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Well-TEMP-seq as amicrowell-based strategy
for massively parallel profiling of single-
cell temporal RNA dynamics

Shichao Lin1,4, Kun Yin1,4, Yingkun Zhang 1,2,4, Fanghe Lin1,4, Xiaoyong Chen1,3,
Xi Zeng1, Xiaoxu Guo1, Huimin Zhang 1, Jia Song 2 & Chaoyong Yang 1,2

Single-cell RNA sequencing (scRNA-seq) reveals the transcriptional hetero-
geneity of cells, but the static snapshots fail to reveal the time-resolved
dynamics of transcription. Herein, we develop Well-TEMP-seq, a high-
throughput, cost-effective, accurate, and efficient method for massively par-
allel profiling the temporal dynamics of single-cell gene expression. Well-
TEMP-seq combines metabolic RNA labeling with scRNA-seq method Well-
paired-seq to distinguish newly transcribed RNAs marked by T-to-C substitu-
tions from pre-existing RNAs in each of thousands of single cells. The Well-
paired-seq chip ensures a high single cell/barcoded bead pairing rate (~80%)
and the improved alkylation chemistry on beads greatly alleviates chemical
conversion-induced cell loss (~67.5% recovery). We further apply Well-TEMP-
seq to profile the transcriptional dynamics of colorectal cancer cells exposed
to 5-AZA-CdR, a DNA-demethylating drug.Well-TEMP-seq unbiasedly captures
the RNA dynamics and outperforms the splicing-based RNA velocity method.
We anticipate that Well-TEMP-seq will be broadly applicable to unveil the
dynamics of single-cell gene expression in diverse biological processes.

Gene expression of cells is a heterogeneous anddynamicprogram that
changes over time in various biological processes such as cellular
differentiation, embryonic development, disease progression, and
responses to external stimuli1–6. ScRNA-seq has been widely applied to
reveal the heterogeneity of cells and discover novel cell types7,8.
However, most scRNA-seqmethods capture static snapshots of single-
cell gene expression and fail to temporally resolve the RNA dynamics8.
Pseudotime-based methods analyze scRNA-seq data of cells with dif-
ferent states, order cells by their transcriptome similarity, and infer a
continuous trajectory to reveal the biological progression9,10. Never-
theless, pseudotime ordering does not provide the true and precise
dynamics of gene expression for resolving the directionality of

complex biological processes11. The recently proposed concept of
“RNA velocity” tries to describe the states of cells based on the time
derivatives of unspliced and spliced RNA abundance and predict the
future states by extrapolation12,13. But it is challenging to predict the
continuous evolution fromhistorical states to future stateswithout the
knowledge of nascent RNA and pre-existing RNA abundance.

Metabolic RNA labeling is broadly used to label newly transcribed
RNAs with exogenous nucleoside analogs and distinguish new RNAs
from pre-existing RNAs, yielding critical insights into the RNA
dynamics14,15. Recent advancement in scRNA-seq technology has
demonstrated the feasibility of combining metabolic RNA labeling
with scRNA-seq to profile both new and old transcriptomes at the
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single-cell level16–20. For example, NASC-seq, scSLAM-seq, and scEU-seq
integrate plate-based scRNA-seq with metabolic RNA labeling (4-
thiouridine, 4sU or 5-ethynyl uridine, 5-EU) to identify new RNAs in
each of single cells16–18. However, these methods are low-throughput,
costly, time-consuming, and labor-intensive. Recently developed
methods such as sci-fate and scNT-seq adopt combinational indexing
or droplet-basedmicrobeadbarcoding to enhance the throughput and
reduce the cost. Nevertheless, combinational indexing in sci-fate
requires in situ 4sU chemical conversion in fixed cells and multiple
centrifugation steps, leading to a high cell loss rate (>95%) and
potential RNA degradation. Even though scNT-seq uses barcoded
beads to capture RNAs of single cells and avoid in situ chemical
conversion-induced cell loss, cell-free RNAs in the droplets cannot be
washed away and the Poisson distribution-dependent droplet bar-
coding results in a low single cell/barcoded bead pairing efficiency
(<1%)19,20. To date, it remains urgent but challenging to develop a high-
throughput, low-cost, and accurate method with high barcoding effi-
ciency and low cell loss rate for capturing the temporal dynamics of
transcription in single cells.

To tackle these constraints, we develop Well-TEMP-seq, a high-
throughput and cost-effective method that combines metabolic RNA
labeling by 4sU with our size-exclusion and quasi-static microwell-
basedWell-paired-seq21 to quantify newandold transcriptomes ineach
of thousands of single cells without complicated equipment. Well-
TEMP-seq enables highly efficient Poisson distribution-independent
single cell/bead pairing, cell-free RNA removal, and unique molecular
identifiers (UMIs)-based counting to accurately profile newly synthe-
sized RNAs and pre-existing RNAs. We demonstrate that Well-TEMP-
seq characterizes the gene expression dynamics of colorectal cancer
cells treated with a low dose of anti-tumor drug (5-AZA-CdR), where 5-
AZA-CdR-induced global DNA demethylation results in the re-
activation of tumor suppressor genes and the repression of onco-
genes. Well-TEMP-seq also reveals the 5-AZA-CdR-induced early-stage
activation (e.g., in the first three days) of interferon-responsive

transcription factor by viral mimicry. We anticipate that Well-TEMP-
seq will be broadly applicable to other biological systems to
characterize the temporal dynamics of gene expression at the single-
cell level.

