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Mechanical overtone frequency combs

Matthijs H. J. de Jong 1,2, Adarsh Ganesan3,4, Andrea Cupertino1,
Simon Gröblacher 2 & Richard A. Norte 1,2

Mechanical frequency combs are poised to bring the applications and utility of
optical frequency combs into the mechanical domain. So far, their main
challenge has been strict requirements on drive frequencies and power, which
complicate operation.Wedemonstrate a straightforwardmechanism to create
a frequency comb consisting of mechanical overtones (integer multiples) of a
single eigenfrequency, by monolithically integrating a suspended dielectric
membrane with a counter-propagating optical trap. The periodic optical field
modulates the dielectrophoretic force on the membrane at the overtones of a
membrane’s motion. These overtones share a fixed frequency and phase
relation, and constitute a mechanical frequency comb. The periodic optical
field also creates an optothermal parametric drive that requires no additional
power or external frequency reference. This combination of effects results in
an easy-to-use mechanical frequency comb platform that requires no precise
alignment, no additional feedback or control electronics, and only uses a
single, mW continuous wave laser beam. This highlights the overtone fre-
quency comb as the straightforward future for applications in sensing,
metrology and quantum acoustics.

Over the last quarter century, optical frequency combs have become
key tools for metrology, timing and spectroscopy1,2, and are indis-
pensable in many laboratories around the world. The fixed frequency
and phase relations between the many different tones of a comb have
revolutionized fields such as astronomy3 or cosmology4, and allowed
tests of fundamental physics with atomic clocks4,5. Recent develop-
ments in optomechanics have expanded methods to create optical
frequency combsby interactionswithmechanical resonators6–10. But in
the last few years, a new paradigm of frequency combs has appeared,
which are completely mechanical in nature: phononic frequency
combs11–13, also called acoustic or mechanical frequency combs. The
ideas behind this field began in nonlinear dynamics, where it was
realized that mixing in coupled oscillators may lead to a series of
sidebands14, which can be regarded as a frequency comb if there exists
a fixed phase relation12 between these sidebands. Experimental
demonstrations have shown mechanical frequency combs exist in
different mechanical systems10,15–23, and have explored connections to
well-known concepts in nonlinear dynamics such as bifurcations15,18,24,
3- or 4-wave mixing14,17,25,26, and symmetry-breaking27. The fixed

frequency and phase relation between the comb teeth allows the
application of techniques known from optical combs. These can, e.g.,
improveposition sensing accuracy inoptically opaquematerials28 such
as underwater or medical imaging. Mechanical frequency combs can
further be used to track and stabilize mechanical resonances29,30, and
enhance Brillouin microscopy31,32. Recent proposals from the field of
quantum acoustics33 foresee an important role for devices with mul-
tiple mechanical modes with equal frequency spacing. These may also
be useful in scaling up transduction between optical and microwave
frequencies34, and engineering the interference between subsequent
modes may aid in coupling phonons to multiple qubits35. Until now,
mechanical frequency combs have been hamstrung by the (generally)
nonlinear phononic dispersion relation, which demanded high drive
powers, carefully designed mode frequencies or engineered mechan-
ical nonlinearities to obtain an evenly spaced set of modes.

In a different regime of breakthrough physics, optical trapping
has allowed us to manipulate and control small particles ranging from
single atoms36,37 to micrometers38 in size. These particles are confined
by the potential created by a strongly focused laser, which has enabled
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the exploration of cutting-edge fields in both fundamental physics and
biology. Using optical traps (tweezers), biologists can precisely
manipulate anything from single strands of DNA39 to whole living
cells40. Optically trapped ultra-cold atoms and levitated nanoparticles
are perfect testbeds for fundamental physics involving gravity and
mesoscopic quantum mechanics41–43. Although optical trapping and
frequency combs are widespread techniques, there is little direct
overlap between these regimes of physics.

