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Imputation-powered whole-exome analysis
identifies genes associated with kidney
function and disease in the UK Biobank

Matthias Wuttke 1,2,10 , Eva König 3,10, Maria-Alexandra Katsara1,
Holger Kirsten4,5, Saeed Khomeijani Farahani6, Alexander Teumer 7,8,
Yong Li 1, Martin Lang3, Burulca Göcmen1, Cristian Pattaro 3,
Dorothee Günzel 6, Anna Köttgen 1,9,11 & Christian Fuchsberger 3,11

Genome-wide association studies have discovered hundreds of associations
between common genotypes and kidney function but cannot comprehen-
sively investigate rare coding variants. Here, we apply a genotype imputation
approach to whole exome sequencing data from the UK Biobank to increase
sample size from 166,891 to 408,511. We detect 158 rare variants and 105 genes
significantly associated with one or more of five kidney function traits,
including genes not previously linked to kidney disease in humans. The
imputation-powered findings derive support from clinical record-based kid-
ney disease information, such as for a previously unreported splice allele in
PKD2, and from functional studies of a previously unreported frameshift allele
in CLDN10. This cost-efficient approach boosts statistical power to detect and
characterize both known and novel disease susceptibility variants and genes,
can be generalized to larger future studies, and generates a comprehensive
resource (https://ckdgen-ukbb.gm.eurac.edu/) to direct experimental and
clinical studies of kidney disease.

Chronic kidney disease (CKD) is a major public health concern
affecting ~10% of the global adult population1. Previous genetic studies
have either focused on identifying rare, pathogenic variants among
patients with suspected monogenic forms of kidney disease, or on
using genome-wide association studies (GWAS) in large population-
based studies to identify common susceptibility variants for CKD or
the most commonly used markers of kidney function and damage,
namely, the estimated glomerular filtration rate (eGFR)2–6 and the
urinary albumin-to-creatinine ratio (UACR)7–9. Initial studies of the

coding exomeor the whole genome to detect rare pathogenic variants
and risk genes for kidney dysfunction had limited power10,11. These
limitations can now be addressed through the availability of whole-
exome sequencing (WES) data from the UK Biobank12, and the possi-
bility of imputing the samples not sequenced but array genotyped at
the time this study started.

As the direct measurement of kidney function is not feasible in
population-based studies and clinical routine, the glomerular filtration
rate (GFR) is typically estimated from biomarker measurements and
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demographic information. The most commonly used biomarker for
GFR estimation is serum creatinine, a metabolite predominantly pro-
duced in skeletal muscle. More recently developed GFR estimating
equations also include cystatin C, a protein produced ubiquitously and
hence less dependent on muscle mass. Serum urea and urate levels,
metabolitesmainly produced in the liver, are also strongly reflective of
kidney function. Conversely, the UACR reflects damage to the glo-
merularfilter rather than filtration function, by quantifying the leakage
of albumin into the urine. Although creatinine and cystatin C have
been studied as two of thousands of outcomes in several phenome-
wide screens of the coding exome in the UK Biobank13–17, a dedicated
effort to assess associations with kidney function and disease by
leveraging different biomarkers and ICD-based CKD classifications has
not been performed. Moreover, the contribution of rare exonic var-
iants independently from common kidney function variants has
received little attention. Lastly, previous efforts have stopped short of
experimental validation of causal genes or variants.

Here, we use WES-powered imputation in the large white British
ancestry sample of the UK Biobank to increase sample size for studies
of the coding genome from 166,891 to 408,511. We discover rare var-
iants and genes associated with measures of kidney function and dis-
ease, namely creatinine- and cystatin C-based eGFR (“eGFRcrea” and
“eGFRcys”, respectively), serum urea (“urea”), serum urate (“urate”),
and theUACR in the general population.We validate ourfindings using
the full set of exome sequences from theUKBiobank thatwas released
over the course of this study, characterize our findings across different
kidney phenotypes and clinical definitions of CKD, identify cell types
and tissues in which the genes are highly expressed, explore the rela-
tionship of identified genes across the phenome, and experimentally
validate a previously unreported splice allele in CLDN10 as proof-of-
principle for imputation-powered discovery. This comprehensive
approach enabled the replication of many known kidney disease-
causing variants and genes that serve as positive controls, and the
discovery of variants and genes not previously connected to kidney
function and disease that represent promising candidates for experi-
mental follow-up. The results aremade publicly available as a resource
to the scientific community.

Results
WES-powered Imputation
Using available WES data of 166,891 samples as a backbone, we
imputed genotypes at 7,575,566 variants for an additional 241,620

individualswithoutWESdata, resulting in a total sample size of 408,511
individuals for exome-wide association studies (ExWAS; Methods).

Initial imputation performance was evaluated using 10,000 sam-
ples with WES data set aside from the imputation reference panel and
imputing their genotypes, allowing determination of imputation
accuracy for 2,191,400 imputed variants with a minor allele count
(MAC) of ≥1. The imputation accuracy at these variants measured as
the average squared correlation (R2) between sequenced hard call
genotypes and imputed allele dosages showed an overall median of
0.9971 (Q1 = 0.8787, Q3 = 1.0000; mean=0.8375, sd = 0.3119, Fig. 1a).
Very rare variants with MAC 2–5 achieved a median R2 of 0.9999
(n = 499,179; Q1 = 0.4995, Q3 = 1.0000; mean =0.7362, sd =0.4145).

The concordance (number of matching genotypes/total number
of genotypes) of homozygous reference, heterozygous, and homo-
zygous alternative genotypes basedon sequenced and imputeddata in
the validation sample was 0.9998, 0.9778, and 0.9877, respectively
(Fig. 1b). Very rare variants with a MAC of 2–5 in the reference panel
achieved a concordance of 0.99996, 0.5573, and 0.9569 for homo-
zygous reference, heterozygous, and homozygous alternative calls,
respectively. In this low MAC range, the vast majority (>99.9%) of
genotypes are (correctly classified) homozygous reference, and true
heterozygotes aremore frequently imputed ashomozygous reference,
leading to the relatively low concordance in this genotype class. The
true positive rate (TPR) and true negative rate (TNR), computed by
defining heterozygous and homozygous alternative genotypes (i.e.,
carriers of a given variant) as “positive” and homozygous reference
genotype (i.e., non-carriers) as “negative”, were 0.9817 and 0.9998,
respectively. The false negative rate (carriers incorrectly imputed as
non-carriers) was 0.0101, and the false positive rate (non-carriers
incorrectly imputed as carriers) was 0.0002.

Together, these comparisons show that study specific WES-
imputation enables the estimation of unobserved genotypes with high
quality even for very rare variants, providing a solid foundation for
subsequent association studies. The imputation quality of our study
based on an imputation reference panel of ~167 K individuals was
considerably higher than the imputation quality achieved in a previous
imputation effort that used a reference panel of ~50K individuals
(Fig. 1c)16.

ExWAS of kidney function traits identifies 158 rare variants
Results from ExWAS of the five continuous kidney markers and
7.5 million variants from 408,511 individuals of European ancestry

Fig. 1 | Imputationquality in 10,000validation samples and 2,191,400variants.
a Boxplots of the squared correlation (R2) of sequenced genotypes with imputed
dosages. Variants were binned based on their MAC (2–10) or MAF (≥0.0001) in the
156K reference panel, resulting in a mean of 157K (27–630K) variants per bin. The
boxes represent the first to the third quartile, the horizontal line the median, and
the whiskers extend to 1.5 times the interquartile range. b Mean genotype con-
cordance (number of matching genotypes/total number of genotypes) of the hard

call imputed genotypes with sequenced data for homozygous reference (HomRef),
homozygous alternative (HomAlt), and heterozygous (Het) calls. Variants were
binned based on their MAC in the 156K reference panel, resulting in a mean of
1.5 × 109 (3 × 108–6 × 109) hard calls per bin. c Mean squared correlation of
sequenced genotypes and imputed dosages using a reference panel of 156K indi-
viduals (this study) and a reference panel of 50K individuals (Barton et al.). Variants
were binned based on the MAC or MAF in their respective reference panel.