Results
Working principle of Well-TEMP-seq
Well-TEMP-seq is built on our recently developed size-exclusion and
locally quasi-static hydrodynamic microwell-based single-cell RNA
sequencing platform (Well-paired-seq) with high throughput, low
cost, and high efficiency. The Well-TEMP-seq method relies on the
following key steps (Fig. 1): (1) Cells are incubated with 4sU, the
biocompatible thymidine analog, to label newly transcribedRNAs. (2)
Cells and barcoded microbeads with oligo(dT) primers are succes-
sively loaded into the microwells to achieve single-cell/bead pairing.
Cell-free RNAs can be removed by washing before loading microbe-
ads. (3) Cells are lysed by sakosyl released fromsurfactant aggregates
in the covering oil layer and RNAs with poly(A) tails are captured by
the microbeads with oligo(dT) primers. (4) Microbeads are pooled
and subjected to a one-pot chemical reaction with iodoacetamide
(IAA) to recode base’s hydrogen-bonding pattern and transform 4sU
to a cytosine analog by nucleophilic substitution, which results in T-
to-C substitutions at 4sU labeled sites in the following reverse tran-
scription. (5) RNAson themicrobeads are reverse transcribed and the
resulting cDNAs are amplified by PCR and tagmented by Tn5 trans-
posase for library preparation. (6) After sequencing, reads with T-to-
C substitution(s) are identified as newly synthesized transcripts and
calculated by a unique molecular identifier (UMI)-based model to
infer the fraction of new RNAs of each gene in each cell. Therefore,
each cell is associated with two digital expression matrices (new and
old RNA). It is noteworthy tomention thatWell-TEMP-seq can handle
up to 8 parallel samples in one chip, which is beneficial for reducing
batch effects21. Moreover, all the operations of loading cells and
microbeads are accomplished with an optical microscope and a
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Fig. 1 | Overview and workflow of Well-TEMP-seq. Cells are first incubated with
4sU to label newly transcribed RNAs and are then loaded into Well-paired-seq chip
for single cell/bead pairing. After cell lysis by surfactant aggregates (sakosyl), RNAs
are captured by DNA-barcoded beads and subjected to IAA (iodoacetamide)
treatment to transform 4sU to a cytosine analog (4sU*), which induces T-to-C

substitutions at 4sU-labeled sites. RNAs on the beads are reverse transcribed and
the resulting cDNAs are amplified for library preparation and sequencing. Reads
with T-to-C substitution(s) are identified as new RNAs while others are old RNAs.
Therefore, each cell is associated with two digital expression matrices (new RNA
and old RNA).
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pipette, which makes this technique readily affordable and repro-
ducible in other labs.

Validation of the Well-TEMP-seq performance
We first investigated the labeling efficiency and chemical conversion
ability of Well-TEMP-seq. We modified the 4sU-IAA reaction condition
by reducing the amount of dimethylsulfoxide (DMSO) and lowering
the reaction temperature,making it compatiblewith on-beadchemical
conversion. As shown in Fig. 2a and Supplementary Fig. 1a, the cells
labeled with 4sU (200μM, 2 h) and chemically treated with IAA
exhibited high T-to-C substitution rates. Other cells withoutmetabolic
labeling or IAA treatment showed negligible substitution rates, indi-
cating a high signal-to-noise ratio forWell-TEMP-seq. After 2 h labeling

of K562 cells with 4sU, themedian fraction of labeled reads in each cell
was about 15% (Fig. 2b), whichwas close to that of previous reports12,19.
The newly transcribed RNAs were marked by a higher portion of 4sU
labeled reads mapping to introns versus exons, which was consistent
with previous works that the intronic reads were more likely from
newly synthesized RNAs (Supplementary Fig. 1b)12,19. It was noted that
chemical treatment by IAA would lead to partial RNA degradation and
negatively affect the library complexity (Supplementary Fig. 1c,d,
Supplementary Fig. 2, and Supplementary Data 1). However, Well-
TEMP-seq still retained high gene detection ability (>3000 genes at
50,000 reads per cell, Supplementary Fig. 1d), which was enough for
downstream applications of characterizing the temporal dynamics of
single-cell gene expression.
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Fig. 2 | Validation of the Well-TEMP-seq performance. a Bar plot of nucleotide
substitution rates in K562 cells (K562), 4sU-labeled K562 cells (K562_4sU), IAA-
treated K562 cells (K562_IAA), and 4sU-labeled and IAA-treated K562 cells
(K562_4sU_IAA). b Box plot of the fraction of labeled transcripts per cell in 4sU-
labeled K562 cells and 4sU-labeled and IAA-treated K562 cells. n = 2000 cells for
each group. Boxplots include centerline, median; box limits, upper and lower
quartiles; and whiskers are highest and lowest values no >1.5× interquartile range.

c Single-cell/barcoded bead pairing rate in Well-TEMP-seq and scNT-seq. The
pairing rate in scNT-seqwas calculated by Poisson distribution. dCell recovery rate
after IAA chemical treatment in Well-TEMP-seq and sci-fate. e Violin plots showing
the fraction of T-C mismatch UMIs per cell of different genes in 4sU-labeled K562
cells and 4sU-labeled and IAA-treated K562 cells. Left, high turnover gene (MYC);
middle, median turnover gene (PDLIM5); right, low turnover gene (GAPDH). Source
data are provided as a Source Data file.
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Besides, the size-exclusion and locally quasi-static hydrodynamic
microwell allowed highly efficient single cell/barcoded bead pairing
with a pairing rate of ~80%, which was significantly higher than that of
Drop-seq-based scNT-seq (Fig. 2c). Poisson distribution-dependent
pairing in scNT-seq resulted in the low pairing rate (<1%). Moreover,
IAA chemical treatment was performed on beads in Well-TEMP-seq,
which successfullyminimized the cell loss (~67.5% recovery, Fig. 2d). In
contrast, in situ chemical conversion in sci-fate required multiple
centrifugation steps and led to severe cell loss (<5% recovery). There-
fore, the workflow of Well-TEMP-seq enabled highly efficient single-
cell/bead pairing and cell recovery.

