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Mammalian-brain-inspired neuromorphic
motion-cognition nerve achieves cross-
modal perceptual enhancement

Chengpeng Jiang1,2,3, Jiaqi Liu1,2, Yao Ni 1,2, Shangda Qu1,2, Lu Liu1,2, Yue Li1,2,
Lu Yang1,2 & Wentao Xu 1,2

Perceptual enhancement of neural and behavioral response due to combina-
tions ofmultisensory stimuli are found inmany animal species across different
sensory modalities. By mimicking the multisensory integration of ocular-
vestibular cues for enhanced spatial perception in macaques, a bioinspired
motion-cognition nerve based on a flexiblemultisensory neuromorphic device
is demonstrated. A fast, scalable and solution-processed fabrication strategy is
developed to prepare a nanoparticle-doped two-dimensional (2D)-nanoflake
thin film, exhibiting superior electrostatic gating capability and charge-carrier
mobility. The multi-input neuromorphic device fabricated using this thin film
shows history-dependent plasticity, stable linear modulation, and spatio-
temporal integration capability. These characteristics ensure parallel, efficient
processing of bimodal motion signals encoded as spikes and assigned with
different perceptual weights. Motion-cognition function is realized by classi-
fying the motion types using mean firing rates of encoded spikes and post-
synaptic current of the device. Demonstrations of recognition of human
activity types and drone flight modes reveal that the motion-cognition per-
formance match the bio-plausible principles of perceptual enhancement by
multisensory integration. Our system can be potentially applied in sensory
robotics and smart wearables.

Multisensory integration is a process that combines inputs across dif-
ferent sensory modalities. It is essential in achieving high-level percep-
tion and cognition in many animal species1–3. Combinations of sensory
cues benefit the perceptual and cognitive capabilities to fulfill decision-
making, memory, and learning tasks, which are implemented in plastic
networks of neurons and synapses by parallel, efficient, and event-
driven sensory processing of spatiotemporal correlated neural spikes4,5.
Behavioral and psychological experiments on mammals indicate that
combiningmultiple cues across sensorymodalities effectively improves

perceptual performance, including neural and behavioral response6–8.
These observations suggest that perceptual enhancement due to mul-
tisensory integration may provide guidelines for implementing biolo-
gical principles in neuromorphic electronics9–14.

Recent attempts at the neuromorphic multisensory system have
focused on the fusion of sensory (mainly tactile, visual, and auditory)
and memory functions to realize associative learning, memory reten-
tion, and pattern recognition (mostly involving artificial neural net-
works) by using artificial synapses, artificial neurons, or artificial
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sensory nerves15–18. However, the fundamental principles of spatio-
temporal processing, perceptual enhancement, inverse effectiveness,
and perceptual weighting in multisensory integration have not been
sufficiently investigated and compared with biological rules. Neu-
roscience studies show that some mammals can optimally integrate
ocular and vestibular information to solve spatial cognition tasks6,19,20,
and achieve superior behavioral responses (e.g., accuracy and reaction
time) under bimodal sensory stimuli than under unimodal sensory
stimuli21. Nevertheless,motion or spatial perception that combines the
usage of cross-modal sensory inputs with cognitive functions has been
little investigated in neuromorphic hardware. It is expected that the
simultaneous realization of neuronal functions, cognitive intelligence,
andmultisensory enhancement in a neuromorphic motion perception
system would be a giant leap in its development towards applications
in advanced robotics22, wearable electronics23, and smart interface24,
wherein energy-efficient sensing and real-time recognition are highly
desirable.

Here, we report a bioinspired motion-cognition nerve that uses a
flexible multisensory neuromorphic device to emulate the integration
of different sensory cues. A facile and scalable fabrication method is
developed to prepare a semiconductor thin film of nanoparticle-
doped two-dimensional (2D)-nanoflakes. Benefited from the charge-
trapping effect of the 2D material and the solution-processing nature
of the fabrication protocol, a high-performance flexible neuromorphic
device is then developed, showing history-dependent plasticity, stable
linear modulation, and spatiotemporal integration capability. Bimodal
motion signals of acceleration and angular speed, encoded as spatio-
temporal spike trains and assigned with different perceptual weights
(weight of sensory cue), are sent to the dual-gate synaptic transistor,
which enables parallel and event-based processing of multisensory
information. Utilizing hardware outputs of the synaptic electronics,
this system is capable of fulfilling motion recognition tasks, including
human activity recognition and drone flight-mode recognition.
Moreover, multisensory integration of other types of sensory cues
(such as visual-vestibular integration and vibrotactile-vestibular inte-
gration) can alsobe realized inour system. The recognition accuracyof
our system is higher under bimodal sensory conditions (two types of
sensory inputs are integrated) than under unimodal sensory condi-
tions (each type of sensory input is segregated) and exhibits an inverse
effectiveness effect, and thereby its motion-cognition functions
replicate the biological principles of perceptual enhancement through
multisensory integration.

