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Multistability, intermittency, and hybrid
transitions in social contagion models
on hypergraphs

Guilherme Ferraz de Arruda 1 , Giovanni Petri 1,2,
Pablo Martin Rodriguez 3 & Yamir Moreno 1,4,5

Although ubiquitous, interactions in groups of individuals are not yet thor-
oughly studied. Frequently, single groups are modeled as critical-mass
dynamics, which is a widespread concept used not only by academics but also
by politicians and the media. However, less explored questions are how a
collection of groups will behave and how their intersection might change the
dynamics. Here, we formulate this process as binary-state dynamics on
hypergraphs. We showed that our model has a rich behavior beyond dis-
continuous transitions. Notably, we have multistability and intermittency. We
demonstrated that this phenomenology could be associated with community
structures, where wemight have multistability or intermittency by controlling
the number or size of bridges between communities. Furthermore, we pro-
vided evidence that the observed transitions are hybrid. Our findings open
new paths for research, ranging from physics, on the formal calculation of
quantities of interest, to social sciences, where new experiments can be
designed.

How individuals interact in groups has motivated research in many
different areas ranging from sociology and political sciences1–5 to
physics and mathematics6–20. From a sociological viewpoint, the
interest frequently lies in the role playedby committedminorities. One
of the main questions is when and how this committed group of
individuals canoverturna given consensus. Implicitly, we are assuming
that the interaction between groups of individuals follows a critical-
mass dynamics. Despite the informal use of the term critical-mass by
politicians, the media, and even academics, there is evidence that
individuals might behave in this way when changing social conven-
tions. This evidence ranges from theoretical models6–9 and observa-
tional studies1,3,4,21,22, to real experimental approaches5. Although these
studies suggest that the critical-mass threshold might range between
10% and 40%, there is evidence that it can be low as 0.3% in linguistic
norm changes in English and Spanish23,24 or even just a few of indivi-
duals that are not comparable with the size of the population under

study24,25. Despite this wide range of observed thresholds, the critical-
mass paradigm provides a reasonable abstraction to analyze and
understand real social systems. Thus, from an analytical approach, we
begin with the premise that the critical-mass dynamics is a reasonable
assumption about how a group of people acts. So, the natural ques-
tions that emerge are: (1) How will a collection of groups behave? (2)
How might the intersection between these groups change the global
dynamics? (3) Can smaller groups have a higher critical-mass threshold
than the whole population? Note that, as we allow for a collection of
critical-mass dynamics, their intersections might be able to generate a
cascade of events. In other words, by inducing change at a small scale,
it might be possible to reach the threshold of other groups, therefore
triggering global changes.

Recently, some of us proposed a formal model able to provide
insights about these questions12. In this model, society is modeled as a
hypergraph, where individuals are nodes, and the group interactions

Received: 13 April 2022

Accepted: 28 February 2023

Check for updates

1CENTAI Institute, Turin, Italy. 2IMT Lucca, Lucca, Italy. 3Department of Statistics, Federal University of Pernambuco (UFPE), Recife, PE, Brazil. 4Institute for
Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain. 5Department of Theoretical Physics, University of
Zaragoza, 50018 Zaragoza, Spain. e-mail: gui.f.arruda@gmail.com

Nature Communications |         (2023) 14:1375 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-1647-5126
http://orcid.org/0000-0003-1647-5126
http://orcid.org/0000-0003-1647-5126
http://orcid.org/0000-0003-1647-5126
http://orcid.org/0000-0003-1647-5126
http://orcid.org/0000-0003-1847-5031
http://orcid.org/0000-0003-1847-5031
http://orcid.org/0000-0003-1847-5031
http://orcid.org/0000-0003-1847-5031
http://orcid.org/0000-0003-1847-5031
http://orcid.org/0000-0003-0016-2360
http://orcid.org/0000-0003-0016-2360
http://orcid.org/0000-0003-0016-2360
http://orcid.org/0000-0003-0016-2360
http://orcid.org/0000-0003-0016-2360
http://orcid.org/0000-0002-0895-1893
http://orcid.org/0000-0002-0895-1893
http://orcid.org/0000-0002-0895-1893
http://orcid.org/0000-0002-0895-1893
http://orcid.org/0000-0002-0895-1893
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37118-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37118-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37118-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-37118-3&domain=pdf
mailto:gui.f.arruda@gmail.com


of arbitrary sizes are encoded as hyperedges. The model presents
discontinuous transitions, bistability, and hysteresis, thus, suggesting
that interactions in groups might be the driver for such phenomen-
ology, hence, already providing some initial answers and insights
about question (1). In practice, the model suggests that some inter-
mediate levels of activation are not reachable as the activation of
groups might be able to trigger a larger scale cascade. Regarding
questions (2) and (3), the model provides a theoretical foundation for,
and a phenomenological explanation to, the seemingly different
experimental findings of expected critical-mass thresholds. More
specifically, ethnographic studies show a critical mass around 25–30%1

and align with experimental results, which report a critical mass
around 25%5. On the other hand, considering linguistic norm changes,
the observed threshold is as low as 0.3% in English and Spanish23. The
first studies consider a single group, while the linguistic norm changes
consider a whole population, which can be understood as a collection
of groups. Thus, in the latter, we might have groups with different
sizes, each with a different threshold. In other words, from the per-
spective of the model in ref. 12, it is possible to have individual groups
with thresholds between 25% and 40%, and, at the same time, due to
the group intersections, having a critical mass at the population level
around a much lower value. A second possible explanation is bi-sta-
bility, which enables two possible solutions for the same set of para-
meters. For example, the systemmight be operating in a region where
both solutions are larger than zero and stable.

Here, through a dynamical analysis of the social contagion model
presented in ref. 12, we show that the richness of this model is not
constrained to discontinuous transitions and hysteresis. First, by
evaluating a real hypergraph, we show that social contagion in
hypergraphs candisplaya bimodal distributionof thenumberof active
nodes, leading to multistability or intermittency in time. We also
observe that at the transitions between branches, the susceptibility
diverges. In the rest of the paper, we dedicate our efforts to give the-
oretical support to these findings and explain the mechanisms that
might trigger them. We demonstrate that these features could be
linked to the community structure in the hypergraph andwe show that
bridges between communities play a crucial role. Here, we define
bridges as hyperedges that are composed by nodes belonging to dif-
ferent communities.Our secondmain result concerns thenature of the
observed transitions. As we have multiple stable branches, due to the
mentioned multistability, we might also have multiple transitions.
Despite the expected discontinuities (see refs. 10,12–14), we show that
these transitions display features of hybrid transitions, that is, they
display discontinuities and scaling behaviors for the order parameter
and susceptibility.

The paper is organized as follows: in section “Model definition
and theoretical analysis,” we discuss the theoretical basis of the
model presented in ref. 12, including its analytical and numerical
aspects. In section “Example of real-world hypergraphs: the case of
blues reviews,”wepresent the numerical simulationswe performed
on a real hypergraph, which show evidence of multistability,
intermittent behavior, and hybrid phase transitions. In the follow-
ing sections, we focus on explaining our findings. In section “Mul-
tistability and intermittent behavior,” we show that our first-order
approximation predicts multistability. Next, using an artificial
model, we relate multiple stable branches and intermittency to
community structures. We also show how bridge hyperedges
modulate the transition from multistability to intermittency. In
section “Analysis of the transition between stable branches,” we
focus on a hypergraph with special symmetries, which allow us to
derive exact equations for the dynamics and perform a finite size
analysis, providing a strong argument for the presence of hybrid
phase transitions in our model. Finally, in section “Discussion,” we
discuss our findings inmore general terms, provide the conclusion,
and show some of the perspectives opened by our work.

Results
Model definition and theoretical analysis
A hypergraph, H, is defined as a set of nodes, V = fvig and a set of
hyperedges E = fejg, where ej is a subset of V with arbitrary cardinality
∣ej∣. The number of nodes is defined as N = ∣V∣. It is also convenient to
define Ei as the set of hyperedges that contain the node vi. If
maxð∣ej ∣Þ=2 we recover a graph. If for each hyperedge with ∣ej∣ > 2 its
subsets are also contained in E, we recover a simplicial complex. Fig-
ure 1a shows an example of a hypergraph. Moreover, the adjacency
matrix13,26 can be defined as

Aik =
X

j : ej 2 Ei \ Ek

1
∣ej ∣� 1

, ð1Þ

for i ≠ k, and Aii = 0 for all i. Note that it can be interpreted as a
weighted projected graph. Here we will adopt this matrix for visuali-
zationpurposes, but it haspreviously beenused to study the spectra of
hypergraphs26 and linked to the stability of dynamical processes13.