To further examine the accuracy of Well-TEMP-seq in identifying
newly transcribed RNA, we analyzed genes encoding mRNAs with
different turnover (high, median, and low) as determined by previous
reports22. The mRNAs with high turnover should have a larger fraction
of newly transcribed RNAs, as indicated by a larger fraction of reads
with T-to-C substitution(s) in Well-TEMP-seq data. Indeed, we did
observedifferent geneswith high (MYC), intermediate (PDLIM5), or low
(GAPDH) turnover that showedhigh, intermediate, and low fractions of
reads with T-to-C substitution(s), respectively (Fig. 2e). Global analysis
of all detected genes in K562 cells and HCT116 cells further confirmed
that mRNAs with high turnover have a larger fraction of newly tran-
scribed RNAs (Supplementary Fig. 1e,f). Therefore, these results indi-
cated that labeling and subsequent sequencing of newly transcribed
RNAs in individual cells by Well-TEMP-seq are feasible.

Characterizing transcriptome dynamics in 5-AZA-CdR response
To demonstrate the ability of Well-TEMP-seq to resolve temporal
dynamics of single-cell gene expression, we applied Well-TEMP-seq to
profile the transcriptome dynamics of colorectal cancer cells in
response to 5-AZA-CdR, an anti-tumor DNA-demethylating agent.
Decitabine (also called 5-AZA-CdR) is a FDA-approved DNA
methylation-inhibiting drug23,24. After incorporating into DNA, 5-AZA-
CdR, the cytidine analog can trap DNA methyltransferases, induce
proteasomal degradation, and result in heritable global DNA
demethylation25. However, it is still unclear whether the clinical effi-
cacy of 5-AZA-CdR is from promoter demethylation of aberrantly
methylated tumor suppressor genes (TSGs) or the consequence of 5-
AZA-CdR-induced double-stranded RNA (dsRNA) expression and the
resultant interferon response pathway24. Moreover, the early-stage
(e.g., the first three days) gene expression dynamics of colorectal
cancer cells treated with 5-AZA-CdR is still unknown due to the lack of
sensitive methods to unravel the changes of transcription states in the
short period.

As depicted in Fig. 3a, we first treated HCT116 colorectal cancer
cells with low-dose (300nM) 5-AZA-CdR for different durations (0 day,
1 day, 2 days, and 3 days) and labeled the nascent RNAs with 4sU
(200μM) for 2 h immediately preceding harvest. Harvested cells were
fixedwithmethanol to preserve their states of each condition. Thenwe
performed parallel Well-TEMP-seq of the 4 samples (0 day, 1 day,
2 days, and 3 days) to minimize potential batch effects. After quality
filtering, we obtained paired single-cell new and old transcriptomes of
about 16,000 cells (Supplementary Fig. 3 and Supplementary Data 2).
Current metabolic RNA labeling strategies may cause incomplete 4sU
labeling of newly transcribed RNAs due to the presence of pre-existing
uridine in cells and lead to inaccurate fraction of new transcripts for
each gene in each cell (Fig. 3b). When using T-to-C substitutions as a
proxy for newly transcribed RNAs, false positives may arise from PCR
errors and sequencing. To overcome these issues, we adapted a
binomial mixture model from the recently established GRAND-SLAM
statistical correction approach26 and optimized it for UMI-based Well-
TEMP-seq datasets. The expression level of new transcript for each
gene at each time point was obtained from the maximum likelihood
function of the statistical model (detailed in Methods). We calculated
the detection rate, α (the ratio between observed and corrected newly

transcribed RNA levels in individual cells) by dividing the number of all
observed labeled transcripts by the number of all estimated new
transcripts for each cell (Fig. 3c). Then the corrected new RNA level of
each gene in each cell was inferred by dividing the observed new RNA
level by α (Fig. 3d).

After correction, we performed differential gene expression (DGE)
analysis of new transcripts to identify genes in response to 5-AZA-CdR
treatment, by comparing the new RNA level of each treated group with
that of untreated group (i.e., 1 d vs. 0 d, 2 d vs. 0 d, 3 d vs. 0 d). Genes
with an absolute fold change of new RNA expression >1.5 and an
adjusted P value <0.05 (Bonferroni corrected) in at least one treated
group were considered as differentially expressed genes. Compared
with gene expression level of cells in the untreated group (0 d), 18 and 3
genes were significantly up-regulated and down-regulated, respectively
(Fig. 3e). Previous studies revealed that a low-dose 5-AZA-CdR treat-
ment after five days could induce global DNA demethylation in HCT116
cells23,24. Genes with hypermethylated promotors will be re-activated
while genes withmethylated gene bodies will be repressed upon 5-AZA-
CdR treatment. We found that TSGs (e.g., DKK1 and GAS5) in colorectal
cancer with hypermethylated promotors were re-activated and two
oncogenes (i.e., EREG and MALAT1) were down-regulated upon 5-AZA-
CdR treatment. The re-activation of hypermethylated TSGs and
repression of overexpressed oncogenes by 5-AZA-CdR would syner-
gistically assert clinical anti-tumor efficacy. Due to its ability to quantify
the newly synthesized RNAs, Well-TEMP-seq is more sensitive to reveal
the dynamic changes of gene expression in the early stage. Therefore,
our single-cell gene expression results revealed the activation of DKK1
and GAS5 and the suppression of EREG andMALAT1 in response to the
low-dose 5-AZA-CdR treatment in thefirst three days. It shouldbe noted
that we also observed a set of up-regulated genes that were candidate
cancer driver genes. Even though the global demethylation induced by
5-AZA-CdR re-activated TSGs and suppressed oncogenes, the upregu-
lation of potential cancer driver genes may raise concerns for potential
side effects of 5-AZA-CdR treatment.

