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PeakDecoder enables machine learning-
based metabolite annotation and accurate
profiling in multidimensional mass
spectrometry measurements

AivettBilbao 1,2,9 , NathalieMunoz 1,2,9, JoonhoonKim1,2,9,Daniel J.Orton 1,
Yuqian Gao 1,2, Kunal Poorey3, Kyle R. Pomraning 1,2, Karl Weitz1,
Meagan Burnet1, Carrie D. Nicora 1, Rosemarie Wilton2,4, Shuang Deng1,2,
Ziyu Dai1,2, Ethan Oksen 5, Aaron Gee6, Rick A. Fasani6, Anya Tsalenko6,
Deepti Tanjore2,5, JamesGardner2,5, RichardD.Smith 1, JoshuaK.Michener 2,7,
John M. Gladden2,3, Erin S. Baker 8, Christopher J. Petzold 2,5,
Young-Mo Kim 1,2, Alex Apffel6, Jon K. Magnuson 1,2 &
Kristin E. Burnum-Johnson 1,2

Multidimensional measurements using state-of-the-art separations and mass
spectrometry provide advantages in untargeted metabolomics analyses for
studying biological and environmental bio-chemical processes. However, the
lack of rapid analyticalmethods and robust algorithms for these heterogeneous
data has limited its application. Here, we develop and evaluate a sensitive and
high-throughput analytical and computational workflow to enable accurate
metabolite profiling. Our workflow combines liquid chromatography, ion
mobility spectrometry and data-independent acquisition mass spectrometry
with PeakDecoder, a machine learning-based algorithm that learns to distin-
guish true co-elution and co-mobility from raw data and calculates metabolite
identification error rates. We apply PeakDecoder for metabolite profiling of
various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseu-
domonas putida and Rhodosporidium toruloides. Results, validated manually
and against selected reaction monitoring and gas-chromatography platforms,
show that 2683 features could be confidently annotated and quantified across
116 microbial sample runs using a library built from 64 standards.

Metabolomics is the study of the small molecules produced by
complex networks of cellular processes and biochemical reactions in
living systems. Metabolites are the end point of the flow of infor-
mation from DNA to the biological phenotype and represent

chemical fingerprints directly reflecting the physiological conditions,
intracellular regulation, and effects that environmental factors
induce in biological cells or organisms. As such, metabolomics helps
in a variety of applications, from understanding disease progression
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in clinical settings to estimating overproduction for metabolic
engineering1,2.

Advances in synthetic biology, genome editing, and DNA synth-
esis capabilities have propelled the ability to routinely design and
generate thousands of novel strains for biomanufacturing research.
The Agile BioFoundry (ABF) consortium of national laboratories uti-
lizes state-of-the-art capabilities within the framework of the design,
build, test, and learn (DBTL) cycle to develop engineered organisms3.
Accurate analytical tools with fast turnaround time in Test are critical
in developing microorganisms that can produce desired fuels and
chemicals from renewable biological feedstocks.

The most popular and widely used analytical platform for the
analysis of metabolic species in complex mixtures is mass spectro-
metry (MS) combined with liquid chromatography (LC) or gas chro-
matography (GC) separations2,4,5. However, hundreds to thousands of
primary and secondary metabolites in nature display a high degree of
structural diversity with many isomers and nominal mass isobars that
co-elute and have similar fragmentation patterns, all of which con-
stitute a significant analytical challenge in terms of detection and
annotation. The incorporation of several orthogonal technologies in
MS-based workflows can provide heterogeneous information to tackle
these challenges. In fact, experimental measures such as retention
time (RT) from chromatography, collision cross-section (CCS) from
ion mobility spectrometry (IM), or stable isotope labeling, are neces-
sary to complement MS/MS similarity and add confidence in overall
compound identification workflows6.

Besides increasing annotation confidence, multidimensional LC-
IM-MS workflows collecting extensive fragmentation spectra with
data-independent acquisition (DIA) methods are providing hetero-
geneous information which allows deeper understanding in metabo-
lomics studies. IM is a gas phase separation technique increasingly
used to distinguish structurally similar molecules, isomers, and mole-
cular classes in biological and environmental samples7. Unlike LC that
separates molecules based on hydrophobicity, IM separates gas-phase
molecular ions based on their charge, size, and shape, which improves
selectivity and coverage compared to routine LC-MS-based methods.

In DIA themass spectrometer is operated to systematically collect
multiplexed fragment-ion spectra (MS2) from all detectable pre-
cursors (MS1) within a widem/z range and in a single chromatographic
run, independently of their intensities8. Like initially found in
proteomics9, in metabolomics the MS2 spectrum quality of ions that
get selected during standard data-dependent acquisition (DDA) is
higher, but the overall MS2 coverage and quantitative precision using
DIA is better10. While DIA provides increased reproducibility and
quantitation performance, it requires more elaborated processing
algorithms compared to DDA. Two main DIA processing strategies
initially established for proteomics have been adapted to metabo-
lomics in a handful of DIA metabolomics tools. The first strategy
applies untargeted feature detection followed by deconvolution of
fragment ion spectra (here referred to as UFD). A popular tool used for
UFD in metabolomics is MS-DIAL11, which groups precursors and their
corresponding fragments based on the similarity of their elution pro-
files, generates pseudo-MS2 spectra and matches them against a
reference MS2 library. Other reported tools applying UFD are
MetaboDIA12 and DaDIA13. The second DIA algorithmic strategy
employs targeted data extraction (here referred to as TDX). TDX
requires a library of target analytes with retention times, and pre-
cursors with corresponding fragment masses, which are utilized as
coordinates to mine the DIA spectra and generate extracted ion
chromatograms (XIC) for precursor and fragments per target analyte,
as the so-called ‘peak-group’. Multiple sub-scores are then calculated
per peak-group to assess coelution and identification. Software
employing TDX include Skyline14, MetDIA15, and DIAMetAlyzer16.
Another tool demonstrated for DIA using a different approach is
DecoID17, where the MS2 deconvolution is achieved by mixing

database spectra tomatch an experimentally acquired spectrum using
least absolute shrinkage and selection operator (LASSO) regression.

While these tools exist for DIA metabolomics, new tools capable
to fully exploit all dimensions with controlled error rates in multi-
dimensional LC-IM-MS measurements with DIA spectra are needed.
Skyline and MS-DIAL were adapted to support the additional IM
dimension but they do not provide a false-discovery rate (FDR) control
method. Unlike proteomics, the field of metabolomics still lacks a
generally accepted, validated, and automated calculationof error rates
for MS2 compound identification with FDR assessments18. Several
methods have been proposed to generate decoys and estimate FDR in
metabolomics. For imaging-MS, pySM19 generates decoys by using
implausible ion adducts. For DDA, Passatutto20 uses re-rooted frag-
mentation trees, JUMPm21 adds a small odd numbers of hydrogen
atoms, and XY-Meta22 combines original and randomly selected MS2
peaks. And recently reported for DIA, DIAMetAlyzer16, provides an FDR
estimation employing Passatutto20 but it does not support the IM
separation. These methods rely on annotated spectra or a sample-
specific metabolite database for FDR estimation.

Here, we develop a sensitive and high-throughput analytical and
computational workflow that combines LC-IM-MS multidimensional
measurements with PeakDecoder, an algorithm that automatically
calculates error rates for metabolite identification, independently of
spectral annotations or libraries. PeakDecoder proposes an alternative
method for decoy generation from raw DIA spectra, incorporating
concepts from DIA and spectral library searching into a machine
learning (ML) strategy that combines both UFD and TDX. To illustrate
our metabolomics workflow and demonstrate its utility, we apply it to
study microbial samples from various strains engineered under pro-
jects of the ABF consortium.

Results
Optimizing the LC-IM-MS analytical method
We defined a list of 64 metabolites of interest for the study of various
strains of Pseudomonas putida, Aspergillus pseudoterreus, Aspergillus
niger, and Rhodosporidium toruloides, all relevant microorganisms in
the biotechnology field for production of value-added chemicals. The
panel consisted of metabolites from central carbon metabolism
includingglycolysis, tricarboxylic acid cycle (TCA) cycle intermediates,
amino acids, and ‘coenzyme A’ molecules (CoAs) that are routinely
analyzed in ABF studies to obtain an overview of changes in the
metabolism of cells. Additionally, metabolites specific to ABF host-
bioproduct pairs, meaning compounds that are directly along the
engineered pathways were also included.

The microorganisms in this study are promising industrial hosts
and have a variety of application interests. P. putida is a Gram-negative,
rod-shaped bacterium that is metabolically versatile, tolerant to toxins
and solvents, with a high supply of reducing power, making it ideal for
numerous biomanufacturing applications23. The eukaryotic micro-
organisms A. pseudoterreus and A. niger (filamentous fungi) were
modified for production of 3-hydroxypropionic acid, a polymer pre-
cursor that can be dehydrated to produce acrylic acid and can be used
directly within existing infrastructure24. Similarly, the R. toruloides
(oleaginous yeast) strains were engineered for production of bisabo-
lene, which is a precursor to a diesel alternative and is considered an
ideal platform for bioconversion of lignocellulose into lipids and
related chemicals25.

