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Real-time single-molecule 3D tracking in
E. coli based on cross-entropy minimization

Elias Amselem 1,2 , Bo Broadwater 1,2, Tora Hävermark 1,
Magnus Johansson 1 & Johan Elf 1

Reaching sub-millisecond 3D tracking of individual molecules in living cells
would enable direct measurements of diffusion-limited macromolecular
interactions under physiological conditions. Here, we present a 3D tracking
principle that approaches the relevant regime. Themethod is basedon the true
excitation point spread function and cross-entropy minimization for position
localization ofmoving fluorescent reporters. Tests on beadsmoving on a stage
reaches 67 nm lateral and 109 nm axial precision with a time resolution of 0.84
ms at a photon count rate of 60 kHz; the measurements agree with the theo-
retical and simulated predictions. Our implementation also features a method
for microsecond 3D PSF positioning and an estimator for diffusion analysis of
tracking data. Finally, we successfully apply thesemethods to track the Trigger
Factor protein in living bacterial cells. Overall, our results show that while it is
possible to reach sub-millisecond live-cell single-molecule tracking, it is still
hard to resolve state transitions based on diffusivity at this time scale.

Advances inmicroscopy and nanoscopy are approaching the temporal
and spatial scale where intracellular biochemistry occurs. Single-
molecule tracking is a critical technique to study intracellular kinetics
by analyzing changes in diffusivity1 without perturbing the cells2.
Recently, improved single-molecule localization of reporters with a
small photon budget was demonstrated by several labs, addressing a
key limitation in live-cell single-molecule tracking3–16. They achieved
enhanced localization precision by exciting the fluorophores with
structured optical beams and comparing the modulations in emitted
fluorescence to the excitation patterns. The principle, referred to as
modulation-enhanced localization (SM-MEL), is different from tradi-
tional single-molecule localization techniques such as PALM/
STORM17,18 where the emitted point spread function (PSF) is used for
localization. Under the umbrella of SM-MEL, several strategies have
been demonstrated, each optimized for a different purpose. The
camera-based versions like ROSE3, SIMPLE4, SIMFLUX5, and ModLoc6

target a large field of view. The imaging-oriented scanning counter-
parts, MINFLUX7,8 and p-MINFLUX9, aim for an optimal resolution with
a minimal photon budget per fluorophore localization assuming slow-
moving/stationary reporters. Tracking-oriented systems like
Orbital scanning10–12,19, SMCT–FCS13, 3D-DyPLoT14,15, 3D-SMART20, and

TSUNAMI16 target spectroscopic and dynamical processes. Although
these strategies have very different implementations, they all localize
reporters using the SM-MEL principle under various assumptions.

Both the camera and the minimal photon flux strategies have
shown great performance in imaging. When the reporter is moving
slowly7,13,21,22 or is confined8,9 within a small volume, an information-
optimized localization method can be used. Only a few well-placed
excitation shots are then needed to obtain a unique photon signature
that pinpoints the position at high temporal and spatial resolution in a
well-defined and confined region. However, for single-molecule
tracking, these techniques have not yet been demonstrated for
the observation of fast 3D dynamical processes in a cellular structure.
The main limitation of the camera systems is the frame rate. For
the scanning counterpart, a common problem is that fast molecules
move out of the limited region over which the resolution is optimized,
see Supplementary Note 1.

For fast reporters moving in a larger volume, a more responsive
and/or larger tracking volume is required. Having a small resolution-
optimized pattern together with a highly responsive system pose high
requirements onhardwarebandwidth, shotnoise, andphotophysicsof
the reporter. A large illumination pattern, on the other hand, has a
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negative impact on time and spatial resolution. Thus, a balance
between system response and illumination pattern size is required
when tracking reporters with a large dynamic range and there will be a
tradeoff between time and spatial resolution affecting both slow and
fast-moving reporters.

Here, we describe a generalized theoretical treatment of the SM-
MEL principle which we also implement in a 3D single-molecule
tracking system. Our implementation is based on minimizing the
cross-entropy between the emitted photon counts and the true exci-
tation PSF. It introduces a regularization schema that stabilizes the
maximum a posteriori (MAP) estimate of the position when tracking
reporters using a large illumination pattern. The large pattern effec-
tively reduces the bandwidth requirements of the piezo positioning
system, which is often limiting when tracking fast reporters. On the
more practical side, we have introduced a method which removes
the need for fast short-range axial scanning equipment. In contrast to
the common approach where a Tunable Acoustic Gradient (TAG) lens
is used for axial capability, we have introduced axial capability by
encoding z information into anengineered PSF, which is onlymoved in
2D.We tested themicroscope and our understanding of the system by
moving and tracking fluorescently labeled 20nm beads and comparing
the results to our simulation of the tracking system. Next, we used
simulations to evaluate our capability of tracking molecules in cellular
geometries and inferring their binding kinetics using a diffusion point
estimator in conjunction with a hidden Markovmodel (HMM). Finally,
the microscope was unleashed on single molecules moving in living
bacterial cells.

Results
Single-molecule tracking concept
Consider the problem of estimating the unknown position
rp = (xp, yp, zp) of a diffusing, fluorescently labeled molecule. The
approach adopted here is based on structured illumination together
with Bayesian statistics and priors, which makes it possible to extend
the localization problem of stationary and slow-moving reporters to
more rapidly moving ones. Our labeled molecule is excited by a
sequence of known point spread functions (PSF),Φi(r) indexed by the
subscript i. The emitted photons, ni, are detected with a single-photon
counting avalanche photodiode (SPC-APD). In general, the PSFs are
arbitrary and include Gaussians, doughnuts, or even random speckle
patterns that are experimentally measured. But, for simplicity, we
assume that the same PSF,Φi =Φ(r − ri), is used at the positions, ri. The
excitation and measurement times are considered to be long com-
pared to the fluorescence relaxation time and the emitted photons can
thus be assumed to follow a Poisson distribution with a mean λi. Also,
we assume that the mean photon counts are proportional to the exci-
tation PSF intensity. Thus λi = c ⋅Φ(rp − ri) where c can be considered a
fluorophore photon efficiency, a combination of excitation, emission,
and detection efficiency per excitation power. The likelihood, givenm
PSF shots at locations frigmi= 1, to obtain the photon counts fnigmi = 1 froma
fluorophore at rp with a photon efficiency c can now be stated as

Lðfnig∣rp,c, frigÞ=
Y

i

1
ni!

e�λiλni
i =
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ni!
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Using Bayes rule we can invert the problem to obtain the likelihood,
L(r, c∣{ni}, {ri}), that the fluorophore is at the position r with photon
efficiency c given the photon counts fnigmi = 1 and PSF positions frigmi = 1.
The unknown parameter c can be estimated by following the standard
maximum likelihood procedure