Results
Bioinspired neuromorphic motion-cognition nerve
Our bioinspired neuromorphic motion-cognition nerve is inspired by
the cross-modal integration of sensory cues for motion and spatial
perception. In macaques, self-motion in the environment invokes
inertial stimuli in the inner-ear vestibular, and visual stimuli in the
retina (Fig. 1a)6,25. The vestibular-inertia and visual-speed information
are converted to spike trains carrying different spatiotemporal pat-
terns and then processed in the networks of neurons and synapses
through the process of sensory perception and cognition26. The inte-
gration of information from twodifferent sensorymodalities results in
neural and behavioral response enhancement regarding motion and
spatial perception.

In our system, motion signals of acceleration and angular speed
are obtained by an accelerometer and a gyroscope, respectively, of an
inertialmeasurement unit (IMU) sensor (Fig. 1b), inmanners analogous
to the ocular-vestibular system. The bimodal motion signals corre-
sponding to two sensory modalities (acceleration and rotation) are
first converted to two spatiotemporal spike trains by a
microcontroller-based flexible spike-encoding circuit using the spike-
rate coding method (Fig. S1)19,27,28, and then these two spikes trains are
transmitted to the dual gates of a flexible synaptic transistor by

assigning perceptual weights to different sensory modalities. The
temporal correlation and temporal patterns of the two spike trains
affect the synaptic potentiation behaviors of the synaptic transistor,
and consequently affect the device output (postsynaptic current). In
this way, the device realizes a multisensory integration function.
Recognition of motion types is implemented by averaging the pre-
synaptic firing rates of the encoded spikes and reading the post-
synaptic current of the device in an event-based manner, and thus the
neuromorphic cognitive perception of motion information across
different sensory modalities is achieved.

Flexible multisensory synaptic transistor
The synaptic transistor (Fig. 2a) has a dual-gate structure composed of
two lateral gates, alginate ion gel, nanoparticle-doped 2D-nanoflake
channel (N-type), and interdigitated source and drain electrodes. The
two lateral gates were coupled to the channel through the alginate ion
gel29,30, and the final device (Fig. 2b) was fabricated by spin coating of
SnO2-nanoparticle/MoS2-nanoflake on a flexible substrate. The ion gel
is a soft hydrogel prepared from the natural material of sodium algi-
nate through ionic crosslinking. The frequency-dependent capaci-
tanceof the ion gel (Fig. S2) exhibits a large capacitanceof 1.03μF cm−2

even at 1 kHz, which is attributed to the formation of electrical double
layers (EDL) induced by mobile ions31,32. Formation of the EDL inter-
facial layer under applied voltage at high frequency is favorable for
electrostatic modulation. The solution-processed fabrication protocol
allows parallel and large-scale preparation of 100 device array on a
4-inch flexible substrate (Fig. S3).

The morphology of SnO2 nanoparticles (Fig. 2c) and MoS2
nanoflakes (Fig. 2d and Fig. S4) were studied using transmission
electron microscopy (TEM). The greenish color of the MoS2 disper-
sion (Fig. S5) and the visible-range absorption of its UV–visible
spectrum (Fig. 2e) indicate the presence of thin semiconducting
MoS2 (2Hphase)33,34. The photoluminescence spectrumof theMoS2
nanoflakes (Fig. S6) has a prominent peak at a photon energy of
1.9 eV, which is consistent with the band gap of layered MoS2. The
thickness of the MoS2 nanoflakes is measured to be 6 nm, corre-
sponding to nine layers (Fig. S7). To characterize the transistor
channel, themixtureofSnO2nanoparticlesandMoS2nanoflakeswas
spin-coated as a thin film on silicon. X-ray diffraction patterns
(Fig. 2f) signify the presence of SnO2 andMoS2. Optical microscopy
(Fig. 2g), Raman spectroscopymapping at 408 cm−1 (corresponding
to the A1g peak of MoS2; Fig. 2g inset), and atomic forcemicroscopy
(AFM; Fig. S8) reveal that aggregates (up to 600 nm) of MoS2 nano-
flakes are distributed evenly on the substrate surface. Scanning
electronmicroscopy (SEM; Fig. 2h) indicates that the nanoflakes are
formed as dispersed aggregates while the nanoparticles are closely
packed as a continuous film with nanometer textures (Fig. S9).