To select an LC method, we implemented the Automated chro-
matographic Method Selection Software (AMSS), which utilizes che-
mical and physical properties of metabolites to predict the LCmethod
that maximizes the number of metabolites detected (see “Methods”).
The evaluation of the selected metabolites using AMSS predicted
HILICwith negative ESI as the bestmethod (Supplementary Fig. 1). The
LC conditions were first implemented and optimized by selected
reaction monitoring (SRM) analyses of a subset of the standards and
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led to a total acquisition time of 9min per run. Compared to the
methods typically used to perform GC-MS-based global
metabolomics24, this LC method provides a ~3x faster sample analysis
time and can detect other molecules which are undetectable by GC
such as CoAs. DDA methods with short LC separation (<15min) would
be limited to only select the top 3–5 ions18,26 per cycle to preserve the
MS1 sampling rate and quantitation dynamic range, which in turn
would result in MS/MS under sampling of medium-low-abundance
ions. Therefore, after initial optimization the same LC system was
utilized to perform the LC-IM-MS analyses in the All-Ions DIA mode
(Fig. 1). A library with RT, CCS, and transitions (hereafter referred to as
precursor and fragments) was built from the analysis of standards in
deprotonated ion form. The list of metabolites can be found in Sup-
plementary Table 1 and the library can be found in Supplementary
Data 1. To evaluate the LC-IM-MS system against the gold standard
SRM platform, dilution experiments were performed using repre-
sentative standards. Supplementary Fig. 2 shows the calibration curves
with linearity and increased sensitivity of LC-IM-MS over SRM for
concentrations to as low as 0.075 pmol and covering four orders of
magnitude. Next, 81 microbial samples from the various ABF-
engineered hosts and conditions were analyzed by LC-IM-MS and
processed using PeakDecoder.

Developing the PeakDecoder algorithm
We implemented an alternative scoring algorithm for DIA metabolite
identification which uses a ‘raw spectrum centric’ approach with UFD
for ML training and a ‘metabolite centric’ approach with TDX for
metabolite scoring (i.e.,ML inference). Using only the unannotated LC-
IM-MS DIA experimental spectra from biological samples, PeakDeco-
der learns to discriminate true co-elution (and co-mobility) of a pre-
cursor and its fragments from poor co-elution undistinguishable from

random chance. As Fig. 2a shows, the PeakDecoder workflow has six
steps for ML training and inference. First, the LC-IM-MS DIA data from
the biological samples is processed in UFD mode using MS-DIAL11.
Second, a preliminary training set is generated by using the detected
and deconvoluted peak-groups as targets and producing their corre-
sponding decoys. Third, TDX is performed using Skyline14 to extract
the precursor and fragment ion signals for the training set from all the
LC-IM-MSDIA runs andexport theirXICmetrics. Fourth, a final training
set is generated applying filtering for high-quality fragments to keep
high-quality peak-groups as targets (i.e., precursor S/N> 20, and at
least 2 fragments with mass error <15 ppm, RT difference to their
precursor <0.1min, and FWHM difference to their precursor larger
than 2x the precursor FWHM; details in “Methods”) and their corre-
sponding decoys. A support vector machine (SVM) classifier is trained
using multiple scores calculated from the XIC metrics of each peak-
group in the training set: the cosine similarity between the expected
and XIC intensities, and the mean and standard deviation of each
precursor and its fragments for RT, LC-FWHM and mass error metrics
(details in “Methods”). These scores are used as ML features which
measure co-elution and similarity to the expected values27. After
scoring the training set, the true and false positives can be used to
estimate an FDR. Fifth, TDX is performed to extract the signals of the
query set of metabolites in the library from all the LC-IM-MS runs and
export their XICmetrics. Finally, the trainedmodel is used to score the
query set of metabolites and results can be filtered using the Peak-
Decoder score corresponding to the estimated FDR threshold from a
table with pairs of values (FDR, PeakDecoder score) automatically
generated.

PeakDecoder takes advantage of DIA spectra, where the com-
bination of precursor and its fragments enable selective and sensitive
detection of a molecule by a peak-group of co-eluting fragment ion

Fig. 1 | Analyticalworkflow formultidimensionalmetaboliteprofilingbyLC-IM-
MS and data structure. Metabolite extracts are separated by LC, followed by IM,
and analyzedbyMS in theAll-IonsDIAmodewhichalternates between lowandhigh
collision energies to capture precursor and fragment ion spectra within the same
run. Spectra are represented by gray dashed lines. Rather than collecting a single
spectrumat every LC timepoint, coeluting ions (i.e., with close elution times) in this

example at the 2nd order of elution and represented by spheres and peaks, in blue,
red and orange colors, could be further distinguished by the ion mobility separa-
tion where multiple spectra are collected into IM frames. Fragments are detected
within the same elution and mobility time window as their precursors. Figure
adapted from previous work69, with permission from Elsevier.
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chromatograms28. Our algorithm is similar to the mProphet scoring
method in terms of using decoy transitions29,30. The mProphet
method introduced the concept of decoy transitions at the mea-
surement level for SRM proteomics, and it was later adapted at the
data extraction level for DIA. The decoy transitions are used to
optimize a combination of the available individual scores and to
derive statistical error rate estimates by parameterizing a null dis-
tribution. However, decoys in those original methods are generated
from the protein database by reversing or shuffling the sequences.
Due to the much larger structural diversity, more complex frag-
mentation mechanism and ubiquitous isomers compared to

peptides, such decoy generation methods cannot be applied for
small molecules. In contrast, PeakDecoder generates the decoys
from the high-quality peak-groups deconvoluted from the LC-IM-MS
DIA experimental spectra of the biological samples.

Methods to generate decoys from experimental spectra have
been previously reported, however, from a DDAMS/MS target library
(i.e., annotated spectra), first in proteomics31,32 and more recently in
metabolomics20,22. We propose an alternative strategy to generate
decoys taking advantage of the comprehensive nature of the DIA
spectra. Instead of generating decoys from the target library, we
perform UFD and TDX in the LC-IM-MS DIA data to generate a

decoys
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training set of peak-groups. The high-quality peak-groups con-
stituted by the detected precursors (MS1) and its deconvoluted
fragments (i.e., pseudo MS2) are used as targets. This strategy pro-
vides a noise-filtered ‘clean’ set of targets which was reported to be
necessary to reach accurate estimates in spectrum level decoy-based
methods20. We then employ a pairing and swapping strategy, similar
to the precursor-swap method proposed by Cheng et al.32, but rather
than swapping precursors, we generate the respective decoy pre-
cursors and fragments from the same targets by swapping pairs of
fragment m/z (Fig. 2b). Pairing precursors with the same number of
fragments was used as an approach to increase the chances that the
molecules are similar and to ensure that the overall distributions of
general properties of targets and decoys are the same. Generating
decoys by pooling and randomly adding fragments was avoided
because it has previously shown poor performance (naivemethod)20,
as it increases the probability of generating unrealistic decoys. Since
the deconvoluted data represent real molecules, our decoy strategy
is valid in practice and the generated decoys comply with several
conditions or properties, previously proposed for proteomics31, to
calculate FDR with a valid target-decoy model: (i) the decoy library
has the same precursor m/z and charge distributions as the target
library, (ii) target and decoy spectra include the same number of
peaks and have the same intensity sum distribution, and (iii) decoy
spectrum peaks are positioned on realistic m/z values (fragments
that naturally occur).

Contrary to previously proposed methods for FDR assessment
that rely on large libraries of annotated MS/MS spectra, PeakDecoder
was designed to confidently identify metabolites from libraries, but
independently of the number of metabolites in the library. The esti-
mated error rates are independent of any library and therefore
experimental or in silico generated libraries of any size could be
potentially utilized. The scoring becomes ‘metabolite centric’ and
provides the probability that a given metabolite is present in the
sample based on the quality of its detected signals in the LC-IM-MSDIA
data. After the model is trained directly from the unannotated LC-IM-
MS DIA data, it can be used to automatically score metabolites in
libraries.

Since PeakDecoder generates the decoys from unannotated LC-
IM-MS DIA experimental spectra, the size of the target library does
not affect its performance. However, the performance of PeakDe-
coder depends on the training set and the validity of the estimated
FDR depends on the number of generated false positives. The size
and quality of the training set can be controlled in two ways: the
parameters of the UFD tool used to generate the preliminary training
set (Fig. 2a, Step-1) and the filtering for high-quality fragments used
to generate the final training set (Fig. 2a, Step-4). At the same time, a
tradeoff in the quality of peak-groups is necessary to avoid over-
fitting and perfect training accuracy, and thus, to estimate a reliable
FDR. These components allow the user to define the quality of the
resulting annotations and are evaluated using microbial data in the
next section.

Applying PeakDecoder in microbial samples
We processed the microbial LC-IM-MS data using PeakDecoder. The
datasets represented varied sample complexity and feature density:
low for A. pseudoterreus & A. niger, medium for P. putida, and high for
R. toruloides. Supplementary Fig. 3 shows the distributions of ions
illustrating the general properties of the targets and decoys generated
for training. Figure 3 shows results for the P. putida samples. The
PeakDecoder score which combines individual scores provided an
improved discrimination power between targets and decoys (Fig. 3a).
An example of chromatograms and filtered IM window for ‘fructose
1,6-diphosphate (F16DP)’ from the standard (precursorm/z 338.98877,
RT 4.95min, CCS 155.00 and 6 fragments) and a microbial sample is
shown in Fig. 3b, confidently identified with a PeakDecoder score of
0.9966 and 0.005 q-value. Supplementary Fig. 4 shows the PeakDe-
coder training performance for allmicrobial samples and a summary is
shown in Table 1. A total of 2683 features could be confidently anno-
tated. Annotations could be attributed to either all dimensions by RT-
CCS-DIA or to RT-CCS for features without detected fragments (i.e.,
MS1 level only). The number of features annotated in each dataset
includes replicates and is independent of the number of unique
metabolites identified. For instance, in the case of the A. pseudoterreus
& A. niger dataset, manymore features were annotated, indicating that
metabolites were detected in multiple replicates across all sample
conditions.

