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Non-Abelian effects in dissipative photonic
topological lattices

Midya Parto 1,6, Christian Leefmans2,6, James Williams1, Franco Nori 3,4,5 &
Alireza Marandi 1,2

Topology is central to phenomena that arise in a variety of fields, ranging from
quantum field theory to quantum information science to condensed matter
physics. Recently, the study of topology has been extended to open systems,
leading to a plethora of intriguing effects such as topological lasing, excep-
tional surfaces, as well as non-Hermitian bulk-boundary correspondence.
Here, we show that Bloch eigenstates associatedwith latticeswith dissipatively
coupled elements exhibit geometric properties that cannot be described via
scalar Berry phases, in sharp contrast to conservative Hamiltonians with non-
degenerate energy levels. This unusual behavior can be attributed to the sig-
nificant population exchanges among the corresponding dissipation bands of
such lattices. Using a one-dimensional example, we show both theoretically
and experimentally that such population exchanges can manifest themselves
via matrix-valued operators in the corresponding Bloch dynamics. In two-
dimensional lattices, such matrix-valued operators can form non-commuting
pairs and lead to non-Abelian dynamics, as confirmed by our numerical
simulations. Our results point to new ways in which the combined effect of
topology and engineered dissipation can lead to non-Abelian topological
phenomena.

According to quantummechanics, the dynamics of a closed system are
governed by a set of unitary operators. Onmost occasions, however, a
real physical arrangement inevitably exchanges energy with its sur-
rounding environment—something that has traditionally been con-
sidered an adverse effect, as it produces decoherence and energy
decay1. Yet, recent studies have shown that dissipative interactions,
which occur when the elements of a system exchange information
through the surrounding environment, may be used as valuable tools
for shaping the responses of open systems2–4. Such engineered dis-
sipation has been successfully implemented in various settings, ran-
ging from quantum computing5,6 and information processing7–10 to
active optical platforms to electronic and mechanical arrangements11.

Recent years have witnessed a flurry of interest in the emerging
field of topological physics12,13. One of the most prominent examples of

topological behavior is a set ofmaterials exhibiting nonzero topological
invariants which are endowed with inherent robustness against local
disorders14. This type of topological protection also occurs in physical
settings beyondcondensedmatter physics andhas led to unidirectional
transport and robust features in optics15–19, cold atoms20,21, mechanics22,
and acoustics23,24.While topological phenomenawere originally studied
in closed systems, recentworks on topology inopen systemshave led to
a host of intriguing effects25–30. For instance, the interplay between
topology and dissipation/gain has been utilized to develop robust and
efficient coherent light sources26,31–36. Other studies include the emer-
gence of topological phases from purely dissipative interactions in the
absence of Hamiltonian couplings37–39, as well as extending the bulk-
edge correspondence and topological band theory to open and non-
Hermitian settings40–45.
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Gauge fields are pivotal to the understanding of topological phe-
nomena that arise, for instance, in the Pancharatnam-Berry phases first
introduced in polarization optics. Onmanyoccasions, these gaugefields
belong to the Abelian class which give rise to closed-loop evolution
operators in the parameter space that commute with each other. This
simple picture changes drastically in more complex scenarios which
involve non-Abelian gauge fields where the corresponding operators
along different paths are no longer commutative and can be utilized to
obtain universal gates for topological quantum computing46. Although
Abelian gauge fields have been widely used for characterizing topolo-
gical states47–51, their non-Abelian counterparts have largely remained
unexplored. This is mainly due to the strict requirements, such as the
existence of degenerate states in the underlying Hilbert space that are
necessary in a conservative system to host non-commutative evolution
operators52,53. Quite recently, non-Abelian effects and topological char-
ges have been observed in a variety of photonic systems54–57 involving
coupled waveguide arrays58,59 and nonreciprocal elements60. Despite
intense research efforts in this area, studies have exclusively focused on
systems with conservative couplings. In contrast, we show how the
synergy between topology and dissipation can give rise to non-Abelian
dynamics in the reciprocal space.

Here, we show that Lindbladians involving dissipative couplings
can be governed by matrix-valued modified Wilson lines52, leading to
non-Abelian effects56,59–61. To do so, we experimentally measure non-
trivial geometric phases and demonstrate signatures of non-Abelian
effects in a dissipatively-coupled network of time-multiplexed photo-
nic resonators. In contrast to conservative systems possessing non-
degenerate energy levels wherein the geometric properties of the
Bloch eigenstates are typically predicted by scalar Berry phases, here,
significant population exchange can occur among the ensuing dis-
sipation bands. Our simulations involving a two-dimensional honey-
comb lattice illustrate how such dynamics lead to non-Abelian
operators acting on the reciprocal space.