~cðrÞ=
P

iniP
iΦðri � rÞ ð2Þ

where~will be used to indicate estimators. The estimator is simply the
ratio of the total number of photons detected to the total PSF intensity
and gives amapof the estimates of fluorophorephoton efficiencyover
all allowed positions r. Inserting Eq. (2) back into the likelihood func-
tion Eq. (1) with some simplifications gives
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whereC({ni}) is a scaling factor that depends only on {ni} and thus does
not affect the overall shape of the likelihood landscape, and Φi

depends onboth r and ri. It shouldbe noted that the negative log of Eq.
(3) is up to anadditive constant equal to the cross-entropybetween the
photon counts and the PSFs. Derivation of Eq. (3) without passing
through Eq. (2) is also possible by the multinomial approach7–9 or the
MLE method in23, but in these cases, the relation to the c value is lost,
and thus not accessible for constructing priors, which are multi-
plicative factors to Eq. (3), to constrain c. As described further down,
constraints on the estimated fluorophore photon efficiency can be
imposed, either statically or dynamically, to exclude spatial regions
with very low/high excitation power compared to measured photons
as described below. To emphasize the relation between the PSF ratios
and the photon ratios, Eq. (3) is in a form with a global exponent, ∑ini.
The exponent will not change the location of the likelihood peaks and
valleys but will make them sharper if increased. This is quantified by
the Cramér Rao lower bound (CRLB) for Eq. (3), which will depend on
the total number of photons, the PSF shape, and the PSF pattern used.
Thus, the underlying principle of the localization by Eq. (3) is to
produce a series of photon count ratios {ni/∑ni} for a given excitation
pattern and find the position with corresponding mean photon ratios
{λi/∑ λi} which is givenby the ratiosbetweenPSFs. Backgroundbias can
be incorporated within the PSF model; both constant and spatially
distributed bias can be added and considered a part of the PSFs. For
further discussion and 1D examples, see Supplementary Note 1.

By itself, Eq. (3) needs to be confined to a relatively small region or
used in a high photon count setting to produce reliable and correct
position estimations. But, experiments are normally photon count-
limited and in this regime, the likelihood might have sudden unphy-
sically large peaks that arise due to shot noise and background noise.
To counterbalance this problem,we introduce a regularization schema
based on weak priors which are multiplied with Eq. (3).

First, a simple constraint on permitted c values is introduced by
the binarymap TcðrÞ= f1 if cmin < ~cðrÞ< cmax else0gwhere cmin and cmax

are selected depending on the PSF pattern, the PSF shape, and the
sample. The upper value is the most important since it excludes
regions where the sum of all PSFs is low and close to the noise floor; in
these regions, the PSFs has not enough power to excite a fluorophore
to obtain the registered photon counts. The second prior targets the
interest of keeping the time evolutionof estimated c values smooth, on
average. Over a longer time span, it is assumed that the fluorophore
maintains a rather stable c value until it bleaches. For that purpose, we
assume that we can, over longer time periods, average over the
fluorophore blinking time, anduseaGaussianwith afixedwidth and an
exponential weighted moving average as its mean. This approach
restricts the possible c values dynamically over time. Parameters for
the first and second prior are selected such that their effects are very
weak. The third and last prior penalizes large jumpswithin the tracking
volume. This is done by applying a Gaussian prior distribution with a
fixed width around an exponentially decaying mean over previously
estimated positions, see Eqs. (12) and (13). It will suppress large jumps,
but also puts an upper limit on the observed diffusion rate. For
example, weuse a full-widthhalfmaximumof 470nm at the0.84ms full
pattern update rate, which corresponds to a maximal diffusion rate of
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24μm2s−1. Further discussions and details on the priors and the post-
processing steps can be found in the Methods Position estimation
section. The final position estimation is obtained by minimization of
the negative log-likelihood, Eq. (8). A closed form can be found for
simple analytical PSFs and patterns, but for more complicated PSFs
and largepatterns, a numericalminimization isnecessary. In this study,
we rely on the latter.

Implementation
An overview of the optical implementation is shown in Fig. 1a. The
excitation laser is passed through an amplitude modulator and a spa-
tial light modulator (SLM) for PSF engineering. Two xy scanning sys-
tems are used. The first is a fast, short-range xy electro-optic deflection
(EOD) system, and the second is a piezo-driven tip/tilt mirror scanning
system which is placed after the dichroic mirror and used for long-
range xy scanning or tracking. After both scanning systems, the exci-
tation path ends with an objective that focuses down to the sample
which is on an xyz-piezo stage. Detection of fluorescence is done by a
standard confocal configuration with a large 200μm pinhole and an
SPC-APD. A detailed description of the optical layout can be found in
the Methods Position estimation section. For tracking in the axial
direction, the z-piezo of the xyz-piezo stage is used for slow long-range
adaptation. For fast short-range movements, an SLM hologram is
programmed to produce a single PSF that consists of three Gaussians.
Axially, one of the Gaussians is placed on the focal plane while the
other two are shifted 400nm out of focus in each direction. In the xy-
plane, theGaussians are spacedon the perimeter of a circlewith a 2μm
diameter. An aperture is placed after the EODs at an intermediate
image plane. This aperture selects only the center part of the circle.
When activating the EODs, oneof the threeGaussians ismoved into the
circle center to produce the excitation pattern in one z-layer while the

other two Gaussian are blocked by the aperture. Switching to a new
axial layer is done by removing the Gaussian from the circle center and
replacing it with one of the other. During tracking, a 50kHz pulse
schema is used for excitation. The first 10μs, while the laser is off, is
used for moving the beam into place within the aperture and the
remaining time is used for excitation. When shifting between z-layers,
an extra 10μs is used for beam movement by blanking out one laser
shot. The pattern used is a 13-point xy pattern repeated on each of the
three z-planes plus 1 blank shot for each move between z-layers. The
reconstruction volume spans a volume of 950 × 950× 1390nm3. A
representation is found in Fig. 1b where each star indicates Gaussian
center positions and the interconnections represent the order of the
shots. Other patterns have been suggested, like the knight’s tour24 for
continuous beam scanning, but for our application, the rationale is the
following; the shots in a quadrant in the xy plane spanning the three z-
planes can by themselves be used for tracking reporters moving rela-
tively slowly, and duplicating this unit covers more volume which
enables us to keep the faster-moving reporters that are escaping the
center unit. Also, pattern scanning time is optimizedbyminimizing the
number of axial moves, which is done by completing one axial layer
before moving to the next. The restriction of 3 Gaussians is only cho-
sen for simplicity to illustrate the principle and to keep the time
resolution high while covering a large volume. There is no direct lim-
itation by adding one or two more Gaussians which will create 1 or 2
more z-layers. This will have a negative impact on the time resolution
but increase the overall spatial resolution (mostly in the axial direc-
tion). The pattern used is an empirical optimization where the inner
cube without the center shot is enough for slow reporters and is a
Gaussian MINFLUX configuration. Adding a second cube outside of
this with the samebeam spacing expands the volume to accommodate
fast reporters.
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Fig. 1 | Optical setupand tracking concept. a Illustrationof theoptical setup, laser
excitation path with amplitude modulation, spatial light modulator (SLM) for PSF
engineering, and electro-optic deflectors (EOD). Following the excitation light path
after the dichroic mirror, a piezo-driven tip/tilt mirror scanner is used for long-
range scanning, the light path ends with an objective and sample. Collected
fluorescence is de-scanned by the tip/tilt mirror and passed through the dichroic
mirror, fluorescent filters, and ends with a confocal detection based on single
photon counting avalanche photodiodes.bTracking pattern created by the EODʼs .
On the left is a view of the pattern from the top, and on the right viewed from the
side. Stars indicate the placement of the Gaussian focal points. c Graphical repre-
sentation of the real-time and data post-processing. Real-time; The PSF is shaped at