Identification of 5-AZA-CdR-induced, time-dependent regulon
activity
Gene expression is tightly regulated by DNA-binding transcription
factors (TFs). The coordinated expression of TFs and their respective
sets of genes forms the complex gene regulatory networks (GRNs)
(Fig. 4a). The pattern of the activities of regulons (i.e., TFs and their
target genes) represents the distinct transcriptional state and even cell
identity of each cell. Regulon activities of TFs can be quantified by
linking cis-regulatory sequences to single-cell gene expression, as
demonstrated by the recently proposed single-cell regulatory network
inference and clustering (SCENIC) method27,28. By applying SCENIC to
paired single-cell new and old transcriptomes fromWell-TEMP-seq, we
identified 95 co-regulated TF regulons with significant cis-regulatory
motif enrichment (Figs. 4b, c). With newly transcribed RNAs, SCENIC
analysis revealed three regulons (i.e., STAT1, HEYL, and PITX1) that
exhibited significant changes in response to 5-AZA-CdR treatment
(Fig. 4b). Although regulons exhibiting significant changes in response
to 5-AZA-CdR treatment were also identified in old RNA-based SCENIC
analysis and total RNA-based SCENIC analysis (Supplementary Fig. 4),
we focused on the new RNA-based SCENIC results since new RNAs
more faithfully revealed the 5-AZA-CdR treatment responsive
regulation.

STAT1 is a signal transducer and transcription activator involved
in cellular interferon response29. Prior reports established that low-
dose 5-AZA-CdR induced RNA polymerase III-driven bidirectional
transcription of normally silent repeats30. The resultant formation of
dsRNA further activated the MDA/MAVS/IRF7 interferon responsive
pathway by viral mimicry and produced interferons (IFNs) (Supple-
mentary Fig. 5)24. After interferon stimulation, STAT1 is phosphory-
lated and activated, which further forms pSTAT1 homodimer or
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pSTAT1/pSTAT2/IRF9 complex to activate antiviral immunity
(Fig. 4d)31–33. It has been revealed in previous reports that a low-dose 5-
AZA-CdR treatment for more than five days induced STAT1 activation
in HCT116 cells. However, it remains unknown whether STAT1 is acti-
vated in the early stage of treatment (e.g., the first three days). Our
results revealed that the 5-AZA-CdR treatment enhanced STAT1
phosphorylation (Supplementary Fig. 6a), the expression of STAT1
target genes (Supplementary Fig. 6b), and the STAT1 regulon activity
(Fig. 4b). These results have filled the gap and proved that STAT1 was
activated in the first three days upon treatment.

HEYL is a downstream effector of Notch signaling pathway and is
frequently down-regulated by promoter hypermethylation, leading to
the inactivation of HEYL-associated P53-mediated apoptosis in cancer
cells34,35. It has been revealed that HEYL inhibited tumor cell dis-
semination and decreased the metastasis-forming capacity of color-
ectal cancer andhepatocellular carcinoma36. Therefore, the 5-AZA-CdR
treatment-dependent enhancement of HEYL regulon activity is bene-
ficial for the anti-tumor effects.

PITX1 is a critical transcription factor involved in suppressing the
tumorigenicity of multiple human cancers, including colorectal
cancer37. The altered RASpathwaybymutated RAS overexpression has
been frequently observed in colorectal tumors38. PITX1 plays a tumor
suppressor role by downregulating the RAS pathway37,39. It also has
been revealed that PITX1 may activate TP53 apoptosis pathway and
suppress the activity of telomerase reverse transcriptase37,40,41. How-
ever, the low expression of PITX1 is frequently observed in tumors37.
The treatment of 5-AZA-CdR re-activated the activity of PITX1 regulon
and may restore the tumor suppressive functions of PITX1.

Thus, thanks to the high sensitivity of Well-TEMP-seq, we can
provide insights into the 5-AZA-CdR induced anti-tumor response
of STAT1, HEYL, and PITX1 TFs activation in the early stage of
treatment (e.g., in the first three days), which has not been unveiled
before. The activation of STAT1-related antiviral immunity and the
restoration of tumor suppressive TF activities of HEYL and PITX1
would synergistically contribute to the anti-tumor effects of 5-AZA-
CdR treatment.
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Fig. 3 | Well-TEMP-seq characterizes the transcriptome dynamics of HCT116
cells in 5-AZA-CdR response. a Experimental scheme of characterizing the tran-
scriptome dynamics of 5-AZA-CdR-treated HCT116 cells with Well-TEMP-seq. Cells
were treatedwith 300nM5-AZA-CdR for 0/1/2/3d.Cells in each groupwere labeled
with 200μM4sU for 2 h before fixation forWell-TEMP-seq. b Box plot showing the
fraction of labeled transcripts per cell in different groups before correction. Here,
correction is essential since current metabolic RNA labeling strategies may cause
incomplete 4sU labeling of newly transcribed RNAs due to the presence of pre-
existing uridine in cells and false positives arising from PCR errors and sequencing.
c Box plot of detection rate of different groups. Calculated as the ratio between