The transistor characteristics of the devicewere first investigated.
The transfer curve (Fig. 2i) shows large anticlockwise hysteresis (win-
dow of 4.5 V at 1μA), which is caused by time lags in the migration and
relaxation kinetics of mobile ions in the alginate gel35. The device has a
threshold voltage (Vth) of 2 V, which means that transistor–transistor
logic (TTL) voltage of 5 V is sufficient to turn on the device. This device
also shows a high on/off ratio (1130), low leakage current (Id/Ig = 19),
and decent carrier mobility (μ = 0.3 cm2 V−1 s−1), and these character-
istics (Fig. S10a) can compete with those of other electrolyte-gated
flexible transistors23,36. In contrast, the transfer curve of the control
device fabricated using pure SnO2 nanoparticles shows inferior
device characteristics (Fig. S10b), including reduced mobility
(μ = 0.06 cm2 V−1 s−1) and narrower hysteresis window (2.8 V at 1μA).
Such difference indicates that the MoS2 nanoflakes enhance carrier
trapping under ion/electron electrostatic coupling, and yield
improved characteristics, includingmobility and electrostatic gating37.
The influence of nanoflake size on the deviceperformance (Fig. S11 and
Table S1) is discussed in Supplementary Note 1.
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The synaptic characteristics of thedevicewere then studied.Drain
current, defined as the postsynaptic current (PSC), is modulated by
applying voltage spikes to one gate (Gate1). Positive spikes (7 V, 50ms)
have an excitatory effect, as demonstrated by the paired-pulse facil-
itation (PPF) effect (Fig. S12). Increasing the number or the frequency
of positive voltage spikes leads to an increase in postsynaptic current,
and thus spike-number dependent plasticity (SNDP; Fig. 2j) and spike-
rate dependent plasticity (SRDP; Fig. 2k) are confirmed. Note that the
control device fabricated using pure SnO2 nanoparticles shows dete-
riorated synaptic characteristics (Fig. S13). After stimulation by voltage
spikes is stopped, the decay process of the postsynaptic current can be
well-fitted to a memory loss curve (Fig. S14) with a typical time con-
stant of 0.4 s, which is within the range of human sensory memory
(0.2–3 s). Cycle-to-cycle variation (Fig. 2l) was evaluated by repeatedly
applying 30positive spikes and then 30negative spikes, and the device
exhibits multi-level conductance states (30), small cycle-to-cycle var-
iation (5.3%), large conductance change (Gmax/Gmin ~130), and linear
potentiation (evaluated in Fig. S15), which are desirable properties for
ideal synaptic devices38. The fabricated device shows small variations
of synaptic response after being applied with 100 cycles of spike trains
or stored in ambient conditions for 3 days (Fig. S16), indicating its high
operation reliability and stability for long-term outdoor usage.
Regarding the flexible characteristics, the synaptic properties of the
device (Fig. S17) demonstrate high bending stability (<5% variation),
thus enabling its potential applications in flexible electronics.

In neuroscience, the Bienenstock–Cooper–Munro (BCM) rule
suggests that modulation of synaptic weight (the strength of a
synapse) is frequency-dependent with tunable threshold, because it
is influenced by the history of neural activities39–41. Accordingly, we
implemented the BCM rule (Fig. 2m) in the device by applying four
sets of spike trains (ten successive positive spikes) at frequencies of
10, 5, 2, and 5 Hz, respectively. The second and fourth spike trains,
despite having the same frequency, cause different synaptic
responses (ΔPSC) due to the influence of the previous (first and third)
spike trains, so the synaptic plasticity of the device under such
operation mode is history-dependent. In contrast, an additional
application of negative spike trains (showing an inhibitory effect)
after each of the four positive spike trains rapidly reduces the post-
synaptic current to the resting level (Fig. 2n), and thus suppresses the
BCM effect. Hence, synaptic plasticity can be tuned by such reset
operation, and this is useful for adjusting the responsiveness of the
device in an event-basedmanner. This device also showspotentiation
behavior under stimulation by optical pulses, due to the UV-
responsive properties of the SnO2 nanoparticles (Fig. S18), and the
synaptic response of the device can bemodulated by the intensity or
the number of optical pulses (Fig. S19).

Overall, the usage of the 0D-nanoparticle/2D-nanoflake mixture
enables solution-processable, low-temperature, scalable fabrication of
flexible synaptic devices. Furthermore, the presented synaptic tran-
sistor is superior to other synaptic devices that use solution-
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Fig. 1 | Bioinspired neuromorphic motion-cognition nerve in comparison with
an ocular-vestibular cross-modal sensory nerve of macaques. a Inertia and
visual-speed signals acquired by the vestibular and retina are transmitted as spike
trains with spatiotemporal patterns among neurons and synapses, and finally
conveyed to head-direction cells and angular-head-velocity cells located in various
cortical and subcortical regions of the brain, achieving high-level functions of
motion and spatial cognition with multisensory enhancement. b Bioinspired

neuromorphic motion-cognition nerve built from an inertial measurement unit
(IMU) sensor, flexible spike-encoding circuit, and flexible multisensory synaptic
transistor. Acceleration and angular speed signals detected by the accelerometer
and gyroscope in the IMU sensor were encoded as two spatiotemporal spike trains,
then sent to the two gates of the synaptic transistor. Motion-cognition was
achieved in a continuous, neuromorphic, event-based manner using hardware
outputs.
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processable 2D materials in terms of device characteristics and
synaptic functions (Table S2).