Our dynamics are defined through the activation anddeactivation
of nodes. In an arbitrary hypergraph, we associate a Bernoulli random
variable Yi to each individual vi indicating whether the node vi is active
(Yi = 1) or not (Yi = 0). For each active node, we associate a deactivation

mechanism, modeled as a Poisson process with parameter δ, Nδ
i . For

each hyperedge, ej, we define a random variable Tj =
P

k:vk2ej Y k , which

is the number of active nodes in the hyperedge. See the tables next to
each hyperedge in Fig. 1a for a graphical representation of all the
possiblemicrostates and the Tj variables. If Tj is equal or above a given

threshold,Θj, we associate a Poissonprocesswith parameter λj,N
λj
j .We

point out that the randomvariables defined above dependon t, for any
t ≥0, but we remove t from our notation for the sake of simplicity.
Formally, our dynamics can be written as a continuous-time Markov

chain ðY tÞt ≥0, with state space f0,1gV . That is, for any t ≥0, Yt is a
random function from V into {0, 1}, which associates to each node vi
the Bernoulli randomvariable Yi. Moreover, the states of nodes change
according to the following transitions and rates:

Current state : Transition : Rate :

each active vi inV 1 ! 0 δ

all inactive vk in ej 0 ! 1 λj1fTj ≥Θj g

,

where 1fconditiong is the indicator function, which is one if the “condi-
tion” is satisfied, and zero otherwise.

In other words, the group dynamics is given by a threshold pro-
cess that becomes active only above a critical mass of activated nodes.
When above the threshold, for a given hyperedge ej, the Poisson pro-
cess N

λj
j induces that all the nodes inside this hyperedge become

activate. So, given an hyperedge ej, after the threshold is hit (Tj ≥Θj)
and a random time exponentially distributed with parameter λj passes
(as a consequence of the Poisson process N

λj
j ), all the the inactive

vertices become activate simultaneously. If enough nodes are deacti-
vated before the time associated with the process passes, the process
is removed.Moreover, if ∣ej∣ = 2,weconsider that the Poissonprocesses
are directed. This definition allows for recovering traditional SIS con-
tagion models. Figure 1b shows an example of the graphical repre-
sentation for our process.

For simplicity, we assume that λj = f(∣ej∣), where f is an arbitrary
function of the cardinality of the hyperedge. It is also convenient to
define Θj = ⌈Θ*∣ej∣⌉, where ⌈x⌉ is the ceiling function, which returns the
least integer greater thanor equal to x andΘ* is a global parameter that
is invariant to the cardinality of thehyperedges and lies in the range0 ≤
Θ * ≤ 1. Note that, if wehad definedΘj = ∣ej∣ − 1 wewouldhave recovered
amodel similar to the one proposed in ref. 10. It would be the same ifH
is constrained to a simplicial complex. For more on this relationship,
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we refer to refs. 12,14. The exact equation that describes our model can
be formally written as

d Y i

� �
dt

= �δY i + 1� Y i

� � X
j:ej2Ei

λj
X
Bj

1fY i =0,Tj ≥Θj g

* +
, ð2Þ

where the first summation is over all hyperedges containing vi and the
second summation is over all the possible dynamical micro-states
inside the hyperedge ej, denoted by the set Bj. Furthermore,
1fY i =0,Tj ≥Θj g is an indicator function that is 1 if Yi =0 and the critical-
mass in the hyperedge is reached, and 0 otherwise. Moreover, we
assumed that the spreading rate is composed by the product of a free
parameter and a function of the cardinality, i.e., λj = λ × λ*(∣ej∣). In all of
our numerical simulations we assumed λ*ð∣ej ∣Þ= log2ð∣ej ∣Þ. This defini-
tion is convenient as, in the pairwise case, λ*(2) = 1, guaranteeing that
our dynamics reduces to the standard SIS model in a graph. Also, we
choose log2ð∣ej ∣Þ as it grows sublinearly. So, in the limit of a large
hyperedge, the average spreading rate tends to zero,
i.e., lim∣ej ∣!1

log2ð∣ej ∣Þ
∣ej ∣

=0.

Example of real-world hypergraphs: the case of blues reviews
In this section, we present evidence that the behavior of real hyper-
graphs goes beyond the already surprising discontinuous transitions
and bistability found in hypergraph and simplicial contagion
models10,12. Indeed, we found that inmany regimes ourmodel presents

multiple stable solutions and regions of intermittent behavior, where
wehave analternatingdynamicsofhigh and lowactivity.Wedivideour
study in two parts: we begin with amacrostate analysis, and thenmove
to amicro-state evaluation. This approach allows us to formulate some
hypotheses regarding the mechanisms behind the observed
phenomenology.

We first present evidence of multistability and intermittency in a
real system.We do this by analyzing the dynamics of ourmodel on the
blues reviews hypergraph, where nodes are Amazon reviewers, and
hyperedges are groups of reviewers who reviewed a certain type of
blues music within a month27. This dataset is available at ref. 28. This
hypergraph has N = 1106 nodes and 694 hyperedges, whosemaximum
cardinality ismaxð∣ej ∣Þ=83. In this dataset, thepairwise interactions are
sparse, which alone would form a giant component of only 24 nodes.
However, by accounting all the hyperedges, the giant component of
the hypergraph has N = 1106 nodes. We remark that repeated hyper-
edges were not allowed. Moreover, for a structural analysis of this
hypergraph, we refer to the Supplementary Information (SI).

Figure 2 shows the QS Monte Carlo simulations (see the “Meth-
ods” section for more details about this method) for our social con-
tagion model in the blues reviews hypergraph and in a randomly
rewired version obtained from the exact version of the vertex-labeled
hypergraph configuration model presented in ref. 29 (Algorithm 2 in
ref. 29 and code from ref. 30) after 107 rewirings. Moreover, in the SI we
present 30 additional Monte Carlo simulations for different randomi-
zations of the blues reviews hypergraph, showing that they have a

Fig. 1 | Graphical example of the social contagion model on a hypergraph. In
a, we present the example of a hypergraph. The tables next to each hyperedge and
with the same color represent all the possible microstate configurations and its
respectively associated group variable Tj. In b, we show the graphical representa-
tion of one exemplary instance. In this representation, the black crosses represent
the deactivation processes,Nδ

i , 1→0. Fornode i, the dashed lines represent inactive
nodes, Yi =0, while continuous lines represent active nodes, Yi = 1. In this specific
example, the critical-mass threshold is Θ* = 0.5, the initial conditions are

Y1 = Y4 = Y5 = 1 and Y2 = Y3 = Y6 = Y7 = 0, and the red and blue crosses mark the time
that the processes N

λj
j activate all the inactive nodes in e2 and e3, respectively.

Moreover, on the right side ofb, we show the temporal evolution of the Tj variables
in our exemplary instance. In this case, dashed lines indicate when the Tjs are equal
to zero, each movement to the left represents an increase in Tj, while each move-
ment to the right indicates a decrease. In c, we show a graphical example of the
concept of bridges for two communities. Bridges are hyperedges that connect two
communities, or groups of densely connected nodes.
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similar behavior. In a–c, we present the order parameter (average
fraction of active individuals), peaks of the state distributions, and the
susceptibility, respectively (see the “Methods” section for the formal
definition of these quantities). In the remaining subplots, we present
examples of state distributions for the points marked in (a). Observe
that only one solution was found in the randomized version of the
hypergraph, and it has a single discontinuous transition. This behavior
contrasts with the real case, where multiple stable solutions, and
multiple transitions between branches, were found. The comparison
between the real case and the rewired version suggests that correla-
tions play a significant role in the emergence of multistability and
intermittency.

Considering the real scenario, we notice that our process recur-
rently presents a bimodal distribution of states, where the probability
of the modes change as we increase or decrease λ. For Branch I, light
red curves in Fig. 2, we notice that by increasing λ, we have a dis-
continuous transition. The distribution of states for this region is
shown in Fig. 2d, where λ =0.036 is used as an example. This dis-
tribution is bimodal, where the first mode is near the absorbing state
(near n ≈ 1 as we are using the QS method), and the second mode has
an average n ≈ 250. For lower values of λ, a similar picture is observed,
but the probability of the first mode is higher than for the second. For
higher values of λ, the opposite happens. This pattern is reproduced
until we have a single mode with a bell-shaped distribution, similar to
Fig. 2i. Next, as we increase λ, depending on the initial conditions and
stochastic fluctuations the order parameter can jump (Fig. 2e, f). In this
case, we again observe a bimodal distribution. In Fig. 2e, f, we show the
state distribution for λ =0.0816 and λ =0.0848, respectively. Note that
the mechanism that causes the bimodality in (d) is different from (e)
and (f). In thefirst case, thebimodality appears as a consequenceof the
absorbing state, and it is similar towhat is observed in anSIS process in
a network. Note that for an SIS process in a network the second mode
would be closer to the absorbing state and would increase con-
tinuously, originating a second-order phase transition. In the second
case, the different modes are related to intermittent behavior, where
the process oscillates between high and low activity regimes, as can be
seen in the insets of these figures.