Article https://doi.org/10.1038/s41467-023-36864-8

Nature Communications |         (2023) 14:1287 2



showed no signs of unaccounted stratification (inflation factor λː
1.00–1.04, Supplementary Fig. 1; Methods). We identified 174 asso-
ciations at rare variants of minor allele frequency (MAF) < 1% and
MAC ≥ 5 that were significantly associated with at least one kidney
phenotype (p < 6.8 × 10−9; Supplementary Fig. 2, Methods). These
associations corresponded to 158 unique variants, of which 112 were
imputed (median imputation quality rsq =0.92, range 0.31–1.00) and
46were directly genotyped. Thirty-three variants were associatedwith
eGFRcrea (Supplementary Data 1a), 44 with eGFRcys (Supplementary
Data 1b), 11 with UACR (Supplementary Data 1c), 82 with urate (Sup-
plementary Data 1d), and fourwith urea (Supplementary Data 1e). Over
60% (106/174) of these associations were not significant (n = 102) or
could not be tested due to MAC< 5 (n = 4) when we performed a
sensitivity ExWAS that used only the ~167 K samples with WES, which
demonstrates the imputation-based increase in statistical power.

Of all 174 associations, 158 were phenotype-specific (Supple-
mentary Data 1; Methods) and are described in the subsequent para-
graphs. Between 30% (eGFRcys) and 62% (urate) of ExWAS variants
mapped into GWAS loci (index SNP ± 500 kb; Methods). To assess
whether any of the ExWAS results were driven by common (MAF > 1%)
variants identified by previous GWAS of the respective trait, ExWAS
were repeated while adjusting for the known common variants: effect
estimateswere largely unchanged as shown in Supplementary Fig. 3 (R2

estimates from regression analyses comparing unadjusted versus
adjusted effect estimates were 0.99 for eGFRcrea, 0.97 for UACR, and
0.98 for urate; Methods), indicating that most of the rare variants
tested in this ExWAS are statistically independent of known common
GWAS variants. Notable exceptions were observed for urate, where
effect sizes of rare variant associations in SLC2A9, the GWAS locuswith
the largest effect on urate18, were attenuated by more than 50% upon
common variant adjustment.

Rare variants associated with kidney function (eGFRcrea,
eGFRcys, urea)
To distinguish variants that are likely related to biomarkermetabolism
from those that are truly relevant for kidney function, we assessed the
overlap and direction of effects across the three kidney function
markers eGFRcrea, eGFRcys, and urea (Supplementary Data 1). We
prioritized 32 kidney function genes that showed (i) a significant
association with one or both GFR estimates, (ii) direction-consistent
effects, (iii) at least nominal significance (p <0.05) for the respective
other GFR estimate, and (iv) inverse associations with urea as well as
with an ICD-10baseddefinitionofCKD (Table 1; SupplementaryData 2;
Methods). Thirteen (41%) of these prioritized genes are known to
contain rare variants that cause monogenic diseases with a kidney
phenotype: CLDN10, CUBN,G6PC1,HNF4A, LRP2,NPHS1, PKD2, PKHD1,
SLC12A1, SLC34A1, SLC34A3, SLC6A19, and SLC7A919. In fact, someof the
identified variants are known pathogenic mutations for these condi-
tions (e.g., p.Ser192Leu (rs199690076) for SLC34A3, p.Asp173Asn
(rs121434346) for SLC6A19). Noteworthy candidates supported by
kidney phenotypes in model organisms but not yet established as
human kidney disease genes include EPB41L5 and FNIP1 (Table 1;
Supplementary Data 2). In addition, several genes, such as MITF, have
been linked to kidney cancers but not to reduced kidney function
or CKD.

The value of investigating multiple kidney function markers was
illustrated by the SLC22A2 frameshift variant p.Phe24ThrfsTer4
(rs8177505), which was strongly associated with eGFRcrea
(p = 1.9 × 10−61), but showed little or no association with eGFRcys
(p = 4.1 × 10−3) or urea (p =0.38). SLC22A2 encodes an organic cation
transporter of creatinine, among other substrates. It is, therefore,
likely that this variant reflects transport-related changes in creatinine
rather than a mechanism that results in reduced GFR.

Of particular interest was a previously unreported variant,
p.Phe472*fs (a one-base deletion chr4:88046737:TC:T) in PKD2 with

MAC=8 (eGFRcys p = 5.8 × 10−10). PKD2 is a major CKD gene whose
mutations cause autosomal-dominant polycystic kidney disease
(ADPKD), the most frequent monogenic kidney disease. The detected
PKD2 variant is absent from the GnomAD and ClinVar databases, but
we found its association with CKD highly significant (OR > 1000,
p = 3.7 × 10−15). The eight carriers in the UK Biobank were not closely
related when considering kinship coefficient pairs of <0.0625 esti-
mated genome-wide using common alleles. Upon inspection of inpa-
tient hospital records (codes Q61.3 and/or Q61.2; Methods), we found
that all eight carriers had clinical diagnoses of polycystic kidney dis-
ease (Fig. 2a), thereby validating the unbiased, imputation-powered
association findings. Five of the carriers had CKD-related ICD codes,
including one person whose kidney disease had progressed to kidney
failure (Fig. 2a). eGFRcrea was clearly lower in carriers compared to
non-carriers (Fig. 2b). The variant was directly sequenced in three
carriers, and imputed in five (rsq = 0.99), demonstrating the effec-
tiveness of the imputation approach and the value of combining
complementary biomarker and ICD code-based information.

Rare variants associated with kidney damage (UACR) and
serum urate
The 11 ExWAS variants found associated with UACR map into the five
genes IGFLR1, COL4A3, COL4A4, CUBN, and NPHS1. The high linkage
disequilibrium (LD) between the variants in IGFLR1 and NPHS1 (Sup-
plementary Data 1) suggests that the association with IGFLR1 results
from a shared haplotype with the neighboring NPHS1, a known cause
of monogenic proteinuric kidney disease. Among the 82 urate-
associated variants, 16 mapped into a region on chromosome 4 that
includes SLC2A9, and another 30 variants mapped into an extended
region on chromosome 11 that includes SLC22A12. Consistent with the
physiology of the urate-reabsorption mediating transporters encoded
by these genes, the urate-associated variants had a negative effect on
urate levels and showed strong protection from gout. Known disease
causing variants in genes associated with UACR and urate, as well as
putative novel causative alleles, are described in detail in the Supple-
mentary Results and Supplementary Fig. 4.

Genes associated with kidney traits from aggregate variant
testing
We implemented gene-level burden tests for all five phenotypes over
18,727 genes to increase power to detect associations with rare var-
iants of MAC ≥ 1 that may cluster in individual genes. Two alternative
clustering methods (masks) were applied: (a) high confidence loss-of-
function andmissense variants, including protein truncating and other
damaging variants (ptv_dmg, Methods) and (b) missense variants
assumed to be deleterious by several in silico prediction tools
including the CADD score (dmg_cadd). We identified 83 significant
gene-trait associations for 57 unique genes (p < 6.7 × 10−7; Fig. 3,
Table 2, Table 3, Supplementary Fig. 5, Methods). Thirty-one genes
were associated with eGFRcrea, 22 with eGFRcys, 2 with UACR, 21 with
urate, and 7with urea (Supplementary Fig. 6). Together with the single
variant results, associations were identified in a total of 105 genes.
Detailed test statistics including the direction of effect for all pheno-
types and masks are given in Supplementary Data 3. Effect directions
were consistent with clinical expectations across related phenotypes,
with the effects on eGFRcrea and eGFRcys being in the same direction,
and the effects on eGFR and urea in opposite directions (Fig. 3).

All variants contributing to any of the identified gene-trait pairs
are provided in Supplementary Data 4, allowing for the identification
of variant consequence (e.g., truncating) and putative mechanism of
action (gain- vs. loss-of-function). To assess whether genes were
identified as a result of aggregation of multiple variants or mostly
driven by the contribution of a single variant, we examined and cate-
gorized the 57 unique genes into three groups, using the trait forwhich
the gene achieved the smallest p-value (Supplementary Fig. 7,
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Methods): (1) “multi-variant signal”, where ≥two variants were needed
to achieve significance (n = 16; example: SLC34A1 with eGFRcys); (2)
“multi-variant signalwith one variant sufficient to achieve significance”
(n = 34; example: SLC7A9 with eGFRcrea); (3) “not a multi-variant sig-
nal” (n = 7; example: SLC25A45 and eGFRcrea).

Genes associated with kidney function (eGFRcrea, eGFR-
cys, urea)
We compiled a list of 32 genes that were significantly associated with
eGFRcrea or eGFRcys either via GBT or ExWAS analyses, and which
showed a direction-consistent and at least nominally significant
(p < 0.05) association with the respective other GFR estimate, along
with a direction consistent association with urea and CKD (Table 1;
Supplementary Data 2). Thirteen of the 32 genes (41%) are listed in the
OMIM catalog as genes that, when mutated, can cause monogenic
diseases of the kidney, 19 (59%) mapped into a known eGFR GWAS
locus, and 16 (50%) showed a corresponding kidney phenotype when
genetically manipulated in mice. Of note, seven of the 32 genes (22%)

were not identified by ExWAS, but only through aggregate variant
testing.