the back focal plane (BFP) so that the desired PSF appears at the focal plane (FP).
The center part of the PSF is selected by a 2μm circular aperture, the tracking
pattern is created by moving, using the EODʼs, desired part of the PSF into the
center area where the reporter is exposed, simultaneously the aperture blocks the
remainingpart of the PSF. Emittedphotons are detected andprocessedby thefield-
programmable gate array (FPGA) to obtain a new piezo position. Post-processing
(left to right); the PSF is sampled as a z-stack which is interpolated, and processed
with the EOD pattern and piezo center. Along with the photon counts, this fully
reconstructs the illuminationpattern andgives theparts necessary for constructing
the likelihood.
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Emission from each laser shot is recorded by the SPC-APDs and
processedby afield-programmablegate array (FPGA). The FPGA is used
to raster scan the sample, find tracking reporters, produce the tracking
pattern, update the tip/tilt-piezo mirror position by calculating a cen-
troid, as well as bundle all necessary data to be sent to the computer.

For a pattern of Gaussians, a centroid calculation is an optimal
position estimator and this is implemented in the FPGA for piezo
repositioning. The centroid calculation is an efficient and simple
method, but by itself, it does not give an accurate position estimation
since the true PSF is not a true Gaussian. Instead, the trajectory esti-
mation is recalculated in a post-processing step by minimizing the
cross-entropy together with the priors, see Eq. (8), to estimate rp. To
do this, we measure the true excitation PSF, Φi, by acquiring an over-
sampled image z-stack using the EMCCD camera. The image z-stack
has voxels of the dimension 80 × 80× 50nm3 and to avoid quantiza-
tion error due to voxel size, we interpolated the z-stack to obtain
10 × 10 × 10 nm3 voxels; details of how we sample the z-satck and
interpolate are described in the Methods PSF engineering section.
Together with the EOD pattern, the tip/tilt-piezo position, and the
photon counts {ni}, we reproduce the sequence of PSFs {Φ(r − ri)} used
for tracking and then calculate our position estimation by Eq. (8).

Experimental evaluation in combination with simulations
Evaluation of the real-time tracking system and post-processing is
accomplished by tracking immobilized 20nm beads moved with a
piezo stage. Thebeads are immobilized in agarose andmountedon the
sample stage. The stage is programmed to move in a circle with a
radius of 1μm, and perform a sinusoidal pattern with a peak-to-peak
amplitude of 0.5μm in the axial direction. Both movements have a
duration of 1 s with a subsequent 0.5s pause before the motion is
repeated. The bead tracking result is compared to simulated tracking
of a fictive fluorescent particle traveling in a path similar to that of the
immobilized beads, where the simulated photon counts are generated
by the experimentally acquired PSF. These photon counts and PSF
positions are then run through the same post-processing as the bead

data. In typical experiments, the photon rate is around 60 kHz when
the fluorophore is excited with an average power of 24μW per PSF at
the back focal plane of the objective. At this count rate, the spatial
resolution is on average 67 nm in the lateral and 109 nm in the axial
direction with a time resolution of 0.84ms (Fig. 2a, b). To see how the
resolution scales with the photon count rate, we apply an exponential
moving average over the likelihood (Eq. (3)) during the reconstruction,
see “Methods” Likelihood exponential averaging section. When com-
paring the bead tracking with the simulations (Fig. 2c), we find that the
tracking error is larger for the beads compared to the simulation,
although the overall trend is preserved. To further investigate the
resolution, we calculated the CRB, see Supplementary Note 6. This
suggests that the pattern used is producing a smooth and flat resolu-
tion limit in the interior of the tracking volume. In general, the piezo
stage appears to follow the prescribed path; however, closer inspec-
tion shows clear oscillations in the reconstructed path and that the
stage overshoots its mark at the start and end of the pause. We attri-
bute this behavior to the stage’s underdamped feedback loop aswell as
vibrations induced by the stage motion. These behaviors negatively
affect the resolution estimation and imply that the true resolution is
likely closer to the theoretical limit of 41 nm lateral and 95 nm axial
observed in the simulation. During actual single-molecule tracking, the
stage is stationary in the lateral direction and onlymoves very slowly in
the axial direction. To furthermitigate anypossible stage problems,we
turn off the stage piezo feedback system and monitor z-axis dis-
placements with a 980nm laser which is totally internally reflected at
the glasswater interfaceduringmeasurements. This approach reduces
any stage-induced movements and means that our experimental
resolution is better than what can be obtained by tracking a bead
moved by the piezo stage. For further implementation details and
validation tests, see Supplementary Note 6.

Simulation in E. coli geometry
To get an estimation of the system’s ability to track molecules within
cells, we make a diffusion simulation in a replicated E. coli geometry.

Fig. 2 | Resolution test and comparison to simulation. a Tracking of beads fixed
in agarose, thepiezo stage is programmed to trace circleswith an x, y-radius of 1μm
and a z peak-to-peak oscillation of 0.5 μm. Upper left; Trajectory estimated x (red),
y (green) and z (blue) coordinates with a temporal resolution of 0.84ms. Upper
right; distribution of SD over the trajectory between estimation and a moving
average with a window size of 100 points. Bottom left; photon counts per locali-
zation which corresponds to 60 kHz photon count rate. To the right is the photon
count distribution. b Similar to a but for a simulated trajectory with an x,y-radius of

0.75μm and a z peak-to-peak oscillation of 0.5μm, the error distribution (upper
right) is here the distance to ground truth. c Resolution as a function of photon
count rate for x (red), y (green), and z (blue), solid lines are for the bead data, and
dashed lines correspond to the simulations. Each point is the SD of the distance
histogram in a and b. These, are obtained by increasing the exponential moving
average of the likelihood. d 3D point scatter plot of the estimated (left) and
simulated (right) trajectory. Source data are provided as a Source Data file.
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We use a three-state model with a fast diffusion state (6μm2s−1) cor-
responding to a free protein in the cytoplasm, a slow diffusion state
(0.1μm2s−1) corresponding to long-lived binding to a larger complex,
and a short-lived state with intermediate diffusion (1.4μm2s−1) repre-
senting interrogations of possible binding sites. See Supplementary
Note 5 for the model parameters. The simulation generates 100 tra-
jectories of random lengths between 50 to 800ms and incorporates
motion blur by updating the particleposition for each new laser shot in
the tracking pattern. In Fig. 3a, a trajectory is shown with its photon
counts and distance to the ground truth. The 3D trajectory is seen in
Fig. 3c inset where black is the ground truth and the yellow line is a
track with 0.84ms time resolution. The error is larger compared to the
bead tracking in Fig. 2 for the same photon count, which is mostly due
to motion blur in the fast-moving parts of the trajectory. In the slow-
moving parts of the trajectory, the position estimation is more
accurate.