We also observed similar intermittent behavior in Branch III
(Fig. 2a, g, h). Although branches I and III display intermittency, in the
first branch, this implies a discontinuity in the susceptibility, while in
the second, it generates a continuous peak of susceptibility, as can be

observed in Fig. 2c. This peak of susceptibility is related to the time the
system spends in the high or low activity regimes. In other words, the
relative time the system spends in each mode changes the variance
and, therefore, the susceptibility. Note that, in an SIS process in net-
works, similar susceptibility bumps are related to localization features
of the network. For instance, in a network with communities, we could
find a similar pattern. In this case, the bumps would suggest that the
processmanages to reach a community or a group of nodes31. Here, we
use the term localization to denote a state where most of the prob-
ability of activation may be found within a constrained region, i.e., a
subset of nodes. Note that, in graphs, we are usually interested in the
localization properties at the transition, which canbe quantified by the
inverse participation ratio32. In our case, for simplicity, we are
extending the word localization to characterize the supercritical
regime.

We remark that the absorbing state is always accessible. For the
initial condition ρ =0.1, all the simulations fall in the absorbing state.
This solution was not presented in Fig. 2 because it is trivial, and the
susceptibility is noisy, possibly confusing the interpretation.

As we have intermittency and bimodal distributions, the order
parameter alone might not be enough to fully describe our dynamical
behavior. To better understand the behavior of our model, we also
show the position of the peaks of the state distributions. These peaks
represent the states in which the system is “locally more likely to be”.
For the blues reviews hypergraph, these peaks are reported in Fig. 2b.
Despite the importanceof the peaks, we argue thatρ is still an essential
global measurement for our dynamics. The order parameter, ρ,
unambiguously defines the state of our system, while the same cannot
be said about Peaks(P). Notice that, in the multistable regions, the
dynamics is not able to stay indefinitely in a single curve in Fig. 2b, as, in
this case, the state is jumping between different modes. So, we argue
that ρ and Peaks(P) should always be presented together.

Figure 2b shows that the bimodal distribution is present for a
wide range of parameters, presenting regions where they vary con-
tinuously and regions with jumps. Moreover, in some cases, the dif-
ferent branches in Fig. 2b might be close to each other but can only
be obtained in different simulations (see Peaks(PII) and Peaks(PIII) in
Fig. 2b). This observation suggests that the dynamics might be
localized in different sets of nodes in the hypergraph. In this way, we
might have similar macro-states as a consequence of significantly
different micro-states.

ρ ρ

n n nλ

λ
χ

a) b)

c)
d) e) f)

g) h) i)

P 
(n

)
P 

(n
)

Fig. 2 | Monte Carlo simulations for the social contagion model in the blues
reviews hypergraph showing multistability and intermittency. In a–c, we pre-
sent the order parameter, the peaks of the state distributions, and the suscept-
ibility, respectively. Ind–i, we show the state distributionsmarked in a. In the insets

of these plots, we show a small example of temporal behavior that generate these
distributions. We performed the simulations using the real blues review hyper-
graph and a random version of it using δ = 1.0, Θ* = 0.5, and λ*ð∣ej ∣Þ= log2ð∣ej ∣Þ.
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To better understand the localization properties of our process,
we focus on the probability that an individual is active, sampled from
the simulations. In Fig. 3a, we present the (hyper-)adjacencymatrix, as
in Eq. (1), while in Fig. 3b–d we show the individual probabilities
extracted from branches I to III, respectively. The matrix is ordered
according to the individual probabilities of Branch III (lower). This
figure shows that Branch III (panel (d)) is constrained to a group of
nodes (a community roughly defined as C1 = {v1, v2,⋯ , v600}), while
Branch II (intermediate branch, panel (c)) is restricted to a different set
of nodes together with some bridge hyperedges, and branch I
accounts for the activation of all the nodes (see panel (b)). Here, we
recall that bridges are defined as the hyperedges that are composed by
nodes in different communities.

Figure 4 depicts the intermittent behavior observed in Branch
III of Fig. 2 for the blues reviews hypergraph with λ = 0.1016. A
similar behavior was observed for a range of parameters, but we
choose this specific value of λ for visualization purposes and to be
consistent with the other figures. In Fig. 4a, we show the activity of
the nodes as a function of the number of events (or iterations). The
nodes are sorted by their activity for better visualization. Com-
plementarily, in (b), we show the order parameter as a function of
time. We observe that we have a set of nodes that are always active
and a second set of nodes that can be activated due to some
fluctuations. Comparing Fig. 4a with Fig. 3a, we notice that the

group of nodes in the upper-left corner of Fig. 3a are the most
active ones. Note that they participate in a larger number of
hyperedges (note the colors). On the other hand, the rest of this
community (the remaining nodes of community C1 in Fig. 3a) are
the ones that have periods of activity and periods of inactivity.

Thus, the analysis at the individual level supports the initial
hypothesis that intermittent behavior is a consequence of the activa-
tion and deactivation of a subset of nodes, or, in other words, the
localization of states. The periods of high activity correspond to the
activation of a sparser connected set of nodes by a more densely
connected core. This latter core sustains the dynamics, and seeds the
more sparsely connected nodes, which can only maintain its dynamics
active for a limited time, and thus are responsible for the intermittent
behavior.

Multistability and intermittent behavior
The main results of the previous section were the existence of multi-
stability and intermittency. Here, our primary goal is to provide further
arguments to support these findings and to explain the mechanism
behind these phenomena. Using the theoretical framework developed
in section “Model definition and theoretical analysis“ and the first-
order approximation presented in the “Methods” section, we offer a
strong argument in favor of our findings and against the possibility of
them being simulation artifacts. Moreover, we propose a simple gen-
erative model for hypergraphs with community structure, which pro-
vides a possible mechanism for the observed phenomenology.

A
ij

i

y i
y i

y i
a)

b)

c)

d)

Fig. 3 | Structure and dynamics of the blues reviews hypergraph. In a, we plot
the adjacency matrix of the blues reviews hypergraph ordered according to the
activity of Branch III. Inb–d, we show the probability of being active in branches I to
III respectively. The probabilities were estimated using Monte Carlo simulations
with λ =0.1016, δ = 1.0, λ* = log2ð∣ej ∣Þ and Θ* = 0.5.

Iterations

time

a)

b)

So
rt

ed
 n

od
e 

Id
ρ

Fig. 4 | Intermittent behavior in the blues reviews hypergraph. In a, we show the
graphical visualization of the activity of the nodes in a specific run of theMC. Pixels
in dark represent inactive nodes, while colored pixels represent active nodes. The
intermediate colors in the figure are only an effect of aliasing and do not have a
physical interpretation. The nodes are sorted by their activity for visualization
purposes. Inb, we represent the order parameter as a function of time for the same
simulation. The dynamical parameters for this simulation are λ =0.1016, δ = 1.0,
Θ* = 0.5, and λ*ð∣e∣Þ= log2ð∣ej ∣Þ. Notice that, in awedepict the dynamics as a function
of the iterations, while in b as a function of the time, explaining the small dis-
placement between both figures.
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Because of the finite size of the system, one may suspect the
simulation to be trapped in metastates, that would vanish in a longer
simulation. To counter this argument, we provide more robust evi-
dence of multistability by providing numerical solutions of the ODE
system in Eq. (5). In addition to strengthening our multistability
argument, we also show that our first-order approximation is qualita-
tively correct in this specific scenario, which provides an additional
argument that our approximation indeed captures the essence of
our model.

We observed that our simulations have a strong dependency on
initial conditions. So, to numerically solve the ODE system in Eq. (5) we
used one micro-state obtained from our simulation as an initial con-
dition. From this condition, we integrated Eq. (5) until reaching the
steady-state. Finally, we used this solution as an initial condition to
adjacent values of λ (increasing and decreasing λ). With this algorithm,
we were able to uncover the five branches shown in Fig. 5. We remark
that, using an uniform initial condition, e.g., yi(0) = 0.1 for all
i = 1, 2, . . . ,N, wewere not able to findmost of the branches in the ODE
system. The exceptions are the absorbing state and the uppermost
branch, which can be find using yi(0) = 1.0 for all i = 1, 2, . . . ,N.