In this work, we uniquely interface optical traps with frequency
combs via a mechanism that enables mechanical frequency combs
without requiring feedback control, external drives and frequency
references, or precision optics. We observe that due to a weak coun-
terpropagating optical trap44,45, strongly driven silicon nitride (Si3N4)
membranes vibrate not only at theirmechanical eigenfrequencies, but
at perfect integer multiples of a single frequency, which can form a
mechanical frequency comb. The standing-wave optical field exerts a
dielectrophoretic force on the membrane, which is modulated by the
membrane’s motion as it crosses extrema of the optical field. If the
displacement is small, this interaction can suppress mechanical
dissipation46, but if the displacement becomesof the order of a quarter
wavelength, it creates integer multiple copies of the original mem-
brane motion ("overtones"47, see Supplementary section A). These
overtones share a fixed frequency and phase relation, and thus form a
frequency comb while avoiding all difficulties of engineering a linear
mechanical dispersion relation. Strikingly, the overtones are solely
dependent on the amplitude of motion and the optical field, and thus
independent of the drive mechanism. We utilize an optothermal
parametric drive based on the same single, unmodulated optical field
to bring the membrane to self-oscillation. This allows us to build a
mechanical comb without any additional pump tone or frequency

reference, which makes overtone combs uniquely simple to generate.
We will first describe the mechanism that creates the overtones and
study their behavior in the frequency domain. Then, in the time
domain,wewill show thefixedphase relation thatmakes theovertones
act as a frequency comb.

Results
Overtone and driving mechanism
In this section, we first describe the physical system and the mechan-
ism that creates the overtone frequency combs, and then introduce a
more quantitative model for their dynamics. The system consists of a
suspended t = 80 nm thick Si3N4 trampoline membrane48 (see Meth-
ods), shown schematically in Fig. 1a. It rests ~10μm above a backplane
formed by the silicon (Si) substrate, and a laser (λ = 633 nm, p≲ 3mW)
from a commercial PolytecMSA400 laser Doppler vibrometer (LDV) is
incident on themembrane. At this wavelength, the Si3N4 reflects≲30%
of the light, and Si reflects about 35%. Part of the light thus forms a
standing wave, Fig. 1a, periodic in the direction of the mechanical
motion.

The dielectric Si3N4 experiences a dielectrophoretic force pro-
portional to the gradient of the optical intensity, similar to a particle in
a counterpropagating-wave optical trap44,45. The trap also exerts a
radiation pressure force, but this is negligible in our system (ref. 6 and
Supplementary section C). If the dielectric moves (e.g., by driving a
mechanical eigenmode), it will experience a restoring force from its
own elastic potential (blue solid line in Fig. 1b), with an additional
component from the optical field (red solid line). For small motion
(∣x∣≪ λ/4, cyan line in Fig. 1b), the optical potential functions as an
additional spring46. However, if the motion of the membrane is of the
order of the optical potential period (λ/2), the modulated potential
generates the overtones.

This can be seen as follows: the restoring force of the mechanical
potential switches sign twice per oscillation (arrow pairs in Fig. 1b). If
the motion is large enough (gray, orange lines) for the resonator to
cross multiple extrema of the optical field, the optical component of
the restoring force switches direction 2n times per oscillation (n
integer number of optical extrema). If the original motion was at
mechanical eigenfrequency ω0, this effect generates motional com-
ponents atnω0, which are the overtones of the original eigenmode.We
will show in the section “Comb dynamics” that these overtones have a
fixed phase relation and thus form a mechanical frequency comb.
Because the overtones originate from the combination of the optical
and mechanical potential, they completely avoid the difficulties of
engineering the mechanical dispersion while still resulting in perfectly
evenly spaced tones. In contrast to other combs, the tones do not exist
around some carrier frequency.

We model the overtone frequency comb using a resonator
described by displacement x(t) (x =0 mechanical equilibrium), with
resonance frequency ω0 and decay rate γ, where we have divided by
the simulated effective mass meff≃ 12 × 10−12 kg. We write the dielec-
trophoretic force as a proportionality constant Fo (units of force) times
the gradient of the periodic part of the optical intensity,
∇E2 / sin 4π

λ ðx � xoffÞ
� �

. This way we canmove finite-size effects of the
membrane into Fo, which we numerically evaluate in Supplementary
section C. We obtain the equation of motion