To control the size and quality of the final training set, we defined
the parameters of the UFD tool (Fig. 2a, Step-1) and the filtering for
high-quality fragments (Fig. 2a, Step-4) according to the characteristics
of our analytical method and instrumentation (e.g., fragments with RT
difference to their precursor <0.1min) and annotation quality pre-
ferred (e.g., at least 3 fragments). Because of the low sample com-
plexity of the A. pseudoterreus & A. niger dataset, a smaller number of
deconvoluted peak-groups were detected, therefore only 234 target
peaks could be generated for training and were not sufficient for a
good FDR estimation. Themedium sample complexity of the P. putida
dataset provided the best FDR estimation. Supplementary Fig. 5 shows
that the training performance was not significantly impacted by the
deconvolution parameters if the numbers of targets was sufficient
(accuracy >98.86 if the resulting training set contained between 2760
and 6720 targets), but at the same time, if the classifier resulted in a
close-to-perfect accuracy (>99), theminimumnon-zero FDR that could
be estimated was affected due to the small number of false positives.
Conversely, the high sample complexity in the R. toruloides dataset
resulted in poor performance when using the default filtering for high-
quality fragments generating 8674 targets/decoys for training, where
the minimum non-zero estimated FDR for the highest PeakDecoder
scorewas 3% (Supplementary Fig. 6a). Stringent valueswere applied to
filter the high-quality fragments generating 1400 targets/decoys
(Supplementary Fig. 6b) and aminimumnon-zero estimated FDR of 1%
could be obtained. The results indicate that more training data does
not translate into higher accuracy and further improvements for fil-
tering high-quality fragments (i.e., generating a smaller training set

Fig. 2 | Computational workflow for multidimensional metabolite profiling by
LC-IM-MS. a PeakDecoder algorithm. Step-1: data is processed in untargetedmode
(UFD, MS-DIAL) to extract all precursor ion features (MS1) and their respective
deconvoluted fragment ions (pseudo MS2) based on co-elution and co-mobility.
Step-2: a preliminary training set is generated by using the detected and decon-
voluted peak-groups as targets and producing their corresponding decoys. Step-3:
targeted data extraction is performed (TDX, Skyline) to extract the precursor and
fragment ion signals for the training set fromall the LC-IM-MS runs and export their
XIC metrics. Step-4: an SVM classifier is trained using multiple scores calculated
from the XIC metrics of the training set. Before training, filtering for high-quality
fragments is applied to keep high-quality peak-groups as targets (i.e., based on
various thresholds for metrics of precursor and at least 3 fragments; details in
“Methods”) and their corresponding decoys in the final training set. The model

learns todistinguish true and false co-elution and co-mobility, independently of the
features’metabolite identity. Step-5: TDX is performed to extract the signals of the
query set of metabolites in the library from all the LC-IM-MS runs and export their
XICmetrics. Step-6: the trainedmodel is used to determine the PeakDecoder score
of the query set of metabolites and estimate an FDR. b Example of decoy genera-
tion. The detected and deconvoluted peak-groups are associated by pairs and used
as targets. For each pair of targets, A and B (fragments represented in red and blue
colors, respectively), a pair of decoys is generated by keeping the same precursor
and its properties and swapping them/z values of 40–60% of the fragments (from
the 6 most intense in this example). XIC metrics for targets correlate well with
expected values but deviations and low spectral similarity occur for decoys
(examples indicated in orange).
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with peak-groups of appropriate quality) could be needed for datasets
with high sample complexity. Supplementary Fig. 6c depicts results
from a deuterated standard (tryptophan d5) spiked in solvents and in a
microbial sample matrix.

In all samples, PeakDecoder could identify the metabolites
expected in at least one condition of each microbial dataset (a list of
unique metabolites generated by manual inspection of the most
intense replicates). A handful of cases that were missed initially were
recovered after manual correction of the Skyline chromatogram peak
detection. Supplementary Tables 2–4 show the scores and annotation
confidence level (best replicate per metabolite). In addition, we per-
formed targeted analyses of a subset of metabolites by SRM in
P. putida samples and GC-MS analyses of A. pseudoterreus and A. niger
samples to further evaluate the performance of our method in biolo-
gical samples (Supplementary Fig. 7). Similar trends were observed for
the metabolites identified in common by the different platforms.

Comparing PeakDecoder to other workflows
UFD (MS-DIAL) and TDX (Skyline) are two different approaches with
different advantages and disadvantages. While the UFD does not rely
on a library and high-quality peak-groups from its deconvolution
results can be used for training, applying TDX offers advantages over
UFD for annotation in DIA, particularly for All-Ions data, where the full
mass range is co-fragmented, and the likelihoodof interferencegreatly
increases as sample complexity increases. In complex samples, multi-
ple precursors with very similar RT and DT are present as a series of
partial overlapping ions which compromise the effectiveness of UFD
algorithms. However, when performing TDX, only the relevant chro-
matograms are extracted in a directed and highly selective fashion.

PeakDecoder combines both UFD and TDX strategies and
addresses limitations in the respective existing tools. Specifically, the
re-extraction of signals by TDX in Skyline allows specifying a DT offset
for fragments characteristic for the IM instrumentation33

Fig. 3 | Analysis of microbial samples by LC-IM-MS using PeakDecoder.
aComparison of scores in training. Targets anddecoys are represented by blue and
red colors, respectively. Distributions of LC-IM-MS peak-groups by each individual
score (highlighted in orange) showed limited separation of targets and decoys.
Individual scores used as machine learning features were combined into the
composite PeakDecoder score providing an improved separation power and
resulted in a larger number of true positives for lower FDR thresholds than the
cosine similarity score, which is the best score individually. b Example of chro-
matograms and filtered ion mobility window. Signals for ‘fructose 1,6-diphosphate
(F16DP)’ from the standard (precursorm/z 338.98877, RT 4.95min, CCS 155.00 and
6 fragments) and corresponding peaks from a microbial sample (annotated by

PeakDecoder). Chromatograms show the same relative abundances in the standard
and the microbial sample confirming the correct metabolite annotation based on
fragmentation pattern and RT. The IM frame at the LC apex shows the filtering
window corresponding to the expected CCS and highlights the precursor with
multiple isotopic peaks. c Benchmarking of identification performance compared
to manual curation. True positives (TP) and false positives (FP) are represented by
blue and red colors, respectively. PeakDecoder at 1% estimated FDR increased TP
annotations (211) compared to MS-DIAL (TP = 70, total score > 60) and decreased
by 4 compared to Skyline (TP = 215, cosine similarity > 0.8), while decreasing FP
annotations (FP: PeakDecoder = 4, MS-DIAL = 13, Skyline = 15). Results from the P.
putida samples (n = 22). Source data are provided as a Source data file.
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(see “Methods”), which is not applied inMS-DIAL and results in a poor
deconvolution of fragments with the smaller masses. On the other
hand, the UFD in MS-DIAL allows accurate CCS evaluation using the
experimental CCS values, which is not available in Skyline because it
does not perform a peak detection in the IM dimension and is limited
to use the CCS information as a filtering window (e.g., Fig. 3b). Besides
combining the best features of these two tools, PeakDecoder uses the
peak shape metrics, combines the individual scores into a composite
score, and allows FDR estimation, all of which are impossible with MS-
DIAL or Skyline alone.

To benchmark PeakDecoder and evaluate the reliability of our
FDR estimation, we performed a comparison against the ground truth
generated from manually curating the full P. putida dataset, with 550
peak-groups including 233 positives and 317 negatives (Fig. 3c). Due to
the poor deconvolution of fragments with the smaller masses, MS-
DIAL resulted in the lowest number of true positives (TP = 70), even
when using a relaxed threshold for its total score (>60). While Peak-
Decoder at 1% estimated FDRmissed 4 TP compared to Skyline (cosine
similarity >0.8), it decreased the number of false positive annotations
(FP: PeakDecoder = 4, MS-DIAL = 13, Skyline = 15). The estimated 1%
FDR corresponded to a ~2% actual FDR, and while there is an under-
estimation and the results are limited by our small library, they show
that PeakDecoder could be used to filter out FP.