Comparing Figs. 2b and 5, we can see a clear correspondence
between the predicted (ODE) and observed peaks of the state dis-
tributions (MC). Because our approximation neglects correlations and
fluctuations, we are not able to capture the behavior in Fig. 2a but only
the peaks of the bimodal distributions. This comparison strengthens
the argument that the observed multistability is not a simulation arti-
fact but rather a genuine feature of themodel. Note that our first-order
approximation follows the sameprinciples as the quenchedmean-field
in the SIS model in networks. In the network case, we only have
unimodal distributions. Thus, this limitation is not an issue. However,
in our case, further analysis is necessary, as we are not directly able to
determine if the ODE’s solution is a peak of a multimodal distribution
or not. Finally, we also remark that typically the ODE overestimates the
MC predictions slightly.

The analysis in section “Example of real-world hypergraphs: the
case of blues reviews” suggests that the community structure in the
blues hypergraph might be responsible for the multistability and the
intermittent behavior. As noted in the previous section, Fig. 3b–d,
different branches are related to different sets of nodes, thus sug-
gesting localization. Complementary, for a visual argument, see, for
instance, Fig. 3a, where we can see the block organization in the
adjacency matrix. In this section, we explore this hypothesis by

proposing an artificial model that captures the community structure
without including other correlations (see the “Methods” section for a
description of this algorithm). In this way, we can test the hypothesis
that this type of structure is responsible for the observed dynamical
behavior.

Figure 6 shows results for the QS Monte Carlo simulations in the
artificial random model with communities, and changing the number
of bridges, mout, for values between mout = 200 and mout = 600.
Although not shown, in all the cases, the absorbing state is stable and
can be reached from a small initial condition (e.g., ρ(t =0) = 0.1). From
the first to the third column, we increase the number of bridge
hyperedges, mout, thus diluting the modular structure. For mout = 200
(see Fig. 6a, d, g), we have multistability, as different initial conditions
lead to different solutions. We also find a region in λ where both
coexist. In this case, the communities are sufficiently separated, andwe
do not observe intermittency. For mout = 400 (see Fig. 6b, e, h), and
mout = 600 (see Fig. 6c, f, i), the multistability is not observed as dif-
ferent initial conditions led to the same solution. Interestingly, we
observed intermittent behavior in the region between dashed lines in
Fig. 6. In this region, we have a bimodal distribution of states and a
susceptibility peak. Notice that, as we increase mout the susceptibility
peak also moves, appearing for lower values of λ (see Fig. 6h, i). More
importantly, we recall that a similar behaviorwas observed in Branch III
for the blues reviews hypergraph (see Fig. 2c), where we find a sus-
ceptibility peak caused by the intermittency.

Formout = 200,wedonot have a bimodal distribution. In this case,
after the transition, we have two possible scenarios: one in which just
one community is active, and a secondone inwhichboth communities
are active. For mout = 400 and mout = 600, there is instead a region
where a bimodal distribution is present. This distribution of states
generates intermittent behavior due to the activation and deactivation
of the sparser community, whereas the denser community sustains the
process. However, the sparser one is only able to stay active for a
limited time. During the lower activity periods, a strong enough fluc-
tuation activates the sparser community. Nevertheless, after some
time, this community will deactivate on its own due to another
fluctuation.

These results suggest that when bridges are scarce, the commu-
nities are dynamically disconnected. Hence, we might have multiple
stable solutions for a range of λ due to localization. As we add bridging
hyperedges, we allow the process to travel across communities.
However, this can destroy the multiple stable solutions by merging
them into a bimodal distribution of states and creating intermittency.
We highlight that a similar effect was also observed by increasing/
decreasing the hyperedge cardinalities and by changing the critical-
mass threshold Θ*. In the first scenario, we noticed that by increasing
the average hyperedge cardinality, we could change our system’s
behavior from multistability to intermittency. Particularly, by (i) con-
sidering the same artificial model with communities as in previous
numerical simulations, (ii) fixing the number of hyperedges and
bridges, but (iii) changing the average hyperedge cardinality, μ, we
were able to observe a shift from a multistable region for low μ to an
intermittent behavior for larger μ. Moreover, by changing the critical-
mass thresholdΘ*, we observed that, for higher values ofΘ*, we tend to
favormultistability, while for lower values ofΘ* we favor intermittency.
The numerical simulations of changingμ andΘ* are presented in the SI.
It is worth highlighting that it might be possible to construct more
complex hypergraphs that would display more branches and possibly
even allow formultistability and intermittency at the same region of λ.
Please see also the SI for an example with four communities. We
remark that herewe focusedon the simplest structure that reproduces
both phenomena. Furthermore, one can see a relation between our
results and the previous findings33 relative to the identification of
network structures and of individuals best suited for spreading com-
plex contagions. The authors proposed a centrality measure that

ρ

λ
Fig. 5 | Numerical solutions of theODE system for the social contagionmodel in
the blues reviews hypergraph. We solved these equations using the same set of
parameters as used in Fig. 2. For the Branch V, we considered an initial condition of
yi(0) = 0.1. The other branches were obtained considering the final micro-state of
one point as the new initial condition for the next (both increasing and decreasing
λ). The first point is obtained from our Monte Carlo simulations reported in Fig. 2.

Article https://doi.org/10.1038/s41467-023-37118-3

Nature Communications |         (2023) 14:1375 6



accounts for the number of “enough wide bridges” between two
nodes. Although in ref. 33 they are still using graphs (but the contagion
is complex), this concept resembles the ideas behind critical-mass
processes associated with our hyperedges. Thus, the term “enough
wide bridges” might be understood as an abstraction of the critical-
mass threshold in our context. We remark that the term “enough wide
bridges” summarizes our results as it incorporates both the number of
bridges (as shown in Fig. 6) and “how easy” it is to activate these
bridges (results reported in the SI).

Analysis of the transition between stable branches
As we increase or decrease λ, branches can become unstable, and the
processmight experience a transition fromone branch to another. For
disease spreading on networks, this transition is usually continuous.
For example, consider an SIS process in an infinite, homogeneous
network (thermodynamic limit). In this case, we have an absorbing
state (disease-free state, ρSIS = 0) which is stable until the critical point.
For any spreading rate larger than the critical point, the disease
spreads through a collective activation of the network. In this regime,
we have another branch that constitutes the active solutions (ρSIS > 0).
This active branch “touches” the absorbing state at the critical point,
making the transition continuous. However, when analyzing higher-
order models, these transitions can be discontinuous10,12,14. Further-
more, hereweobserved thatwemight havemultiple transitions for the
same initial condition (see Fig. 2a). Despite this evidence, a complete
characterization of these transitions is still lacking. In this section, we
will focus our analysis on the nature of this transition, providing an
argument supporting the hybrid nature of the transitions. In this class
of transitions, we have discontinuity and scalings at the same time. We
highlight that this proposition seems to be general as our finding
explains all the observed behavior in the susceptibility curves not only
in this paper but also the one reported in refs. 11,12.

To understand the nature of the transitions we study the
hyperblob12, which is a random regular graph, where every node has
the same degree together with a hyperedge that includes every node.
In this case, we can evaluate the exact distribution of states in the
steady-state andobservehow relevant quantities varywith system size.
The graphical representation of the Markov chain that represents our
dynamics in the hyperblob is shown in Fig. 7, where we already
imposed the QS constraint, avoiding the absorbing state. In Fig. 8, we

show the temporal behavior ofourmodel, highlighting the importance
of using the QS constrain as, for any finite system the dynamics will
always converge to the absorbing state. Moreover, from this chain, we
obtained the stationary distribution (see the “Methods” section for its
derivation), which allow us to fully characterize our system in terms of
the probability of having n active nodes, πn. From this quantity and, in
addition to the order parameter and susceptibility, here, we are also
interested in the probabilities that the number of active nodes is lower
or higher than the threshold Θ. The state with Θ active nodes is par-
ticularly important as, for n ≥Θ, the Poisson Process Nλ*

j is created,
which significantly changes our system’s behavior. Formally, these
probabilities are, respectively, expressed as

PLower =
XΘ�1

j =0

πj, ð3Þ

PUpper =
XN
j =Θ

πj : ð4Þ

In Fig. 9, we show the order parameter, the susceptibility and the
probability of each solution for λ* = 10. For a complementary analysis
of thehyperblob, please see Sec. III in the SI. Aswe found rapid changes
in both the order parameter and susceptibility, its characterization in

λ λ λ

ρ
ρ

χ

a) b) c)

d) e) f)

g) h) i)

Fig. 6 | Monte Carlo simulations for the social contagion model in artificial
hypergraphs with community structure. The simulations are organized by col-
umns. From the first to the third column we show the numerical simulations for
mout = 200, mout = 400 and mout = 600, respectively. All the hypergraphs have
N = 103 nodes and nc = 2 communities. In a–c, we show the order parameter as a
function of λ. In the top left corner of these plots, we show the adjacencymatrix for

each simulation. In d–f, we show the peaks of the state distributions. Finally, in
g–i, we show the susceptibility plots. In a, d, g, we show this simulation for two
different initial conditions, showing two possible solutions. In the other panels, the
different initial conditions converged to the same solution. The dynamical para-
meters of our model are δ = 1.0, Θ* = 0.5, and λ*ð∣e∣Þ= log2ð∣ej ∣Þ.

