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Spatially informed clustering, integration,
anddeconvolutionof spatial transcriptomics
with GraphST

Yahui Long1, KokSiongAng1,Mengwei Li1, Kian LongKelvinChong1, RamanSethi1,
Chengwei Zhong1, Hang Xu1, Zhiwei Ong 2, Karishma Sachaphibulkij3,4,
Ao Chen 5,6,7, Li Zeng 2,8, Huazhu Fu 9, Min Wu10, Lina Hsiu Kim Lim3,4,
Longqi Liu 7 & Jinmiao Chen 1,3

Spatial transcriptomics technologies generate gene expression profiles with
spatial context, requiring spatially informed analysis tools for three key tasks,
spatial clustering, multisample integration, and cell-type deconvolution. We
present GraphST, a graph self-supervised contrastive learning method that
fully exploits spatial transcriptomics data to outperform existing methods. It
combines graph neural networks with self-supervised contrastive learning to
learn informative and discriminative spot representations by minimizing the
embedding distance between spatially adjacent spots and vice versa. We
demonstrated GraphST on multiple tissue types and technology platforms.
GraphST achieved 10% higher clustering accuracy and better delineated fine-
grained tissue structures in brain and embryo tissues. GraphST is also the only
method that can jointly analyze multiple tissue slices in vertical or horizontal
integration while correcting batch effects. Lastly, GraphST demonstrated
superior cell-type deconvolution to capture spatial niches like lymph node
germinal centers and exhausted tumor infiltrating T cells in breast tumor
tissue.

Within the tissues of multicellular organisms, cells are organized into
groups of similar cells physically clustered together. Linking gene
expression of cells with their spatial distribution is crucial for under-
standing the tissue’s emergent properties and pathology1. Using spa-
tial transcriptomics (ST), we can concurrently capture gene expression
profiles and spatial information to achieve greater insights into both
healthy and diseased tissues2–4. Spatial information is also useful for

inferring cell–cell communications, especially juxtacrine signaling5.
Within the spatial transcriptomics analysisworkflow, assigning capture
spots to spatial domains with unsupervised clustering is an essential
task. Among the existing clustering methods employed in spatial
domain identification, k-means, Louvain’s method6, and Seurat7 utilize
only gene expression data to cluster spots into different domains. The
domains identified by these methods are often discontinuous as they
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do not employ spatial information to identify colocalized cells that are
likely to belong to the same domain.

Recently, severalmethods have been proposed to improve spatial
domain identification by exploiting spatial information. For example,
Giotto8 uses a Hidden Markov Random Field (HMRF) model to detect
spatial domains with coherent gene expression patterns by fully
exploiting the spatial dependency between spots. SpaGCN9 uses a
graph convolutional network-based model to identify spatial domains
by integrating gene expression, spatial location, and histology image.
stLearn10 combines morphological features obtained from the histol-
ogy image with gene expression of adjacent spots to cluster similar
spots in the tissue. BayesSpace11 adopts a Bayesian statistical method
that employs the information from spatial neighborhoods to improve
clustering analysis. More recently, STAGATE12 uses a graph attention
auto-encoder framework to identify spatial domains by integrating
spatial information and gene expression profiles. Another method,
Cell Clustering for Spatial Transcriptomics data (CCST), uses a graph
convolutional network for unsupervised cell clustering13. However,
these methods employ unsupervised learning, and they often show
suboptimal clustering performance as the boundaries of identified
domains are often fragmented and poorly match the pathological
annotations. As ST ground-truth segmentation is usually not available,
supervised learning cannot be employed to improve performance.
Alternatively, self-supervised learning that uses unlabeled input data
has been applied to identify spatial domains. For example, SpaceFlow14

employs a deep graph neural network with a contrastive learning
strategy that creates negative examples by randomly permuting its
spatial expression graph during the encoder learning process. conST15

proposes a contrastive learning framework with two training stages to
learn a representative low-dimensional embedding. The second stage
uses contrastive learning at three levels of contrast. However, the lack
of consideration of the spots’ local context hampers their
performance.