Our decoy strategy for DIA data together with IM and LC conveys
a powerful multidimensional characterization of metabolites that
address several important challenges. Formanymetabolites only a few
characteristic fragment ions can be detected, rendering the use of
classic spectral similarity searches unreliable18. Moreover, some
metabolites could not be detected with even a single fragment. In
these cases, the CCS increased the identification confidence compared
to using the RT and accurate mass alone. Since our library was built
from pure standards, even for standards without fragments, the
identification based on RT and CCS could be considered as a con-
fidence of “Level 1” according to the Metabolomics Standards
Initiative34, as they are two different analytical techniques. Besides,
multidimensional LC-IM-MS increases the separation, important for
metabolites that co-elute, where DIA alone is challenged by fragments
common to co-eluting metabolites. Figure 4 illustrates the power of
multidimensional separations to increase the selectivity and therefore
increase the annotation confidence and quantitation accuracy. The
number of possible LC-IM-MS peaks fromMS-DIAL untargeted feature
detection results matched within tolerances (0.01 mass, 0.2min RT,
and 0.8% CCS) was reduced when using all dimensions. High IM
resolving power is essential for small molecules and current IM
instruments are able to separate CCS differences as low as 0.8%.

Metabolomics of A. pseudoterreus and A. niger strains
PeakDecoder was applied for metabolomics profiling of A. pseudo-
terreus andA. niger strains engineered to produce 3-hydroxypropanoic
acid (3HP) using the β-alanine pathway35. Our three engineered A.
pseudoterreus strains24 with varying levels of 3HP production (low,
medium, and high) and their parent strain (ATCC 32359 Δcad: cis-
aconitic acid decarboxylase deletion) were analyzed. Since the engi-
neered A. pseudoterreus strains produced significant amount of other
organic acids24, we also developed and profiled A. niger strains engi-
neered with the same β-alanine pathway. Five engineered A. niger
strains exhibiting different levels of 3HP production (low, medium,
high, higher, and highest) and their parent strain (ATCC 11414) were
included.

Metabolomics profiling of 3HP-producing A. pseudoterreus and A.
niger strains revealed species-specific metabolic responses to
increasing 3HP production. Specifically, we found that L-aspartate, the
precursor to the β-alanine 3HP production pathway, showed very little
change in 3HP producing A. pseudoterreus strains, while its level
decreased significantly in 3HP producing A. niger strains (Fig. 5). In theTa
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β-alanine 3HP production pathway, L-aspartate is converted to 3HP via
β-alanine using multiple aminotransferases.

L-aspartate→ β-alanine + CO2

β-alanine + pyruvate→malonate semialdehyde + L-alanine
L-alanine +α-ketoglutarate→pyruvate + L-glutamate
oxaloacetate + L-glutamate→ L-aspartate +α-ketoglutarate
(net reaction) β-alanine + oxaloacetate→malonate semialdehyde
+ L-aspartate
malonate semialdehyde + NADPH+H+→ 3HP +NADP+

L-aspartate is first converted to β-alanine by aspartate-1-dec-
arboxylase, and the amino group from β-alanine is transferred to
pyruvate yielding malonate semialdehyde and L-alanine by β-alanine/
pyruvate aminotransferase. Malonate semialdehyde is converted to
the final product 3HP by 3-hydroxypropionate dehydrogenase, but
L-alanine needs be converted back to pyruvate by alanine transami-
nase by transferring the amino group to α-ketoglutarate generating
L-glutamate. The aminotransferase cycle can be closed by generating
the precursor L-aspartate by transferring the amino group from
L-glutamate to oxaloacetate. Therefore, the amino group acceptor and
donor pairs (pyruvate/L-alanine andα-ketoglutarate/L-glutamate) play
an important role in the β-alanine 3HP production pathway.

PeakDecoder allowedus to investigate the changes in these amino
group acceptor and donor pairs as well as undesired byproducts such
as 4-aminobutyric acid and 2,4-aminobutanoic acid. Similar to the
conversion of L-aspartate to 3HP via β-alanine, L-glutamate can be
converted to succinate via 4-aminobutyric acid (GABA). In the GABA
degradation pathway, GABA is first deaminated to succinate semi-
aldehyde by 4-aminobutyrate aminotransferase UGA1 using α-keto-
glutarate/L-glutamate pair, which was one of the most significantly
upregulated enzymes in the engineered A. pseudoterreus strains in our

previous study24. In this study, we observed significantly decreased
levels of succinate semialdehyde in A. niger strains producing high
levels of 3HP using the developed workflow, confirming that the
engineered 3HPpathway is affecting theGABAdegradationpathway in
A. niger aswell. We also previously hypothesized that the promiscuous
activity of upregulated UGA1 resulted in the accumulation of 2,4-dia-
minobutyric acid from L-aspartate via L-aspartate 4-semialdehyde inA.
pseudoterreus. Here, we found that the accumulation of 2,4-diamino-
butyric acid was not consistently observed in the engineered A. niger
strains in contrast to the observation in A. pseudoterreus. This is likely
due to the significantly decreased level of the precursor L-aspartate in
the engineeredA. niger strains. The level of L-aspartate 4-semialdehyde
is consistently lower in the engineeredA. pseudoterreus strains, but not
in the engineered A. niger strains.

Omics of engineered muconate-catabolizing P. putida strains
P. putida has biochemical properties that make it ideal for hosting
biochemical transformations36. Due to its naturally diverse and flexible
catabolism it can metabolize aliphatic, aromatic, and heterocyclic
compounds in addition to glucose37. To use P. putida for industrial
bioprocessing, genetic modifications must be incorporated into the
strains requiring the expression of heterologous genes and pathways.
Chaves et al. studied the importance of chromosomal integration
location, which affects heterologous protein expression independent
of typical design parameters such as copy number, promoter, and
terminator type37. Wild-type (WT) P. putida KT2440 cannot grow on
cis, cis-muconate as a sole carbon source, despite using this compound
as a key intermediate in aromatic catabolism. To enable muconate
catabolism, a transmembrane transporter for muconate (mucK) was
integrated into three different chromosomal sites (PP2224, PP1642,

Fig. 4 | Annotation selectivity by different analytical separations in microbial
samples. a A. pseudoterreus and A. niger (n = 46). b P. putida (n = 22). c R. toruloides
(n = 48). Bars represent the number of possible LC-IM-MS peaks from untargeted
feature detection results matched within tolerances. Colors represent the type of
match: red=Mass, yellow=Mass-RT, blue =Mass-CCS, and purple =Mass-RT-CCS.
In all three microbial datasets, using accurate mass alone resulted in the highest
number of features, notably for the metabolites with smaller masses. Combining

accurate mass to either RT or CCS reduced the number of matched features. By
combining accurate mass with both RT and CCS, the number of possible features
was reduced to one in most cases. These results illustrate the power of multi-
dimensional separations to increase the annotation confidence and quantitation
accuracy in metabolomics studies by resolving the high degree of structural
diversity derived from isomers and isobars. Source data are provided as a Source
data file.
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and PP5042). Samples with the transmembrane transporter were
grown in M9 minimal medium supplemented with 30mM muconate
and analyzed using a targeted proteomics approach to quantify the
amount ofmucK present. The previous results showed that the growth
rate with muconate inversely correlated with the expression levels of
the transporter.

To provide additional insights into the metabolic changes during
growth with a new carbon substrate, we used PeakDecoder to quantify
metabolites in P. putida WT grown on glucose and mucK (PP2224,
PP1642, and PP5042) grown on muconate. Compared to WT,
muconate-catabolizing P. putida mucK strains showed decreased
levels of metabolites in the ED-EMP cycle (glucose utilization) such as
fructose 6-phosphate, fructose 1,6-diphosphate, and glyceraldehyde
3-phosphate among others (Fig. 6). Targeted proteomics, performed
on the same cell pellets of mucK strains, showed a corresponding
decrease in enzymes that are part of ED-EMP pathway and in levels of
pyruvate dehydrogenase and pyruvate carboxylase, which catalyze the
conversion of pyruvate to acetyl-CoA and to oxaloacetate, respec-
tively. These lower levels match with the accumulation of pyruvate in
mucK strains cultured with muconate. Accumulation of pyruvate had
also beenobserved in P. putidagrown ina glucose:benzoatemixture vs
glucose alone38. In contrast, increased levels of metabolites (α-keto-
glutarate, fumarate, malate) and enzymes from the TCA cycle were
observed in the mucK strains. Levels of enzymes at the entrance point
of acetyl-CoA into TCA cycle and those routing succinyl-CoA and
succinate into TCA cycle were upregulated in mucK compared to WT.

Muconate ismetabolized via the β-ketoadipate pathway before joining
the central carbonmetabolism via acetyl-CoA and succinate. Although
no metabolites in the beta-ketoadipate pathway were detected,
enzymes in this pathway were significantly upregulated in the mucK
strains compared to WT which is expected considering muconate was
used as the carbon source. Changes in metabolite levels in peripheral
pathways were also clear. Gluconate and 2-ketogluconate were lower
or not detected in mucK compared to WT which is in line with the
absence of glucose supplementation in the strains with the transpor-
ter. These results suggest a shift inmetabolismsupportedon succinate
and acetyl-CoA fueling the TCA cycle from the β-ketoadipate pathway
and less reliance on ED-EMPpathwaywhenmuconate is used as carbon
source. Similar results were observed when P. putida was grown in
p-coumarate39. Supplementary Fig. 8 shows the targeted proteomics
quantitation results and changes in metabolic pathways for mucK
PP1642 and mucK PP2224 compared to the WT.