€x + γ _x +ω2
0x =

Fo

meff
sin

4π
λ

ðx � xoffÞ
� �

, ð1Þ

which requires only a suitable initial condition ∣x∣t=0 ≳ λ/4 to demon-
strate the creation of overtones. This condition is much larger than
typical interferometric position measurements, which is why we use a
LDV that is capable of resolving such large displacements (see Meth-
ods). Equation (1) also shows that theovertones are independent of the
choice of drive (e.g., piezoelectric, electrostatic, thermal). By utilizing

Fig. 1 | Schematic of overtone frequency comb. a The suspended Si3N4 mem-
brane is subject to an out-of-plane laser, focused through a microscope objective.
Part of the light is reflected from the Si backplane and interferes with the incident
light, creating a counterpropagating-wave optical trap such that the field intensity
(green) is periodic. The membrane is clamped to the substrate, and motion is
predominantly out-of-plane (purple, red dashed lines). b The optical field intensity
causes a (spatially) periodic modulation of the elastic potential through the die-
lectrophoretic force (red, blue lines). For the small motion of a membrane at fre-
quency ω0 (cyan), the restoring force component from the optical field switches
sign twice per oscillation (arrow pairs), the same as the elastic potential. However,
for larger membrane motion (gray, orange), more optical extrema are crossed so
the optical field component switches signmultiple times per oscillation, efficiently
generating frequency components at nω0 (n = 2, 3, 4,…) which form an overtone
frequency comb.
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the spatially-periodic optical field through optothermal effects49, we
can create a parametric drive powerful enough to bring themembrane
to self-oscillation. That is, when the resonatormoves through the field,
the optical intensity it experiences ismodulated at twice the frequency
of the original motion. This modulates the resonator frequency
through absorption (thermal expansion), thus creating anoptothermal
parametric drive (see Supplementary section D). Our membranes are
patterned with a specific photonic crystal that enhances the absorp-
tion of 633-nm laser light. This allows a single, continuous-wave laser
beam of mWpower to bring the membrane into self-oscillation. While
we verify that the overtones can also be generated via inertial (piezo)
driving (see Supplementary section E), we leverage the optothermal
drive to avoid any external pump tone or frequency reference. This
property of overtone combs is unique within the mechanical
frequency combs, and allows for significantly simpler setups.

Overtone frequency comb
Wemeasure the overtone frequency comb for the fundamental mode
ω0 = 2π × 118.049 kHzof ourmembrane inFig. 2a. In the velocity power
spectrum, we see a series of 35 peaks spanning the full detection
bandwidth of the setup (4.2MHz), spaced by ω0. This spacing is per-
fectly uniform, limited by the spectral resolution of the setup to
4.7 × 10−8 relative spacing difference. A comparison of this comb to
other mechanical combs is included in the Supplementary section A.
Through the integration of the velocity signal, we verify the displace-
ment x≫ λ/4. By numerically integrating Eq. (1), we can reproduce this
overtone comb, shown in Fig. 2b, using only the optical potential
strength Fo, offset xoff and initial conditions [x0, v0] as fit parameters
(assuming steady state, so γ = Fd = 0). This highlights that the non-
linearity comes from the optical field, without introducingmechanical
nonlinearities previously used to explain this behavior47.

The overtones can be distinguished from the other mechanical
eigenmodes of the membrane. The mechanical eigenmodes can be
detected and identified (Fig. 2c). When the overtone comb is gener-
ated, additional peaks appear in the spectrum (dottedblack lines). This
demonstrates that the overtones are not affected by the mechanical

dispersion relation and do not require engineered nonlinear
resonances12,17. Furthermore, it is possible to generate combs from the
second and third mechanical eigenmodes, by selecting the right laser
position on the membrane, Fig. 2d, e. This makes the frequency spa-
cing variable, limited by our ability to drive a particular eigenmode.
Finally, for some laser positions the overtone combatω0 interactswith
a different mechanical eigenmode (ωh), which could allow an exten-
sion of the comb bandwidth (Supplementary section F).