We then evaluated the device output in response to spatio-
temporal spike trains. Our device emulates a multi-dendritic sensory
neuron (Fig. 3a) that is capable of spatiotemporal integration, because
its two lateral gates can receive sensory stimuli individually (Fig. 3b and
Fig. S20). Thegate close to thedrain evokes apostsynaptic current that
is approximately twice the current caused by the other gate close to

the source, and the former and the latter gates, defined as amajor gate
(Gate1) and minor gate (Gate2), respectively, will be assigned to dif-
ferent sensory modalities depending on the specific applications. This
is similar to the assignment of perceptual weights based on the relia-
bility of sensory cues, which is observed in macaques during self-
motion perception25. In our device, the perceptual weight can be
modulated by exploiting the properties of spike-dependent plasticity
or history-dependent plasticity (Fig. S21 and Table S3). Spatiotemporal

Fig. 2 | Characterization and performance of the synaptic transistor.
a Schematic illustration of the device structure. b Photograph of the devices fab-
ricated as an array on a flexible substrate. c TEM image of SnO2 nanoparticles.
d High-resolution TEM of MoS2 nanoflakes showing that the measured lattice
spacing can be indexed to (100) plane. Inset shows the TEM image of an individual
MoS2 nanoflake. e UV–visible absorption spectra of MoS2 nanoflakes showing four
absorption peaks, which are characteristics of transition metal dichalcogenides
that have trigonal prismatic structure (2H phase). f XRD patterns of SnO2-nano-
particle/MoS2-nanoflake film. g Optical microscopy of the film. Inset shows Raman
mapping acquired at aMoS2peakof408 cm−1 (scalebar: 10μm).hSEM imageof the

film. Inset shows a close-up SEM image (scale bar: 500nm). i Transfer curve of the
device. Id, Ig, and Vth represent drain current, gate leakage current, and threshold
voltage, respectively. j Spike-number dependent plasticity of the device. PSC
represents postsynaptic current. k spike-rate dependent plasticity of the device.
l Cycle-to-cycle variation of the device.m BCM rule implemented by applying
positive spike trains (7 V) with various frequencies to the device.ΔPSC represents a
change in postsynaptic current. n Inhibition of the BCM rule by applying a negative
spike train (−2.5 V) after each of the four positive spike trains to reset the device.
Measurements in i–n were performed by applying voltage spikes to a single-gate
(Gate1) of the device under a bias of 0.75 V.
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recognition was implemented by applying two pairwise spike trains
with distinct timing (temporal delay Δt) to the two gates, and conse-
quently, the postsynaptic current of the device (Fig. 3c) responded
differently for these cases.

In amammalianbrain, head-direction cells are intricately linked to
spatial memory and cognition, and they are classified into various
types, such as regular spiking and fast-spiking, depending on their
mean firing rates42. This time-averaging technique in neuroscience is
adopted here for analyzing the characteristics of spike trains (Fig. 3d).
An event that typically lasts several seconds dictates the duration of
the spike stimulus to either gate of the device (Gate1 and Gate2), and
the event duration ismeasured in units of spike duration, and then the
mean firing rates (f1, f2; relative values) are derived by averaging the
spike number over the event duration. Also, a synaptic response is
quantified by the change in postsynaptic current (ΔPSC) after the
occurrenceof an event. Themeanfiring rates (Fig. 3e) and the synaptic
response (Fig. 3f) were obtained for the five cases in Fig. 3c. The mean
firing rate (f1 and f2) is regarded as a presynaptic characteristic, and it
briefly represents the temporal delay between the two spike trains;
however, it cannot identify the spike train that arrives first. The
synaptic response (ΔPSC), regarded as a postsynaptic characteristic,
can discern both the temporal difference and sequential order of the
two spike trains, and thus it can accurately classify all the five spatio-
temporal patterns, even considering its deviations obtained from
multiple trials (error bars in Fig. 3f). Notably, simultaneous application
of two spike trains with no temporal delay results in significantly high
mean firing rates and synaptic response, revealing the facilitation

effect of temporal-congruent spike trains. Above all, our device can
parallelly process two input spikes with different spatiotemporal pat-
terns, indicating its potential use for multisensory integration and
spatiotemporal recognition. Besides, our dual-gate synaptic device
differs from the previously reported multi-gate synaptic devices
(which emulate hetero-synaptic and homeostatic plasticity under
multiple gating modes) in terms of neural functions, fabrication pro-
tocol, mechanical flexibility, and applications enabled43–45.

Motion-cognition of human activities
A bioinspired neuromorphic motion-cognition nerve (Fig. 4a) com-
posed of an IMU sensor, spike-encoding circuit, and synaptic transistor
was constructed. Both the spike-encoding circuit and the synaptic
transistor were fabricated on flexible substrates, which can be attached
to human skin (Fig. 4b). The IMU sensor and the spike-encoding circuit
were both interfacedwith a Bluetoothmodule to allowwireless transfer
of motion signals, and this design could be used in a distributed sensor
network. Details on multisensory integration are explained in the
Methods. As for the implementation of neuromorphic electronics, our
method using flexible synaptic transistors is beneficial over the con-
ventional method using complementary metal–oxide–semiconductor
(CMOS) devices in terms of circuit complexity, energy consumption,
and device flexibility (Table S4), considering the pulse-drive, parallel
operation of the former.