Mevalonate pathway in R. toruloides strains
R. toruloides is an important model microorganism for synthetic biol-
ogy and industrial biotechnology due to its capacity to bioconvert
lignin, the most underutilized component of plant biomass40. Meta-
bolic engineering of R. toruloides can generate distinct bioproducts
including bisabolene, the immediate precursor of bisabolane and an
alternative to D2 diesel fuel41. For example, the Agile BioFoundry
R. toruloides strain, GB2, can produce bisabolene in high quantities of
2.2 g/L from lignocellulosic hydrolysate in 2-L fermenters42. Another

Fig. 5 | Metabolomics profiling of 3HP-producing A. pseudoterreus and A. niger
strains. a Relative and label-free intracellular metabolites levels quantified by
PeakDecoder (n = 46). Red, yellow, and blue colors indicate high, medium, and low
log2 intensity values, and gray color indicates missing values. b CCS errors of the
good-quality features in 24 samples confirmed the detection of 3HP (green bar,
113.8 CCS) instead of lactic acid (orange bar, 113.0 CCS), which is an isomeric
molecule (same formula but with different 3D structure). cMetabolites in the 3HP

production pathway and their log2 fold changes over the control sample (parent
strain). Statistical analysis was performed using the IMD-ANOVA method. Stars
indicate statistically significant changes (*p-value <0.05, **p-value <0.01, and ***p-
value <0.001). Y-axis for pyruvic (A. pseudoterreus) and 2,4-diaminobutanoic acids
representmean log2 intensity due to nodetection in the control strain. Source data
are provided as a Source data file.
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key advantage of R. toruloides is that it can grow on mixed-carbon
sources and tolerate growth inhibitors often present in lignocellulosic
hydrolysates40. However, these hydrolysates present a significant
challenge in biochemical conversion due to feedstock variability43.

We employed PeakDecoder and global proteomics analyses to
characterize R. toruloidesGB2 cultured on lignocellulosic hydrolysates
derived from corn stover with variable levels of ash (A) and moisture
(M), each parameter cataloged as High (H) or Low (L) and the 4

possible combinations of them (HAHM, HALM, LAHM, and LALM).
Samples were collected at two time points of fermentation, during
exponential growth (36h) and at the end of this growth phase (60 h). A
total of 37 uniquemetaboliteswere confidentlydetected in at least one
sample and quantified across all samples (Supplementary Fig. 9).

Bisabolene is produced upon the introduction of bisabolene
synthase and its precursor, farnesyl pyrophosphate (FPP), is part of the
mevalonate pathway. Figure 7 details our mevalonate pathway

b

Fig. 6 | Metabolomics and proteomics profiling of P. putida wild type and
engineeredmuconate-catabolizing strains. a Relative and label-free intracellular
metabolites levels quantified by PeakDecoder (n = 22, with 11 samples and 2 colli-
sion energies per sample). Red, yellow, and blue colors indicate high, medium, and
low log2 intensity values, and gray color indicates missing values. b Glucose and

muconate catabolismpathways ofmucK PP5042and fold changes compared to the
wild-type strain. Circles indicatemetabolites and arrows indicate proteins detected
by SRM. Symbols indicate protein detection: * detected in the wild type but not
detected in themucK samples and # detected in themucK but not in the wild type.
Source data are provided as a Source data file.
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metabolomic and proteomic results. The levels of HMG-CoA were
significantly higher in cells cultured in high ash low moisture (HALM)
conditions at 60 h. The rate limiting step in the mevalonate pathway is
the conversion of HMG-CoA to mevalonic acid by 3-hydroxy-3-
methylglutaryl-coenzyme A reductase (HMGR)44. R. toruloides, like
mammalian systems, has only one HMGR gene45 and mammalian
HMGR and yeast Hmg2p (from Saccharomyces cerevisiae) are both
subject to feedback control by the sterol pathway46. Previous studies
identified FPP or FPP derivatives as the positive signal for HMGR
degradation in yeast44,46. Here we detected isopentenyl pyropho-
sphate/dimethylallyl pyrophosphate (IPP/DMAPP) and geranyl pyr-
ophosphate GPP. IPP and DMAPP are isomeric molecules which could
not be separated by the current drift tube IM resolution or our LC
method, and the sodiated adduct ion provided better quantification
on the samples.We observed that the absolute differences inmass and
CCS were larger for IPP/DMAPP and GPP ions compared to the rest of
the identified molecules (respectively, −0.0858 and −0.0449m/z, and
1.03 and 0.9 CCS). However, after adjusting these values we could
quantify these molecules across all samples and observed a consistent
trend. The levels of IPP/DMAPP, GPP (precursor to FPP), and

extracellular FPP-derived bisabolene (Fig. 7) which were higher in cells
grown on HALM hydrolysates at 60 hr compared to all other condi-
tions, could explain the decreased level of HMGR detected in the
proteomic analysis and the subsequent accumulation of HMG-CoA
(i.e., at 60 h for the comparison of HALM vs HAHM, log2FC of HMGR:
−1.16, log2FC of HMG-CoA: 4.67, respective p-values are 1.82 × 10−3 and
3.28 × 10−3; see Supplementary Table 5). Previously, it had been
observed that when sterol pathway flux is high, degradation of HMGR
is fast and its levels are low46 and this is what was revealed for GB 2
growth on HALM hydrolysate after 60 h by our advanced analytical
workflow.

Discussion
Using synthetic biology applications, we have described and demon-
strated an optimized analytical method, a chromatography method
prediction tool, and an alternative metabolomics algorithm for robust
processing of multidimensional data acquired in state-of-the-art LC-
IM-MS instrumentation. The advantages of using LC-IM-MS with DIA
and PeakDecoder enable high-throughput analyses with increased
metabolite coverage and more confident annotation due to several

Fig. 7 | Metabolite and enzyme levels in the mevalonate pathway of R. tor-
uloides strains. a Relative and label-free abundance levels are represented in blue
formetabolomics (n = 48, with 24 samples and 2 collision energies per sample) and
black for proteomics (n = 24 samples). Strains were grown in hydrolysates with

different contents of ash and moisture and collected at 36 and 60h. b Bisabolene
production (extracellular) captured in a dodecane overlay. Data are presented as
mean values with error bars from standard deviation of 3 biological replicates.
Source data are provided as a Source data file.
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aspects: (1) in terms of data acquisition, our 9min LC method is faster
than the GC methods typically used, (2) the IM dimension further
separates more analytes and increases annotation confidence by
combiningCCSandRTcompared to LCalone, (3)DIA further increases
annotation confidence with fragmentation information and provides
better reproducibility and dynamic range than DDA, and (4) Our
PeakDecoder score provides a confident metric for metabolite anno-
tation. These tools have the potential to enable faster and more
accurate testing of strains generated by high-throughput engineering
workflows and therefore accelerate the DBTL cycle. Engineered
microbes (e.g., bacteria, yeast, fungi) producing bioproducts (e.g.,
fuels, chemicals, materials) in a sustainable way are necessary to
achieve a strongbioeconomyanddecreasedependenceon fossil fuels.
Our analytical and computationalworkflowwill provide capabilities for
fast analysis of current and new metabolites of interest and is broadly
useful, beyond the ABF consortium, in a wide range of environmental
and biological metabolomics research.

Our multidimensional metabolite library built from 64 standards
is available as a resource to the community and we expect it to be
expanded, since the combination of RT and CCS with co-elution and
co-mobility profiles from DIA fragmentation patterns significantly
increases confidence in overall compound identification. Besides, DIA
spectra are a permanent and comprehensive digital record of all
detectable ions in the sample, which can be re-processed as new
libraries or new tools become available, and without the need of rea-
nalyzing the samples for acquiring new data. Consequently, new bio-
chemical hypothesis couldbe investigated using the existingmicrobial
data, and DIAwould allow evaluating/investigating side effects such as
undesired pathways activated or undesired products, which would be
missed with targeted-MS methods.

Although more developments could be explored, for example,
other decoy generation methods, training models specific to the
number of fragments, engineering of ML features, comparing other
MLmethods and evaluating otherMS/MS similaritymetrics such as the
spectral entropy6, our present results show better performance over
existing LC-IM-MS tools for confident metabolite annotation with
PeakDecoder using ML features based on summary statistics and an
SVM classifier. Limitations of the current algorithm include require-
ments for sufficient high-quality peak-groups for training (i.e., limited
performance for samples with very low complexity) and a library
acquired with compatible analytical conditions for inference.

Since the training strategy in PeakDecoder is to learn how to
distinguish good co-elution and co-mobility patterns from the raw
data directly and does not rely on fragmentation rules, its application
is not limited to a particular omics. We believe that PeakDecoder
represents a step towards universal software for molecular identifica-
tion and it will potentially enable error rate calculations for different
analyte types. Futureworkwill be performed to compare PeakDecoder
to DDA analyses and to evaluate it with predictedMS/MS, CCS, and RT
metabolomics libraries, as well as applications for proteomics and
lipidomics. While PeakDecoder was built on several MS-tools, we
envision a fully automated pipeline which is enhanced by replacing
with novel artificial intelligence (AI)-based methods the traditional
tools that heavily require intervention from human experts. Similarly
to other research fields, advanced AI MS-tools may achieve human-
level or super-humanAI systems47 and have the potential to exploit the
rich multidimensional LC-IM-MS data to derive new molecular
knowledge.