There were two genes that have not yet been described as cau-
sative for monogenic kidney diseases in humans, but for which
genetically manipulated mice show a kidney disease phenotype,
namely ARHGEF16 and FNIP1. Little is known about Rho Guanine
Nucleotide Exchange Factor 16, encoded by ARHGEF16. Phenotypic
characterization of genetically manipulated mice in the Mouse Gen-
ome Informatics resource showed enlarged kidneys and abnormal
kidney morphology (MGI: 2446219). Fnip1/Fnip2 double knockout
mice develop polycystic kidneys and renal cancer20, while Fnip1 dis-
ruption is sufficient for renal cyst formation21

Genes associated with kidney damage (UACR) and serum urate
The two genes identified through aggregate variant testing as asso-
ciated with UACR, CUBN (p = 1.3 × 10−63) and COL4A4 (p = 1.1 × 10−30),
have well-known roles in monogenic diseases that feature
proteinuria22,23 (Table 1; Supplementary Data 2).

Table 1 | Summary of evidence for a gene associated with kidney function

Gene symbola Kidney disease risk ExWASb Gene burdenb Tissue/cell type
expressionc

Known GWAS locusd Mouse with kidney
phenotype

ACSM2A down X PT rs77924615 No

ALDOB down x x PT no

ARHGEF16 down x EP; PE yes

CCNP down x rs59343080 no

CGNL1 up x EP; DVR rs12148280 no

CLDN10# up x x EP rs7326821 yes

CLPX up x x LOH no

CUBN# down x PT yes

EPB41L5 up x POD no

ERBB4 up x EP; CT rs1851285 no

FNIP1 up x x yes

GATA5 down x GE yes

G6PC1# down x PT no

HNF4A# up x PT rs736820 yes

LCN8 up x no

LRP2# down x x PT rs16823029 yes

MITF up x x LOH; CT rs60551165 no

NFAT5 down x PC rs113441031 yes

NPHS1# down x POD rs3814995 yes

NRG4 up x EP; PE rs10851885 no

PKD2# up x EP yes

PKHD1# down x x EP; PC rs12212034 yes

RBM47 up x rs166775 no

RNF186 up x PT no

SLC12A1# up x EP; LOH yes

SLC22A2 up x x PT rs3119304 no

SLC34A1# up x PT rs10866705 yes

SLC34A3# up x x PT rs28490558 yes

SLC5A3 up x x EP rs2834320 no

SLC6A19# down x x PT yes

SLC7A9# down x PT rs8101667 yes

VPS9D1 down x DVR rs154656 no

Genes associated with more than one kidney function measure (eGFRcreat, eGFRcys, urea) and direction-consistent association with CKD from ExWAS and gene-based tests are listed.
a“#” indicates that a monogenic kidney disease associated with this gene is reported in OMIM.
b“x” indicates the presence in a single variant ExWAS or association test that groups alleles in a gene (gene-level burden test).
cKidney cell type in which the gene is specifically expressed. PT proximal tubule, LOH loop of Henle, DVR descending vasa recta endothelium, EP epithelial progenitor, PC principal cell, PE pelvic
epithelium, POD podocyte, GE glomerular endothelium, CT connecting tubule.
ddbSNP ids of variants of known eGFR GWAS loci based on Stancick et al.28 within ±100 kb of the variant position or gene start/end.
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For serum urate, aggregate variant testing identified significant
associations with 21 genes, six of which were not identified through
ExWAS for this trait (SLC7A9, CLDN10, XDH, INSRR, RORC, and PAAF1;
Table 3). XDH encodes for xanthine dehydrogenase, a central enzyme
in purine metabolism, of which uric acid is the end-product. Rare
mutations are a known cause of autosomal recessive xanthinuria type I
(MIM#278300): affected individuals show very low serumurate levels.
Accordingly, we observed a negative association with serum urate
(beta = −0.04, p = 2.0 × 10−11) and a protective effect on gout (gout
OR =0.8, beta = −0.22, p =0.16), consistent with the effectiveness of
XDH inhibitors for urate-lowering treatment. The association with
PAAF1, encoding a protein involved in proteasome assembly regula-
tion, and serum urate has not been reported previously. Interestingly,
PAAF1 was described as an interactor of ALDH16A1, another locus
identified here24. The exceptionally large effects of rare, damaging
variants in SLC22A12 and SLC2A9, two genes encoding for the major
transporters responsible for urate reabsorption in the kidney, on
serum urate and gout have been described in previous WES studies of
serum urate10 and were confirmed in this study.

Validation of imputation-based signals using sequencing data
and comparison with published UK Biobank WES study
Over the course of this study, WES data from the full UK Biobank
became available. We therefore validated all discovered significant
ExWAS and GBT associations by repeating the respective analysis using
sequence rather than imputed information for the same set of 408,511
individuals (Methods). For the ExWAS associations, we observed excel-
lent concordance of the association p-values between imputed and
sequenced variants (Pearson correlation coefficient of 0.996, Fig. 4a).
Statistical significance was reached for 159/174 sequenced variants
(Supplementary Data 1). The 15 variants that did not pass the sig-
nificance threshold showed association p-values closely above the
threshold (median: 2.5 × 10−8, IQR: 1.0 × 10−8−6.1 × 10−8), and the asso-
ciation effect sizes of imputed compared to sequenced variants were
highly correlated across the range of minor allele frequencies (Pearson
coefficient 0.994, Fig. 4b). Secondly, we also observed excellent agree-
ment of association p-values originating from the 123 significant GBT
associations (Pearson correlation 0.999, Fig. 4c). We found that 112/123
genes were statistically significantly associated. Again, variants that did

not reach statistical significance had p-values closely above the thresh-
old (median: 1.4 × 10−6; IQR: 1.0 × 10−8−2.3 × 10−6), and the correlation
coefficient of the GBT effect estimates obtained from imputed and from
fully sequenced data was 0.999 (Fig. 4d, Supplementary Data 3).

Next, we performed a systematic comparison of our results to
those from the largest phenome-wide WES study that also analyzed
kidney-related biomarkers in the UKBiobank14. We revealed anoverlap
of 55 genes using the statistical significance definition of our study
(Methods). Our approach identified 50 additional genes, while 39 of
the genes identified by Backman and colleagues were not present in
ourmain results (Supplementary Results, Supplementary Fig. 8). More
detailed investigations of genes specific to one or the other study
revealed that themajority of themwas also nominally significant in the
respective other studies.

Kidney-related genes are highly expressed in specific kidney
cell types
The expression of genes identified through gene-based tests was
assessed at single-cell resolution using publicly available single-cell
RNA-seq data from human mature kidney cells25. Earlier studies26,27

have reported that human monogenic and complex kidney disease
genes are expressed primarily in a single kidney cell type. Comparing
expression levels across kidney cell types confirmed this conclusion
also for the genes identified in our project (Fig. 5). The majority of
genes related to eGFRcrea, eGFRcys, and serum urate, were highly
expressed in the proximal tubule, followed by epithelial progenitor
cells for eGFR-related genes. Cell type-specific expression of genes
associated with UACR reflected the known pathophysiology of the
respective gene: COL4A3 and COL4A4 were found to be expressed
specifically in podocytes, consistent with their role in the glomerular
filter, and CUBN in the proximal tubule, consistent with its role in the
tubular reabsorption of filtered albumin.