Results
The general model of a Markovian open lattice is described by the
Lindblad master equation:

d
dt

ρ̂ =Lρ̂ � �i½Ĥ,ρ̂�+
X
j

D½L̂j�ρ̂, ð1Þ

where ρ̂ represents the system density operator, Ĥ signifies the
system Hamiltonian and D½L̂j �= L̂jρ̂L̂

y
j � 1=2fL̂yj L̂j,ρ̂g is the dissipator

resulting from the nonlocal jump operators L̂j acting upon the lattice
site j. When Ĥ =0, the lattice sites only exchange energy via the
dissipators D½L̂j�. Such purely dissipative couplings can be engi-
neered to map the energy spectra of arbitrary tight-binding
Hamiltonians into the decay rates of the corresponding open

system38,62. In particular, by properly choosing D½L̂j �, the Lindbladian
of Eq. (1) supports Bloch eigenstates characterized by bands of
dissipation rates in the reciprocal space (see Supplementary Part 1).

For our experiments, we use a time-multiplexed photonic reso-
nator network depicted schematically in Fig. 1. This time-multiplexed
network consists of a main fiber loop (the “Main Cavity”), which sup-
portsN = 64 resonant pulses separated by a repetition period, TR. Each
pulse represents an individual resonator associated with the annihila-
tion (creation) operators ĉðyÞj in Eq. (1). In addition, in order to realize
the jump operators L̂j, we construct delay lines to dissipatively couple
the individual pulses. Each delay line is equipped with intensity mod-
ulators that control the strengths of these couplings (see Fig. 1). It
should be emphasized that the setup used here has two important
distinctions compared to the one used in38 that enables us to experi-
mentally investigate geometric properties and non-Abelian signatures
associated with topological dissipative bands. First, the present work
uses a homodyne detection scheme to resolve the phase information
encoded in the optical fields, as necessary to measure geometric
phases. Second, to probe the geometric properties of the dissipation
bands, we apply a constant force in the reciprocal space which trans-
lates into a closed-loop evolution defined on the Brillouin zone in the
Bloch-momentum space. This type of evolution results in periodic
revivals in the dynamicsof the optical fields across the latticewhich are
known as Bloch oscillations (BO). To achieve this, we implement the
Hamiltonian ĤBO = F � r̂, where F represents a constant effective force
along the reciprocal lattice direction r. In Supplementary Part 2 we
show that this Hamiltonian can be approximated by a pulse-to-pulse
linear phase gradient implemented by a phase modulator in the main
cavity of our network.

To experimentally demonstrate BOs,we first construct a 1D lattice
(see Supplementary Part 3) with uniform, nearest-neighbor dissipative
couplings (Fig. 2a). The jump operators in the master equation
describing this lattice are given by L̂j =

ffiffiffi
Γ

p
ðĉj + ĉj + 1Þ (see Supplemen-

tary Part 1).We excite a single lattice site in the network and observe its
evolution under different pulse-to-pulse phase gradients, which cor-
respond to different BO Hamiltonians HBO. We first investigate the
dynamics in the absence of a phase gradient (i.e., ĤBO =0). In this case,
the excitation undergoes dissipative discrete diffraction (Fig. 2b). We
emphasize that the shape of the diffraction pattern in this figure is
qualitatively different from its conservative counterparts63 due to the
dissipative couplings involved (see Supplementary Part 7). Next, we
turn on the linear gradient potential associated with ĤBO. Figure 2c, d
shows experimental pulse propagationmeasurements associated with
ϕ0 = 2π/8 andϕ0 = 2π/4, which correspond to Bloch periods of 8 and 4
network roundtrips, respectively. As evident from these figures, the
presence of pulse-to-pulse phase gradients causes the excitation to
undergo periodic diffraction and refocusing, which is the hallmark of
Bloch oscillations.