Methods
Automated chromatographic method selection software
The Automated chromatographic Method Selection Software (AMSS)
used PubChem IDs as input for information on molecules such as
SMILES and physical and chemical properties, and utilized the pre-
viously published BioCompound Machine Learning (BCML) tool48 to

calculate additional physico-chemical properties. PaDEL descriptor49

was used to computemolecular descriptors which are used as features
for further ML applications. As the training data provided for devel-
oping the ML application was limited, the feature selection method
Boruta50 was applied to avoid overfitting the predictive model. The
random forest method was applied in sci-kit-learn for ML predictive
model following the feature selection. Datasets from previous HPLC
analysis of different compounds from the IROA Compound Test Set
(SIGMA Chemical) were analyzed in ESI positive and negative modes
using four different chromatography methods (HILIC+, HILIC−, RP+,
RP−) and used as training: 467 compounds for pH 9.2 and 508 com-
pounds for pH 2.7. The training datasets had scores for performances
of all analysis methods for different compounds. Using the strategy
mentioned above, four different categorical predictive models were
built for each chromatographic analysismethod. The predictivemodel
is used to predict the best chromatograph analysis method for testing
compounds. Additionally, Local Interpretable Model-Agnostic Expla-
nations (LIME)51 was applied for model application explanation. LIME
scores were also used to draw shapes with color codes to highlight the
chemical structural/substructure of the compounds with prediction.
This software is used to run all four predictive models on the new test
case. The predictions for all the four different models are reported as
predictions. It should be noted that there can be multiple suitable
methods for HPLC analysis for a single compound.

Sample preparation
Standards. Sixty-four commercially available compounds from the
central carbon metabolism (common to all ABF hosts) or metabolites
that are part of pathways that had been engineered in the ABF mutant
strains were selected. Standards were prepared individually at a con-
centration of 25 µM using 3:2 acetonitrile: water as solvent. Once ana-
lyzed individually, standard mixes containing 10–15 metabolites at the
same final concentration and solvent composition were prepared and
acquired in the analytical platforms.

A. pseudoterreus and A. niger strains. The A. pseudoterreus codon
optimized β-alanine pathway was detailed in our previous
manuscript24. The β-alanine pathway was randomly integrated into A.
niger ATCC 11414. Three transgenic strains (3HP-10, 5, and 9) produ-
cing low,medium, and high levels of 3HP were selected for metabolite
profiling. In addition, two transgene overexpression constructs were
built. A. niger aspartate aminotransferase (aat, Genebank access:
EHA22111.1) cDNA was under the control of A. niger translation elon-
gation factor-1a (tef1) promoter and its first intron and the transcrip-
tional terminator of A. niger phosphoglycerate kinase (pgk1), while A.
niger pyruvate carboxylase (pyc, Genebank access: AJ009972.1) cDNA
was under the control of A. niger multiprotein-bridging factor-1 pro-
moter and the transcriptional terminator of pgk1. Both of transgene
expression constructs were separately introduced into strain 3HP-9 to
generate a series of new transgenic strains: 3HP-9 aat-1 to 12 or 3HP-9
pyc-1 to 12. Transgenic strains 3HP-9 aat−5 and 3HP-9 pyc-1 producing
higher and highest levels of 3HPwere selected formetabolite profiling.
The selected strains were grown in 50ml of the modified Riscaldati B
medium24 in 250ml PYREX Erlenmeyer flasks. The flasks were incu-
bated at 30 °C while shaking at 200 rpm. The supernatants and bio-
mass were collected at day 4. For each culture, 2ml of supernatant was
filtered through a 0.2 μm syringe filter and 1ml of biomass was col-
lected via vacuum filtration through 2 layers of EMD Millipore mira-
cloth and washed with 2ml of phosphate-buffer saline. The biomass
was transferred into 1.5ml microcentrifuge tubes and immediately
frozen in liquid nitrogen. Both supernatants and biomass pellets were
stored at −80 °C prior to extraction of metabolites.

P. putida strains. Detailed explanation about the integration site
selection, plasmid design, assembly, and transformation were
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presented previously37. Briefly, P. putida KT2440 was used as the wild-
type strain. An mKate fluorescent reporter construct was designed,
synthesized, and introduced into sevendifferent insertion locations on
the P. putida KT2440 chromosome by homologous recombination,
always in the same orientation. Growth and fluorescence of these
sevenmKate expression strainsweremeasured inM9minimalmedium
containing 30mM glucose and reported in the cited manuscript. To
further test the effect of the integration locus on function of a het-
erologous gene, a functional protein (muconate transporter) was
integrated into three of the seven sites and the resulting variation in
growth and protein expression was measured. The selection of the
integration sites chosen for additional characterization was based on
their display of different phenotypes with mKate, such as slow growth
and lowfluorescence (PP 2224), slowgrowth andhighfluorescence (PP
1642), or WT growth and medium fluorescence (PP 5042). Overnight
cultures of WT P. putida KT2440 and strains carrying a codon-
optimized copy ofmucK (the gene coding for themuconate importer)
were inoculated into 10mL LB medium to give a starting culture
density of 0.2 OD600 nm and were incubated at 30 °C with shaking
until the culture density reached 1.0 OD600 nm. Cell cultures were
centrifuged and washed twice in M9 salts before resuspending in the
same buffer. The washed cells were used to inoculate 50mL M9
medium containing 30mMglucose (forWTKT2440) or 30mM cis,cis-
muconate (for strains containing mucK insertions). The starting cul-
ture densitywas0.1OD600nmandgrowth continueduntil 0.7OD600
nm was reached. Cells were collected by centrifugation and were
washed one time with ice-cold PBS. Cell pellets were weighed (~50mg
of wet weight collected), flash frozen in liquid nitrogen, and stored at
−80 °C prior to shipment and extraction of metabolites and proteins.
Omics samples were prepared in triplicate.

R. toruloides strains. The R. toruloides strain used in this study, GB2,
was described in detail in our previous manuscript42. Its parent strain,
BIS3, was the highest bisabolene producer of a panel of PGAPDH-BIS
strains that were modified only by insertion of a heterologous α-
bisabolene synthase gene (BIS) from Abies grandies under control of
the native R. toruloides GAPDH (glyceraldehyde 3-phosphate dehy-
drogenase) promoter into WT R. toruloides and differed in copy
number only40,42. BIS3, was selected for addition of a second expres-
sion cassette consisting of BIS under control of the native R. toruloides
ANT (adenine nucleotide translocase) promoter, which resulted in
strainGB2.GB2 contains 6 copies of the PANT-BIS cassette in addition to
the original 10 copies of the PGAPDH-BIS cassette in BIS3. GB2 cells were
grown in vessels in an Ambr® 250 High Throughput system (Sartorius)
with a total volumeof 150ml each. The growthmedia consisted of four
DMR (deacetylation and mechanical refining method) hydrolysates
made from corn stover by the National Renewable Energy Laboratory
(Golden, Colorado) from a 2 × 2matrix of ash (high/low) andmoisture
(high/low). The DMR hydrolysates were referred to as HALM (high ash,
low moisture), HAHM (high ash, high moisture), LALM (low ash, low
moisture), and LAHM (low ash, high moisture). The media were only
supplemented with ammonium sulfate (5.00 g/L), potassium phos-
phatemonobasic (10.34 g/L) and potassium phosphate dibasic (4.18 g/
L), pH was controlled at 5.0 by addition of ammonium hydroxide.
Dissolved oxygen was set as 30%, air flow 75 standard liter per minute
(=0.5 volume of air sparged in aerobic cultures per unit volume of
growth medium per minute), agitation (cascade) of 500–2000 rpm
and growth temperature of 30 °C. A dodecane overlay (20% of total
volume) was added to capture the bisabolene produced. Three bior-
eactors were prepared for each condition (hydrolysate). For omics
measurements, 5 mL volume of culture were taken from each Ambr
fermentation vessel at time points 24 and 60h and centrifuged at
4000× g at 4 °C for 5min. The supernatant anddodecane overlaywere
decanted and transferred to another tube for bisabolene analysis,
done by GC-MS as described previously52. The cell pellet was

resuspended in 1.5ml of ice-cold PBS and transferred to a new tube.
Samples were centrifuged for 5min at 16,000 × g, the PBS removed,
and the cell pellet was flash-frozen with liquid nitrogen. Pellets were
stored at −80 °C until shipment and extraction of metabolites and
proteins.

All microbial samples (cell pellets) were extracted using the
MPLEx protocol as previously reported24,37,53. Briefly, a mixture of
chloroform, methanol, and water was added to the cell pellets,
extractiondone in an icebath and the polar andnon-polar phaseswere
combined and dried under vacuum. Dried extracts were resuspended
in 300 µl of 3:2 acetonitrile:water, transferred to an LC-MS vial, and
stored at −20 °C until analysis.