Spatial transcriptomics technologies have size restrictions on the
area captured during data acquisition. To perform spatial tran-
scriptomics on a tissue slice encompassing a whole organ of interest,
the sample is dissected intomultiple sections. These adjacentmultiple
sections will have to be inferred jointly to accurately identify tissue
compartments within the whole organ. Multiple tissue sections can
also be obtained via serial sectioning of the organ of interest, yielding
serial tissue slices that capture 3D information in each spatial tran-
scriptomics experiment. Therefore, there is a need for methods to
integrate and learn the joint representation of adjacent tissue sections
(horizontal integration) and serial tissue sections (vertical integration).
Most current analysis methods are suitable for only single tissue slices
and cannot jointly identify spatial domains from multiple slices.
Moreover, batch correction methods developed for scRNA-seq, such
as Harmony16 and scVI17, are not suitable as they only consider gene
expression and do not employ the associated spatial information.
Although STAGATE can be used to analyze multiple tissue slices, its
performance is limited by the lack of batch effect removal capabilities.
As such, spatially informed batch correction tools are needed for
ST data.

Current technological limitations also prevent ST from achieving
single-cell resolution with gene coverage comparable to single-cell
RNA sequencing (scRNA-seq). The popular 10x Visium platform can
capture scRNA-seq scale transcriptomes but uses 55 µm capture spots
that are larger than typical cells (5–10 µm)18,19. More recent sequencing-
based technologies, including Slide-seq20, DBiT-seq21, Stereo-seq22,
PIXEL-seq23, and Seq-Scope24, offer subcellular spatial resolution but
suffer from high dropout events that give rise to a very sparse gene-
spot matrix. Meanwhile, fluorescent in situ hybridization (FISH)-based
methods are capable of achieving subcellular resolution but lack
genome-scale gene coverage, with the latest seqFish having a 10,000
gene limit25. To analyze data from low-resolution capture techniques,

computational methods such as RCTD26, stereoscope27, SPOTlight28,
cell2location29, CARD30, NNLS (AutoGeneS)31,32, and spatialDWLS33 have
been developed. These methods perform cell-type deconvolution of
low-resolution spots by leveraging cell-type-specific gene expression
from RNA-seq. However, all current deconvolution methods except
CARD ignore spatial location information. Moreover, they only return
a matrix of cell-type composition, except RCTD and cell2location,
which also calculate the cell-type-specific gene expressions for each
location. Currently, cell-level deconvolution methods for achieving
single-cell resolution of spatial transcriptomes are still lacking. Alter-
native to deconvolution, the projection of scRNA-seq data onto ST
data can create single-cell resolution spatial transcriptomic maps with
genome-wide gene coverage, which can also be used to infer cell-type
compositions of ST spots and spatial localization of scRNA-seq.
Tangram34 and other similar packages adopt a batch integration
approach to correct for technical variations in the scRNA-seq and ST
data to accomplish projection but do not employ spatial information.
Therefore, spatially informed integration of scRNA-seq data with ST is
needed to achieve more accurate cell-type deconvolution of ST and
spatial registration of scRNA-seq.

To address the aforementioned challenges, we developed
GraphST, a graph self-supervised contrastive learning method that
makes full use of spatial information and gene expression profiles for
spatially informed clustering, batch integration, and cell-type decon-
volution. By using self-supervised contrastive learning in GraphST, we
found that it improves performance in learning relevant latent features
for downstream analysis. GraphST first combines graph neural net-
works with augmentation-based self-supervised contrastive learning
to learn representations of spots for spatial clustering by encoding
both gene expression and spatial proximity. For the cell-type decon-
volution task, we train an auto-encoder to learn informative cellular
features from the scRNA-seq data in an unsupervised way. Thereafter,
GraphST learns a mapping matrix to project the scRNA-seq data into
the ST space based on their learned features via an augmentation-free
contrastive learning mechanism where the similarities of spatially
neighboring spots are maximized, and those of spatially non-
neighboring spots are minimized. The mapping matrix is then used
to estimate the cell-type compositions of ST spots. We extensively
tested GraphST for the three analysis tasks on different 10x Visium,
Stereo-seq, and Slide-seqV2 datasets of human and mice tissues,
including the human brain, human breast cancer tissue, human lymph
node, mouse breast cancer, mouse olfactory bulb, mouse brain, and
mouse embryo. The clustering tests demonstrated GraphST’s super-
iority over seven existingmethods in identifying spatial domains. Joint
analyses on themouse breast cancer andmousebrain datasets showed
that GraphST was able to accurately identify spatial domains from
multiple tissue slices while removing batch effects effectively without
needing to explicitly detect batch factors. We also tested GraphST’s
projection of scRNA-seq data onto ST to predict cell states (cell types
and sample types) in spatial spots. The computed cell-to-spotmapping
matrix gave a more accurate estimate of cell-type compositions than
cell2location, the best-performing deconvolution method. Moreover,
GraphST can transfer scRNA-seq-derived sample phenotypes onto ST.
We demonstrated this capability by delineating tumor and normal
adjacent regions in a tumor-derived tissue slice.