Evaluation of diffusion rates
To analyze each trajectory, a point estimator for diffusion rate is
derived for short intervals over the trajectory. We build on the cov-
ariance estimator (CVE) approach derived by Berglund et al. and
related works25–27, and expand their work by incorporating an arbitrary
time lag (j) within the theory and deriving alternative point estimators.
The reasoning here is that in a single step, a trajectory with high
temporal resolution at low photon counts is plagued by positioning
noise and will benefit from a larger time step to let the diffusion step
grow while being less influenced by the localization error. By moving
up in the mean square displacement (MSD) curve, changes are accu-
mulated and the positioning error is less dominant. The mean square
displacement over an estimated trajectory {Xk} is given by the mean
over the square of steps Δk,j = Xk+j − Xk and was shown by Berglund25 to
beof the form Δ2

k,j

D E
k
=2Dðj � 2RÞΔt + 2σ2 when includingmotionblur

and localization error.Here hik denotes themeanover theparameter k,
D is the diffusion constant, j is the number of steps, R is a blur factor,Δt
is the timeof a single step, and σ is the positioning error. They continue
and show that the covariance matrix between single steps, Δk,1, has

non-zero elements in the first off-diagonals. They use this relation to
derive a point estimator for diffusion. In their treatment, the first step
in the mean square displacement is given by the diagonal elements,
and by taking the mean over the diagonal elements, they get the first
point in themean square displacement curve. Here we generalize their
result further and obtain the covariance matrix for any time lag j and
covariance between the steps Δk,j. For derivation details, see Supple-
mentary Note 2. After some calculations, the generalized covariance
matrix is given by

Δk,jΔk0 ,j

D E
=

2Dðj � 2RÞΔt + 2σ2, ∣k � k0∣=0
2Dðj � ∣k0 � k∣ÞΔt, ∣k � k0∣< j

2DRΔt � σ2, ∣k � k0∣= j
0, ∣k � k0∣> j

8>>><
>>>:

ð4Þ

where j >0 and

R=
1
Δt

Z Δt

0
SðtÞ 1� SðtÞð Þdt ð5Þ

which is the blur factor with SðtÞ= R t0 sðt0Þdt0 with sðt0Þ as the shutter
function. The covariance matrix, Eq. (4), tells us that moving along the
mean square displacement curve (increasing j) indeed generates more
non-zero off-diagonal elements, fromBerglund’s single step (j = 1) with
a single off-diagonal to a band of width 2j for a step size of j. It is worth
noting that the localization error (σ) is not present for the terms in
between the main diagonal and the last. Deriving a simple estimator
from this covariancematrix can be done in several ways. The CVE from
Berglund et al. is obtained by solving for D and σ2 when j = 1.
Alternatively, but more complicated and computationally heavy, one
can construct a maximum likelihood estimator similar to Shuang
et al.27 but spanning more than one j step. See Supplementary Note 3
for a discussion on this topic. However, for our analysis, we note that
for j > 1, the off-diagonals between 0< ∣k � k0∣< j are all independent of
σ, and a simple estimator for diffusion would be to solve for D and σ2

for a fixed value of ∣k � k0∣. For the first off-diagonal, ∣k � k0∣= 1, and a
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Fig. 3 | Tracking simulation in an E. coli-like geometry. Example trajectory with
HMM analysis of 100 simulated trajectories. aUpper left; example trajectory with x
(red) y (green) z (blue) estimated position coordinates with corresponding photon
counts (bottom). Upper right; the deviation away from ground truth with the SD of
the distribution in the legend, (bottom) is the photon count distribution. b Left;
ECVE diffusion point estimation (gray) along the trajectory in (a), ground truth
diffusion is in green, and the HMM prediction in red. Right; the distribution of

estimateddiffusions over the trajectory in (a). cDistributionof all ECVEvalues from
100 trajectories. The 3 state HMMmodel prediction of the emission distributions is
plotted on top of the histogram, and the inverse-gamma mean and SD of each
emissiondistribution is reportedwith standard error fromabootstrap analysisover
trajectories in the legend. Inset, 3D representation of the cell volume with ground
truth trajectory in black and the estimated path in yellow. Source data are provided
as a Source Data file.
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time lag of j, the estimator is

~Dj =
Δk,jΔk0 ,j

D E
1

2Δt � ðj � 1Þ
ð6Þ

where hi∣k0�k∣is the mean along the ∣k0 � k∣= 1 off-diagonal of the
covariance matrix, Eq. (4). We will here refer to this estimator as the
extended covarianceestimator (ECVE). The localization error, σ, can be
estimated by inserting the diffusion estimation ~Dj into the main
diagonal, ∣k0 � k∣=0, and solving for σ2. The ECVE estimator is
compared to the CVE and the MSD in Supplementary Note 2. The
conclusion is that the ECVE ismore robust in presenceof noise and has
less bias compared to theMSDwhen evaluated over short sections of a
trajectory.

Applying diffusion estimator to simulated data
For diffusion analysis of simulated trajectories, we use the ECVE with a
time lag of j = 8 and averaging over 16 points. The distribution of all
ECVE values is shown in Fig. 3c. By the shapeof the histogram, it is clear
that it comprises at least two distributions. The first distribution seems
to fit well with the slow state, while the second distribution has a peak
situated between the intermediate and the fast state. This is expected
since the short-lived intermediate state cannot be resolved by the time
steps used in the ECVE; a mixture between the intermediate and the
fast state is anticipated. In the gray example trajectory shown in Fig. 3b,
a clear transition between a slow and a faster state can be seen. The
ground truth trajectory (green) confirms the inability to resolve the
intermediate and fast states. It is also evident that the ECVE for
the higher-diffusion parts of the trajectory is between the fast and the
intermediate state. Using all 100 trajectories of the E. coli cell simula-
tion, we train a 3-state HMM assuming inverse-gamma emission dis-
tributions. In Fig. 3b, the red trace is the predicted Viterbi path, and in
Fig. 3c, we show the distribution of all estimated diffusion values
together with the predicted inverse-gamma distributions from the
trained HMM. However, it is clear that the predicted Viterbi paths do
not reflect thedynamicsof the true interplay between the intermediate
and fast states of the HMM model. Two major distributions can be
identified in the histogram. The slow distribution has a mean diffusion
of 0.18 ± 0.02μm2s−1 (ground truth 0.1μm2s−1), with the standard error
obtain from bootstrapping over the set of trajectories (see Supple-
mentary Note 4) and 48 ± 9% occupancy (ground truth 43%). The fast
state has a mean diffusion of 2.87 ± 0.21μm2s−1 (ground truth 6μm2s−1)
and 45 ± 6% occupancy (ground truth 39%). A third state can be iden-
tified between the two main distributions with a low, 7 ± 9% (ground
truth 18%), occupancy and a mean diffusion of 0.74 ± 0.36μm2s−1

(ground truth 1.4μm2s−1). The short dwell time of the intermediate
state is the main reason for the ECVE and HMM’s difficulties to find
accurate model parameters. In Supplementary Note 5, we prolong the
dwell time of the intermediate state and show that a more accurate
HMM model fit is obtained.