Kidney-related genes are associated with additional clinical
biomarkers and diseases
We next examined whether the genes we identified in association with
the five kidney traits were associated with clinical biomarkers and dis-
eases using publicly available association results from the UK Biobank15

(Methods). This can identify associations with non-kidney traits and

Fig. 2 | Details for carriers of the PKD2 p.Phe472*fs variant. a Kidney ICD10
diagnosis by the carrier, color-coded (red—cystic kidney disease codes, blue—CKD
codes). Carrier age was annotated in the columns. The median age was 60 (range
41–67). b Boxplot of eGFRcrea for the non-carriers of the p.Phe472*fs

(4:88046737:TC:T) frameshift variant (left) and of the carriers (right); eGFRcrea of
carriers ranged from 25 to 108ml/min/1.73m2 (mean 65, SD 28). The boxes repre-
sent the first to the third quartile, the horizontal line the median, and the whiskers
extend to 1.5 times the interquartile range.
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diseases that may go unnoticed when only studying individual patients
in clinical genetic studies. Across the phenome, there were numerous
instances where the assumed loss-of-function of the evaluated genes
resulted in increased disease risk or changes in continuous markers of
disease (Fig. 6, Supplementary Data 5). Often, these associations
reflected known clinical signs and symptoms observed among patients
with the resulting monogenic diseases. For example, carriers of rare
damaging variants in both COL4A3 and COL4A4 showed higher odds of
hematuria, urinary symptoms and kidney problems, with ORs as high as
6 for COL4A4 and hematuria (Fig. 6a). COL4A4 variant carriers also
showed higher odds of hypertensive disease, consistent with nephritic
syndrome commonly observed in Alport’s syndrome patients (MIM
#203780), and lower hemoglobin concentrations and hematocrit per-
centage, consistent with hematuria (Fig. 6b). Similarly, carriers of rare
variants in SLC34A3 showed lower phosphate levels and higher odds of
urolithiasis (Fig. 6a), consistent with phenotypes of patients affected by
hypophosphatemic rickets with hypercalciuria due to recessive SLC34A3
mutations (MIM #241530).

Enrichment analyses highlight biologically plausible pathways
We performed Gene Ontology (GO) enrichment analyses to identify
biological processes, molecular functions, and cellular components
that were significantly enriched for genes identified by our WES ana-
lysis and compared the results to those obtained when using genes
identified by published GWAS4,18,28 of the corresponding trait as input.
To ensure sufficient power, the analyses were carried out for eGFR and
for serum urate, where WES identified >5 genes. Pathways that were
significantly enriched in both WES-based as well as GWAS-based ana-
lyses contained many examples that are highly plausible (Supple-
mentary Data 6). For instance, pathways related to eGFR contained
kidney/renal system/urogenital development as well as those related
to transport processes across the apical and basolateral plasma
membrane (Supplementary Fig. 9A), whereas implicated pathways for
serum urate contained “urate metabolic process” as well as those
related to the brushbordermembrane (Supplementary Fig. 9B), where
the most important urate transport proteins that greatly influence
serum urate levels are expressed.
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Experimental validation of a previously unreported eGFR-
associated CLDN10 frameshift allele
While previously unreported, putatively pathogenic variants such as
the frameshift variant in PKD2 can be validated through orthogonal
evidence from hospital diagnostic codes, experimental validation
remains the gold-standard to establish variant pathogenicity. As proof
of principle, we, therefore, performed experimental studies of a pre-
viously unreported eGFR-associated frameshift allele in CLDN10,
encoding the tight junctionprotein claudin-10. This allelewasdetected
in 32 heterozygous carriers in the imputed WES dataset and sig-
nificantly associated with its lead trait eGFRcys (carriers had
0.99 standarddeviations lower transformedeGFRcys values compared
to non-carriers, p = 4.2 × 10−12) as well as with other kidney-related

traits. The corresponding results from the directly sequenced 167 KUK
Biobank participants available at the outset of this project were 13
carriers, 0.96 standard deviations, and a non-significant p = 8.3 × 10−5.

Isoform claudin-10a is expressed in the kidney proximal tubule
and the uterus, claudin-10b in the thick ascending limbof Henle’s loop,
and various exocrine glands29–31. Mutations in CLDN10 can cause the
autosomal recessively inherited HELIX syndrome32, which features
hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ich-
thyosis, and xerostomia. Abnormal eGFR was found for some
mutations33–36, but not for others35–38. In our study, the monoallelic
deletion (p.Asp223GlufsTer34, 13:95577994:GAT:G, Supplementary
Fig. 10) was associated with lower eGFRcys, higher urea, and higher
odds of CKD. The resulting frameshift (fs) causes loss of the C-terminal

Table 2 | Overview of gene-based test results for eGFRcrea and eGFRcys

Chr Position (b38) Gene eGFRcreatp-value eGFRcys p-value Urea p-value UACR p-value Urate p-value Mask

eGFRcrea

6 160171061 SLC22A2 6.8 × 10−81 1.7 × 10−3 3.8 × 10−1 6.3 × 10−1 5.2 × 10−3 ptv_dmg

6 43295694 SLC22A7 3.0 × 10−38 3.8 × 10−1 2.0 × 10−1 6.8 × 10−1 1.5 × 10−5 dmg_cadd

17 19495385 SLC47A1 3.1 × 10−34 1.9 × 10−1 1.1 × 10−1 8.9 × 10−1 2.2 × 10−6 dmg_cadd

2 169127109 LRP2 2.0 × 10−31 8.3 × 10−24 1.2 × 10−3 6.0 × 10−1 7.1 × 10−13 ptv_dmg

9 137230757 SLC34A3 2.1 × 10−30 2.1 × 10−27 2.0 × 10−14 5.3 × 10−1 3.8 × 10−1 dmg_cadd

5 1201595 SLC6A19 1.6 × 10−27 3.8 × 10−12 2.7 × 10−6 5.9 × 10−1 2.9 × 10−5 dmg_cadd

6 51615299 PKHD1 1.1 × 10−24 4.0 × 10−17 2.9 × 10−3 7.6 × 10−3 1.8 × 10−4 ptv_dmg

19 32830509 SLC7A9 5.0 × 10−23 9.7 × 10−12 1.6 × 10−1 3.2 × 10−3 8.0× 10−10 dmg_cadd

3 126103562 ALDH1L1 9.2 × 10−16 5.0 × 10−1 7.0 × 10−1 4.0 × 10−1 6.3 × 10−2 dmg_cadd

15 65148219 CLPX 2.2 × 10−14 8.5 × 10−3 1.6 × 10−1 2.6 × 10−1 4.8 × 10−1 dmg_cadd

9 101420560 ALDOB 4.6 × 10−14 1.4 × 10−8 9.2 × 10−4 5.2 × 10−2 3.5 × 10−2 ptv_dmg

11 65375192 SLC25A45 3.7 × 10−11 4.7 × 10−1 7.7 × 10−1 5.8 × 10−2 1.8 × 10−1 dmg_cadd

6 131470832 ARG1 4.5 × 10−11 3.7 × 10−1 6.1 × 10−1 3.2 × 10−3 3.9 × 10−1 dmg_cadd

17 42900797 G6PC 3.1 × 10−9 3.7 × 10−4 3.4 × 10−1 2.8 × 10−4 3.9 × 10−9 dmg_cadd

5 131641714 FNIP1 2.0 × 10−8 2.8 × 10−5 1.8 × 10−3 1.3 × 10−1 1.5 × 10−2 dmg_cadd

17 39737927 GRB7 3.6 × 10−8 3.7 × 10−4 8.0 × 10−4 4.1 × 10−1 2.0 × 10−2 dmg_cadd

16 20451461 ACSM2A 5.0 × 10−8 1.5 × 10−4 3.5 × 10−3 1.3 × 10−2 4.9 × 10−1 ptv_dmg

2 190055700 MSTN 6.4 × 10−8 1.0 7.7 × 10−1 2.8 × 10−1 1.1 × 10−1 dmg_cadd

17 40219304 WIPF2 7.7 × 10−8 1.1 × 10−5 8.2 × 10−1 9.9 × 10−1 1.3 × 10−3 dmg_cadd

20 44355700 HNF4A 3.2 × 10−7 6.8 × 10−3 4.9 × 10−1 5.4 × 10−1 1.1 × 10−1 ptv_dmg

1 228208063 OBSCN 5.0 × 10−7 7.9 × 10−2 5.4 × 10−1 4.8 × 10−2 6.6 × 10−1 ptv_dmg

6 160121815 SLC22A1 5.2 × 10−7 3.4 × 10−1 1.7 × 10−1 8.2 × 10−1 1.6 × 10−1 dmg_cadd

13 51930436 ATP7B 5.4 × 10−7 4.8 × 10−3 7.5 × 10−1 1.9 × 10−2 8.8 × 10−1 ptv_dmg

eGFRcys

20 23626706 CST3 6.0 × 10−1 0.0 9.6 × 10−1 9.9 × 10−1 9.9 × 10−1 ptv_dmg

12 111405923 SH2B3 2.6 × 10−1 8.7 × 10−43 8.6 × 10−2 2.2 × 10−2 2.3 × 10−9 dmg_cadd