observed and corrected newly transcribed RNA levels for each cell, the detection
rate is an important coefficient in the correction process and represents the
labeling efficacy of newly transcribed RNAs. d Box plot showing the fraction of new
transcripts per cell in different groups after correction. In b–d, n = 872 (0 d), 867 (1
d), 884 (2 d), 832 (3 d) cells and boxplots include centerline, median; box limits,
upper and lower quartiles; and whiskers are highest and lowest values no >1.5×
interquartile range. e Heatmaps showing average new RNA levels (z-scaled natural
log transformation of (TP10K+ 1)) of significantly up-regulated genes (left) and
down-regulated genes (right) in response to 5-AZA-CdR treatment. Source data are
provided as a Source Data file.
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Metabolic RNA labeling-based RNA velocity analysis of 5-AZA-
CdR response
The concept of “RNA velocity” has recently been proposed as the time
derivative of gene expression to predict the future state (on the scale
of hours) of an individual cell. RNA velocity can be inferred from

scRNA-seq datasets by splicing-based model or labeling-based model
to inform the temporal dynamics of gene expression in single cells. To
quantify the RNA velocity of HCT116 cells exposed to low-dose 5-AZA-
CdR, we adopted dynamo42, a recently established computational
method, to analyze the datasets from Well-TEMP-seq.
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Fig. 4 | Analysis of treatment-dependent regulon activity of HCT116 cells in
response to 5-AZA-CdR. a Schematic illustration of regulon identification by
linking TFs with their regulating genes. b Heat map showing average regulon
activity of 3 5-AZA-CdR treatment-dependent regulons of HCT116 cells, inferred
from either new or old RNAs. Regulons with significantly increased or decreased
activities (absolute fold change >1.5) were identified by a two-sidedWilcoxon rank-

sum test (adjusted P value <0.05, Bonferroni corrected). c Clustered heat map
showing the average regulon activity of 92 5-AZA-CdR treatment-independent
regulons of HCT116 cells, inferred from either new or old RNAs. d Simplified dia-
gram of the IFNI/II/III-associated induction and receptor signaling pathway, leading
to the activation of JAK/TYK-STAT pathway and interferon-stimulated antiviral
immunity. Source data are provided as a Source Data file.
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We first examined whether the splicing-based model, which
estimates RNA velocity by distinguishing unspliced mRNAs (intro-
nic reads) from spliced mRNAs (exonic reads), can predict the
transcriptional trajectory of single cells in response to 5-AZA-CdR
treatment. As depicted in Fig. 5, poor 5-AZA-CdR treatment-
dependent directionality was consistently observed in the
splicing-based RNA velocity flow, lacking coherent transition of
vectors. Since metabolic RNA labeling can capture rapid changes in
RNA abundance and unambiguously quantify new RNAs via UMIs,
we reason that single-cell paired measurements of newly tran-
scribed and old mRNAs from Well-TEMP-seq can be utilized to
determine metabolic labeling-based RNA velocity. As expected, the
labeling-based model resulted in coherent velocity flows from
untreated cells towards 5-AZA-CdR-treated cells in the low-
dimensional embedding. Metabolic labeling-based RNA velocity of
Well-TEMP-seq accurately recapitulated the temporal dynamics of
gene expression of single cells upon 5-AZA-CdR treatment, includ-
ing the first phase movement from 0 d to 1 d and 2 d and a second
phase movement from 0 d to 1 d and 3 d. The randomized velocity
control further confirmed the high specificity of the observed RNA
velocity.

We also calculated the cell-wise confidence of velocity obtained
from both models. Metabolic labeling-based RNA velocity exhibited
higher confidence than splicing-based RNA velocity. Due to the spar-
sity of intronic reads from activity-induced genes and/or fast splicing
kinetics, the capture of introns by the splicing-based model is highly
biased (Supplementary Fig. 7). In contrast, the metabolic labeling-
based strategy can label all new RNAs in a more uniform fashion
(Supplementary Fig. 8). These results demonstrated that metabolic
labeling-based RNA velocity outperformed splicing-based RNA velo-
city by accurately determining the observed and extrapolated cell
states. The 5-AZA-CdR treatment-dependent state transition dis-
coveredbyWell-TEMP-seq aredifficult tobeobtainedby standardRNA
velocity analysis. Therefore, Well-TEMP-seq supports the metabolic
labeling-based and time-resolved RNA velocity analysis of dynamic
gene expression in single cells.

Discussion
Well-TEMP-seq combines metabolic RNA labeling by 4sU with our
high-throughput Well-paired-seq scRNA-seq platform for massively
parallel joint profiling of newly transcribed and pre-existing RNAs of
the same cell. Well-TEMP-seq characterizes the temporal dynamics
of single-cell gene expression of HCT116 cells exposed to a low dose of
DNA demethylating 5-AZA-CdR, revealing the upregulation of TSGs,
downregulation of oncogenes, and activation of antiviral interferon
responsive immunity. Splicing-based RNA velocity is very straightfor-
ward to inform the future states of a cell by endogenous RNA splicing
kinetics, but suffers fromhighlybiased captureof intronic readsdue to
the sparsity of introns and fast splicing kinetics of many genes. In
contrast, metabolic RNA labeling-based Well-TEMP-seq can directly
count the new and old transcripts via UMIs to unbiasedly characterize
the RNA kinetics for all detectable genes. Moreover, Well-TEMP-seq is
capable of experimentally controlling the timing and length of meta-
bolic RNA labeling periods, which makes it flexible to be applied in
various biological processes.