To prove the motion-cognition capabilities of our system, we
performed experiments on human activity recognition43. The IMU
sensor was attached to the chest of a human subject, who
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Fig. 3 | Spatiotemporal recognition capabilities of the synaptic transistor.
a Illustration of a biological neuron withmultiple dendrites. b Postsynaptic current
measured by applying a spike train (5 V, 50ms, 5 spikes) to the two gates respec-
tively (Gate1: main gate; Gate2: minor gate). Inset shows a close-up photograph of
the device. These two gates were assigned to different sensory modalities
(assignment of perceptual weights). c Postsynaptic current (PSC) of the device
when a series of pairwise spike trains with distinct timing (temporal delay Δt: −1.0,
−0.5, 0, 0.5, 1.0 s) were applied to the two gates (Gate1 and Gate2). d Definition of

event duration (N; unitless), spike number (N1, N2), mean firing rate (f1, f2; relative
value, unitless), and synaptic response (ΔPSC) under the stimuli of two spike trains
with temporal delay (Δt). Event duration was measured by spikes. e Mean firing
rates of the two spike trains corresponding to the five cases in (c). f Synaptic
response (ΔPSC) of the device corresponding to the five cases in (c). Spatio-
temporal patterns of the two spike trains were well classified in multiple trials
(n = 5), and the error bars in the figure represent the standard deviation (SD).
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consecutively performed different activities with a typical resting time
>2 s. For perceptual weighting, acceleration, and angular speed signals
along vertical (gravity) direction were assigned to themajor andminor
sensory modalities, respectively. When no motion signals were
detected after a waiting time (Twait) of 1.0 s, negative spikes were
applied to reset the device (Supplementary Note 2). The bimodal
motion signals acquired during an activity (e.g., running; Fig. 4c) were
effectively converted to spike trains encoded with instantaneous fre-
quency (Fig. 4d), and their temporal patterns, evaluated by correlation
coefficient (Table S5)46, were well-preserved. In total, six types of
human activities, including jumping, rope skipping, torso rotation,
running, race walking, and falling were performed. Typical bimodal

motion signals of the six activities are presented in Fig. S22a–f, and the
corresponding postsynaptic currents are shown in Fig. 4e–j. The
duration and amplitude of the postsynaptic current represent the
event duration and the stimulus intensity, respectively. Repeatedly
performing each of the six activities completed a training process
(Fig. S23), and the hardware outputs were recorded to derive the
decision boundaries for classifying activity types. When presynaptic
signals, including mean firing rates of acceleration and gyroscopic
spikes (facc and fgyro) were used for classification (Fig. 4k), someactivity
types overlapped (e.g., jumping and rope skipping) and cannot be
classified. In contrast, when presynaptic and postsynaptic signals (facc,
fgyro, and ΔPSC) were utilized and mapped to higher-dimensional
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Fig. 4 | Application in human activity recognition. a Hardware diagram of the
bioinspired neuromorphic motion-cognition nerve. Information flow during the
execution of themotion recognition task is illustrated.b Photograph of the flexible
synaptic electronics attached to human skin. c Acceleration (Acc) and gyroscopic
(Gyro) signals acquired during an activity of running. d Encoded spike trains (Acc
Spike, Gyro Spike) corresponding to the bimodal motion signals (Acc, Gyro) in (c).
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space (Fig. 4l), all the six activity types were distinct from each other
(decision boundaries: Table S6). Therefore, to ensure accurate classi-
fication, the three hardware outputs (facc, fgyro, andΔPSC) were used to
derive the decision boundaries. Following the training process, a
testing process (Figure S24) was implemented by performing different
activities, and the corresponding activity types were recognized by
comparison operations using a decision-tree method (Fig. S25). The
experimental results presented as a confusion matrix (Fig. 4m) shows
that the total recognition accuracy is as high as 0.94 (classification
results with and without using ΔPSC are compared in Fig. S26 and
Table S7). Such performance of our system can rival those of pre-
viously reported human-motion perception systems (Table S8), which
instead use processing units. The accuracy of motion recognition can
be further improved (Supplementary Note 3) by optimizing the deci-
sion boundaries (Fig. S27) or changing the sensor type (Figs. S28–S31).
In addition, the human motion recognition task has been performed
using multiple devices fabricated in the same batch, and the similar
synaptic response of different devices (Figs. S32, S33) as well as their
close valueof recognition accuracy (Table S9) suggest that themotion-
cognition method is robust.