Fig. 1 | Network of time-multiplexed resonators. a Schematic diagram of the
experimental setup used to implement dissipatively coupled resonators. An
intensity modulator (IM) and a phase modulator (PM) are used in the input of the
optical fiber to generate arbitrary wavefunctions defined by injected femtosecond
pulses from amode-locked laser with a repetition rate of TR. An Erbium-doped fiber
amplifier (EDFA) is used in the main cavity to compensate for the losses and

increase the number of measurement roundtrips. Two delay lines with smaller and
larger lengths than the main cavity (corresponding to delays of − TR and +TR,
respectively) are used to dissipatively couple the pulses. b Schematic of a resonant
cavity loop (yellow) which hostsN pulses, each representing a resonator element in
a dissipatively-coupled lattice. The delay lines (shown in green) provide the dis-
sipative couplings with different rates between nearest-neighbor sites.
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Typically, in a Hamiltonian lattice with multiple energy bands, the
associated Bloch states tend to remain in a single bandwhen subject to
a sufficiently weak external force F. Under such adiabatic conditions,
the state undergoes Bloch oscillations and merely acquires a phase
factor comprised of a dynamical part in addition to the geometric
Berry phase associated with its energy band64,65. This is in sharp con-
trast to Lindbladian lattices exhibiting dissipation bands which in
general may not be considered in isolation. In this sense, the two-band
open systems studied here exhibit reciprocal-space dynamics and
band topologies similar to those of Hamiltonian systems possessing
quasi-degenerate energy levels53,66. Here, the reciprocal-space
dynamics produced by the Lindbladian in Eq. (1), with Ĥ = ĤBO are
governed by the modified Wilson line operator

Ŵ
0
kð0Þ!kðtÞ = T exp

Z
dt ÊðkðtÞÞ+ iÂðkðtÞÞ � F

h i
, ð2Þ

where T indicates time ordering, Ê is a diagonal matrix containing
dissipation rates for different bands while Â represents the Wilczek-
Zee connection matrix Ap,q = ihϕpðkÞ∣∇k ∣ψqðkÞi at k(t) = k(0) + Ft
corresponding to the non-Hermitian Bloch Hamiltonian associated
with the system Lindbladian52 (see Supplementary Parts 5 and 6). Here,
p, q represent two arbitrary bands of the system.

In order to show how the modified Wilson line in Eq. (2) can be
used to experimentally characterize gauge fields and topological
invariants within dissipative bands, we first consider a one-dimensional
Su-Scrieffer-Heeger (SSH) lattice (Fig. 3a). To implement this, the
intensitymodulatorswithin thenetwork areprogrammed to realize the

staggered couplings of the SSHmodel. These couplings correspond to
the jump operators L̂A,j =

ffiffiffiffiffi
ΓA

p
ðĉA,j + ĉB,jÞ and L̂B,j =

ffiffiffiffiffi
ΓB

p
ðĉA,j + 1 + ĉB,jÞ

(Supplementary Part 1), where A and B represent the two sublattices in
the structure. With these jump operators, the resulting Lindbladian
exhibits a dissipative band structure that can host a topologically
nontrivial bandgap (Fig. 3a). We first examine the upper-band geo-
metricBerryphaseθ+ resulting fromtheA1,1 component of theWilczek-
Zee connection. To do so, we initially excite the upper-band Bloch
eigenstate at k =0. Meanwhile, the phase modulator in the cavity is
programmed to impart a pulse-to-pulse phase gradient of ϕ0 = 2π/8 to
initiate Bloch oscillations in the dissipatively coupled SSH lattice. After
a complete Bloch period, we measure the output of the network using
homodyne detection (see Fig. 1a). As expected from Eq. (2), at this
point, the observed state is in a superposition of the upper- and lower-
band Bloch eigenstates (see Supplementary Part 6). Consequently, to
measure the Zak phase associated with the upper band, we project the
observed state into the upper-band eigenstate. Because the dissipative
dynamics of our systemdoes not impart a dynamical phase, the relative
phase difference between this state and that of the originally launched
pulses provides a direct measurement of the upper-band Zak phase.
Figure 3b–d presents our experimentally measured values of this
geometric phase in different coupling regimes of the SSH model. For
ΓA = ΓB, wemeasure aZakphase valueof θ+ =ϕZ0 ≈ −0.02π, as expected
from theory (Fig. 3b). On the other hand, when ΓA ≠ ΓB, our measure-
ments show θ+ =ϕZ1 ≈0.47π and θ+ =ϕZ2 ≈ −0.51π for the dimeriza-
tions D1 and D2 depicted in Fig. 3c, d, respectively. Based on these
results, the absolute value of the Zak phase in this open topological
system is measured to be ϕZ =ϕZ1 −ϕZ2 ≈0.98π, in agreement with the