Our Well-TEMP-seq is superior to other metabolic RNA labeling-
based scRNA-seq methods such as scSLAM-seq, NASC-seq, scEU-seq,
sci-fate, and scNT-seq (Supplementary Data 3). First, Well-TEMP-seq
can handle up to 8 parallel samples at the same time with the
throughput of thousands of single cells per sample. Second, Well-
TEMP-seq and other UMI-based approaches require a lower sequen-
cing depth than full-length transcript-based approaches. Third, Well-
TEMP-seq costs <US$0.10per cell for library preparation,which is even
lower than other UMI-based approaches. It is noteworthy to mention
that the key feature of Well-TEMP-seq is that it is built on the basis of
Well-paired-seq with high accuracy and sensitivity. The size-exclusion
and locally quasi-static hydrodynamic microwell-based microfluidic
chip enable highly efficient loading of single cells (both live and fixed
cells) into the microwells, removal of cell-free RNAs and cell clusters,
and Poisson distribution-independent single cell/bead pairing. It
overcomes the constraints of low cell/bead pairing efficiency and
potential interference from cell-free RNAs in scNT-seq. Moreover,
Well-TEMP-seq performs IAA chemistry on barcoded beads and thus
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Fig. 5 | Metabolic labeling-based RNA velocity analysis of HCT116 cells in
response to 5-AZA-CdR treatment. UMAP visualization of HCT116 cells treated
with 5-AZA-CdR for 0/1/2/3 d characterized by conventional splicing-based (upper-
left) or metabolic labeling-based (lower-left) RNA velocity analysis. Cells are color-
coded by treatment time. The streamlines reveal the integration paths of local
projections moving from the observed state to the extrapolated future state. The

magnitude of RNA velocity is indicated by the streamline thickness. Randomized
velocity controls (middle) were performed by first shuffling the velocity for genes
of each cell and then randomly switching the sign of shuffled velocity values. The
cell-wise velocity confidence (right)wasmeasured byhowwell each velocity vector
met the local neighborhood structure-defined geometric constraints.
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avoids in situ chemical conversion and multiple centrifugation-
induced cell loss as observed in sci-fate.

We anticipate that Well-TEMP-seq will be broadly applied to
other complex and dynamic biological systems to characterize the
temporal dynamics of single-cell gene expression.Most of the current
metabolic RNA labeling experiments are performed with in vitro cell
culturemodels. It is expected that future efforts will be committed to
in vivo models by intravenous or intraperitoneal injection of exo-
genous nucleoside analogs to label newly transcribed RNAs in vivo.
Development of new exogenous nucleoside analogs to confer other
conversions (e.g., 6-thioguanosine to induce G-to-A conversion) in
Well-TEMP-seq may enable independent recordings of different
transcriptional processes in single cells to disentangle the complex
interactions between different biological processes.

Methods
Mammalian cell culture
Human K562 cells (ATCC, CCL-243) and human colorectal cancer
HCT116 cells (ATCC, CCL-247) were cultured in high glucose Dulbec-
co’s modified Eagle’s medium (DMEM) supplemented with 10% fetal
bovine serum (Gibco, catalog no. 11965) and 1× penicillin-streptomycin
(Gibco, catalog no. 15140122; 100U/mL of penicillin, 100 µg/mL of
streptomycin) and maintained at 37 °C with 5% CO2.

Sample processing for Well-TEMP-seq
For K562 cells, cells were incubatedwith 200μM4sU for 2 h before cell
harvest. For HCT116 cells, cells were treated with 300nM 5-AZA-CdR
for 0 day, 1 day, 2 days, or 3 days. Cells in each group were incubated
with 200μM 4sU for the last 2 h before cell harvest. The labeled
HCT116 cellswere trypsinized, spundownat 300g for 5min (4 °C), and
washed once in 1× phosphate buffer saline (PBS). Cells (1 × 106 − 5 × 106

cells) were re-dispersed in 1 volume (100μL) of ice-cold PBS (with 0.4
U/μL RNase inhibitor). The cell suspension was fixed with 9 volumes
(900μL) of ice-cold methanol (pre-chilled to −20 °C) for 10min on ice
in thedark.Methanolwas addeddropwisewith a gentle vortex to avoid
cell clumping. Fixed cells were centrifuged at 900 g for 3min at 4 °C.
Cell pellet was washed (not re-suspended) with ice-cold PBS (with 0.4
U/μL RNase inhibitor) and re-suspended in 100μL enzyme blocking
buffer (saturated ammonium sulfate solution with 50mM EDTA,
0.8 U/μL RNase inhibitor, pH 5.2). The obtained cells were stored at
−20 °C in the dark.

Cells were then re-suspended in PBS (with 0.05% bovine serum
albumin) and subjected to cell loading, microbead loading, and cell
lysis as described in the Well-paired-seq protocol. Briefly, single cells
were loaded into the lower microwells by gravity, and cell clusters and
cell-free RNAs were washed away by 1× PBS. After loading of
microbeads, mineral oil with lysis aggregates (sakosyl) was introduced
to cover the microwells. Sakosyl was quickly dissolved in the micro-
wells containing PBS (water phase). Cells were then lysed and RNAs
with poly(A) tails were captured by the oligo(dT) primers on
microbeads. The recovered microbeads were pelleted and washed
with 6× saline sodium citrate (SSC) and PBS (50mM, pH 8.0) succes-
sively. For chemical conversion, microbeads were re-suspended in
reaction buffer (50mM PBS, 10mM IAA, 10% DMSO, pH 8.0) and
incubated at 37 °C for 1 h. Then 10mM dithiolthreitol was added to
stop the reaction. The microbeads were washed successively with 1×
PBS and 1× RT buffer. After one-pot chemical conversion, the
remaining library preparation steps were performed as described in
Well-paired-seq. Briefly, for each group,microbeads (~10,000)were re-
suspended in reverse transcription mix (1× Maxima reverse transcrip-
tion buffer, 1mM dNTPs, 1 U/μL RNase inhibitor, 2.5μM template
switching oligo (TSO: AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG,
Sangon Biotech), and 10 U/μL Maxima H Minus reverse transcriptase
(catalog no. EP0751)). The reverse transcription reaction was pro-
ceeded at room temperature for 30min, followed by incubation at