We examine Eq. (1) to better understand the behavior of this
mechanism (details in Supplementary section A). Firstly, when the
displacement x increases, more overtones appear due to the increas-
ing number of optical extrema crossed. Each overtone will again be
modulated, so they have equal power up to a certain cutoff, which is
beneficial formany applications (~2200 kHz in Fig. 2a, b). Secondly, the
strength of the optical field (Fo) controls the power of each overtone
relative to the original mode ω0. Finally, the offset xoff between
mechanical and optical zeros determines the relative intensity of the
odd and even number overtones. The position offset xoff≃ 40nm is
consistent between different membranes in this work, and is half the
thickness of the Si3N4 membranes. We can repeatably create the
overtone comb in different membranes, and study the effect of the
optical beam itself on the membranes and overtone comb in Supple-
mentary section G.

Comb dynamics
The comb dynamics can be visualized by starting a measurement
with the laser spot positioned away from the membrane, as shown in
Fig. 3a. We move the laser to the membrane center at t = 8.7 s such
that the optothermal parametric driving starts increasing displace-
ment. We analyze the dynamics by cutting the recorded time signal
into intervals and performing a Fourier transform on each. Then we
concatenate the spectra such that we can study their behavior over
time (Fig. 3b) and monitor the power of individual overtones by
taking linecuts (Fig. 3c).

In Fig. 3b, the fundamental mode shows a 9Hz upwards shift in
frequency,which is reproduced as an n × 9Hzupwards shift for thenth
overtone (e.g., n = 5, 15 in the figure) and likely originates from slow
thermalization (Supplementary section D). This illustrates thermal
tuning would be an effectivemechanism to control and tune the comb
spacing, without compromising comb uniformity.

We plot the power of the overtones as the comb grows in
Fig. 3c. We can simulate and reproduce this growth quantitatively by
integrating Eq. (1). Comparison between the experimental data (mar-
kers) and simulation (solid lines) in Fig. 3c shows good agreement
with fit parameters [Fo = 3.8 pN, xoff = 40nm, x0 = 5 nm, v0 = 1 nm s−1,
γ/2π = 0.8Hz and Fd = 2.1 pN]. Most important for the overtones is Fo,
which is in excellent agreement with simulated force on the order of
pN (Supplementary section C). All extracted curves share a vertical
offset to account for the total detection efficiency. This shows Eq. (1)
reproduces the dynamics of the resonator and individual overtones.

In Fig. 3d, e, we observe the membrane motion from the thermal
state at t< 5 s to the steady state of the comb at t> 33 s. Initially, we
detect only the fundamental mode ω0, until the resonator starts cross-
ing multiple optical extrema. Higher overtones appear as the maximum
displacement grows. In contrast to Fig. 2a, the fundamental mode is the
most powerful. The detection efficiency likely varies for each overtone
due to its shape47. The displacement stops growing at t≃ 26 s, and
decreases slightly before the system reaches a steady state (see Sup-
plementary section H). It is likely limited in amplitude by a mechanical
non-linearity, but the amplitude overshoot and the oscillation of
amplitude of overtones suggest that the interaction with the optical
field plays a role. In the steady state, the fractional frequency stability of
the 30th overtone is 7.5 ⋅ 10−10 over a 6-h period (Supplementary sec-
tion H), limited by thermal drifts. The frequency of the overtones is
determined solely by themechanical frequency, and is thus not affected

Fig. 2 | Overtone frequency combs. a Measured spectrum of a mechanical fre-
quency comb of the fundamental mode (ω0 = 2π × 118.049 kHz) of a suspended
Si3N4membrane, consisting of 35 peaks spaced byω0. The overtones are spectrally
flat until ~2200kHz, after which their amplitude drops exponentially. Inset shows
the location of the laser spot to generate and read out the comb. The additional
peak around 2083 kHz is from a different mechanical mode, see Supplementary
section F. b Simulated overtone comb spectrum, by integrating Eq. (1), matching
the measurement of a. c Simultaneous measurement of fundamental-mode fre-
quency comb (first four teeth) and higher-order mechanical modes of the mem-
brane. Insets: laser spot position (left) andmode shapes.d, eMechanical frequency
combs of the second mode (257 kHz) and third modes (359 kHz). Difference in the
noise floor is due to different decoders useddue to overloading. The 257 kHzmode
has a near-degeneracy, so the comb spectrum is less clean. Insets show the laser
position to drive and read out the different modes.
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by drifts in the laser frequency. Changes in the laser powerwill affect the
overtone amplitudes, mainly via the optothermal parametric driving.
The uniformity of the comb is not affected by mechanical frequency
shifts (nor by the laser), thus uniformity is constant.