Results
Overview of GraphST
GraphST comprises three modules, each with graph self-supervised
contrastive learning architectures tailored for the three tasks respec-
tively: spatially informed clustering (Fig. 1A), vertical and horizontal
batch integration of multiple tissue sections (Fig. 1B), and spatially
informed cell-type deconvolution by projecting scRNA-seq to ST
(Fig. 1C). In all threemoduleswe leverage the spatial information of the
spatial transcriptomics dataset to construct a neighborhood graph
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where spots spatially close to each other are connected. Next, a graph
convolutional network is built as an encoder to embed the gene
expression profiles and spatial similarity into a latent representation
space by iteratively aggregating gene expressions from neighbor-
ing spots.

In the spatial clustering module, we adopt augmentation-based
contrastive learning. We augment data by creating a corrupted graph
by randomly shuffling gene expression vectors across spots while
keeping the adjacency matrix of the original graph unchanged. As is
observed in many tissue types, a spot in the spatial data usually con-
tains cell types similar to its local context, e.g., one-hop or two-hop
neighbors. Different spots in a tissue sample can have different local
spatial contexts. Compared to a global context, the local context can
better preserve spot-specific local neighborhood information and
spot-to-spot variability. Therefore, our self-supervised contrastive

learning strategy enforces spot embedding to capture local context,
whilemost other contrastive learningmethods capture global context.
Specifically, we define positive pairs by pairing spot embedding with
its local summary vector and negative pairs by pairing the local sum-
mary vector with its corresponding spot embedding from the cor-
rupted graph. The local summary vector represents the local context
of a spot and is obtained by a sigmoid of the mean of all its neighbors’
embeddings. This process brings spot embedding closer to its real
local context from the original graph and pushes it away from its fake
local context from the corrupted graph, such that spatially adjacent
spots will have similar embeddings while nonadjacent spots will have
dissimilar embeddings. Furthermore, considering that the corrupted
graph has the same topological structure as the original graph, we
define a corrupted contrastive loss (formula (5)) for the corrupted
graph and combine it with the original contrastive loss (formula (4)) to
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Fig. 1 | Overview of GraphST. A GraphST takes as inputs the preprocessed spatial
gene expressions and neighborhood graph constructed using spot coordinates
(x,y). Latent representation Zs is first learned using our graph self-supervised
contrastive learning to preserve the informative features from the gene expression
profiles, spatial location information, and local context information. This is then
reversed back into the original feature space to reconstruct the gene expression
matrix Hs . B The analysis workflow for spatial batch effect correction by GraphST.
The first step is to align theH&E images of twoormore samples, followedby shared
neighborhood graph construction, where both intra- and inter-sample neighbors

are considered. This provides the possibility for feature smoothing. Finally, sample
batch effects are implicitly corrected by smoothing features across samples with
GraphST. C With the reconstructed spatial gene expression Hs and the refined
scRNA-seq featurematrixHc derived from an unsupervised auto-encoder, a cell-to-
spot mapping matrix M is trained via a spatially informed contrastive learning
mechanism where the similarities of positive pairs (i.e., spatially adjacent spot
pairs) are maximized, and those of negative pairs (i.e., spatially nonadjacent spot
pairs) areminimized.DThe outputsHs andM of GraphST canbe utilized for spatial
clustering, multiple ST data integration, and ST and scRNA-seq data integration.
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form a symmetric contrastive loss, which canmake the model training
more stable and balanced. In addition to the contrastive loss,
GraphST’s objective function includes a self-reconstruction loss. The
learned representation Zs is reversed back into the original space
through a decoder to obtain the reconstructed gene expressionmatrix
Hs. The learning process jointly optimizes for the self-reconstruction
loss and contrastive loss. The self-reconstruction loss enforces Hs to
retain the key feature information contained in the gene expression,
while the contrastive loss encourages the gene expressionmatrixHs to
capture the spatial context information.