Measurements on E. coli trigger factor
The methods developed above are applied to live-cell single-molecule
intracellular tracking of the E. coli Trigger Factor (TF) chaperone sys-
tem. One of TF’s functions is to bind to translating ribosomes close to
the peptide exit tunnel where it is believed to prevent misfolding of
nascent chains during ongoing protein synthesis28. Previous studies
have captured the binding dynamics of TF and found a rapidly dif-
fusing free state and a ribosome-associated state with slower diffusion
due to the large effective size29. TF binds to the ribosome surface via its
N-terminus. Hence, in order to track TFs in vivo, a reporter protein
(HaloTag) was genetically fused to the C-terminus of TF, creating a TF-
HaloTag fusion. HaloTag covalently binds fluorescent ligands, such as
theorganic Janelia Fluor dyes30, via a chloroalkane linker31. As a control,
we constructed a mutant TF in which residues 44–46 (FRK) are

exchanged to AAA. These mutations have previously been shown to
abolish ribosome binding32, and we also observe that the wild-type TF-
HaloTag fusion can compensate for deletion of endogenous TF,
whereas the mutant TF-HaloTag fusion cannot (Supplementary
Fig. 19). For details on the fused HaloTag andmutant construction, see
the “Methods” Strain construction and samplepreparation section and
Supplementary Note 10. Tracking experiments were performed with
both the wild-type and the mutant. See Supplementary Note 10 for
measurement routines. Example trajectories are shown in Fig. 4. These
trajectories are selected to show thedynamical behavior of theWTand
the mutant TF, respectively and for that reason, they are longer than
the average trajectory. All trajectorieswerefitted to a 3-stateHMM(see
Fig. 4a, right side) where the identified HMM is plotted together with
the diffusion histogram. For the wild-type (see Fig. 4a), we frequently
observe two states at low diffusion, which are interrupted by occa-
sional periods of high diffusion. The occupancies for the slowest
(0.32 ± 0.02μm2s−1) and the intermediate (0.86 ±0.12μm2s−1) states
are 35 ± 6 and 44 ± 7%, respectively and constitute the majority of the
events. Only 21 ± 3% of the time, TF is in a faster state (2.67 ± 0.20 μm2s
−1) exploring a larger volume. Considering that elongating ribosomes
and free ribosomal subunits have been found to diffuse at
0.03–0.6μm2s−133–35, we hypothesize that the two slower diffusion
states found by the HMM represent TF bound to ribosomes and/or
ribosomal subunits, whereas the fastest state represents freely diffus-
ing TF. The diffusion rates of the two slowest TF diffusion states is high
compared to results from camera-based ribosome tracking. This dis-
crepancy can probably be explained by the trade-off between being
responsive to rapid movements and at the same time tracking very
slowobjects at a relativly lowphoton count rate. To give an estimate of
this effect, we track a stationary bead at a photon count rate of
50–60 kHz and a tracking time resolution of 0.84ms. The diffusion
histogramof this stationarybead is scaled and superimposedon theTF
diffusion histogram. As seen in Fig. 4 (beaddata), the beaddistribution
has a mean of 0.25μm2s−1 and a standard deviation (SD) of 0.33μm2s−1

which indicate that the slow TF-diffusion states found by the HMMare
likely overestimated. For the mutant TF, which has a lower affinity to
ribosomes, HMM fitting of the diffusion trajectories suggests a single
slow state (0.46 ±0.05μm2s−1) with low occupancy (14 ± 3%) and two
fast states with much higher diffusion than would be expected for
ribosome-bound molecules (35 ± 5% at 2.31 ± 0.17μm2s−1 and 51 ± 5% at
4.81 ± 0.19μm2s−1, respectively). Both the bead and mutant controls
reinforce the assignment of the two slower diffusion states in the WT
tracking as ribosome binding events. To verify that the whole experi-
ment is reproducible, a secondmeasurement has been conducted. The
data, presented in Supplementary Note 7, shows that the results pre-
sented here are reproducible.

As a photon flux optimization effort, we alsomeasured the TF and
TF mutant with a tracking pattern where the center shot is removed,
leaving a hole in the pattern center. The working premise here is that
by increasing the distance between Gaussians, the center part of the
pattern would be configured for higher resolution at a fixed photon
flux. The overall diffusivity results are similar to what is obtained with
the full pattern, see Supplementary Note 8. We also noted an increase
in the trajectory length for the wild type, see Supplementary Note 9,
since the system manages to bring down the photon flux by placing
slow-moving reporters at the centerwhere the light intensity is low.No
obvious resolution enhancement is observed, but this might be con-
voluted with the decrease in photon flux at the center.

Discussion
Single-molecule 3D tracking at the temporal and spatial scale where
intracellular biochemistry occurs is highly sought after. Traditional
camera based 2D imaging have limitations such as; frame rate, mole-
cules moves out of focus, and limited possibilities to optimize the
photon information content. Real-time tracking systems mitigate
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these limitations, but sacrifice tracking throughput by its limited
possibility in simultaneous tracking of molecules. We have here pre-
sented a real-time 3D-tracking system capable of tracking fluorescent
reporters diffusing up to 10μm2s−1 within E. coli bacteria. Fast 3D
tracking is enabled by mitigating the workload of inertia-carrying
components, like piezo-driven mirrors and stages, resulting in less
physical movement when adapting to the fluorescent reporter posi-
tion. There are two obvious motivations for this. Firstly, mechanical
systems are slow and might induce vibrations and noise in the mea-
surements that are difficult to separate from the tracking signal. Sec-
ondly, when tracking a diffusing molecule, the randomness in motion
is not well suited for amechanical systemwhich carries inertia. Using a
large tracking pattern helps reduce the strain in the mechanical sys-
tems and faster molecules can be tracked. Our implementation is
based on a single large excitation PSF pattern and cross-entropy-based
reconstruction to estimate the position of the reporter over a
950 × 950 × 1390nm3 volume, achieving a spatial resolution of at least
62 × 73 × 109 nm3 at a photon count rate of 60kHz. For the short-range
z-axis beam positioning, we adopt a method which removes the need
for aTAG lens or similar for fastbut short-range z-scanning. Instead,we