Fig. 2 | Experimental demonstration of Bloch oscillations in a uniform,
dissipatively-coupled open lattice. aApplying a phase gradient among the pulses
in the time-multiplexed network transports the associated Bloch eigenstates in the
reciprocal space by a value of δk =ϕ0 per cavity roundtrip, where ϕ0 denotes the
pulse-to-pulse phase differences induced by the intracavity phase modulator. b to
d, Pulse intensity measurements associated with ϕ0 = 0, 2π/8 and 2π/4, respec-
tively. In all cases, optical power is initially launched into one lattice element (pulse

number 32). As shown in b, in the absence of the effective force (ϕ0 =0) light
undergoes dissipative discrete diffraction in the lattice. In contrast, when a nonzero
phase gradient is established among the pulses, optical power exhibits an oscilla-
tory pattern with a Bloch period equal to NB = 8, 4 in c, d, respectively. In all cases,
the optical power across the lattice sites is normalized in every round trip to pro-
vide a more distinct visualization of the field intensities.
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theoretically expected value ofϕZ =π for a topologically nontrivial SSH
lattice.

As discussed earlier, Eq. (2) describes different dynamics than that
occurring in conservative Hamiltonian systems, since the gauge fields
involved in Eq. (2) are no longer characterized by the scalar-valued
Berry phases. To show this contrast, we consider a scenario wherein
the Bloch eigenstate associated with the lower band of our dissipative
SSH model ∣ψ�ð0Þi is initially excited. Under such conditions, the off-
diagonalWilczek-Zee connections (Apq) result in a nonzero population
of the upper band in addition to the lower one. The effective force
applied via ĤBO will then transport both of these eigenstates along
their corresponding bands in the reciprocal space (Fig. 4a, b). As k
varies between 0 and 2π, each of the Bloch eigenstates ∣ψ± i are mul-
tiplied by a Zak phase of ϕZ1 =π/2 for the D1 configuration shown in
Fig. 3c. Meanwhile, due to the dissipative nature of the bands, the
upper-band eigenstate is relatively amplified while the lower one is
attenuated more. Hence, at the end of the Brillouin zone when k = 2π,
the contribution from the upper-band eigenstate that interferes with
that associated with the lower one dominates the total population in
this level due to its much higher amplitude. The combined effect of
these inter-band transitions and parallel transports along the two
bands of the dissipative SSH system is thus expected to impart a total
phase of θ− = −π/2 to the original Eigenstate ∣ψ�ð0Þi launched in the
input. We note that this behavior is in stark contrast to that expected
from the SSH model implemented conservatively, where both the
upper and lower bands display equal geometric phase values deter-
mined by their associated Zak phases (Fig. 4a). Figure 4c presents the
experimentally measured lower-band geometric phases with a mean
value of θ− = −0.49π, confirming our theoretical predictions based on
Eq. (2) (see Supplementary Part 6).

So far, we showed that the geometric properties of dissipative
bands in one-dimensional lattices involve the full matrix-valued

Wilczek-Zee connections associated with the Bloch eigenstates in such
systems. In this respect, our experimentally measured geometric
phases provide signatures of non-Abelian effects in dissipative topo-
logical lattices. However, to define intersecting closed loops in the
reciprocal space that are necessary for non-Abelian operators, one
needs to consider lattices extending over more than one dimension.
For this purpose, we choose a dissipative honeycomb lattice as shown
in Fig. 5a. Such a lattice exhibits two distinct bands of dissipation, as
shown in Fig. 5b. Starting from an arbitrary Bloch momentum in the
reciprocal space k = k(0), we consider two different closed loops
depicted as C1 and C2 in Fig. 5c. By applying a force F parallel to Ci

(i = 1, 2) an initial state ∣ψðk0Þi is transformed in the reciprocal space to
a new state Ŵ 0ðCiÞ∣ψðk0Þi. Given that these evolutions involve time-
ordered integrals with matrices that in general do not commute, we
expect the final state of the system to depend on the order of such
operators. Figure 5d presents our simulations using Eq. (2) for two
different scenarios, where the normalized initial and final states are
displayed on a Bloch sphere. These results demonstrate the non-
Abelian nature of the dynamics that arise in the photonic dissipative
lattices considered here. For more detailed simulations, please see
Supplementary Part 10.