We further performed experiments on the classification of flag
semaphore signals, which involve complicated motion sequences
(Fig. S34). Considering that flag-waving motion generates temporally
correlated signals of rotational inertia and angular speed (Fig. S35), the
profile of the postsynaptic current (Fig. S36) depicts the duration,
sequence, and intensity of suchmotion. Flag semaphorewas tested for
all 26 letters, and the corresponding hardware outputs (facc, fgyro, and
ΔPSC; typical values) visualized in 3D coordinates (Fig. S37) show that
the data points representing the 26 letters can be distinguished from
each other (decision boundaries: Table S10). In addition, our system
also successfully achieves the classification of hand gestures (Figs. S38,
S39 and Table S11), indicating its potential application in the smart
interface.

Motion-cognition for aerial robots
To demonstrate cognitive perception capabilities towards robotic
intelligence, our systemwas tested using a quadrotor drone (Fig. 5a).
For perceptual weighting, an acceleration signal along vertical
(gravity) direction was assigned to the major sensory modality.
Recognition of drone flight modes was implemented through train-
ing and testing processes (Fig. S40) using hardware outputs, similar
to before. A preliminary experiment was performed by executing a
spin-ascending operation, which involves constant rotation coupled
with sudden acceleration and deceleration. The detected motion
signals (Fig. S41a) and the encoded spike trains (Fig. S41b) both show
that acceleration and angular speed were correlated during this
operation. Further experiments were conducted by operating the
drone in different flightmodes, including wind stabilization, collision
stabilization, spinning, ascending, and spin-ascending. Motion sig-
nals (Fig. S42a–e) and postsynaptic current (Fig. 5b–f) acquired
under these five flight modes were recorded. Repeated execution of
each of the five flightmodes completed the training process (waiting
time Twait 1.5 s). Again, visualizations of the hardware outputs in 2D
(facc, fgyro; Fig. 5g) and 3D coordinates (facc, fgyro, and ΔPSC; Fig. 5h)
reveal that higher-dimensional classification makes it easier to dif-
ferentiate drone flight modes (decision boundaries: Table S12). The
confusion matrix (Fig. 5i) indicates that the total accuracy of this
recognition task reaches 0.95 (classification results with and without
using ΔPSC are compared in Fig. S26 and Table S7). The performance
of our synaptic-electronics-enabled system in the detection/recog-
nition of drone motion can rival those of the sensor-processor sys-
tems, which instead rely on complicated algorithms and
computational resources (Table S13). Moreover, the drone motion
classification task has been executed using multiple devices
(Figs. S32, S33), and the experimental results show that the

recognition accuracy is quite high with small variations among dif-
ferent devices (Table S9). Overall, the high accuracy and robustness
of the motion-cognition mechanism can be attributed to the low
device-to-device variation benefitted from the reliable fabrication
route, the effectiveness of the multisensory integration approach,
and the combined usage of presynaptic and postsynaptic signals for
classification.

Multisensory integration and perceptual enhancement
By integration of optical flow and vestibular acceleration cues, maca-
ques show improved behavioral response in motion and spatial per-
ception tasks under bimodal sensory stimuli (sensory inputs from two
modalities are integrated) compared to that under unimodal sensory
stimuli (each sensory input is segregated)6,25. Therefore, to quantify the
magnitude of cross-modal perceptual enhancement in our system, we
adopted a multisensory enhancement index (MEI), which is used in
multisensory perception in neuroscience:

MEI=
Rbimodal �maxðRmodal1,Rmodal2Þ

maxðRmodal1,Rmodal2Þ
ð1Þ

where Rbimodal signifies the recognition accuracy under the bimodal
sensory stimuli condition, and Rmodal1 and Rmodal2 represent the
recognition accuracy under unimodal sensory stimuli conditions47.
Additional control experiments were performed by applying unimodal
sensory stimuli (acceleration or angular speed) to the synaptic tran-
sistor, and executing motion recognition tasks under unimodal sen-
sory conditions (Figs. S43, S44). The results (Table S14) reveal that the
recognition accuracy is higher under bimodal sensory stimuli than
under unimodal sensory stimuli, and MEI enhancement due to cross-
modal integration reaches 15% for human activity recognition and 25%
for drone flight-mode recognition. Thus, cross-modal perceptual
enhancement regarding motion-cognition was confirmed in our
system.

Another essential principle of multisensory integration in neu-
roscience is inverse effectiveness, which describes that cross-modal
perceptual enhancement is large under weak stimuli and decreases as
stimulus intensity increases26. We further examined the bimodal per-
ceptual enhancement of our system in termsof different human activity
types (Fig. S43). The largest increase in recognition performance was
observed in the case of falling motion, corresponding to the weakest
stimulus due to its shortest event duration and lowest synaptic
response. A similar rule was also observed in the recognition of drone
flight modes (Fig. S44). Thus, an inverse relationship between multi-
sensory integration and unisensory responsiveness was identified4.