construct a single PSF consisting of three Gaussians at different x, y, z
locations. With only 2D movement from the EODs, the PSF area cor-
responding to different z-layers is brought into the tracking areawhere
a fluorescent reporter is exposed. For long-range axial coverage, the
piezo stage is adaptivelymoving to keep the reporter close to the focal
plane where the photon collection efficiency is highest. Our system is
adapted for bacterial cells with a narrow axial profile, but extending to
mammalian cells is possible by optimizing the piezo stage for accurate
and faster active refocusing. The current speed limit of the system is
mostly the update rate of the pattern (0.84ms for 42 shots). There is a
general trade-off between the time-spatial resolution and the volume
coverage necessary to keep the reporter within the tracking volume.
Currently, systems tracking fast reporters tend to adopt larger pat-
terns which lowers the temporal and spatial resolution. Systems
tracking slow reporters can have smaller, spatial-resolution optimized
tracking volumes which allow for a high positioning-estimation rate.
To some extent, the speed limit of the system is also dependent on the
specific PSF used. Our choice of a Gaussian PSF is mostly due to con-
venience as Gaussians are easy to create and the simple photon count
centroid estimation provides a position estimation that can be
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Fig. 4 | Tracking WT and mutant TF in E. coli cells. After the microscope cali-
bration, we conducted two experiments on the same day: one experiment for the
wild-type TF where 432 trajectories were acquired from 174 cells, and a second
experiment for the mutant TF, where 721 trajectories were acquired from 177 cells.
For each sample type, wild-type a and mutant b, an example trajectory (left) are
shown together with the distribution of the accumulated diffusion histograms over
all measured trajectories of each type (right side). For each horizontal, the center
image is the widefield cell image (black bar 1μm) with estimated trajectory color-
coded over time, and the inset is the 3D trajectory with a cell membrane repre-
sentation based on the widefield image. The left plots, for the same trajectory
shown in the center image, are from the top; position estimation, point-wise

diffusion estimation (gray) with HMM Viterbi path (red), and photon counts in the
bottom plot. Right plot; in dark blue is the histograms over all diffusion estimates
acquired for the WT or Mutant together with the HMM emission distributions. The
light blue overlaid histogram is the diffusion estimated distribution for stationary
beadswith the nanoMax stage in the closed loop configuration, which indicates the
lower detection limit at this photon count rate, see also Supplementary Fig. 11. In
the histogram, the legends are the mean diffusion values and SD for each HMM
estimated distributionwith standard error from bootstrapping, as well as themean
and SD of the light blue bead data distribution. Source data are provided as a
Source Data file.
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efficiently implemented within an FPGA for piezo updates. The draw-
back is that the EOD systemmust move each Gaussian a long distance,
leavingmuchof the volumeuninterrogated for long periods of time. In
our case, more than half of the time is spent moving the beamwithout
interrogating the reporter. Pulsed interleaved systemsmay circumvent
this issue but may be difficult to achieve for larger patterns. Our
method together with a more optimized PSF offers an alternative.
Moving away from Gaussian beams and instead using a large resolu-
tion- and speed-optimized static pattern, which has a break in trans-
lational symmetry, offers the possibility to shorten the timeneeded for
beam positioning. A first attempt at pattern optimization wasmade by
removing the center shot of the pattern. Although the resolution test
(Supplementary Fig. 14) shows a closer agreement with the simulation,
this simulation does not show any obvious benefits in resolution
compared to the simulation with the full pattern (Fig. 2). What was
observed, when tracking the TF with this reduced pattern, was longer
trajectories for thewild-type, since the systemmanages topark the low
excitation intensity center over a stationary reporter.

The cross-entropy principle has here been presented for the
special case of positioning, but Eq. (3) is not limited to PSFs and
positioning. The principle is equally applicable to polarization, wave-
length, or other properties where the detected photons obey Poisson
statistics and can be related to a known emission/transmission profile
that can be altered in a deterministic way.

Extracting valuable information from the tracking data is of equal
importance as trajectory building. Molecular dynamics at the single-
molecule level can be detected by several approaches, including;
multi-color tracking36, Fluorescence correlation spectroscopy (FCS)37,
Single-molecule Förster Resonance Energy Transfer38, and polarization
enhanced FCS13. Attempting to extract information about the binding
state by measuring the polarization of the light emitted from the
reporter fluorophore was conducted during our experiments but did
not reveal information about the conformational changes in the TF
when binding to the ribosome. Still, detecting a correlation in con-
formational states and polarization signal might be possible by intro-
ducing a bifunctionally attached dye and acquiring time-tagged
photon data for polarization-FCS analysis of trajectories as in ref. 13.
Although polarization data might carry information about the binding
state of the molecule, we did not pursue this path further. Instead, we
focused our analysis on the problem of extracting diffusion rates from
positioning data on short time intervals. It was found that the MSD
gives a poor estimation for this type of problem. The MSD is better
suited for systems with only one diffusion rate and a small localization
error. The CVE offers an alternative, but since it looks at single steps,
big differences in the diffusion rates are required in combination with
small localization errors. We introduced the ECVE which connects the
MSD and CVE. It gives us the possibility to move up in the MSD curve,
where the difference between diffusion rates is more distinguishable,
and use the correlations in the covariance matrix to extract the diffu-
sion rate with relatively few data points. An obvious drawback of
analyzing displacements over longer time intervals is that we need to
assume that the diffusion states have long enough dwell times; if this
assumption is not valid, only an average between the diffusion rates
will be seen.

In conclusion, we have reached sub-millisecond 3D tracking of
rapidly movingmacromolecules in bacteria, but we cannot yet resolve
short-lived state transitions at this time scale. However, we do believe
that the improvements discussedherehave the potential to bridge this
gap and reach the desired time and spatial resolution where macro-
molecular interactions occur.

Methods
Optics and hardware implementation details
The scanning/trackingmicroscope software implementation is custom
built and based on Labview and Labview FPGA. The EMCCD camera is

operated under MicroManager and the focus-tracking system is con-
trolled with a custom Python script.

A detailed view of the real-time tracking microscope is shown in
Supplementary Fig. 20 and a tablewith the equipment used is found in
Supplementary Table 1. The working principle of the microscope is as
follows; an amplitude modulator based on a Pockel-cell is used for
pulsing the laser, this is followed by a TEM00 mode cleaner imple-
mented by a pinhole. From here the beam is expanded and projected
on an SLM where we tailor the PSF of the system, see the Method PSF
engineering section. Following the beam, we enter into the first x/y-
scanning stage based on EODs. After exiting the first scanning stage,
we clean the polarization and rotate the light by half and quarter wave
plates. This brings us to the dichroic mirror, which is directly followed
by the second scanning stage, a tip/tilt piezo system. From here we
bring the laser light to the objective and the sample piezo stage. Col-
lected fluorescence is de-scanned by the second scanning system and
transmitted through the dichroic mirror and focused through a pin-
hole, light is then brought to a wollaston prism and finally to the
SPC-APDs.

For widefield imaging the excitation light is coupled to a multi-
mode fiber and at the fiber exit a rotating diffuser is used before
entering the microscope through a flip mirror. An EMCCD camera is
used for alignment and viewing samples.