13 95433604 CLDN10 2.1 × 10−8 2.7 × 10−17 5.0 × 10−8 2.7 × 10−1 4.6 × 10−8 dmg_cadd

15 57375967 CGNL1 1.7 × 10−10 5.2 × 10−15 3.4 × 10−3 8.8 × 10−1 6.0 × 10−1 dmg_cadd

3 69739435 MITF 1.1 × 10−10 1.8 × 10−13 3.0 × 10−3 6.1 × 10−2 6.6 × 10−1 ptv_dmg

5 177379235 SLC34A1 8.6 × 10−12 4.2 × 10−12 3.6 × 10−5 1.3 × 10−2 3.0 × 10−1 ptv_dmg

6 160702238 PLG 2.5 × 10−6 6.6 × 10−10 4.4 × 10−4 7.6 × 10−1 7.2 × 10−3 ptv_dmg

21 34073578 SLC5A3 2.7 × 10−9 2.3 × 10−9 3.8 × 10−2 2.9 × 10−1 1.5 × 10−4 ptv_dmg

20 23564732 CST9L 1.9 × 10−1 2.9 × 10−9 5.3 × 10−1 4.5 × 10−1 5.4 × 10−1 ptv_dmg

1 3454665 ARHGEF16 3.2 × 10−5 1.8 × 10−8 9.3 × 10−2 8.6 × 10−4 5.6 × 10−1 dmg_cadd

20 54153446 CYP24A1 1.4 × 10−4 3.1 × 10−8 7.4 × 10−6 8.7 × 10−1 5.5 × 10−2 dmg_cadd

1 212363931 PACC1 4.4 × 10−1 4.8 × 10−8 4.0 × 10−1 4.9 × 10−2 2.1 × 10−1 ptv_dmg

12 116910950 FBXW8 1.8 × 10−1 3.2 × 10−7 2.7 × 10−1 5.0 × 10−1 1.3 × 10−3 dmg_cadd

18 23506184 NPC1 1.2 × 10−3 3.4 × 10−7 9.8 × 10−1 7.1 × 10−1 6.0 × 10−1 ptv_dmg

Includesgenes areassociatedwithat leastonephenotype (p < 6.67 × 10−7). Significantgene-phenotype associations aremarked inboldface. Two-sidedp-valueswereobtained from linear regression
models ofmask variant risk allele dosage onphenotypes. Genes are groupedby the phenotype with the lowest association p-value. p-Value is given for themost significant mask.Chr chromosome,
b38 genomic build 38, eGFR estimated glomerular filtration rate, UACR urinary albumin-to-creatinine ratio, ptv_dmg high confidence loss of function variants including protein truncating and other
damaging variants, dmg_caddmissense variants that are also assumed to be deleterious by several in silico prediction tools including the CADD score (Methods).
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pdz-binding motif needed for binding of the tight junction protein
claudin-10 to the scaffolding protein ZO-139. A previously described
single nucleotide deletion (13:95577980 del) in two Saudi Arabian
families (claudin-10 fs(SA))37 also caused pdz-binding motif loss and
resulted in HELIX syndrome in homozygous carriers. Heterozygous
family members were unaffected.

Overexpression of fluorescent protein-claudin-10b fusion pro-
teins inHEK293 cells showed that, similar to claudin-10bwildtype (wt),
claudin-10b fs (but not claudin-10b fs(SA)) was able to enrich in con-
tacts between two transfected cells, indicating the formation of tight
junction-like structures and suggesting wt-like trans-interaction of
claudin-10b fs (Fig. 7; Supplementary Fig. 11). However, claudin-10b fs
enrichments had an impaired appearance (predominantly smooth in
wt, irregular in fs), that was not corrected by the co-transfection of
claudin-10b wt and was mirrored by reduced FRET efficiency of
claudin-10b fs within these contacts as a measure of claudin cis inter-
action (Fig. 7). Whereas claudin-10b fs(SA) neither interacted with
claudin-10 wt nor affected its localization, claudin-10b fs interfered
with claudin-10wt localization, likely explaining amild dominant effect
that is distinct from the molecular phenotype of the HELIX syndrome
causing mutation. These findings underscore the value of experi-
mental studies for the characterization of alleles that do not result in
typical monogenic disease presentations, to yield a more complete
picture of the allelic spectrum. Imputation-powered studies of the
coding genome, such as our study, can identify and prioritize such
variants for the required further experimental investigations.

Discussion
We performed ExWAS and gene-level analyses of five measures of
kidney function and disease in up to 408,513 white British participants
of the UK Biobank study. To increase statistical power, genotypes for

241,620 individuals with available chip genotypes but no sequencing
data at the timeof our studywere imputed for 7,575,566 variants using
the available WES data. We sought to characterize our findings across
different kidney phenotypes, cell types, and tissues; and to explore the
relationship of identified genes across the phenome. We identified
associations at 158 unique single variants and at 57 genes with gene-
level tests, all at or driven by rare variants. We validated these
imputation-based associations using recently released exome
sequences from the full set of UK Biobank participants.

Our study complements previous phenome-wide ExWAS screens
in the UK Biobank13,40 by being the first dedicated effort to
assess associations of kidney function and disease in this dataset.
Whereas previous broad screens included kidney-relevant biomarkers
such as creatinine and cystatin C as two out of thousands of pheno-
types,we used these biomarkers to estimate themost common clinical
measure of kidney function, the GFR, compared and contrasted
associations across different kidney function markers, and validated
results by examining ICD-10 and biomarker-based binary phenotypes
and kidney diseases. We were thereby able to distinguish genes that
are likely involved inbiomarkermetabolism from those truly related to
reduced kidney function or kidney damage. In addition, we showed
that most rare variant associations were independent of common
variant associations in nearby GWAS loci. Moreover, we extended a
previously introduced WES imputation approach16 to show that a
three-times larger reference panel improves the imputation quality
further and facilitates the discovery of many additional significant
associations. This has implications for future studies, that may use the
now available WES data from the full UK Biobank to impute additional
study samples.

In our study, thedetection of numerous genes and variants known
to cause monogenic kidney diseases when mutated underscore the

Table 3 | Overview of gene-based test results for Urea, UACR, and Urate

Chr Position (b38) Gene eGFRcreatp-value eGFRcys p-value Urea p-value UACR p-value Urate p-value Mask

Urea

4 40423267 RBM47 1.4 × 10−10 1.1 × 10−5 5.7 × 10−24 1.4 × 10−3 2.5 × 10−4 dmg_cadd

2 227164624 COL4A3 4.1 × 10−4 5.9 × 10−3 1.8 × 10−10 4.0 × 10−5 1.9 × 10−1 ptv_dmg

2 121216587 TFCP2L1 2.4 × 10−6 1.6 × 10−6 8.2 × 10−10 4.7 × 10−1 6.4 × 10−7 dmg_cadd

15 48178438 SLC12A1 6.2 × 10−7 6.4 × 10−8 2.3 × 10−9 7.7 × 10−1 3.8 × 10−8 dmg_cadd

15 75935969 NRG4 9.5 × 10−8 6.1 × 10−4 1.1 × 10−8 5.2 × 10−2 1.5 × 10−4 ptv_dmg

UACR

10 16823966 CUBN 2.7 × 10−5 7.5 × 10−1 1.3 × 10−1 1.3 × 10−63 7.3 × 10−4 dmg_cadd

2 227002714 COL4A4 8.1 × 10−1 7.7 × 10−3 1.6 × 10−3 1.1 × 10−30 6.5 × 10−7 ptv_dmg

Urate

11 64590641 SLC22A12 2.6 × 10−1 1.5 × 10−3 1.4 × 10−1 2.3 × 10−1 0.0 dmg_cadd

4 9771153 SLC2A9 4.2 × 10−3 4.2 × 10−1 8.3 × 10−1 1.7 × 10−1 8.3 × 10−114 dmg_cadd

4 88090150 ABCG2 1.3 × 10−1 1.3 × 10−1 4.9 × 10−1 4.0 × 10−1 7.1 × 10−39 dmg_cadd

1 145670852 PDZK1 8.3 × 10−2 5.7 × 10−3 4.3 × 10−1 7.5 × 10−2 4.2 × 10−27 dmg_cadd

11 64746389 PYGM 5.3 × 10−1 5.0 × 10−1 5.1 × 10−1 7.2 × 10−1 2.6 × 10−16 dmg_cadd

17 76309478 PRPSAP1 7.1 × 10−1 7.3 × 10−1 9.7 × 10−1 6.4 × 10−1 3.8 × 10−14 dmg_cadd