42 °C for 90min. After Exonuclease I treatment (1 U/μL Exonuclease I,
37 °C, 45min), microbeads were subjected to PCR reaction (1× KAPA
HiFi hotstart readymix and 0.8μM ISPCRoligo primer (AAGCAGTGG-
TATCAACGCAGAGT, Sangon Biotech)). Full-length cDNA was ampli-
fied by the following thermal cycling parameter (95 °C for 3min; 4
cycles of (98 °C for 20 s, 65 °C for 45 s, and 72 °C for 3min); 10–12
cycles of (98 °C for 20 s, 67 °C for 20 s and 72 °C for 3min); 72 °C for
5min and hold at 4 °C). The PCR productwas purified twice using 0.6×
VAHTS DNA Clean Beads (Vazyme Biotech, catalog no. N411-02)
according to the manufacturer’s instructions. The 3′-end enriched
sequencing library was prepared by TruePrep DNA Library Prep Kit V2
for Illumina (Vazyme Biotech, catalog no. TD503) according to the
manufacturer’s instructions, except that P5 primer was replaced by a
customized P5-TSO-hybrid primer (AATGATACGGCGACCACCGAGAT
CTACACGCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGT*A*C,
Sangon Biotech). After quality control by Qsep-100, the library was
sequenced on the Illumina Hiseq X Ten (paired-end, 150bp). Read 1
primer was replaced by a customized Read 1 primer (GCCTGTC
CGCGGAAGCAGTGGTATCAACGCAGAGTAC, Sangon Biotech).

Read alignment and quantification
Paired-end sequencing reads of Well-TEMP-seq were processed as
described inWell-paired-seq with somemodifications. Briefly, reads
were first processed using the Drop-seq pipeline (v2.3.0)43. For each
pair of reads, the cell barcode (base 1–12) and UMI (base 13–20) in
Read 1 were tagged to the mRNA read (Read 2). The obtained reads
were then trimmed of sequencing adaptors and poly(A) sequences
and aligned to the human reference genome assembly (GRCh38)
using STAR v2.7.3a44. Different from the standard Drop-seq work-
flow, both exonic and intronic reads that mapped to predicted
strands of annotated genes were retained for the downstream
analysis. The pipeline of scNT-seq20 was adopted to further quantify
metabolically labeled and unlabeled transcripts where uniquely
mapped reads with a mapping score >10 and T-to-C substitutions
with a base Phred quality score >27 were retained. Sites with T-to-C
substitutions in the control group without 4sU labeling and IAA
treatment were determined and excluded for T-to-C substitution
identification in the experimental groups for correction of back-
ground mutation. Then a UMI/transcript was identified as labeled
(newly transcribed) if there was at least one T-to-C substitution in
any one of the mapped reads. For each gene, the total numbers of
labeled and unlabeled mRNA were counted and assembled into
matrices using the gene name as rows and the cell barcode as col-
umns. Therefore, each cell was associated with two digital gene
expression matrices (labeled and unlabeled transcripts).

Estimation of the portion of newly transcribed transcripts
To address the insufficiency of metabolic RNA labeling, we adopted a
statistical model to approximate the real distribution of T-to-C sub-
stitution in single cells and estimate the real mutation rate. There are
two kinds of T-to-C substitution in a single cell. One is endogenous and
the other is induced by exogenous labeling. They behave according to
different distributions. A previous study showed that regardless of the
kindof substitution, the labeling rates for each gene are quite similar in
the same cell20. Therefore, here we used a binomial mixture model:

f θ,p,qð Þ=θBinom yi;p,ni

� �
+ 1� θð ÞBinom yi;q,ni
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Binom yi;p,ni

� �
=
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� �
�pyi 1� pð Þni�yi ð2Þ
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� �
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The sufficient data for this model are the number of uridine
nucleotides (ni) observed in transcript i and the corresponding
mutations (yi) for each transcript i. θ is the portion of newly tran-
scribed mRNA among all mRNAs in each experiment, then p is the
mutation rate in labeledmRNAs and q is themutation rate in unlabeled
mRNAs. To avoid sequence error, we generated a consensus sequence
for each transcript by gathering reads with the same UMI index and
picking the most frequent variant at each site. UMIs with fewer than 2
reads were filtered. 100000 consensus sequences were randomly
selected to compute p and q in the above model for each time point.
The built likelihood function was maximized by the Nelder-Mead
algorithm and repeated 100 times to obtain the maximum function
value. The corresponding p and q were chosen as final parameters
(achieved by nloptr in R v4.0.0)45.

The obtained 4 sets of p and q (4 time points) were used for
calculating θgene, the level of new transcript for each gene at each time
point, according to the above statistical model. Since the detection
rate α of most genes are highly similar in one cell, the mean detection
rate α is obtained by dividing the number of all observed labeled
transcripts by the number of all estimated new transcripts for each cell
and can be calculated as

αcell =
LcellP

θgeneðLgene +UgeneÞ ð4Þ

After calculating αcell , the estimated new RNA level for each gene
in each cell can be calculated as

Ngene =min
Lgene
αcell

, Lgene +Ugene

� �� �
ð5Þ

where Lgene is the number of labeledRNAof a gene in that cell andUgene

is the number of unlabeled RNA of the same gene in that cell. The
computednewandold transcriptswere used for all downstreamsingle-
cell analyses, including differential gene expression analysis, SCENIC-
based single-cell regulon activity analysis, and RNA velocity analysis.

Identification of differentially expressed genes (DEGs)
Differential gene expression analysis of RNAs between different time
points of 5-AZA-CdR treatment (1/2/3 d) and control (0 d) was carried
out with the FindMarkers function in Seurat package using the default
Wilcoxon rank-sum test. Genes with an absolute fold change >1.5 and
an adjusted P value <0.05 (Bonferroni corrected) in expression
between treatment groups (at least one group) and control groupwere
considered as differentially expressed genes.Mitochondrial genes and
ribosomal protein-coding genes were excluded for downstream ana-
lysis. The identified DEGs were divided into two groups (i.e., the up-
regulated group and the down-regulated group).