Fig. 7 | Graphof transitions for thehyperblob respecting theQSconstraint.The
graph illustrates the system’s states through nodes, where each node corresponds
to the number of active nodes. The arrows connecting the nodes represent the
potential transitions between states. The rates for each transition are displayed
above their respective arrow.
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the thermodynamic limit can be achieved using these curves’ left and
right limits. These quantities are respectively denoted as ρ−, χ−, and ρ+,
χ+. In practice, for the order parameter, ρ− (ρ+) is defined as the first
value that is larger (smaller) than 1

N from the lower (upper) solution.
Complementary, for the susceptibility, we can use peaks in the deri-
vatives of χ to define χ− and χ+.Weobserved that, if λ* is lowenough, the
dynamics presents a second-order phase transition followed by a
hybrid transition. Note that, by “low enough” we assume that λ* is
constant for all sizes, i.e., do not scale with N, and it is not of the same
order of the smallest size evaluated. These results are summarized in
Figs. 9 and 10. In Fig. 9, we show the order parameter, the susceptibility
and the probability of each solution for λ* = 10. We notice a region
where both solutions are possible, but only one solution exists for
most of the evaluatedparameters. The lower solutiondoes not present
any significant change compared to an SIS process in a homogeneous
network. It exhibits a second-order phase transition, as shown in
Fig. 9a and Fig. 10a, b, where we can see a diverging peak of suscept-
ibility. As we increase λ, the systemmoves from the lower to the upper
solution. A hybrid phase transition characterizes the transition
between these two regimes. In this type of transition, we have dis-
continuities on the order parameter, a feature of a first-order phase

transition, and also scalings, which are a feature of a second-order
phase transition34,35. We characterize this transition by showing that
∣λðρ2Þ � λðρ+

2 Þ∣ and ∣λðχ�2 Þ � λðχ +
2 Þ∣ tend to zero as we increase the

system size, which is shown in Fig. 10e–h. The observed behavior
implies that in the thermodynamic limit, we have a discontinuous
transition. Importantly, the estimated exponent, ∣λðρ2Þ � λðρ+

2 Þ∣ ∼N�μ,
μ ≈0.437 < 1, satisfies the conditions for a hybrid phase transition. We
also note that the susceptibility peak for the whole system, χ, shows a
diverging peak.

Interestingly, hybrid phase transitions were also found in a similar
model for scale-free uniform hypergraphs11. Specifically, these results
can be translated in our model by considering Θj = ∣ej∣ − 1. In other
words, the model in11 considers that the higher-order spreading pro-
cesses will only be present if all the nodes but one are already active.
Moreover, they are restricted to uniform hypergraphs. Nonetheless,
these results are aligned with our findings, providing additional evi-
dence that hybrid phase transitions might be common in higher-order
systems.

Discussion
A precise understanding of the dynamical properties of a model is
fundamental for the correct observation, inference, and—possibly—
control of the system. The expected behavior of social contagion
models in simplicial complexes and hypergraphs are the discontinuous
transitions and the emergency of a hysteresis cycle10,12–14, which are not
expected for processes in simple graphs36,37. Although these results
were surprising on their own, here we showed that these models pre-
sent an even richer phenomenology, including multistability, inter-
mittency, and hybrid phase transitions. Our results also highlight the

a)

b)

ρ
ρ

t

Fig. 8 | Temporal evaluation of the exact model, Eq. (13) for different sets of
parameters and initial conditions. Ina, theparameters are such that thedynamics
converges to the absorbing state, while in b we have a metastate for the non-QS
process and an active state for the QS constrained process. The hyperblob used in
these simulations have N = 103 and the sets of parameters are: set 1 = fλhki=0:9,
λ* = 200,Θ* = 0:2, δ = 1:0,ρð0Þ= 1

Ng; set 2 = fλhki=0:9, λ
* = 200,Θ* = 0:2,δ = 1:0,

ρð0Þ= 100
N g; set 3 = {λ〈k〉 =0.9, λ* = 200,Θ* = 0.2, δ = 1.0,ρ(0) = 1}; set 4 = fλhki= 1:275,

λ* = 200,Θ* = 0:2, δ = 1:0,ρð0Þ= 1
Ng; set 5 = {λ〈k〉 = 1.275, λ* = 200,Θ* = 0.2, δ = 1.0,

ρ(0) = 1}; set 6 = fλhki= 1:275, λ* = 200,Θ* = 0:3,δ = 1:0,ρð0Þ= 1
Ng; set 7 = {λ〈k〉 =

1.275, λ* = 200,Θ* = 0.3, δ = 1.0,ρ(0) = 1}; and set 8 = fλhki= 1:275, λ* = 200,Θ* = 0:3,
δ = 1:0,ρð0Þ= 100

N g.

ρ
ρ

χ

λ

a)

b)

c)

Upper

Lowerρ
ρ

Lower
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Upperρ

χ
χ
χ
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P
P

Fig. 9 | Quantities of interest as a function of the spreading parameter λ. For a
“low” λ* (here, in this figure λ* = 10), we have a second-order phase transition fol-
lowed by a hybrid transition. We show the phase diagram in a, the susceptibility
curves in b, and the probabilities of each branch in c for various system sizes
(transparency corresponds to system size, i.e., the more transparent the curve, the
smaller the system).
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interplay between higher-order interactions and community structure.
Although not universal, these are standard features in a wide variety of
real systems and are particularly common in social contexts38–40.

Community organization might lead to localization of states
As observed in the real case and validated through artificial models,
community structure in hypergraphs imposes dynamical localization
of states. After a transition, the spreading can: (i) reach the whole
population, while remaining delocalized; (ii) activate just a subset of
individuals that scales with the system size, or (iii) activate just a node
or a subset of nodes that does not scale with the system size. An
example of the first scenario is the hyperblob, where the transition
happens through a collective process, and all the nodes will be active
with the sameprobability (formoredetails, see section “Analysis of the
transition between stable branches” and ref. 12). An example of the
second one is instead observed in the case of the blues review
hypergraph (see Fig. 3c, d, where the activity is constrained to a subset
of nodes. Localization in community structured populations is not
unexpected. However, the dynamic impact that it generates is indeed
different from the graph cases. In graphs or multilayers we observe
multiple susceptibility peaks associated to continuous changes in the
order parameter31,37,41, which contrasts with the phenomenology
observed in our model and discussed next.