Monitoring the sample axial position is done by a 980nm laser
that is passing through the objective in totally internally reflected
configuration, the reflected light is collected by a CMOS camera which
is triggered each 7.56ms by the FPGA during tracking.

The real-time tracking system is implemented on an National
Instruments PCIe-7852R FPGA. The timing schematic is shown in
Supplementary Fig. 21. Three loops are used; thefirst loop is the 50 kHz
loop that controls the piezo and EODposition, this loop is also used for
switching between scanning- and tracking-mode. The second loop, is a
photon time tagging loop which is running at 200MHz. This time-
tagging loop controls the laser intensity, delays between laser on/off
states and the photon measurement on/off states, sampling the piezo
stage position, photon time-tagging, and photon accumulation over
the measurement window. The third loop calculates a centroid esti-
mation based on a sliding window over two full tracking patterns. This
calculationgives thedistance to the tracking patterncenter and is used
in a PID controller, which produces a compensation signal to keep the
reporting particle within the tracking region. The PID signal is sent to
the first loop, whichwill update the piezo position. PID parameters are
tuned by handwhile tracking beads andmonitoring the sampled piezo
stage signal to avoid large oscillations. When the system is not track-
ing, a raster scanning is performed. While scanning, the system sear-
ches for a tracking candidate. The switch to trackingmode is triggered
by a photon count threshold.

PSF engineering
We engineer the PSF for the excitation light with a spatial light mod-
ulator (SLM). The laser is expanded to fill the SLM where a computer-
generated hologram (CGH) is drawn. Using the Weighted Gerchberg
Saxton algorithm39 in combination with aberration corrections pat-
terns, we create three Gaussians at different axial depths.

The z-stack of the engineered excitation PSF is obtained by a
reflecting sample placed on the piezo stage. Further, by replacing the
emission filter with an OD1 neutral density filter, one can observe the
laser reflection onto the EMCCD camera. To test that the dichroic
mirror only attenuates the laser and not alter the PSF we place a 50/50
beam splitter between the dichroic and objective. This allows us to
sample the PSF with a camera before passing through the dichroic
mirror, and confirms that sampling the excitation light through the
dichroic mirror can be done. The z-stack is sampled by moving the
piezo stage in steps of 25nm through the PSF (50 steps), this gives a
z-stack range of 2.5μm with 50nm between image planes and the in-
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plane camera resolution of 80nm. When creating the PSF we are dif-
fraction limited by the EPI-illumination of the objective, and thus we
can safely assume that the light field will be smooth at this scale. The
z-stack voxels of size of 80 × 80 × 50 nm3 is larger than desired, and to
avoid quantization error the z-stack is interpolated to obtain
10 × 10 × 10 nm3 voxels and cropped to a volume of suitable size.
Interpolation is done in two steps, first in z and then in the xy-plane.

To interpolate over the z-axis, a phase retrieval is doneby adouble
weightedGerchberg Saxton algorithm40,41 which iterates between each
pair of adjacent images in the z-stack. After phase retrieval the z-stack
represents a light field stack with phase information for each z-stack
image. By forward andbackwardpropagationof the lightfieldbetween
two adjacent z-planes and taking the linear interpolationaverage of the
two light field intensities one obtains any z-plane in between.

After z-interpolationeach z-layer is xy-interpolatedby theOpenCV
python package using the bicubic interpolation over 4 × 4 pixel
neighborhood.

Position estimation
During a measurement run, we obtain a set of photon counts, fn j

i g,
where an element n j

i is indexed by i∈ [1, . . ,m] corresponding to each
PSF Φ(r − ri) that builds up the full pattern, and j∈ [0, . . ,M − 1] which
are the amount of full patterns acquired during tracking. One full
pattern, see Fig. 1, consists of m PSF shots. In our implementation
m = 42 including the three blank shots which are defined to be zero for
both photons counts and PSF, thus these do not contribute to the
likelihood. Using the sampled PSF (see “Methods” section PSF engi-
neering) together with the tip/tilt mirror piezo position and the EOD
position we reconstruct the experimental measured PSFΦ j

i ðrÞ=Φðr�
r j
i Þ with known r j

i and discretized r over a grid of size
950 × 950 × 1390nm with 10 nm voxels.

Equation (3) can be restated as the negative log likelihood, and
with the indexing convention introduced above, it is transformed to

l jðfn j
i g

m

i= 1∣fΦ
j
i ðrÞg

m

i= 1Þ= � ln Cð Þ �
Xm
i = 1

n j
i � ln

Φ j
i ðrÞP

iΦ
j
i ðrÞ

 !
ð7Þ

here the second part can be identified as the cross-entropy. When
tracking slow moving reporters, at high signal-to-background ratio,
with a well behaving PSF in a small search volume, one can seek a
position estimation directly from Eq. (7) by
~r j
p = argminðl jðfn j

i g
m

i= 1∣fΦ
j
i ðrÞg

m

i= 1ÞÞ over possible positions r. However,
it is necessary to regularize Eq. (7) for larger search volumes when the
signal-to-background ratio is decreased and/or the tracking reporter is
fastmoving. One regularizationmethod is to useweak priors. Here, we
use time dependent physics motivated priors to regularize possible
estimations. We seek an estimator of the form

~r j
p = argmin�r l jðfn j

i g
m

i= 1∣fΦ
j
i ðrÞg

m

i= 1Þ+T j
c ðrÞ+G j

c ðrÞ+G j
r ðrÞ

� �
ð8Þ

whereeachof the threepriors aredefined in thenext threeparagraphs.
For the first prior, T j

c ðrÞ, in Eq. (8) we bound the fluorophore
photon efficiency (Eq. (2)) to exclude regions that fall outside an
expected range. Given a photon measurement sequence the prior will
effectively exclude regions in the search volume that has afluorophore
photon efficiency that is too high or too low. This binary map, after
taking the logarithm, is given by

T j
c ðrÞ=

0 if cmin <
Pm

i= 1
n j
iPm

i= 1
Φ j

i ðrÞ
< cmax

1

8<
: ð9Þ

where cmin and cmax are selected depending on the pattern and PSF
shape used. In practice T j

c ðrÞ is independent of j, but there might be
situationswhere the PSF pattern is eithermoredynamic and the binary

maps are not the same between j’s or that bounds need to change
depending on the tracking situation. In our experiments, the upper
bound is set high enough to not affect the likelihood.