11 65597756 MAP3K11 6.0 × 10−1 5.2 × 10−1 7.3 × 10−1 4.2 × 10−1 2.3 × 10−13 dmg_cadd

2 31334321 XDH 5.2 × 10−1 2.5 × 10-1 8.4 × 10−1 3.6 × 10−1 2.0 × 10−11 dmg_cadd

1 156840063 INSRR 7.6 × 10−3 1.6 × 10−7 6.2 × 10−2 4.0 × 10−1 5.5 × 10−10 dmg_cadd

4 10074339 WDR1 6.7 × 10−1 3.6 × 10−1 2.4 × 10−1 2.4 × 10−1 3.5 × 10−9 dmg_cadd

1 151806071 RORC 1.4 × 10−1 3.8 × 10−2 1.4 × 10−1 1.2 × 10−2 1.1 × 10−7 ptv_dmg

11 73876699 PAAF1 1.6 × 10−2 5.2 × 10−1 5.0 × 10−1 8.8 × 10−1 2.7 × 10−7 ptv_dmg

11 64726911 RASGRP2 6.4 × 10−1 1.5 × 10−1 4.5 × 10−2 1.3 × 10−1 5.2 × 10−7 dmg_cadd

Includesgenes areassociatedwithat leastonephenotype (p < 6.67 × 10−7). Significantgene-phenotype associations aremarked inboldface. Two-sidedp-valueswereobtained from linear regression
models of mask variant risk allele dosage on phenotypes. Genes are grouped by the phenotype with the lowest associatithe on p-value. p-Value is given for the most significant mask. Chr
chromosome, b38 genomic build 38, eGFR estimated glomerular filtration rate, UACR urinary albumin-to-creatinine ratio, ptv_dmg high confidence loss of function variants, including protein
truncating and other damaging variants, dmg_caddmissense variants that are also assumed to be deleterious by several in silico prediction tools including the CADD score (Methods).
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validity of the results and emphasize that imputation-powered studies
of the exome are a feasible and attractive option when whole
exome sequencing can only be financed in a subset of the study
sample. This holds true even for imputed variants with a MAC< 10, as
highlighted by the rare PKD2 variant p.Phe472*fs that we detected in
association with eGFR. Although this variant is absent from public
databases, all carriers had ICD codes related to cystic kidney disease.
Thus, the variant can be considered a novel disease-causing mutation
thatwasuncoveredby an imputation-powered association studyof the
coding genome.

As proof of principle, we experimentally established that a
previously unreported eGFR-associated frameshift variant in
CLDN10 is a functional allele. The monoallelic deletion causes loss
of the C-terminal pdz-binding motif needed for binding of the
tight junction protein claudin-10 to the scaffolding protein ZO-1.
The claudin-10b frameshift protein interfered with the localization

of the wild type, which is likely explaining the mild dominant-
negative effect.

In terms of genetic architecture of the studied kidney function
markers, there was substantial overlap between genes identified in
association with eGFRcrea, eGFRcys, and urea, as would be expected
for these complementary filtration markers. Conversely, none of the
genes associated with UACR and only a few of the genes associated
with serum urate were also associated with the filtrationmarkers. This
observation supports the separate study of the genetic architecture of
GFR-related traits4, UACR9, and serum urate8,18, as is current practice
for common variant studies.

The findings of this study have to be seen in the light of some
limitations. To maximize imputation quality by increasing the sample
size of the reference panel, we focused on samples of white British
ancestry only, which limits the generalizability of our results. The
presented associations have been chosen after rigorous statistical

Fig. 4 | Validation of imputation-based signals using data from whole exome
sequencing of all corresponding UK Biobank participants. Scatter plots of
−log10-transformed p-values (a) and effect sizes (b) for single variant (ExWAS) and
−log10-transformed p-values (c) and effect sizes (d) for the gene-based test (GBT)
analyses comparing association statistics from partially imputed (x-axis) and fully
sequenced (y-axis) data. Single variant results are color-coded by minor allele

frequency (MAF), and GBT results are color-coded by p-value (blue—p-value below
the significance threshold of 6.7 × 10−7, red—above threshold). r denotes the Pear-
son correlation coefficient. For panel a, two-sided p-values were obtained from
linear mixed effect models (REGENIE) of effect allele dosage on phenotypes. For
panel c, two-sided p-values were obtained from linear regression models of mask
variant risk allele dosage on phenotypes.
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analysis; however, we did not replicate them in an independent
external data set. Finally, imputation quality depends highly on how
often an allele is observed in the reference panel, which makes it
impossible to impute variants private to samples not in the reference
panel, as observed for PKD1, and could lead to poor imputation results
for ultra-rare variants such as singletons or doubletons.

In summary, we identified 105 unique genes and characterized 174
rare variant-associations and 83 gene-associations for fivemeasures of
kidney function and disease in aWES-based imputed data set of theUK
Biobank and made these results publicly available using PheWeb.
These findings revealed genetic determinants of kidney function and
will help to direct future functional and clinical studies.
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Fig. 5 | Expression of associated genes from gene-level analyses in kidney cell
types. Heatmaps showing cell type-specific expression of associated genes in
eGFRcrea, eGFRcys, urea, UACR, andurate. The expression z-score values are based
on single-cell RNA-seq data from Stewart et al.25 Fifteen non-immune kidney cell

types are grouped into nephron, endothelium, and stroma, with 9, 4, and 2 cell
types each. Genes in eachheatmapare orderedby themaximumexpression z-score
along the 15 cell types.
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Methods
Sample selection
Analogous to other studies16,17, 408,511 participants that were part of
the white British ancestry subset (mean age 48.9 ± 8, 54% female)
according to the genotype quality control of the UK Biobank were
included in this study. Informed consent was obtained by the UK
Biobank for all participants.

Phenotype definition
We considered five kidney-related phenotypes: eGFRcrea (based on
creatinine, UKB field 30,700, instance 0), eGFRcys (based on cystatin
C, UKB field 30720, instance 0), UACR (UKB fields 30,500 and 30,510),
serum urate (UKB field 30,880, instance 0), and urea (UKB field
30,670, instance 0). eGFRcrea and eGFRcys were calculated using the
CKD-EPI equations41 and winsorized to 15 and 200ml/min/1.73m2. To
calculate UACR, values for urinary albumin below the detection limit
were set to the detection limit value. All phenotypes were inverse-
normal transformed.

We fitted linear regression models to the phenotypes, adjusting
for sex, age, and thefirst 40genetic principal components, as provided
by the UK Biobank. For secondary analyses, the same models were
additionally adjusted for 639 SNPs for eGFR28, 63 SNPs for UACR9, and
184 SNPs for urate18 to account for the potential effect of common
variants.

CKD and gout were defined using ICD10 codes from hospital
inpatient records (N18.*, M10.*, UKB field 41270). Microalbuminuria

was defined as UACR> 30mg/g. ExWAS were carried out for these
clinically relevant outcomes and used to annotate the findings for
continuous kidney markers with respect to the direction and sig-
nificance of their association with disease. To further characterize the
risk allele carriers of selected trait-associated variants, kidney disease
was additionally defined by ICD codes for acute kidney injury (N17.9),
CKD (N18.3, N18.4, N18.5, N18.9), polycystic kidney disease (Q61.2,
Q61.3), and another kidney (N28.1) or ureter (N39.0) disease. Infor-
mation on allopurinol treatment was obtained from a verbal interview
on medication usage.

Genotype imputation
First, genotyped variants (hap_v2) of all 408,511 individuals of White
British ancestry (WBA) were lifted to GRCh38 to match the genotype
build of the WES calls. To generate the reference panel for the within-
cohort imputation of the WES variants into the remainder of the
cohort, autosomal WES variants with MAC> 1 of all 166,891 samples of
WBA were merged with genotyped variants with MAC> 1 on the same
set of individuals. For the target scaffold, directly genotyped variants
with aMAF >0.0001 in the remainder of theWBA cohort (n = 241,620)
were selected. Both panels were split into matching chunks of roughly
30,000 variants with 1Mb overlap, generating a total of 324 chunks.
Each chunk was phased with Eagle2 v2.4.1 (reference panel:
--Kpbwt=50000 --pbwtIters=5; target scaffold: --Kpbwt=100000
--pbwtIters=5 --pbwtOnly)42. Imputationwasperformedwithminimac4
on each chunk43. Imputed chunks were concatenated phase-aware per

Fig. 6 | Phenome-wide association study for kidney genes. Phenome-wide
association study of genes identified in our single variant ExWAS or gene-based
study with other phenotypes in the UK Biobank. For every gene, the odds ratio or
beta of the UK Biobank phenotype with the smallest p-value of a gene-based
association test is displayed. Genes with multiple significant phenotype associa-
tions aremarked with an asterisk (*). Full results, including numbers of biologically
independent samples for all shownUK phenotypes, are available in Supplementary

Data 5. Only UK Biobank associations with p-value < 5 × 10−8 (as reported by the
respective studies), and more than 5 cases (for binary traits) or more than 5 indi-
viduals (for quantitative traits) were considered. a Odd ratios are shown as center
points with error bars representing 95% confidence intervals for binary traits.
b Betas are shown as center points with error bars representing 95% confidence
intervals for quantitative traits, resulting from a linear regressionmodel correcting
for age, sex, and age × sex.