As an extension, multisensory integration of other sensory cues,
which were obtained from completely different sensors, was investi-
gated by using our system. Implementing the sensing modules using
an optical-flow sensor, vibrotactile sensor, and IMU sensor allows the
detection of multimodal signals corresponding to visual, tactile, and
vestibular cues (Fig. S28). Bimodal sensory integration of vestibular
and visual cues results in a recognition accuracy of 0.96 for human
activities (Fig. S29). Similarly, bimodal sensory integration of vestibu-
lar and vibrotactile cues leads to a recognition accuracy of 0.95 for
human activities (Fig. S30). Compared with unimodal sensory condi-
tions where each sensory cue is segregated (Fig. S31), bimodal sensory
integration of different cues improves recognition accuracy and
achieves perceptual enhancement (Tables S15, S16 and Supplementary
Note 4). By connecting to desired sensingmodules (vestibular, optical,
and vibrotactile), our system can be potentially utilized as a general
neuromorphic platform for the emulation of multisensory neural
processing in the brain, ranging from cue integration to causal
inference.
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Discussion
In summary, we demonstrate a flexiblemultisensory synaptic transistor
and further develop a bioinspired neuromorphic motion-cognition
nerve, which emulates multisensory integration of ocular-vestibular
cues in macaques. This system simultaneously achieves neuromorphic
intelligence, cognitive function, and perceptual enhancement toward
motion perception. A fast, scalable, and solution-processed approach is
developed for the fabrication of nanoparticle-doped 2D-nanoflake thin
film. Benefited from the charge-trapping effect of the 2D material, a
high-performance flexible neuromorphic device was then fabricated by
using this thin film as a semiconductor channel. This device exhibits
improved electrical properties of carrier mobility and electrostatic
gating, and superior synaptic characteristics of history-dependent
plasticity and spatiotemporal recognition capability, which enable
parallel, synaptic, event-based processing ofmultisensory inputs. Using
the presynaptic and postsynaptic signals as classification criteria,
recognition of human activity types and drone flight modes were suc-
cessfully demonstrated with total accuracy of 0.94 and 0.95,

respectively. Furthermore, bimodal sensory integration of visual, tac-
tile, and vestibular cues implemented by changing the sensing module
in our system all lead to the reliable and high-accuracy performance of
motion recognition. Essentially, this system is biologically plausible,
because it emulates cross-modal integration of sensory cues, and rea-
lizes cognitive functions using presynaptic and postsynaptic signals,
and its perceptual performance matches the biological principles of
perceptual enhancement by multisensory integration. Therefore, our
system provides a new paradigm for combining cognitive neuro-
morphic intelligence with multisensory perception towards applica-
tions in sensory robotics, smart wearables, and human-interactive
devices.

Methods
Materials
Few-layer MoS2 nanoflakes (2H phase, 1mgml−1) prepared by liquid-
phase exfoliation and dispersed in water were customized and pur-
chased fromXFNano. Ethanol was added into the dispersion (v/v 1:4) to
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reduce the surface tension. The nanoflake dispersion was sonicated for
30min in an ultrasonic bath, then centrifuged for 5min at 500× g, and
the decanted supernatant was sonicated again for 15min. The lateral
size of the MoS2 nanoflakes was measured to be 200–600nm. Colloi-
dal dispersion (15%) of SnO2 nanoparticles in water was purchased from
Alfa Aesar, and the average particle size was measured to be ~4 nm.
Sodium alginate, acetic acid, and glycerol were purchased from TCI.

Device fabrication
To fabricate the semiconducting film, a mixture (v/v 10:1) of MoS2
nanoflake dispersion and SnO2 nanoparticle dispersion was sonicated
for 15min, then spin-coated at 1000 rpm on a clean polyimide sub-
strate, which was then baked at 80 °C for 1min. The spin-coating
process was repeated twice to ensure full coverage of the sample
surface, then the sample was annealed at 110 °C for 30min in a
nitrogen-filled glove box. Source, drain, and dual planar gates were
subsequently deposited by thermal evaporation using a shadow mask
that defines an interdigitated channel with a length of 80 μm. Alginate
solution was obtained by adding sodium alginate powder (0.06 g) to
an acetic acid solution (2 wt%, 4ml), then stirring the mixture at 600
rpm at 70 °C for 10min. As the alginate dissolved, glycerol (0.2 g) was
added dropwise. After cooling to room temperature, the viscous
alginate solution was drop-cast on a clean glass slide, then allowed to
dry at 80 °C for 40min, and this process yielded an ion gel. The final
device was obtained by covering the regions of channels and gates
using the ion gel that was cut to the desired size. The device can
operate in single-gate or dual-gatemode, and its synaptic response can
be modulated by electrical or optical pulses.