SRM and LC-IM-MS analyses
Ultrahigh performance liquid chromatography (UHPLC) methods
were implemented and optimized by analyzing standards. Chromato-
graphic separationwas performedwith an Agilent UHPLC 1290 Infinity
II system. The sample injection volume was 10 µL and the autosampler
temperature wasmaintained at 4 °C. The Agilent UHPLCwas equipped
with a Water XBridge BEH Amide XP Column, 2.5 µm (2.1mm i.d. X
50mm). A Waters XBridge BEH Amide XP VanGuard cartridge, 2.5 µm
(2.1mm i.d. X 5mm) was also installed to remove potential particulate
contamination from themobile phases.Mobile phases consisted of (A)
10mM ammonium acetate, 10 µM InfinityLab deactivator additive, pH
9.2 in 90% water and 10% acetonitrile, (B) 10mM ammonium acetate,
pH 9.2 in 90% acetonitrile. The column was kept at 50 °C throughout
the run. The gradient length was 8.70min (detailed as following,
0.0:0.350:90, 1.0:0.350:90, 1.1:1.0:85, 4.0:0.750:80, 5.0:0.750:40,
6.5:0.750:40, 6.8:0.750:20, 7.0:0.750:20, 7.5:0.750:90 in terms of
min:flow-rate-µL/min:%B) with an equilibration time of 3.0min. The
UHPLC system was coupled to an Agilent 6490 triple quadrupole
(QQQ) for initial method development. Scan and SRM analyses were
performed for precursor fragmentation and transition identification.
The instrument was operated in the negative polarity with the fol-
lowing parameters: ion spray voltage of 3000V, capillary inlet tem-
perature of 225 °C, gas flow 15ml/min, nebulizer pressure 20psi,
sheath gas temperature 250 °C, sheath gas flow 11ml/min. Data were
acquired in a mass range from 65 to 1400m/z. SRM analyses were also
performed for the calibration curves of example standards and the
evaluation in microbial samples. Data was processed in Skyline14

(v.64.21.1.0.146) for peak area integration. A total of 11 samples were
analyzed by SRM for the P. putida strains, with 3 biological replicates
for all, except mucK PP2224 that had 2).

The optimized UHPLC system was coupled to an Agilent 6560
Drift Tube Ion Mobility Spectrometry (DTIMS)-QTOF MS (Agilent
Technologies, Santa Clara, CA). The MassHunter data acquisition
software (v.B.09.00 (B9044.0), Agilent Technologies) was used to
collect all mass spectrometry raw data files. The instrument wasmass‐
calibrated before every batchmeasurement using the Agilent ESI Tune
solution. Standard mixes and microbial samples were analyzed in
negative mode using a Dual AJS ESI and high-purity nitrogen as drift
gas. Parameters were set to 325 degrees C gas temperature, 5 L/min
drying gas, 30 psi nebulizer, 275 degrees C sheath gas, 11 L/min sheath
gas flow, 2500V Vcap, 2000V nozzle voltage, and 400V fragmentor.
Data was acquired in All-Ions DIAmode alternating between low (MS1)
and high (MS2) collision energies at the frequency of 2 frames
per second. 60ms of maximum drift time was allowed with 19 tran-
sients per frame. Mass range 50–110m/z. Fixed CE values of 20 or 40V
wereused to cover both labile and compoundswithmasses >600Da.A
total of 81 microbial samples were analyzed by LC-IM-MS: 46 for the A.
pseudoterreus and A. niger strains (4 biological replicates for each
condition, except groups Control (Exp 1, A. pseudoterreus cad) and
F (Exp. 1. A. niger 3-HP high) that had 3 each; analyzed with 20V CE
only), 11 for the P. putida strains (3 biological replicates for all, except
mucK PP2224 that had 2; analyzed with 20 and 40V CEs), and 24 for
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the R. toruloides strains (4 biological replicates for each group; ana-
lyzed with 20 and 40V CEs).

Data processing for LC-IM-MS
CCS were calculated using the IM-MS Browser (v.10.0, Agilent Tech-
nologies) with the single-field method54 and the Agilent Tune-Mix
solution as calibrants. The PNNL-Preprocessor55 (v2020.07.24) was
used to apply moving average smoothing (points: 3 in LC and 3 in IM)
and filtering (minimum intensity threshold 20 counts). MS-DIAL11

(v.4.70) was used to perform untargeted feature finding and MS/MS
deconvolution (soft ionization, ion mobility separation, data inde-
pendent MS1, MS, and MS/MS profile data, negative ion mode, meta-
bolomics, centroid MS1 tolerance 0.01, centroid MS2 tolerance 0.025,
smoothing level 1, minimum peak width 3, minimum peak height 300,
peak spotting mass slice width 0.1, deconvolution sigma window 0.5,
MS2Dec amplitude cut off 0, alignment RT tolerance 0.1, alignment
MS1 tolerance, 0.015, alignment RT factor 0.5 and ion mobility accu-
mulated RT range 0.2). Skyline14 (v.64.21.1.0.146) was used to perform
targeted data extraction (acquisitionmethodDIA, isolation schemeAll
Ions, mass analyzer TOF, mass resolving power 10,000, ion mobility
resolving power 40, and small molecule fragment types “p,f”). Imple-
mentation of the PeakDecoder algorithm and evaluation of the results
were performed in R (v.4.1.0, A language and environment for statis-
tical computing, R Foundation for Statistical Computing, Vienna,
Austria, https://www.R-project.org), using packages e1071 (v.1.7-9) and
ggplot2 (v.3.3.3).

The following approximation was used to calculate the negative
mobility offset of the fragments from their precursors: ((FragmentMz -
PrecursorMz)/PrecursorMz)*0.7 - PrecursorMz*0.0001. Which overall
worked well for both 20 V and 40V collision energies and resulted in
valuesmostly between−0.1 and−0.3ms,with smallerm/z ions showing
larger offsets. This negative drift time shift is a function of the collision
energy used and the mass of the fragment ion and it can be explained
by the fact that under the accelerating electric field smaller ion frag-
ments move faster through the collision cell and the ion beam com-
pressor region during high‐energy steps than larger precursor ions33;
hence t0, i.e., the time ions spend traveling though the instrument,
outside the drift tube, is different.

A library with precursor m/z, RT, CCS, and fragment m/z values
was built from the standards. RT and transitions were obtained from
the SRM results. CCS and additional transitions were determined post-
acquisition from the LC-IM-MS data. The list of 64 metabolites with
accurate mass, RT, and CCS are in Supplementary Table 1. The list of
fragments in csv format and the full library in theNISTMSP text format
library for metabolite identifications are in Supplementary Data 1.

Metabolite scoring for LC-IM-MS: PeakDecoder algorithm

(1) Feature finding and fragment ion deconvolution: data is pro-
cessed in untargeted mode (MS-DIAL) to extract all precursor ion
features (MS1) and their respective deconvoluted fragment ions
(MS2) based on co-elution and co-mobility. The alignment (Peak
ID matrix, msp format) and all peak lists (txt, centroid) are
exported.

(2) Target and decoy generation: an R script was implemented to
generate a training set. The MS-DIAL alignment results including
features and their fragments is used as input. Features with S/
N > = 15 and at least 3 fragments with intensities within 1–130% of
their precursor intensity are kept as targets. The top 16 most
intense fragments are kept per target.
To generate the decoys, the set of targets are associated by pairs.
For each target, another target is found from the same repre-
sentative LC-IM-MS run, which the precursor m/z is within 50
units difference (to ensure that the paired features are from
molecules of similar size), has the largest RT difference (at least

3min to avoid pairing a repeated feature from a large tailing
peak) and has the same number of fragments. A pair of decoys is
generated for the paired targets by keeping the same precursor
properties and swapping the m/z values of 40–60% of the
fragments randomly chosen from the top-most-intense. Targets
for which decoys could not be generated are excluded. A
transition list in Skyline format is generated with this preliminary
set of targets and decoys.

(3) Targeteddata extraction: the transition list for the training set and
the querymetabolites in the library are processed separately. The
precursor and fragment ion signals are extracted (Skyline) from
all the LC-IM-MS runs. The two reports (training set and query
metabolites) are exported, which include the required XIC
metrics: area, height, mass error, FWHM (LC), RT, expected RT,
expected CCS.

(4) Machine learning training: an R script was implemented for
training. The Skyline report of the preliminary training set is used
as input. The targets are filtered according to multiple thresholds
to ensure a good quality training set. Fragments with unassigned
height (i.e.,NAor zero) andprecursorswith S/N < 20 are removed.
Each fragment is evaluated to count the number of low-quality
metrics: area < =0, height <1% their precursor height, mass error
>15 ppm, RT difference to their precursor larger than 0.1min, and
FWHM difference to their precursor larger than 2x the precursor
FWHM.Targets with at least 2 fragments with high-qualitymetrics
are kept. To simulate interferences some fragments with low-
quality metrics are kept. Fragments with the worst metrics and
rankedhigher than 2x the number of fragmentswith goodmetrics
are removed. For each LC-IM-MS run, only the paired decoys with
the same subset of fragments as their targets after filtering are
kept for maintaining the same distribution of targets and decoys
by number of fragments and m/z values. The target fragment
height is used as the expected intensity and assigned to the
corresponding decoys tominimize the impact of peak integration
differences between MS-DIAL and Skyline. The filtered targets
with at least 3 fragments in total and their corresponding decoys
are used as the final training set. The following descriptors are
calculated for the filtered training set and used as ML features:
• DIA-cosSim: cosine similarity between the integrated area and

the expected intensity of the fragments.
• DIA-RTdiffSd and DIA-RTdiffMean: standard deviation and

mean of the differences between the precursorRT andRTof its
fragments.

• DIA-FWHMdiffSd and DIA-FWHMdiffMean: standard deviation
andmean of the differences between the precursor FWHMand
FWHM of its fragments.

• DIA-MassErrorSd and DIA-MassErrorMean: standard deviation
and mean of the fragment mass errors.