Localization in higher-order models might generate inter-
mittency, multistability, and/or multiple transitions
The localization in a subset of individuals, item (ii), might lead to
multistability and multiple transitions between branches, as we

observed both in real data and artificial models (see Figs. 2 and 6). In
this case, the branches are well separated, and the same set of para-
meters can activate different regions of the hypergraph, depending on
the initial condition (see Fig. 6). This type of localization might also
implymultiple transitions between stable branches. As an example, we
can mention the solutions obtained by considering the initial condi-
tion ρ(t =0) = 1, either in the real hypergraph or in the artificial model
with mout = 200, Figs. 2 and 6 respectively. We observe two dis-
continuities, one separating the absorbing state and an active solution
and another separating two activity levels. However, if we consider the
artificialmodels withmout ≥ 400, we notice that the transition from the
lower activity state to the higher activity state can also be continuous.
Note that the concept of localization is not necessarily linked to mul-
tistability, aswemight have localizationwith a single solution. Didactic
examples are graphs with communities or multilayer networks. Here,
ourmodel reduces to an SIS in the graph scenario. In this case, we have
a single absorbing state and localized processes, but the dynamics has
a single accessible active state. This observation suggests that
depending on the hyperedge size distribution (i.e., cardinality dis-
tribution), wemight have localizationwithoutmultistability. Note that,
although the observed phenomena share some similar featureswith its
graph32,37 and multilayer37,41,42 counterparts, here the mechanisms that
guide localization and its macroscopic response are entirely different.
In the pairwise case, the susceptibility and order parameter change
continuously and, once a community is activated, it does not present
abrupt temporal macroscopic variations. On the other hand, in the
hypergraph case, we often observe significant macroscopic changes,
which might be related to hyperedges intersections generating a cas-
cading of activations. Moreover, in comparison with similar models on
graphs (e.g., SIS), the social contagion model on hypergraphs displays
a strong dependence on initial conditions. In fact, for a given set of
parameters, the steady-state solution will depend mainly on the
microscopic properties (e.g., localization of initial seeds) of the initial
condition rather than on its macroscopic ones (e.g., total prevalence).
For instance, in Fig. 2 we can see that, for the samemacroscopic initial
condition, depending onwhich community the initial seeds are placed,
we reach a different branch. Moreover, we can observe the case in
which a higher macroscopic initial condition leads to the absorbing
state, while anotherwith a lowermacroscopic initial condition leads an
active branch due to its micro-state configuration. Although not
shown, we observed this behavior in most of our numerical simula-
tions (see the “Methods” section for the algorithms employed to
sample specific branches).

Necessary and sufficient conditions for the observed behaviors
We were able to link the observed behaviors to the community
structure. However, this does not imply that modular structures are
the only ingredient able to generate multistability and intermittency.
Indeed, other forms of structural correlation might play a similar
dynamical role.

The stability of the absorbing state
For an SIS in an infinity graph, the absorbing state will be unstable after
the epidemic threshold, and we will have an active stable solution. In
the hypergraph, the conditions are not as simple as in the graph case. If
the intersections between hyperedges are smaller than the critical-
mass threshold, activating one hyperedge is not enough to trigger a
collective behavior, regardless of the spreading rate. Although we did
not study the structural constraints related to this issue, they were
verified during our simulations. This effect is also related to the role of
the initial conditions in our process. For example, we can think of a
uniform hypergraph as a line whose intersection between hyperedges
is smaller thanΘ. In thisway, for a high spreading rate but a small initial
seed, the process will fall into the absorbing state, implying that the
absorbing state might be stable for a broader range of parameters. In

N N

a) b)

c) d)

e) f)

g) h)

Fig. 10 | Finite size analysis for the hyperblob. For a “low” λ* (in this figure λ* = 10),
we have a second-order phase transition followed by a hybrid transition. We show
the scaling of important quantities as a function of the system size. In this panel,
from top to bottom, in a, b, we show the scaling of the lower solution, where λc
converges to a finite non-zero value while its respective susceptibility diverges,
characterizing a second-order phase transition. In c, d, we observe that the sus-
ceptibility curve for the whole system also diverges. Besides, we can clearly see
from e to h that ∣λðχ�2 Þ � λðχ +

2 Þ∣, in e and f, and ∣λðρ2Þ � λðρ+
2 Þ∣, in g and h, tend to

zero as we increase the system size. The sub-figures from c to h are enough to
characterize a hybrid transition. Note that in the thermodynamic limit, the transi-
tion is discontinuous as lim

N!1
∣λðρ2Þ � λðρ+

2 Þ∣=0.
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ref. 18, the stability conditions for the absorbing state and the critical
point estimations were derived, already providing additional insights
about this issue. However, further numerical simulations and the
spectral analysis of hypergraphs might deepen our understanding
about this process.

Limitations
Wemust also point out the limitations of themethods employed here.
We can not perform the finite-size analysis in most real systems, as we
only have a single structure with a fixed size. In practice, this implies
that we cannot precisely determine the phase transition type in these
cases. However, through the analysis of both the order parameter and
susceptibility, we obtain some understanding of these real systems.
We showed that using Monte Carlo simulations and solving our ODE’s
(Eq. (5)) provides a more robust argument regarding the nature of a
transition (continuous vs. discontinuous) and the existence and sta-
bility ofmultiple branches.We expect a peak in the susceptibility curve
for hybrid transitions in real scenarios right after the discontinuity.
This peak can be a sign of scaling behavior. As mentioned, this was
observed for the hyperblob, the hyperstar, the exponential and power-
lawdistributions of cardinalities in ref. 12. From a theoretical viewpoint,
measuring localization by only looking at the leading eigenvector of
the adjacencymatrix, as can be done in graphs, is not trivial, as we can
notwrite the probabilities of activation as an eigenvector problemplus
second-order terms. Although we have a visual indication that this
matrix might encode some of the localization properties, further
research is necessary to formalize this concept. Another limitation we
identified is that our model does not incorporate backlash or cultural
opposition, which is important from a sociological point of view.
Indeed, we assume that the activation of a group increases the prob-
ability of activation of other groups. However, this might only be the
case in some real scenarios. Such extension is left as a future work.

Perspectives
We have shown that the social contagion model in hypergraphs pre-
sents a rich and unexpected behavior beyond its discontinuous tran-
sitions. In particular, we showed that, depending on the structure, we
might have multistability and intermittency due to bimodal state dis-
tributions. Using artificial random models, we were able to show that
this phenomenology can be associated with community structures in
the hypergraph. Specifically, by controlling the number of bridges
between two communities with different densities, we showed that
fewer bridges create multistability, while the creation of bridges
destroys multistability and induces intermittency. We highlight that
although community structure is not a universal feature, it is still a
widespread characteristic of real social systems. Moreover, it is pos-
sible that other structural ingredients could generate similar dynami-
cal outcomes. As we have multiple branches, the importance of the
transition between them also increases. Often we observe a dis-
continuity in the order parameter10,12–14. However, associated with this,
we also have a divergence in the susceptibility, which is compatible
with hybrid phase transitions.We formulated the exact equations for a
hypergraph with structural symmetries, showing that the resulting
dynamics indeed displays a hybrid transition. Although our argument
is restricted to this specific structure, similar patterns were verified in
all the simulations reported here, as well as in refs. 11,12, suggesting that
hybrid transitions might be general.

We hope our results open new paths for the exploration of social
contagion models in hypergraphs. Analytically, understanding the
necessary and sufficient conditions for the observed phenomenology
is one of the most challenging future problems. From a numerical
perspective, the exploration and characterization of other real systems
might also reveal so far unobserved behaviors as well as confirm our
findings. Another view would be motivating further research about
understanding the impact of our results on different processes. For

instance, how can localization impact on synchronization of oscilla-
tors, diffusion, or opinion dynamics? Would we have multistability in
such dynamics? Independently and concurrently to our study, multi-
stabilitywas also found in coupledoscillator systemswith higher-order
interactions and community structure43. This findings reinforce our
conjecture that such phenomenology might be common in higher-
order interactions.

Our findings might also impact the design of real experiments
similar to the ones in refs. 5,44,45. One of the main difficulties with this
type of experiment is that the number of people participating is often
reduced, and the signals in the observables are usually noisy. In such
small systems, while accurately measuring multistability might be
challenging, intermittency might be easier to capture as we would be
interested infindingperiods of high activity followedby periods of low
activity. Along similar lines, data coming from online social systems,
while abundant in volume and number of potential subjects, is less
controlled, imposing limitations on themodeling possibilities. Despite
these limitations, there are stillmany available datasets that are higher-
order in nature (i.e., themost natural representation would be a group
and not a collection of pairwise interactions), for instance, WhatsApp
message exchange in groups (see refs. 46,47) or data from Reddit as the
collaboration in the social experiment r/place48. We remark that, in
principle, studying these datasets from the viewpoint of higher-order
interactions is possible. However, this task is not trivial, and we left
them as future work. Another foreseeable future direction would be
incorporating different mechanisms as variants of the original model.
For instance, one might propose variations that solve some of the
above-mentioned limitations, e.g., including backlash or cultural
opposition. Another possibility would be a variant that explicitly con-
siders Alport’s contact hypothesis49.