We isolate and plot the spectrum around several of the overtones
in Fig. 3f. In the thermal regime (greenmarkers), only the fundamental
mode is visible and we can fit a Lorentzian with linewidth
γ0 = 2π ×0.07Hz to the peak. For the comb in a steady state, the fun-
damental mode retains its linewidth γ0, and we can derive that the
comb mechanism does not cause additional noise, Supplementary
section I. All overtones possess the same linewidth γ0, which does not
match the nγ0 scaling expected from a frequency-fluctuation limited
linewidth, but matches a decay-rate limited system. These properties
combined should allow frequency combs with single-mHz linewidths
based on ultra-high-Q membrane resonators50.

To finally show that the overtones form a comb, i.e., that a fixed
phase and frequency relation exists, we show the time-domain signal in
Fig. 4a. Unlike combs centered around a carrier (such as soliton-based
mechanical17 and optomechanical8 frequency combs), there is no
component with periodicity longer than the mechanical period 2π/ω0

(Fig. 4b, c). This highlights the different physical and dynamical pro-
cesses behind the overtone comb. If the fundamental mode is the
dominant component in the comb, we get a sinusoid (Fig. 4b, c, blue
line).When other components are dominant, particularly 2ω0 and 3ω0,
we get the peaked curves (Fig. 4c, green andorange lines), which retain
the periodicity of the fundamental mode. The shape of these curves
proves that the entire overtone comb is phase-coherent, as they are
formed by a sum of cosines with the same phase offset (see Supple-
mentary section J). This behavior is retained not only in the steady
state, but also during comb growth, Fig. 4d. There we plot the time
signal at various stages during the measurement of Fig. 3d, e, which
shows a smooth transition from sinusoidal to peaked behavior as the
comb grows. Thus the overtones form a mechanical frequency comb.

Fig. 3 | Comb dynamics. a Measured displacement of membrane, showing clear
growth before reaching a plateau around t = 24 s. b Measured spectrum of mem-
branemotion close to fundamental mode and two of its overtones (5th and 15th). A
thermal shift of 9 Hz of the fundamentalmode is visible as a 5 × 9 and 15 × 9Hz shift
in the overtones (white dashed lines are horizontal to guide the eye). c: First six
overtones increase in power as themembrane displacement increases (markers) in
a, with simulated dynamics (solid lines) based on the integration of Eq. (1)matching
quantitatively to the highest four. d Membrane displacement of a different device

(different chip) than a, showing growth from close to the thermal regime to steady
state. e Overtone amplitudes extracted from the spectrum of measurement of
d, showing all 35 overtones within the detection bandwidth (black, dotted lines are
overtoneswith numbers between the labeled ones). f Spectrum showingmeasured
fundamental mode and some selected overtones in the comb regime (blue) and
thermal (green), along with Lorentzian fit with center frequencies nω0 (n integer)
and identical linewidths γ0.