Multisensory integration
A commercially available IMU module (BWT901, WitMotion) was used
as the sensor, and it includes an accelerometer (XYZ axis), a gyroscope
(XYZ axis), a magnetometer, and a Bluetooth module (for wireless
communication). Bimodal motion signals of acceleration and angular
speed were simultaneously acquired from the sensor at a sampling rate
of 100Hz, and the signals were further transmitted to a spike-encoding
circuit throughBluetooth. The spike-encoding circuitwas implemented
in a custom-built flexible printed circuit board (FPCB) integrated with a
low-power microcontroller (ATmega328P, Microchip), which was pro-
grammed to convert the bimodal motion signals into two spike trains
(5 V) with spatiotemporal patterns (pseudocode for spike conversion is
shown in Supplementary Note 5). Acceleration and angular speed sig-
nals at one axis were encoded, and spike-rate coding with thresholding
was adopted to set the instantaneous frequency (25 or 50Hz) of the
spike trains. This coding strategy ensures that the temporal patterns of
the input signals are well preserved after spike conversion. Subse-
quently, the two spike trains corresponding to two sensory modalities
(i.e., inertia and speed) were sent to the two gates of the synaptic
transistor. Finally, the synaptic transistor generated a postsynaptic
current under the concurrent stimuli of two spike trains. This process
achieves the parallel and efficient integration of two sensory cues in our
neuromorphic motion-cognition system, which emulates the multi-
sensory integration process in the mammalian brain. Moreover, dif-
ferent sensory cues can be obtained by replacing the sensor in our
system. For example, building the sensing module using optical-flow,
vibrotactile, and accelerometer sensors achieves the acquisition of
ocular, tactile, and vestibular sensory cues, respectively. Bimodal sen-
sory integration of two different sensory cues (including integration of
visual-vestibular cues and integration of vibrotactile-vestibular cues)
have been realized using our system (Supplementary Note 4).

Motion-cognition setup
Recognition of human activities, including body movement, flag
semaphore signaling, and hand gestures, were performed by adhering
the IMU sensor to the skin (chest, forearm, hand) of an adult subject.

Recognition of drone flight modes was conducted by mounting the
IMU sensor on a slightlymodified quadcopter drone (Tello, Ryze Tech;
weight 84 g). The bimodal motion signals acquired by the IMU sensor
were wirelessly sent to the spike-encoding circuit through Bluetooth,
encoded as two voltage spike trains, and processed by the synaptic
transistor. The device was reset by negative spikes when no motion
signals were detected after a waiting time (Twait). The reset operation
of the devicewas achieved by using a capacitor-diode circuit (Fig. S45),
which generates negative voltage spikes (Supplementary Note 2),
while the signal-detection function was directly implemented in the
microcontroller, which can be further replaced by a simple circuit. In
this way, the device could operate in a continuous, event-based man-
ner. To fulfill the recognition tasks, a training process was executed to
obtain decision boundaries for classification. Three hardware outputs,
including mean firing rates of the acceleration and gyroscopic spikes
(facc and fgyro) and the synaptic response of the device (change in
postsynaptic current ΔPSC), were recorded in terms of the corre-
sponding motion type. The mean firing rate (relative value) was
defined as the ratio of spike number to event duration, and event
duration (unitless) was counted in units of the shortest spike duration.
The decision boundary was simply set as the midpoint of two neigh-
boring levels (explained in Supporting Information). Afterward, a
testing process was performed to predict the motion type using the
decision-tree method. The decision-tree method (explained in Sup-
porting Information), which compares thehardware outputs (facc, fgyro,
and ΔPSC) with their decision boundaries, was implemented in the
microcontroller for the recognition of motion signals. The signal flow
of our system is schematically illustrated in Fig. S46, and details on
data recording, data processing, and parameter detection are
explained in Supplementary Note 6.

Characterization and measurement
Characterizations of the nanomaterials were carried out using a
scanning electron microscope (Apreo-S, Thermo Fisher), a transmis-
sion electronmicroscope (Talos F200X G2, Thermo Fisher), an atomic
force microscope (Dimension Icon, Bruker), an X-ray diffractometer
(Ultima IV, Rigaku), ultraviolet-visible spectroscopy (Cary 5000, Agi-
lent), a fluorescence spectrometer (FS5, Edinburgh Instruments), and a
confocal Raman imaging system (XperRAM 200, NanoBase) having
optical microscopic imaging and Raman mapping functions. The
properties of the ion gel were analyzed using a semiconductor device
analyzer (B1500A, Agilent). Electrical characteristics of the synaptic
transistor were measured using a probe station equipped with a
semiconductor analyzer (4200-SCS, Keithley). The optical response of
the synaptic transistor (without ion gel) was measured under optical
spikes generated from a Xenon light source (Gloria, Zolix) at 250nm
wavelength.

Signed informed consent have been obtained from the human
subjects to use the images and conduct the experiments described in
this work. This study (protocol no. NKUIRB2023003) was approved by
the Institutional Review Board at Nankai University.

Data availability
The data generated in this study are provided in the Supplementary
Information and Source Data file, or from the corresponding author
upon reasonable request. Source data are provided with this paper.

Code availability
The code for the spike conversion function and decision-tree method
are available from the corresponding author with detailed explana-
tions upon reasonable request.
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