To conclude, the literature on threshold models suggests that
many processes can be modeled as binary choice critical-mass pro-
cesses. For example, in ref. 2, the author proposes a catalog of pro-
cesses that includes diffusion of innovation, rumors and diseases,
strikes, voting, educational attainment, leaving social occasions,
migration, and experimental psychology. We must highlight that in
ref. 2, the author associates the threshold processes to the individuals
and not the groups. However, the threshold is reached or not due to
individual social interactions. Our approach is slightly different as we
focus on the group rather than the individuals. Despite these differ-
ences, the proposed catalog is still valid in our case. The main differ-
ence is that our model might provide different mechanistic
explanations for similar phenomena. We should also complement the
argument for the case of disease spreading following a similar rea-
soning as in ref. 17. We presume that our model may provide new
insights into a disease spreading in which there is a viral load
threshold50. Since, in this case, sharing an environment with a few
infected people might impose an increased risk higher than linear,
which would be the standard complex network prediction, our model
could better explain this process. Finally, we could also mention
examples from our daily lives that can be conjectured as a result of
group interactions. For example, someof thephenomenadescribedby
Malcolm Gladwell in his book, Tipping point: How Little Things Can
Make a Big Difference51, can also be interpreted or re-analyzed from the
groupdynamics point of view. A notable examplewouldbe the famous
saying that “fashion is cyclic” is an effect of group interactions as
fashion can be understood as a norm, as in refs. 5,24. In this scenario, we
hypothesize that the observed cyclic behavior is associated with the
structural organization of our societies.

Methods
The first-order approximation (individual-based)
Equation (2) expresses the exact process, however, it cannot be
numerically solved due to its computational cost. Notice that we need
O(2N) equations to exactly solve this system. Thus, assuming that the

Article https://doi.org/10.1038/s41467-023-37118-3

Nature Communications |         (2023) 14:1375 10



random variables are independent and denoting yi = Y i

� �
, we obtain

the first-order approximation as

dyi
dt

= � δyi + λ 1� yi
� �X

ej2Ei

X∣ej ∣�1

k =Θj

λ*ð∣ej ∣ÞPvi
ej
K = kð Þ, ð5Þ

wherewe assumed that the spreading rate is composed by the product
of a free parameter and a function of the cardinality, i.e., λj = λ × λ*(∣ej∣)
and Pej

K = kð Þ is the probability that the hyperedge ej has k active
nodes inside. Specifically, we estimated the expectation of the indi-
cator function as a Poisson binomial distribution. Formally,

1fY i =0,Tj ≥Θjg
D E

≈ð1� yiÞ
X∣ej ∣�1

k =Θj

Pvi
ej
K = kð Þ, ð6Þ

Pvi
ej
K = kð Þ=

X
A2Fk

Y
m:vm2A

ym
Y

‘:v‘2Ac

ð1� y‘Þ, ð7Þ

where Fk is the set of all subsets of ej⧹{vi} with cardinality k, A is one of
those sets, and Ac is its complementary, i.e., the remaining nodes of ej
who are not vi. Intuitively, A accounts for the active nodes of each
possible single microstate and Ac for the inactive ones. Notice that
combining A and Ac represents ∣ej∣ − 1 nodes as vi is excluded. Thus, the
summation over Fk considers all possible micro configurations in a
given hyperedge. In Fig. 1 (a)we showan example of the possiblemicro
states for each hyperedge and their associated value of Tj. Unfortu-
nately, Eq. (7) is not numerically stable if ∣ej∣ is large. Note that, calcu-
lating Pej

K = ‘ð Þ using Eq. (7) involves the multiplication of ∣ej∣ terms
that are smaller than one. Thus, for a large ∣ej∣wemight have underflow
issues. It is however possible to stabilize its solutions by considering
the discrete Fourier transform52

Pvi
ej
K = kð Þ= 1

∣ej ∣

X∣ej ∣�1

l =0

C�lk
Y

m : vm 2 ej ;

m≠i

1 + ðCl � 1Þym
� �

,
ð8Þ

where C = exp 2πi
∣ej ∣

� �
, where i is the imaginary unit. Note that node vi is

excluded here, and the normalization should also change accordingly.
We also remark that this approach allows us to compute the solution
for arbitrarily large hyperedges. Thus, we can numerically solve the
first-order approximation in Eq. (5) using the approximation in Eq. (8).
Note also that, Eq. (6) is an approximation aswe assume that thenodes’
state is independent. However, Eqs. (7) and (8) are exact for
independent random variables and are also identical, giving the same
results.

The ODE solutions were implemented using the Gnu Scientific
library53. More specifically, we used the explicit embedded
Runge–Kutta–Fehlberg (4, 5) method, with an adaptive step-size con-
trol, where we keep the local error on each step within an absolute
error of ϵabs = 10−4 and relative error of ϵrel = 10−3 with respect to the
solution yi(t).

Continuous-time simulations
We want to both validate the expressions developed in the previous
sections, and statistically describe ourmodel in arbitrary hypergraphs.
To achieve this, we use continuous-time Monte Carlo simulations,
more specifically, we use the Gillespie algorithm54, which can be
described as follows. First, we create a vector containing the times
associated with all possible Poisson processes. As they are Poisson
processes, the inter-event times are sampled from an exponential
distribution with the appropriate parameters. For instance, if it is a
deactivation process, the exponential distribution has parameter δ. If

the process is associated with a spreading, the parameter will be
λ × λ*(∣ej∣). If the process is not active, we set it as ∞ (effectively the
largest double). Thus, given an initial condition, the dynamics run on
top of this vector of times. On each iteration, we find the element with
the shortest time and execute its associated rules, which can be
deactivation or spreading. Note that new processes might be created
or deleted accordingly. For example, if a hyperedge reached its critical
mass, the Poisson process for that event will be created. However, if,
before its execution, a sufficient number of nodes is deactivated
(making the hyperedge stays below its critical mass), the process
should be removed. Next, our time variable is increased according to
the time associatedwith the executed Poisson process. The same rules
are repeated until reaching the absorbing state or a tmax. This algo-
rithm was initially proposed in ref. 12, and it is an extension of the
methods described in Section 10.3 of ref. 37.

Quasi-stationary method (QS)
Ourmodel has a single absorbing state, the state in which every node
is inactive. So, for any finite systemwith finite rates, the dynamics will
reach this state.Mathematically this can be avoidedby restricting our
process to active states (see section “Quasi-stationary steady-state
solutions”). Computationally, we adopt a similar approach. We avoid
the absorbing state by moving to a previously visited activate state
every time the system falls in the absorbing state. The algorithm is
defined as follows.We keep a list ofM previously visited active states.
This list is continuously updated. If we are in an active state, with a
probability prΔt, the current state replaces a random position of this
list. If the absorbing state is reached, then a random state in the list
replaces the absorbing state. We let the dynamics relax for tr and,
after that, during a time ts, we sample the distribution of states,P nð Þ,
where n is the number of active nodes. Note that, on each iteration of
the described algorithm, we are computing Freq(n)← Freq(n) +Δt. In
other words, we are computing the time our dynamics spent in the
state n. Hence, P nð Þ / FreqðnÞ. From that, we characterize our
dynamics using the order parameter and the susceptibility, respec-
tively defined as

ρ=
nh i
N

, ð9Þ

χ =
n2
� �� nh i2

nh i : ð10Þ

This method was initially proposed in ref. 55 and had been extensively
used in the analysis of epidemic spreading31,37,56,57.

We remark that tr and ts vary according to the system size, and the
algorithm is stable to the choices of list size M and probability pr. To
reduce the computational cost of this method, we also employed an
adaptive version. In this version, we define a variable sampling time
given as tr + ct

*
s , where t*s is a smaller time-window and c is not set but

defined by the convergence of χ. In practice, we calculate χ before and
after each t*s time-window. If the absolute difference between the
susceptibility is lower than ϵ (here set as ϵ =0.001), the algorithm
stops. Additionally, we also define a cmax (here set as cmax = 500),which
is the stop condition. Thus, we expect to reduce the computational
cost with this adaptive version while keeping statistically reliable
measurements.

Moreover, as we have bimodal distributions, aside from the order-
parameter, ρ, and the susceptibility χ, it is also necessary to keep track
and store the state distributions, P(n). We will be interested in looking
at themultiple peaks of these distributions, especially the value of ρ at
which these peaks appear. Here, this quantity is denoted as Peaks(P).
Notice that, in the single-mode case, the peak represents the most
likely value.