Discussion
In conclusion, we have shown that non-Abelian effects can arise in a
dissipatively coupled network of time-multiplexed photonic resona-
tors. In contrast to conservative Hamiltonian systems with non-
degenerate energy levels where the geometric properties are typically
predicted by scalar Berry phases, here, the emerging gaugefields are in
general governed by matrix-valued modified Wilson lines which may
not commute for different Blochmomenta. Ourmeasurements on the
geometric Zak phases in a one-dimensional SSH model corroborate
our theoretical predictions. In two dimensions, the non-Abelian nature

Fig. 3 | Measuring the geometric Zak phase in a dissipative SSH model using
dissipative Bloch oscillations. a Schematic diagram of an SSH lattice with two
different couplings ΓA = 2ΓB together with its associated dissipation bands. Since
the interactions among the constituent elements are arising from the corre-
sponding dissipators, these bands represent relative gain/decay rates, with the
upper-band Bloch eigenstates experiencing relative gain while the ones associated
with the lower band decay faster. b–d Experimentally measured Zak phases under
various coupling conditions. A trivial coupling between the lattice sites ΓA = ΓB leads
to a zero Zak phase b. On the other hand, when the intercell and intracell

dissipators differ, ourmeasurements showϕZ1 ≈0.47π andϕZ2 ≈ −0.51π for the two
possible dimerizations D1 and D2 shown in c, d, respectively. These nontrivial
phases are geometrically equivalent to the counter-clockwise and clockwise
windings of the upper-band Bloch eigenstates on the associated Bloch sphere, as
depicted in the insets c, d, respectively. Each data set represents various unit cells
(shown in dashed lines) within a single measurement, except for the two first and
last units to avoid edge effects. In all cases the error bars indicate standard
deviations.

Article https://doi.org/10.1038/s41467-023-37065-z

Nature Communications |         (2023) 14:1440 4



of the underlying dynamics can be manifested in non-commutative
operators acting on the Bloch eigenstates. Our findings unveil new
ways in which topology and engineered dissipation can interact and
lead to non-Abelian topological phenomena.

Methods
Experimental procedure
As discussed above, our time-multiplexed photonic resonator network
consists of a main fiber loop ("Main Cavity”), which supports 64 reso-
nant pulses separated by TR≈4ns, as well as two optical delay lines,
which introduce nearest neighbor dissipative couplings between the
pulses in the network. A detailed schematic of this network is shown in

Supplementary Fig. 1. To realize dissipative BOs and tomeasure the Zak
phases of the SSH bands, we insert intensity modulators (IMs) into the
delay lines, a phasemodulator (PM) and an IM into themain cavity. The
IMs in the delay lines control the pulse-to-pulse coupling strengths,
while the intra-cavity PM in the main cavity produces a linear phase
ramp that induces Bloch oscillations. During the experiment, we use
intra-cavity IM to “Q-switch” the cavity, so that the pulses in the network
see less loss as theyundergoBlochoscillations. This allowsus tooperate
the systemclose to threshold for a brief timeduring the experiment and
helps to extend the number of roundtrips that we are able to observe.
Before and after the experiment, weoperate the networkwell below the
threshold, where it is easier to actively stabilize the system.

Fig. 4 | Modified geometric phases in the presence of non-Abelian effects.
a Geometric winding of the lower-band Bloch eigenstates associated with a con-
servative SSH Hamiltonian illustrated on the Bloch sphere. In this representation,
the upper and lower Bloch eigenstates are locatedon the equatorial plane, shown in
red and blue colors, respectively. Here, ∣Ai and ∣Bi represent the uniformly dis-
tributed states residing on the A and B sublattices, corresponding to the points
located on the south and the north poles of the Bloch sphere, respectively. The
magenta and light blue arrows represent the upper- and lower-band Bloch eigen-
states associated with the Bloch momentum k =0, respectively. The lower panel
indicates reciprocal-space dynamics associated with the lower band, which in the
adiabatic regime is independent of the upper band. b Similar results for a dis-
sipative SSHLindbladian areobtained from the correspondingmodifiedWilson line
operator (Eq. (2)). Unlike the conservative case a, the lower-band of a dissipative
SSH lattice is expected to exhibit a different geometric phase than that of the upper