Article https://doi.org/10.1038/s41467-023-36864-8

Nature Communications |         (2023) 14:1287 11



chromosome by cutting off 0.5Mb of each end. In total, 7,596,602
variants that have not been directly genotyped were imputed in the
241,620 genotyped individuals. The imputed calls were merged with
the sequenced calls, keeping only sites with maximum missingness of
0.05 and estimated imputation accuracy rsq > 0.3, resulting in
7,479,293 variants in 408,511 individuals.

For validation purposes, the imputation was repeated once, as
described above, randomly removing 10,000 individuals from the
reference panel. Imputation quality was assessed in these individuals
by comparing the correlation of imputed dosages as well as hard calls
with the genotypes derived from the WES, excluding directly geno-
typed sites, which resulted in n = 2,191,400 variants for validation. To
assess imputation accuracy also for the very rare variants, the valida-
tion set was divided into tranches by MAC and MAF of the variants in
the reference panel, with one tranche per MAC up to 9, followed by
larger tranches for low-frequency and common variants. To enable a
comparison to the imputation quality achieved by Barton et al. on a
reference panel of ~50 K16, the exact same MAF range was used.

Imputation quality statistics restricting to different classes of variants
(SNPs or indels) ordifferent levels ofmissingness for rare and common
variants are available in Supplementary Fig. 12 and Supplemen-
tary Data 7.

Functional annotation
Variant annotation was performed using the Ensembl Variant Effect
Predictor (VEP)44 version 101 with standard settings, which comprises
annotations of the canonical transcripts, gene symbols, and fre-
quencies from the Genome aggregation database (gnomAD v2.1). VEP
plugins were used to add the REVEL score (v2020-5)45 and the CADD
score (v3.0)46. Loss-of-function variants were rated using the LoFtee
VEP plugin (version 2020-8)47 and classified as high-confidence or low-
confidence. The in-silico scores LRT (likelihood-ratio test for deleter-
iousness), M.CAP (Mendelian Clinically Applicable Pathogenicity
Score),MetaSVM (meta-score incorporatingmultiple in-silico scores)48

and FathMM.XF (Prediction score of pathogenic point mutations)49

were added using the dbNSFP (v4.1a)50.

Fig. 7 | Claudin-10b wt and fs: subcellular distribution and FRET efficiency.
Upper panels: co-transfection of YFP (red) and CFP(cyan)-tagged Cldn10b wt, fs, or
fs(SA), respectively. The majority of wt–wt contacts were long and had a smooth
appearance, whereas the majority of fs–fs contacts were short, and had an inter-
rupted (dashed or ‘ragged’) appearance, likely due to claudin-10b within vesicles
close to the plasma membrane rather than truly contact-enriched claudin-10b.
Cldn10b wt co-localized with claudin-10b fs in cell–cell contacts (merge); however,
these contacts had an appearance similar to the contacts observed in cells
expressing only Cldn10b fs. As previously described (Alzahrani et al., 2021),
Cldn10b fs(SA) did not insert into the plasma membrane but was retained in
intracellular compartments (endoplasmic reticulum).The co-expressedCldn10bwt
was unaffected by the presence of Cldn10b fs(SA). Cell–cell contacts had a wt-like

appearance. Bars: 5 µm. Lower panel: FRET efficiency as an indicator for cis-inter-
actionwashighest when onlyCldn10bwtwas present (a, gray triangles,n = 46 from
m = 5 independent transfections). When only Cldn10b fs (blue diamonds, n = 41,
m = 5) was present, or when Cldn10b fs was combined with Cldn10b wt (b; squares;
YFP-wt–CFP-fs, red symbols, n = 34, YFP-fs–CFP-wt, yellow symbols m = 4; n = 43,
m = 4), FRET was highly significantly lower (a vs. b, 3.96E−12). When Cldn10b fs(SA)
was combined with Cldn10b wt (c; green circles, n = 38,m = 4), FRET efficiency was
highly significantly lower than FRET efficiencies observed under all other condi-
tions (a vs. c: p = 2.16E−08; b vs. c: p < 1E−16). ANOVA and Tukey Posthoc test.
Different transfections per condition are indicated by different shades of the
symbols. Red lines indicate mean FRET efficiency ± SEM.

Article https://doi.org/10.1038/s41467-023-36864-8

Nature Communications |         (2023) 14:1287 12



Significance threshold definition
For the single variant analysis, variants in canonical transcripts and
HGNC genes with MAC ≥ 5, MAF < 1%, imputation info score ≥0.5,
estimated imputation quality rsq ≥0.3, VEP impact ≥LOW and VEP
consequence not “synonymous” were considered (n = 1,844,188).
Quantile-quantile (QQ) and Manhattan plots with different filter set-
tings were assessed. Because of the strong between-phenotype cor-
relation (Pearson correlation coefficient between eGFRcrea and
eGFRcys = 0.61; Supplementary Fig. 13), Bonferroni multiple-testing
correction was applied by accounting for 4 rather than 5 phenotypes,
and the significance threshold was set at p =0.05/4/
1844188 = 6.78 × 10−9. Similarly, for the gene level analysis, where
18,727 genes were tested, the significance threshold was set at 0.05/
18727/4 = 6.67 × 10−7.

Single variant analysis
A single variant, whole-exome linearmixedmodel association analyses
were performed with the REGENIE software package51 v2.0.2 in
two steps:

REGENIE Step 1: Whole-genome regression model using the
recommended parameter setting. The UK Biobank DNA microarray
genotypes (hap_v2) were lifted to build GRCh38 and filtered using the
recommended settings (genotype call rate > 0.1; Hardy–Weinberg
equilibrium p-value < 1e−15; MAC> 100; MAF >0.01; sample call
rate > 0.90).

REGENIE Step 2: Association analysis was performed on imputed
dosage levels (BGEN v1.2 8-bit data format) for 408,511 individuals and
1,844,188 variants. LD was estimated afterward between all pairs of
significantly associated variants using PLINK v1.90b252. We restricted
the association analysis to variants with MAC ≥ 5, as recommended by
the REGENIE developers51.

To calculate association statistics independent of common var-
iants, we extracted 423, 63, and 114 independent, common SNPs pre-
viously reported to be associated with eGFR4,28, UACR9, and urate18,
respectively, from the imputed UK Biobank data, set. We calculated
residuals by regressing eGFR, UACR, and urate on all SNPs for a given
trait in one regression analysis, and used these residuals as phenotypes
in another ExWAS. Adjusted and unadjusted association results were
compared with respect to their effect size estimates. Reported R2

measures originated from a linear regression model.
The PheWeb software (https://github.com/statgen/pheweb) with

default settings was used to create a local PheWeb instance that dis-
plays the results of the single variant analysis and is available under
https://ckdgen-ukbb.gm.eurac.edu/.

Gene-level analysis
Two masks (ptv_dmg, dmg_cadd) that defined variants to be aggre-
gated per gene were created based on the UKBB OQFE exome map
using the VEP annotations described above. For ptv_dmg, variants
were required to pass the following criteria: LoFtee high-confidence
loss-of-function, or (missense consequence and MetaSVM score > 0),
or FathMM_XF_coding score > 0.5. Using these settings, the ptv_dmg
filter included 15,710 genes with a median of 30 variants per gene
(interquartile range, IQR 13–68). For dmg_cadd, variants were included
with (the consequence “missense” (or worse), a CADD score > 20), a
REVEL score > 0.5, or a M_CAP rating “deleterious”. This resulted in
18,727 genes with a median of 114 variants per gene (IQR 54–203).