An SVM binary classifier (e1071 R package) is trained using a
radial kernel, scaling (to zero mean and unit variance), 10-fold
cross validation, and probability calculation. The probability is
calculated by fitting a logistic distribution using maximum
likelihood to the decision values of all binary classifiers, and
computing the a-posteriori class probabilities for the multi-class
problem using quadratic optimization. The trained model is
saved. The target probabilities are calculated for the full training
set and a confusion matrix and FDR are calculated to evaluate
performance. The FDR is calculated as FP/(TP + FP)56. The target
probability is used as the PeakDecoder score. A tablewith pairsof
values (FDR, PeakDecoder score) is automatically generated after
training (file PeakDecoder-FDR-thresholds_[dataset].csv).

(5) Machine learning inference: an R script was implemented for
inference. The model previously trained and saved is loaded. The
Skyline report for the query metabolites and the library with the
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fragment ion abundances generated from the standards are used
as input. The descriptors are calculated as described above. The
precursor RT error (minutes) is calculated as the difference
between the run RT and the expected RT (from the standards).
The CCS error is calculated as the percentage difference between
the run CCS (obtained from the corresponding MS-DIAL peak
lists, since Skyline uses the CCS as a filter and does not report the
actual CCS from the IM peak apex in the run) and the expected
CCS (from the standards). A query metabolite is considered
identified if, in at least oneof the runs, passes all cutoff thresholds:
precursor mass error <18 ppm, precursor RT error <0.4min, CCS
error <0.8%, and PeakDecoder score >0.8 (or corresponding
to 1% FDR).

Pathway analyses
Metabolites with at least 1 replicate identified with high confidence
were selected and their Skyline-integrated precursor and fragment
ion abundances across all runs were used for quantitation. Statistical
analysis of the metabolite abundance data was performed in R using
the pmartR package57 (v0.9.0). For P. putida and R. toruloides data-
sets, the mean values of abundances acquired with 20 V and 40 V CE
were used for the analysis. The abundance values were log2 trans-
formed, and the test for differential abundance between control and
test samples was performed using the IMD-ANOVA method58. Clus-
tered heatmaps of log2 abundances were generated using the
R package pheatmap (v1.0.12) with Euclidean distance and complete
linkage method. Bar and error bar plots shown on the metabolic
pathway maps were generated using the python package matplotlib
(v3.5.1). The metabolic pathway maps for A. pseudoterreus/A. niger
and R. toruloides were drawn based on the genome-scale metabolic
models iJB132559 and Rt_IFO088060 using ChemDraw (v19.0). The
metabolomics and proteomics data visualization on the P. putida
metabolic pathway map was performed with the genome-scale
metabolic model iJN146261 using the python packages escher62

(v1.7.3) and cobrapy63 (v0.22.1).

GC-MS analyses
Dried extracts for metabolomics analysis were obtained after MPLEx
extraction as explained in the Sample Preparation section. The stored
metabolite extracts were completely dried under speed-vacuum to
remove moisture and chemically derivatized as previously reported64.
Briefly, the extracted metabolites were derivatized by methox-
yamination and trimethylsilyation (TMS), then the samples were ana-
lyzed by GC-MS. Samples were run in an Agilent GC 7890A using a HP-
5MS column (30m×0.25mm×0.25 μm; Agilent Technologies, Santa
Clara, CA) coupled with a single quadrupole MSD 5975C (Agilent
Technologies). One microliter of sample was injected into a splitless
port at constant temperature of 250 °C. The GC temperature gradient
started at 60 °C and hold for 1min after injection, followed by increase
to 325 °C at a rate of 10 °C/min and a 5-min hold at this temperature.
Fatty acid methyl ester standard mix (C8-28) (Sigma-Aldrich) was
analyzed in parallel as standard for retention time calibration. GC-MS
raw data files were processed using the Metabolite Detector (v2.5)65.
Retention indices (RI) of detected metabolites were calculated based
on the analysis of a FAMEsmixture, followedby their chromatographic
alignment across all analyses after deconvolution. Metabolites were
initially identified by matching experimental spectra to a PNNL aug-
mented version of Agilent GC-MS metabolomics Library, containing
spectra and validated retention indices for over 850metabolites. Then,
theunknownpeakswere additionallymatchedwith theNIST17/Wiley11
GC-MS library. All metabolite identifications and quantification ions
were validated and confirmed to reduce deconvolution errors during
automated data-processing and to eliminate false identifications. A
total of 46 samples of the A. pseudoterreus and A. niger strains were
analyzed by GC-MS, with 4 biological replicates for each condition,

except groups Control (Exp 1, A. pseudoterreus cad) and F (Exp. 1. A.
niger 3HP high) that had 3 each.

Targeted proteomics analyses of P. putida strains
Intracellular proteins from samples of P. putida strains, KT2440, with
heterologous gene insertionwere extracted anddigested aspreviously
described37. Peptides from previously established assays39 were used
for the targeted proteomics analysis of enzymes in various metabolic
pathways. Analysis of the targetedproteomics assaywasperformed via
LC-SRM. To facilitate protein quantification, crude heavy peptide
mixture stock solutionwas spiked in the0.20μg/μLpeptide samples at
a nominal concentration of 25 fmol/μL for each peptide. LC-SRM
analysis utilized a nanoACQUITY UPLC® system (Waters Corporation,
Milford, MA) coupled online to a TSQ Altis triple quadrupole mass
spectrometer (Thermo Fisher Scientific). The UPLC® system was
equipped with an ACQUITY UPLC BEH 1.7 μm C18 column (100 μm
i.d. × 10 cm) and the mobile phases were (A) 0.1% formic acid in water
and (B) 0.1% formic acid in acetonitrile. 2 μL of sample (i.e., 0.4 μg of
peptides) were loaded onto the column and separated using a 110-min
gradient profile as follows (min:flow-rate-μL/min:%B): 0:0.4:1, 6:0.6:1,
7:0.4:1, 9:0.4:6, 40:0.4:13, 70:0.4:22, 80:0.4:40, 85:0.4:95, 91:0.5:95,
92:0.5:95, 93:0.5:50, 94:0.5:95, 95:0.6:1, 98:0.4:1. The LC column was
operated at a temperature of 42 °C. The TSQ Altis triple quadrupole
mass spectrometer was operated with ion spray voltages of
2100 ± 100V and a capillary inlet temperature of 350 °C. Tube lens
voltages were obtained from automatic tuning and calibrationwithout
further optimization. Both Q1 and Q3 were set at unit resolution of 0.7
FWHMandQ2gaspressurewasoptimized at 1.5mTorr. The transitions
were scanned with a dwell time of 0.78ms. Targeted proteomics data
were imported into Skyline (v64.22.2.1.278)66 and the peak boundaries
were manually inspected to ensure correct peak assignment and peak
boundaries. Peak detection and integration were determined based on
two criteria: (1) the same LC retention time and (2) approximately the
same relative peak intensity ratios acrossmultiple transitions between
the light peptides and heavy peptide standards. The total peak area
ratios of endogenous light peptides and their corresponding heavy
isotope-labeled internal standards from Skyline were used for sub-
sequent protein abundance rollup and pathway analysis.

Global proteomics analyses of R. toruloides strains
Intracellular proteins from samples of bisabolene producing R. tor-
uloides strains, GB2.0, were extracted, digested with trypsin, and
analyzedby LC-MS/MS following a previously established protocol60. A
Q-Exactive PlusOrbitrapmass spectrometer (Thermo Fisher Scientific)
was used in this study with the parameters as following: full MS (AGC,
3 × 106; resolution, 70,000;m/z range, 300–1800; maximum ion time,
20ms);MS/MS (AGC, 1 × 105; resolution, 17,500;m/z range, 200–2000;
maximum ion time, 50ms;minimum signal threshold, 5 × 103; isolation
width, 1.5Da; dynamic exclusion time setting, 30 s; collision energy,
NCE 30; TopN, 12). The MS data were searched against the R. tor-
uloides strain IFO0880 (v4.0) and heterologous protein sequences
[https://mycocosm.jgi.doe.gov/Rhoto_IFO0880_4]45 usingMaxQuant67

(v1.6.2.10) and the following parameters: 1% peptide-level and protein-
level FDR, match-between-runs enabled, partial tryptic with trypsin/P,
maximummissed cleavage of 2, dynamic modification of oxidation on
methionine and N-terminal acetylation, fixed carbamidomethyl on
cysteine, mass tolerances of 20 ppm for both precursor and fragment
ions, minimum peptide length of 7, and aminimum number of unique
peptides for protein quantification as 1. Peptide intensity level data
fromMaxQuant were further processed by pmartR (v0.9.0) for quality
control, protein rollup, and statistical comparisons.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The microbial LC-IM-MS data (and related Skyline projects) generated
in this study have been deposited in the MassIVE database under
accession code MSV000089733. The P. putida targeted proteomics
data generated in this study have been deposited in the Panorama
database [https://doi.org/10.6069/6j7y-t592]. The R. toruloides global
proteomics data generated in this study have been deposited in the
MassIVE database under accession code MSV000091202. Source data
are provided with this paper.

Code availability
The source code of PeakDecoder68, the library built from standards,
and all the input files and results can be found at https://github.com/
EMSL-Computing/PeakDecoder. The source code of the automated
chromatographic method selection software can be found at https://
github.com/poorey/AMSS.
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