one. This is because the dissipation bands emerging in the latter are coupled via the
off-diagonal Wilczek-Zee connections (Apq), as illustrated in the lower panel b.
Hence, during a Bloch period, the upper-band eigenstates (represented by green
dots) are relatively amplified while those associated with the lower one (shown as
orange dots) experience a higher attenuation. Eventually, the state of the system at
the end of this cycle is determined by the interference between the eigenstates
associated with these two bands, which is dominated by the upper-band con-
tribution. This results in a π phase shift in the lower-band geometric phase. The left
and right black dotted arrows represent the transfer of Bloch eigenstate popula-
tions from the lower band to the upper one and vice versa, respectively.
c Experimentally measured values (to be compared with Fig. 3c) indeed corrobo-
rate these theoretical predictions. In all cases the error bars indicate standard
deviations.
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Tomeasuredissipative BOs,we adjust the throughput of the delay
lines to equalize the coupling strengths of the nearest neighbor cou-
plings. We calibrate the phase modulator to implement a phase ramp
with thedesiredpulse-to-pulsephasedifference. Then, using IMsat the
input of themain cavity, we excite a single time-slot (lattice site) in our
time-multiplexed network with pulses from a mode-locked laser. With
thedelay line couplings and the linearphase ramp turnedoff, we excite
this site over several roundtrips of the cavity to build up power in the
network. We then stop the excitation and turn on the phase ramp and
the delay line couplings. We record a time trace of the network over
~32 roundtrips with a fast photodetector and average over 10 inde-
pendent time traces to generate the colormaps displayed in Fig. 2.
While the signatures of Bloch oscillations are clear in this figure, we
observe that asymmetry in the delay line couplings and imperfections
in the linear phase ramp degrade the fidelity of the dissipative Bloch
oscillations over many roundtrips.

For our geometric phase measurements, we reconstruct the
roundtrip-to-roundtrip phase evolution of the network by detecting
the pulses in the system with an optical hybrid coupler and two
balanced detectors (see Supplementary Part 3). To detect roundtrip-
to-roundtripphase drift during our experiments, wepopulate 32 of the
64 timeslotswithin the cavitywith referencepulses. Couplingbetween
these reference pulses is suppressed with the delay line IMs, and we
use the mean phase of the reference pulses as a reference on each
roundtrip of the experiments. These 32 reference pulses are also
decoupled from the 32 remaining experiment time slots, which are
used to measure the geometric phases.

To measure the Zak phase associated with the dissipative SSH
model, we apply a linear phase ramp to the experiment time slots with

the intra-cavity PM, and we program the delay line IMs to couple the
experiment time slots with the staggered couplings of the SSHmodel.
Using the IMs at the input to themain cavity,wepopulate the reference
time slots with a uniform streamof pulses and inject a Bloch state from
either the upper or lower bands into the experiment time slots. We
monitor the evolution of the pulses over a full Bloch period so that we
can compare the initial excitation with the state of the network after
one Bloch cycle.

Data analysis
Bloch oscillations. For the three phase gradients used in our BO
experiments,Δϕ = 0,Δϕ = 2π/4,Δϕ = 2π/8, we average the response of
the network over 10 recorded traces. To better visualize the roundtrip-
to-roundtrip dynamics of the system, we normalize the power in the
network during each roundtrip such that the sum of the peak powers
of the pulses is unity. Normalizing the power in this manner elucidates
the oscillatory dynamics produced by the presenceof a phase gradient
because it clearly reveals the spreading and relocalization of
the power.

Geometric phase measurements. To determine the geometric phase
acquired in each band, we record the in-phase and quadrature com-
ponents of the pulses as the system undergoes dissipative BOs.
Because the 32-site chain used for our measurements has open
boundary conditions, we neglect the dynamics experienced by the
pulses at the edges. After a full Bloch period, we project the observed
state into the upper and lower bands of the SSH model. For an initial
excitation in the upper (lower) band, the phase acquired by the pro-
jection of this state into the upper (lower) band indicates the

Fig. 5 | Non-Abelian dynamics involving Bloch eigenstates in a dissipative
honeycomb lattice. a Schematic of a dissipative honeycomb lattice with two
sublatticesA andB.bDissipationbands associatedwith theBlocheigenstates of the
lattice. c The Brillouin zone in the reciprocal space where an initial point at k = k0 is

shown together with two different closed loops C1 and C2 along which the initial
state is transported.d Simulation results displaying the initial andfinal states on the
Bloch sphere clearly show the non-commutative nature of the modified Wilson
lines defined in Eq. (2), Ŵ 0 ðC1ÞŴ 0ðC2Þ≠ Ŵ 0ðC2ÞŴ 0ðC1Þ.
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geometric phase acquiredwithin the corresponding band.Weperform
this procedure for an ensemble of independent measurements, and in
Figs. 3 and 4, we plot the means and sample standard deviations of
each measurement. From these measurements, we construct estima-
tors for the means of the measured geometric phases, and we state
these values in the main text.

Data availability
Thedata used to generate the plots and results in this paper is available
from the corresponding author upon reasonable request.

Code availability
The code used to analyze the data and generate the plots for this paper
is available from the corresponding author upon reasonable request.
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