mechanisms fail to distinguish the importance of different features
within the same channelmentioned above. Thus,we try to improve the
understanding of irregular dumpsites by simultaneously computing
channel and spatial attention of the proposed model rather than
computing in two steps.

When designing the BCA module, the space occupied by the
model parameters and the actual improvements are considered. Thus,
only the last two residual feature modules of the feature extraction
network ResNet5065 are replaced with the BCA module, as shown in
Fig. 6. Specifically, the BCA module divides all H ×W channels in the
selected residualmodules into several blocks, and the hyperparameter
squeeze factor α determines the number of blocks. As shown in Fig. 7,
the number of blocks obtained after segmentation of each channel
feature map is:

H ×W
α2

Thus, the number of all blocks is:

C ×H ×W
α2

After blocking, all blocks are flattened into a one-dimensional vector
to obtain the importance weights of different blocks. Then the 1-D
vector is linked to a fully connected layer containing 256 neural units
to obtain more representative high-level information. After that, the
256-D FC layer is linked to an original sized fully connected layer to
restore the size, as well as extract the importance distribution
information in the 256-dimensional high-level parameter space.
Since the blocking and flattening operations cannot introduce
trainable parameters while the fully connected layers can, these two
FC layers also parameterise the BCA modules, enabling them to
learn like other parts of the model in the iterative process. The last
two steps of “parameterisation” are the commonly used non-linear
operation “sigmoid” and the resize operation that transforms a one-
dimensional vector into a matrix. The purpose of these two steps is
to improve the model function’s representability and map the
attention weights to the original C ×H ×W feature correspondingly.
Finally, obtain the Hadamard product of the attention weights
matrix and the original feature residual modules matrix to complete
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the BCA module calculation. In order to illustrate the improvement
brought by BCA-Net, we conduct several sets of comparison and
ablation experiments in supplementary materials. Network models
involved in the comparison include our previous structure SRAF-
Net66, Faster-RCNN-FPN, SE-Net62, CBAM63 and BCA-Net. Supple-
mentary Figures 1–3 and Supplementary Tables 1–7 illustrate the
results of ablation experiments with data and examples. We set the
Non Maximum Suppression (NMS) threshold to 0.001 to detect as
many objects as possible in the spatial analysis and temporal
discussion.

Training details
Data augmentation and category balancing strategies are applied to
the training process to avoid the effects of long-tailed distributions67

on the results (see supplementary materials for the concept and
practical effects of long-tailed distributions). Specifically, the data
augmentation methods include vertical flipping, horizontal flipping,
forward 90° rotation and reverse 90° rotation. The category balancing

strategy maintains the same probability of each class appearing in a
batch during training.

The k-fold technique (k = 5) is used to performmultiple rounds of
validation. For hyperparameters, the learning rate is set as 0.0025.
Stochastic Gradient Descent (SGD) is selected as the optimiser with a
momentum of 0.9 and weight decay of 0.0001. The learning rate is
decayed at epochs 16 and 22. We set the maximum epoch to 24 and
implement the early stopping technique based on the performance of
the validation set. A linear warm-up technique is also implemented for
the first 500 iterations with a warm-up ratio of 0.001 (see supple-
mentarymaterials for details). All experiments are carried out on eight
NVIDIA RTX3090 graphics processors.

Dataset universality
In thiswork,wefirst search for dumpsites in seven countries andbuilt a
dumpsite dataset. Extensive experiments in supplementary methods
demonstrate the strong sensitivity of ourmodel to dumpsites.We then
leverage the model to detect dumpsites in 28 urban areas worldwide.

Fig. 7 | The specific structure of theBCAmodule.The blocking part vectorises three-dimensional features, and the parameterisingpart gives BCA the ability to learn. The
last part distinguishes the importance of three-dimensional features according to different regions.
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To verify that the dataset has sound detection capability for global
dumpsites, we manually search satellite images of these 28 regions
without using any additional methods and obtain 763 dumpsites.
Meanwhile, we obtain a total of 755 dumpsites (98.6%) with the
methodology of this work. Such results show that our dataset has a
good global generalisation. We also investigate the appearance and
origin of dumpsites around the world through media, internet, and
mail enquiries. Due to the minor differences between dumpsite for-
mations, most forms of global dumps in satellite imagery are included
in our dataset.

Details of GDI
We design an index to intuitively reflect the level of dumpsites in a
regionwith a global view, andwedefine theGDI as the logarithmof the
number of dumpsites to the base two (see supplementarymaterials for
design intent). The calculation formula of GDI is as follows:

GDI = log2 N, ð3Þ

and N denotes the number of dumpsites. Then, we sort all regions into
three levels from low to high, and their GDI ranges from 0 to 3 (low
level), 3 to 5 (middle level), and >5 (high level). It can be inferred from
Fig. 3b that cities with better development levels generally have lower
GDIs. Theoretically, GDI can represent the level of dumpsites in a
region on a global scale.

Data availability
The replication dataset generated during the current study is available
in Science Data Bank.

Code availability
The code used to train and evaluate themodel is available onGitHub68.
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