For the second prior, G j
c ðrÞ in Eq. (8), a more dynamic but tighter

constraint is of interest for the fluorophore photon efficiency. Over a
longer time span, it is assumed that the mean photon counts per exci-
tation power is changing rather smoothly. To incorporate this as a weak
prior we make an exponentially weighted mean of c values obtained
from estimated positions ~r j

p, this is defined in a recursive way by

ĉð~r j
pÞ=

0 for j =0

ð1� γcÞ � ĉð~r j�1
p Þ+ γc � cð~r j�1

p Þ for j >0

(
ð10Þ

where γc is the weight parameter, and is set to have a long tail that will
average over blinking events. With this averaging, a gaussian prior is
constructed and after taking the logarithm gives

G j
c ðrÞ=

0 for j =0

1
2�σ2

c
ĉð~r j

pÞ �
Pm

i= 1
n j
iPm

i = 1
Φ j

i ðrÞ

� �2

8><
>: ð11Þ

whereσc is afixed parameter defining the allowed spanof the gaussian.
The thired and last prior,G j

r ðrÞ in Eq. (8), is a gaussian prior on the
previous position estimation. Its effect is to suppress long jumps,
assuming that the next position estimation is probably close to the
previous estimated positions. Here we use an exponentially weighted
mean on the previous estimated positions

r̂ð~r j
pÞ=

center position for j =0

ð1� γr Þ � r̂ð~r j�1
p Þ+ γr � ~r j�1

p for j >0

(
ð12Þ

where γr is the weight parameter, and is here chosen to have a short
tail. The prior is then given by

G j
r ðrÞ=

0 for j =0

1
2�σ2

r
r̂ð~r j

pÞ � r
� �2

8<
: ð13Þ

whereσr = (σx, σy, σz) is a fixed vector of values defining the reachof the
gaussian. The value is set depending on the sampling speed in relation
to expected max diffusion. We use a full width half maximum of
470nm at 0.84ms full pattern update rate, and this corresponds to an
upper limit of 24μm2s−1 for the possible diffusion rates.

Likelihood exponential averaging
Increasing the resolution can be done by increasing photon counts. In
post-processing we can sacrifice timing bandwidth assuming that the
reporter is moving slowly. A way to indirectly do this is to take the
mean of estimated positions to get a refined position. Or one can sum
photon counts emanating from several PSF shots at a position and
estimate a positions with these photons. Here, we instead construct an
exponential averaging of the likelihood before adding any priors. The
benefit of doing this in this way is that one is updating the current
likelihood by taking into account the history of past likelihoods in a
trailing fashion. For this, we construct a likelihood with a tail as

l jtailðrÞ= rtail � l
jðfn j

i g
m

i= 1∣fΦ
j
i ðrÞg

m

i = 1Þ+ ð1� rtailÞ � l j�1
tail

ð14Þ

where rtail is howmuch tail that should be considered, if rtail = 1 thenwe
are only considering current data without any historical considera-
tions. Thepriors are only added after, thus thefinal positionestimation
is

~r j
p = argminrðl jtailðrÞ+T j

c ðrÞ+G j
c ðrÞ+G j

r ðrÞÞ ð15Þ
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This averaging is only applied when testing resolution for beads and
simulations, for all TF data we disable this averaging by setting the rtail
parameter to one.

Strain construction and sample preparation
Tracking of TF-HaloTag was performed in Escher-
ichia coli MG1655Δtig::kan in which tig, encoding Trigger Factor, was
deleted from the chromosomeby λRed assisted recombineering42 and
replaced by a kanamycin resistancemarker. Recombineeringwas done
using primers tig_del_F and tig_del_R (Supplementary Table 2) with
pKD4 (Addgene #45605) and K-12 MG1655 genome (accession
#U00096) as templates. The strain was supplemented with a pQE30-
lacIq plasmid encoding a TF-HaloTag fusion under the IPTG-inducible
T5 promoter, constructed by Gibson Assembly (New England Biolabs)
and primers tig_GA_F, tig_GA_R, pQE_GAtig_F and pQE_GAtig_R (Sup-
plementary Table 2). The TF stop codon was replaced by ggc, creating
a C-terminal fusion with one G linker. HaloTag was shown not to
interferewith the ribosomebinding function of TF (see Supplementary
Note 10). The TF-HaloTag FRK/AAA mutant plasmid was created by
mutagenesis PCR of the previously described plasmid with primers
tig_mut44_46_F and tig_mut44_46_R (Supplementary Table 2). All
constructs were verified by Sanger sequencing. Tracking experiments
were performed on uninduced cells, with only leakage level of TF, to
reduce the fluorophore signal.

Cells from a glycerol stockwere inoculated in Luria Broth (LB), 50
μg⋅ml−1 kanamycin and 100 μg⋅ml−1 carbenicillin and incubated at 37 °C
200 rpm overnight. The overnight culture was diluted 1:100 in 10 ml
fresh LB supplemented with antibiotics and grown at 37 ∘C with shak-
ing until OD600 reached ca 0.5. Cells were harvested at 4000× g,
washed in 1 ml M9 media supplemented with 0.2% glucose and
resuspended in 150μl EZ Rich Defined Medium (RDM, Teknova) sup-
plemented with 0.2% glucose and 0.1 μM Janelia Fluor-549 HaloTag
ligand. Cellswere labeled for 30minat 25 ∘C. Excessdyewaswashedoff
by adding 1 ml M9 followed by pelleting and resuspension in 1 ml M9.
The washing was repeated twice, followed by incubation in 2 ml RDM
at 37∘C with shaking for 60 min to further remove excess dye. After
incubation, cells were washed three additional times and resuspended
to an OD600 of 0.03 in RDM. The cell suspension was sparsely spread
onto a 2% agarose (SeaPlaque GTG Agarose, Lonza) pad in RDMwhich
had been prepared on a 76 × 26 mm microscopy slide (VWR) with a
1.7 × 32.8 cm Gene Frame (ThermoFisher Scientific) attached and
covered with a 24 × 32 mm high precision cover glass (ThorLabs).

Statistics & reproducibility
All experiments were conducted using the same set-up. All data are
acquired from cell samples by the following procedure: first we cali-
brate the microscope by optimizing the PSF and measuring the PSF
z-stack. The bead sample is then mounted and tracking of beads is
done to see that themicroscope is performing as expected. During the
microscope calibration cell samples are prepeard. After calibration the
cell sample is mounted, moving through the sample colonies coordi-
nates are registered, and a widefield image is taken. About 20 micro
colonies are registered for each sample. Each colony is then re-visited
to verify that the cells are growing. At this stage a new widefield image
is acquired together with a fluorescent image to verify that fluores-
cence is present. The sample is scannedbefore turningon the real-time
tracking. All data is saved before moving to the next cell colony. Each
experiment constitute of measuring both the WT and the mutant,
within the same day and with the same microscope calibration. Three
such experiments where conducted; two for the full pattern config-
uration and one with the patten missing the center laser shot. No
statistical method was used to predetermine sample size, the experi-
ments were not randomized and the investigators were not blinded to
allocation during experiments and outcome assessment.

Statistics are either presented as SD of obtained distributions, this
includes tracking errors and comparison of diffusion estimators. Or,
statistics are presented as estimated mean, SD, and occupancy from
the HMM model fitting where errors are reported as standard errors
obtianed by bootstrapping.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw data together with all analysis objects are available at https://doi.
org/10.17044/scilifelab.21602844. Strains are available upon request
to J.E. Source data are provided with this paper.

Code availability
Code developed for analyses is available at https://doi.org/10.17044/
scilifelab.21602844.
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