The gene-level analysis was performed with the SeqMeta R
package (seqMeta: An R package for meta-analyzing region-based
tests of rare DNA variants; A Voorman, J Brody, H Chen, T Lumley,
B Davis – v1.6.7, 2013). As genotype input, imputed hard call
genotypes filtered for MAF < 0.01 and estimated imputation
quality rsq ≥ 0.3 were used.

To determine how the variants aggregated by the masks for the
respective gene contribute to the association signal of the gene test,

variants were ordered by their single variant ExWAS p-value from
lowest to highest (n variants). Then, twometrics were defined: (1) add-
one-in: for i from 1 to n, the burden test was computed using only the i
variants with the lowest single variant p-value; (2) leave-one-out: for i
from 0 to n − 1, the burden test was computed, removing the i variants
with the lowest single variant p-values. Let p1,…, pi,…pnbe thep-values
of the burden tests for the “add-one-in” tests. We call a gene-trait
association a “multi-variant signal” if SD{−log10(p1),.., -log10(pn)}≥0.5,
that is, the p-values of the burden tests with different variant sets show
some variance. To facilitate interpretation, we assign these associa-
tions into three categories. Category 1 associations comprise multi-
variant signals, where at least two variants are needed to reach sig-
nificance (p1 ≥ 6.7 × 10−7, see above). Multi-variant associations where
one variant is sufficient to reach significance (p1 < 6.7 × 10−7) are
assigned to category 2. Associations that are not multi-variant signals
were assigned to category 3.

Validation of imputation-based signals using data from whole
exome sequencing of all corresponding UK Biobank
participants
ExWAS were repeated for the 174 significant (p < 6.8 × 10−9) associa-
tions as well as the analyses for significant (p < 6.7 × 10−7) associations
derived from GBT of aggregated variants, using sequence information
for the same set of 408,511 individuals for which imputed sequences
were available. Genotype calls were extracted from the final
UKBB population-level OQFE exome variants (field: 23,158, version:
Jul 2022) using PLINK; association analyses were performed with
the same phenotype files and the same software packages as
described above.

Cell type-specific expression of the associated genes in the
kidney
To examine the expression of the associated genes in human kidney
cell types, a single-cell RNA-seq dataset was downloaded from https://
www.kidneycellatlas.org/ 25. The dataset included expression profiling
of 40,268 human mature kidney cells in 27 cell clusters. The dataset
was processed using the R package Seurat v353. The averaging
expression values of cells in the same cluster were calculated and then
transformed to z-scores so that an expression matrix of genes and cell
clusters was obtained. We then used the Bioconductor package
ComplexHeatmapv2.9.3 to generate heatmapsof the associated genes
for each phenotype based on the expression matrix54. Immune cells
were not included in the heatmaps.

GO-term enrichment analyses
We performed GO enrichment analyses using Bioconductor packages
clusterProfiler v3.18.155. The input geneswere fromourWES analyses as
well as those from published GWAS4,18,28. The EnrichGO function of
clusterProfiler was used. GO terms were considered significantly
enriched if the FDR-adjusted p-value < 0.05.

Experimental studies on a previously unreported CLDN10 fra-
meshift mutation
Generation of claudin-10mutant construct. TheCLDN10b frameshift
(fs) mutant was generated by 2-step PCR, using a previously published
human CLDN10bwildtype (wt) construct29 and human kidney cDNA as
templates. The following custom-made primers (Eurofins Genomics,
Ebersberg, Germany) were employed: FOR1a 5′-aaaggatccAatggctag-
cacggc-3′; REV1a 5′-ctcttttagacataagcatttttcaaactgttttgaaggg-3′; FOR2b
5′-cccttcaaaacagtttgaaaaatgcttatgtctaaaagag-3′; REV1b 5′-ttgaggaa-
tattctcagattgcccccatg-3′; REV2 5′-TTTgatatcttatgggagggccttgatgggatc-
3′. The final PCR product was cloned into pcDNA 3.1-based vectors
containing the sequence for enhanced yellow (EYFP) or cyan (ECFP)
fluorescent protein, using BamHI and EcoRV restriction sites, to obtain
N-terminally tagged claudin fusion proteins.

Article https://doi.org/10.1038/s41467-023-36864-8

Nature Communications |         (2023) 14:1287 13

https://github.com/statgen/pheweb
https://ckdgen-ukbb.gm.eurac.edu/
https://www.kidneycellatlas.org/
https://www.kidneycellatlas.org/


Culture and transfection of human embryonic kidney (HEK)
293 cells
HEK293 cells (CRL-1573, A.T.C.C., Manassas, VA, USA) were grown in
25 cm2 culture flasks in MEM-Earle’s media (Sigma-Aldrich, Munich,
Germany) supplemented with 10% (v/v) fetal bovine serum, 100U/mL
penicillin, and 100 µg/ml streptomycin (Sigma-Aldrich), at 37 °C in a
humidified 5% CO2 atmosphere. Cell line identity was confirmed by
PCR single locus technology (Promega, PowerPlex 21 PCR Kit; Eurofins
Medigenomix Forensik GmbH, Ebersberg, Germany) in 2018.

For transient transfection, HEK293 cells were seeded on poly-L-
lysine (Sigma–Aldrich) coated coverslips in 6-well plates, at a density of
600,000 cells per well. 24 h later, cells were transfected by adding
500 µl cell culturemedium (without supplements) per well, containing
10 µl polyethylenimine solution (Sigma-Aldrich, stock concentration
1 µg/µl), 2 µg EYFP- and 2 µg ECFP-plasmid DNA. Approximately 48 h
after transfection, HEK293 cells were used for confocal laser scanning
microscopy.

The following plasmid combinations were used: EYFP-Cldn10b
wt–ECFP-Cldn10b wt, EYFP-Cldn10b fs–ECFP-Cldn10b fs, EYFP-
Cldn10b wt–ECFP-Cldn10b fs, EYFP-Cldn10b fs–ECFP- Cldn10b wt.
For comparison, the frameshift mutant previously found in Saudi
Arabian HELIX syndrome patients37 was also included: EYFP-Cldn10b
fs(SA)–ECFP-Cldn10b wt.

Live cell imaging: Förster resonance energy transfer (FRET) and
enrichment assays
Live cell imaging was employed to quantify cis (FRET assay, Supple-
mentary Fig. 14) and trans (enrichment assay, Supplementary Fig. 15)
interaction of claudins56,57. Cover slips with transfected HEK293 cells
were transferred into a HEPES-buffered, HCO3

−-free bath solution (in
mM: 134.6 NaCl, 2.4 Na2HPO4, 0.6 NaH2PO4, 5.4 KCl, 1.2 CaCl2, 1
MgSO4, 10 HEPES, and 10 d(+)-glucose, pH 7.4) and placed in a heated
microscope chamber (37 °C) of a Zeiss LSM 780 confocal microscope.
ECFP and EYFP fluorescence was excited at 458nm and 514 nm, and
emission was detected at 470–500nm and 530–600nm, respectively.

For the enrichment assay, fluorescence intensity was determined
at cell–cell contacts of two claudin-expressing cells (Ic) and at the
contacts of these two cells with cells not expressing claudins (Im1, Im2).
The enrichment factor, EnF, was calculated as Ic/(Im1 + Im2), as depicted
in Supplementary Fig. 15, and considered positive if the value was >1.

For the FRET assay, YFP was bleached 3 times 15 pulses of the
514 nm laser line at 100% intensity, and the relative change in CFP
fluorescence intensity before (Ib) and after (Ia) acceptor bleach was
evaluated (FRET efficiency = (Ia − Ib)/Ia × 100%), as depicted in Supple-
mentary Fig. 1457. Ratios of YFP fluorescence intensity before bleach
and CFP fluorescence intensity after bleach (YFP/CFP ratio) were cal-
culated to assess the comparability of obtained FRET efficiencies.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We used publicly available individual-level genotype and phenotype
data from the UK Biobank (https://biobank.ndph.ox.ac.uk/showcase/).
Access to these data needs to be requested from the UK Biobank. Our
results are shared with the community using a comprehensive online
resource: https://ckdgen-ukbb.gm.eurac.edu/

This work was conducted within approved UK Biobank applica-
tion numbers 20272 and 64806.

Code availability
Custom scripts and code are available online at https://github.com/
genepi-freiburg/seqmeta (https://doi.org/10.5281/zenodo.7564424).
Code for other central tools is available online (REGENIE: https://

rgcgithub.github.io/regenie, SeqMeta: https://rdrr.io/cran/seqMeta/,
PLINK: https://www.cog-genomics.org/plink/).
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