Article https://doi.org/10.1038/s41467-023-37118-3

Nature Communications |         (2023) 14:1375 11



Multistability and simulation methods
As shown in the main text, our model strongly depends on the
initial micro-state, which might generate bimodal distributions or
multiple stable branches for the same parameters. In the bimodal
distribution case, we have an intermittent temporal behavior, and
the main challenge, in this case, is sampling for long enough.
Additionally, when the probability of moving from one branch to
the other is very low (and not found in our numerical simulations
– it will be zero only in the thermodynamic limit), we have mul-
tiple stable branches for the same value of parameters. In this
case, the difficulty is finding the initial condition that will lead to
such a solution. Thus, to properly explore our parameter space,
we employ a two-step process. First, we explore different random
initial conditions for a series of parameters, revealing some
branches. They will be visible as a concentration of points in some
regions of the ρ × λ diagrams. Next, to properly sample the
already found branch, we use similar initial conditions to obtain
the complete branch. We cannot guarantee that a given simula-
tion will reach the expected branch due to stochastic fluctuations
and the initial condition dependency. Thus, to circumvent this
problem, we need to run many simulations using different initial
conditions and discard those that fall in branches we are not
interested in. With this process, we can sample from different
branches. We remark that this procedure might be costly as we
have no guarantee that the chosen initial condition will arrive at
the desired branch. Despite that, in practice, this method gives
reasonable results as it allows us to explore the parameter space
without introducing any bias in the found solutions.

Alternatively to the random initial conditions, we can also use our
knowledge of our structure and set specific initial conditions. As
observed in the main text, communities are reasonable candidates to
sustain the activity and, macroscopically, generate a stable solution.
So, the alternative algorithm is to use as an initial condition one or
more communities as active and the remaining communities as inac-
tive. This approach was used in the Supplementary Information, sec-
tions IV and V, while the exploration of different random initial
conditions was used in the main text. Naturally, this method can be
extended to any initial condition of interest. We highlight that the
alternative approach reduces the computational cost when we have
some knowledge about our system. However, we might also be less
likely to sample all the branches due to the introduced bias on the
initial condition. Note also that it is very difficult to guarantee that we
found all the possible branches for a given system and set of
parameters.

Artificial hypergraph model
Here, we propose a hypergraph extension of the community structure
model presented in ref. 38. The algorithm is described as follows. The
number of nodes, N, and communities, nc, is fixed. The hyperedge
cardinalities will be sampled from a fixed distribution, P(∣ej∣). For each
community c, we have mc

in hyperedges that will be constructed using
only nodes inside the community. Each community can have a differ-
ent density. To link two different communities, we have mout hyper-
edges thatwill constitute the bridges. In this case, we extract a uniform
number from ℓ∈ [1, ∣ej∣), where ℓ is the number of nodes in one com-
munity and ℓ − ∣ej∣ will be in the other community.

In our numerical simulations in the main text we used
Pð∣ej ∣Þ= ExpðμÞ with μ = 8 but imposing that minð∣ej ∣Þ=2 and
maxð∣ej ∣Þ= N

nc
. For simplicity, we build a hypergraph with N = 103 nodes

organized in nc = 2 communities. The community parameters are
m1

in = 1000 andm2
in = 500, creating different levels of activation for the

different groups. Finally, we leave mout as a free parameter to control
the number of bridges, aiming to observe and control the dynamical
behavior of our model.

Exact equations for the hyperblob
In general, our exact formulation in Eq. (2) cannot be analytically
solved for an arbitrary hypergraph. Nonetheless, by considering a
homogeneous hypergraph, we can reduce the complexity of the pro-
blem and still calculate exact quantities. Henceforth, we focus on the
so-called hyperblob12. This hypergraph is defined as a set of homo-
geneous pairwise relationships, forming a random regular graph,
where every node has k

� �
edges, togetherwith a hyperedge containing

all the nodes. As the nodes are indistinguishableby their degreewecan
describe the state of our systemby thenumber of active nodesn. Thus,
the transition rates can be expressed as

Qn,n�1 = δn= δn

Qn,n+ 1 = λhkin ðN�nÞ
N =βn

Qn,N = λ*Uðn�ΘÞ

8><
>: , ð11Þ

where U(n −Θ) is the Heaviside step function and the element Qi,j is
the transition rate from the state with i active nodes to a state with j
active nodes. The elements that are not explicitly defined in Eq. (11)
are zero. Note that, if λ* = 0 we recover an SIS dynamics in an
homogeneous population. Figure 7 is a graphical representation of
these transitions but restricted to active states (see sec-
tion “Analysis of the transition between stable branches” in themain
text). Consequently, we can express the temporal evolution of our
dynamics as

dP
dt

=QTP, ð12Þ

where P = P0,P1,:::,PN

� 	T is a vector whose elements Pn are the prob-
abilities of having n active nodes. This equation can be solved as

PðtÞ= expðQT tÞPð0Þ: ð13Þ

Moreover, denoting the steady-state solution as π 2 RN , it can be
obtained as

π =NullðQÞ: ð14Þ

Quasi-stationary steady-state solutions
For any finite hypergraph, the only absorbing state in our dynamics is
the state n =0. Consequently, regardless of the parameters of our
dynamics, we will always reach this state. However, for sufficiently
large hypergraphs, the dynamics will arrive at a metastate and remain
there for some time. After leaving this state, the system will reach the
absorbing state. In general, we are interested in the metastate instead
of the absorbing state. So, to obtain insights about this state, we use
the quasi-stationary distribution, which is constrained to active states.
Computationally, this is effectively implemented by the QS method,
described in section “Multistability and simulation methods.” Mathe-
matically, this is done by imposing that the transition rate to this state
is zero. As theprocess is defined in continuous timeand theprobability
of two events happening at the same time is zero, we can implement
the QS constraints as

Q1,0 =0: ð15Þ

A graphical representation of the QS-constrained chain is shown in
Fig. 7. Moreover, Eqs. (12) and (13) are also valid after applying the QS
constraint, Eq. (15). Note that, without this constraint, the process
depends on the initial condition, while the QS-constrained system
does not.
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Under the QS constraint, Eq. (12) is expressed as

dP0

dt
=0 ð16Þ

dPn

dt
= δðn+ 1ÞPn+ 1 + λhkiðn� 1ÞðN � n + 1ÞPn�1 +

� δn+ λhkinðN � nÞ+ λ*Uðn�ΘÞ
h i

Pn

ð17Þ

dPN

dt
= λhkiðN � 1ÞPN�1 + λ

*
XN
i=Θ

Pi � δNPN , ð18Þ

where Pn is defined for the interval n∈ [0,N] and the limits are expli-
citly shown. In the steady-state, i.e., dPn

dt =0 for all n∈ [0,N], we can
analytically obtain the stationary distribution as

π0 =0 ð19Þ

π1 =
δ2π2

λhkiðN � 1Þ+ λ � Uð1�ΘÞ ð20Þ

πn + 1 =
δn + λhkinðN � nÞ+ λ � Uðn�ΘÞ� 	

πn

δðn+ 1Þ +

� λhkiðn� 1ÞðN � n + 1Þπn�1

δðn+ 1Þ

ð21Þ

πN =
λhkiðN � 1ÞπN�1 + λ �

PN
i=Θ

πi

δN
,

ð22Þ

where the normalization
PN

i=0 πi = 1 must be respected. Although we
can not obtain a closed expression for π for a fixed size and set of
parameters, we can calculate its exact distribution of states. The
computational cost of this calculation is O(N), which allows us to
evaluate reasonably large systems.

In Fig. 8, we show two examples of temporal behaviors by solving
Eq. (13) with the appropriate matrices. In Fig. 8a, the system is below
the critical point, while in Fig. 8b the dynamics operates above it. In the
non-QS case, below the critical point, ρ goes exponentially fast to the
absorbing state (ρ =0), while in the QS-constrained case, it goes to a
state near ρ≈ 1

N. Above the critical point, Fig. 8b, we can observe that ρ
stays at the metastate before converging to the absorbing state.
Moreover, we can see the dependency on the initial condition, where,
for the same set of parameters but different initial conditions, the
dynamics has a different metastate. For an example, compare Fig. 8b,
curves for set 4 and set 5. Also, note that the respectiveQS-constrained
system converges to a state compatible with the non-QS set 5. Intui-
tively, the differences in solutions for sets 4 and 5 are related to the
probability of getting to the absorbing state due to finite-size fluc-
tuations. For set 4, this is evident as the process begins with a single
active node.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Most of the data used in our manuscript are artificially generated by
computational simulations whose methods are explained in the text.
The blues reviews hypergraph is publicly available at https://www.cs.
cornell.edu/~arb/data/. The data are available from the corresponding
author upon request.

Code availability
The algorithms used in our numerical simulations are described in the
“Methods” section. Custom code is implemented in C/C++ and can be
found at https://gitlab.com/guifarruda/socialcontagion.
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