Fig. 4 | Time-domain frequency comb. a Measured velocity of resonator in
frequency comb regime, displaying no pattern with a period longer than 1/
ω0. b Zoom-in of time-domain signal in a, showing the 118 kHz fundamental
mode dominates. c Three different measured time signals in steady state,
with varying relative strengths of the overtones (blue: ω0 dominates, orange:
2ω0 and 3ω0 dominate, green: 1ω0 to 6ω0 similar in strength). All traces can
be reproduced only with phase-coherent addition of the different overtones.
d Time-domain signal of comb during growth, the same measurement as
Fig. 3e at the indicated times. This shows the smooth transition from the
thermal regime (bottom) to the comb in a steady state (top), traces are offset
vertically for clarity.
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Discussion
We have discovered a mechanism that uniquely interfaces two break-
through concepts: optical trapping and frequency combs. This allows
for mechanical frequency combs whose simplicity stands out from
those based on previous mechanisms. This is realized by integrating a
suspended dielectric membrane in a weak optical trap. The dielec-
trophoretic force from the optical field modulates the mechanical
potential of the membrane. This modulation creates integer multiple
copies (overtones) of the membrane’s motion, which forms a fre-
quency comb. We show combs of up to 35 overtones in a 4.2MHz
bandwidth with control over the frequency spacing, excellent uni-
formity, stability and no added mechanical noise. The integration of
the membrane in the optical trap allows us to combine the overtone
comb with optothermal parametric driving, which brings the mem-
brane to self-oscillate. We thus realize a frequency comb that requires
no external drive or control frequencies and which uses a minimal
setup (laser, microscope objective and vacuum chamber). This makes
it more versatile and easier to use than other ways of generating these
combs. In summary, this mechanism unlocks the potential of
mechanical frequency combs for sensing, timing and metrology
applications at the microscale, and provides native integration with
phononic circuits.

Methods
Laser Doppler vibrometer
The setup used in this work is shown in Fig. 5a. It consists of a com-
mercial LDV, Polytec MSA400, which is depicted schematically. Light
from the LDV goes through a microscope objective, which focuses it
on the chip containing themembrane resonators. This chip is placed in
a vacuum chamber and pumped down until the pressure is <5 × 10−6

mbar, to reduce gas damping. There is a piezoelectric shakermounted
to the sample holder, bywhichwe can drive themembrane, though for
the majority of the measurements we use the thermal parametric
driving described in the Supplementary section D. The reflected light
from the membranes is Doppler-shifted due to their out-of-plane
motion, which is then detected by the LDV. To extend the time we can

continuously measure, we add a Rohde & Schwarz RTB2004 digital
oscilloscope to readout the LDVdecoder. Using thehistory functionof
this oscilloscope, we can chain 16 measurements of 20 million data
points each, which allows 38 s of time signal at 8.33MHz sampling rate.
However, this method for reading out the velocity comes at a cost of
the calibrated readout that the LDV postprocessing offers.

The LDV outputs a voltage signal proportional to velocity or dis-
placement, depending on the LDV decoder used. If using the LDV
postprocessing, it can easily be Fourier-transformed and exported. If
using the oscilloscope and history function, we sequentially read out
the measurements afterward and concatenate them in the correct
order in postprocessing.We can then further extract information from
this signal either by integrating (to obtain the displacement), or by
using Scipy’s short-time Fourier transform function to obtain the time-
varying behavior of the comb spectrum.

Trampoline membranes
The membrane structures used in this work are fabricated out of 100
nm thick stoichiometric low-pressure chemical vapor deposition Si3N4

on top of a 1-mm Si chip. This was done by writing the pattern using
electron beam lithography and an inductively coupled plasma (ICP)
etch to transfer that pattern to the Si3N4. The membranes are then
released using a second ICP etch, at −120 °C for 30 s, resulting in about
10μmof undercut and a final Si3N4 thickness of 80 nm. An SEM image
of a released trampoline is shown in Fig. 5b, with the nominal design
parameters added in white. The resulting trampolines have well-
characterized mechanical properties48,51, with fundamental mode fre-
quencies at 120 kHz and Q-factors typically of 1 million.

The membranes are pattered with a periodic array of holes
(Fig. 5c) that forms a photonic crystal, though it is not designed to have
a high reflectivity at the operating wavelength of our LDV (λ = 633 nm).
Instead, the holes function as etch release holes to evenly release the
membrane in the final ICP etch, which is essential for the fabrication
yield. For these membranes, the periodic array of holes functions as a
method to control the mass and resonance frequencies51, and pos-
sesses internal optical resonances that facilitate absorption which we
detail in Supplementary sectionD. Finally, the releaseetch imprints the
photonic crystal pattern on the Si backplane, which roughens the
surface. Fig. 5d shows the final Si surface roughness from the release
etch (top left half) and the imprint below the periodic hole pattern
(bottom right half).

Data availability
The data (raw data, analysis and calculation scripts, and finite element
simulations) that support the findings of this study are available at
https://doi.org/10.4121/19821016.v1.
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