Analysis of single-cell regulon activity
Regulon activities of TFs were quantified by linking cis-regulatory
sequences to single-cell gene expression as demonstrated by the
recently proposed single-cell regulatory network inference and clus-
tering (SCENIC) method27,28. Regulon modules were identified by
inferring the coexpression of TFs and sets of target genes containing
TF-bindingmotifs in their promotors. First, the gene expressionmatrix
(genes expressed in fewer than 20 cells were removed) was separated
into two parts (i.e., new transcripts and old transcripts) and saved in
RDS format. The RDS files were transformed into loom format and
provided as inputs for SCENIC analysis. Therefore, specific regulon
modules associated with either new or old transcriptomes from the
same cell could be identified separately. Coexpression modules were
inferred by GRNBoost (implemented in pySCENIC v0.11.2) and the
weight between TFs and their target genes was quantified. Target
genes that failed to show a positive correlation (>0.03) in each TF

module were removed. Second, cisTarget was adopted to perform cis-
regulatory motif enrichment of target TF motifs in the 10-kb window
around genes’ promoters and to identify putatively direct targets.
Indirect targets without significant motif enrichment of the correct
upstream regulator were discarded. Third, the activities of the
obtained TF regulon modules in each cell were calculated by the
AUCell algorithm implemented in pySCENIC. For each TF, the mean
AUC value of all cells belonging to the same group was computed and
scaled by the scale function in R. The TF regulon activities of different
groups and clusteringwere visualized by heatmapusing thepheatmap
package (v1.0.12) in R. Two-side Wilcoxon rank-sum test was per-
formed to quantify the significance of difference for TF activity. Reg-
ulons with an absolute fold change of regulon activity > 1.5 and an
adjusted P value <0.05 (Bonferroni corrected) between treated groups
(at least one group) and untreated group (i.e., 1 d vs. 0 d, 2 d vs. 0 d, 3 d
vs. 0 d) were considered as 5-AZA-CdR treatment responsive regulons.

Splicing-based RNA velocity analysis
Spliced and unspliced counts are required for standard RNA velocity
(splicing-based RNA velocity). First, we adopted the Drop-seq pipeline
to generate the aligned bam file46. Second, the dropEst function in
dropEst pipeline was applied for demultiplexing reads to separate
spliced and unspliced reads. The parameter was set as ‘-M -V -b -f -L
eiEIBA’ and the GRCh38 genome annotations were used. Dynamo, the
computational framework for both standard and metabolic labeling-
based RNA velocity analysis, was then used for RNA velocity analysis.
The RNA dynamics and velocity information was calculated with the
model of “auto”. Ultimately, wemapped the high-dimensional velocity
vectors to 2-dimensional UMAP space and realized the visualization by
streamline plot, randomized streamline plot, and phase diagramswith
default settings.

Labeling-based RNA velocity
For metabolic labeling-based RNA velocity analysis, the new transcript
and total transcript counts are required. First, the scNT pipeline20 was
adopted to separate and count new transcripts and old transcripts.
After correcting the transcriptome profiles of new RNAs, the data for
new transcripts and total transcripts were loaded into dynamo. The
model was set as “auto” and the option of “NTR_vel” was defined as
“True”. Similar to splicing-based RNA velocity analysis, the streamline
plot, randomized streamline plot, and phase diagrams were visualized
with default settings.

Western blotting
HCT116 cells were treated with 300nM 5-AZA-CdR for different dura-
tions (0 d, 1 d, 2 d, 3 d). Cells were lysed in RIPA buffer (Beyotime,
catalog no. P0013E) supplemented with protease inhibitor (Beyotime,
catalog no. ST506) for protein extraction. The equal weight of dena-
tured proteins (20μg) were separated by SDS-PAGE and then trans-
ferred onto a PVDFmembrane (Millipore). Themembranewasblocked
in 5% non-fat milk dissolved in Tris-buffered saline with Tween-20
(TBST) for 1 h and thenwashed byTBST three times. Subsequently, the
membrane was incubated with rabbit anti-human primary antibodies
against STAT1 (phospho Y701) (Abcam, catalog no. ab109457, 1:1000
dilution) or α-tubulin (Abbkine, catalog no. ABP52655, 1:1000 dilution)
overnight at 4°C and horseradish peroxidase-labeled secondary anti-
body (Abcam, catalog no. ab97080, 1:10000 dilution) at room tem-
perature for 1 h. The signals of protein were developed by ECL Kit
(Beyotime, catalog no. P0018S).

Statistics & reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. Two biologically independent
replicates were included for K562 Well-TEMP-seq. The technique was
also tested and validated inother cell lines. ForHCT116Well-TEMP-seq,
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no replication was performed for reasons of scale and cost. The order
of samples are randomized during drug treatment, and during sample
processing in Well-TEMP-seq. For estimation of the fraction of new
transcripts, 100,000 consensus sequences were randomly selected to
compute p and q in the binomial mixture model for each time point.
Investigators were blinded to group allocation during data collection
(sequencing) and analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequencing data can be downloaded from Gene Expression
Omnibus (GEO) with accession code of “GSE194357”. The human
reference genome (GRCh38) used in this study can be downloaded
from https://asia.ensembl.org/index.html. Source data are provided
with this paper.

Code availability
The source code for the analysis of Well-TEMP-seq data is available on
GitHub (https://github.com/songjiajia2018/Well-TEMP-Seq).
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