In the vertical and horizontal integration module, GraphST learns
batch-corrected representations of spots that can be used for down-
streamanalysis, such as joint spatial clustering tomap common spatial
domains across multiple tissue sections. Before training the model in
the GraphST framework, multiple sections are aligned vertically or
stitched horizontally, and a shared graph is constructed. Thereafter,
graph self-supervised contrastive learning is performed using the
shared graph, which allows for the GraphST model to automatically
smooth features of adjacent spots within and across sections. There-
fore, after model training, not only do neighboring spots from the
same section have similar representations, but neighboring spots from
different sections will also have similar representations. Our GraphST
framework removes batch effects implicitly during model training,
unlike most existing approaches that remove batch effects by expli-
citly detecting batch factors, such as Harmony16, the mutual nearest
neighbors (MNN) approach35, and Seurat 3.08. Moreover, as these
methods were designed for nonspatial scRNA-seq data integration,
they ignore spatial information when correcting for batch effects.

In the third module, GraphST projects scRNA-seq to ST by
augmentation-free contrastive learning to achieve spatially informed
cell-type deconvolution of ST spots. To reduce noises resulting from
sequencing technology, we use an auto-encoder to learn cell repre-
sentation Hc from the scRNA-seq gene expression. With the cell
representation Hc and the spot representation Hs learned from the
first module, we project the scRNA-seq data onto the spatial tran-
scriptome data via a trainable mapping matrix M, which denotes the
probability of the cells being projected onto each spot of the spatial
data. This process is implemented by aligning the predicted spatial
gene expression H0

s =M
T � Hc to the reconstructed spatial gene

expression Hs via an augmentation-free contrastive learning mechan-
ism, where the similarities of positive pairs (i.e., spot i and its spatial
neighbors) aremaximized while those of negative pairs (i.e., spot i and
its spatial non-neighbors) are minimized. During model training, the
first and third modules are independently executed. After model
training, Hs and M can be applied for various tasks, such as spatial
clustering, multiple ST data integration, and scRNA-seq and ST data
integration.

GraphST’s spatial clustering of human dorsolateral prefrontal
cortex 10x Visium data improved the identification of known
layers
Wefirst assessedGraphST’s spatial clusteringperformanceon the LIBD
human dorsolateral prefrontal cortex (DLPFC) dataset36. This dataset
contains spatially resolved transcriptomic profiles of 12 DLPFC slices,
each depicting the four or six layers of the human dorsolateral pre-
frontal cortex and white matter (WM). Here we tested GraphST and
competing methods for their ability to recover the annotated anato-
mical cortex layers in an unsupervised manner. Across all 12 slices,
GraphST achieved the highest median score of 0.60 among all meth-
ods, with only STAGATE’s performance as a close second (Fig. 2A).
GraphST also achieved lower variability in performance across the
slices than most of the other methods. The remaining methods had
median ARI scores of less than 0.53, and for some methods like
SpaGCN, SpaceFlow, and STAGATE, there was a wide variance in per-
formance across different slices. Seurat and conST achieved low

variance in their ARI scores, similar to GraphST, but their median
scores were worse.

Next, we illustrate the results with one slice (#151673) in Fig. 2B–C.
The visual comparison clearly showed that the Seurat clustering had
the poorest performance. It was only able to recover the Layer 1
clustering with the remaining clusters mixed among the other layers,
including the WM being clustered together with a portion of Layer 6.
The boundaries between clusters were also ragged with no clean
separation. Giotto and SpaceFlow accomplished better separation of
WM and Layer 1, but Layers 2–6 were not correctly recovered. conST
identified well-defined layers, but most of the layers were inconsistent
with the annotation. SpaGCN, BayesSpace, and STAGATE produced
layers that were closer in shape to the annotation but with incorrect
layer thickness. The methods also did not accurately capture the
boundary between Layer 6 and WM, which was accomplished by
GraphST, the only method that could do so. For quantitative assess-
ment, we employed the widely used Adjusted Rand Index (ARI).
GraphST achieved the highest score of 0.64, while Seurat was the
poorest at 0.29, followed by Giotto at 0.34. The remaining methods
(SpaGCN, BayesSpace, SpaceFlow, conST, STAGATE) obtained similar
scores between 0.40 and 0.58. The results with all other slices are in
Supplementary Fig. S1.

Among the methods tested in this example, we only applied
Seurat, STAGATE, and GraphST to the subsequent Stereo-seq and
Slide-seq examples due to data format incompatibility. Consequently,
we also tested all eight methods on a 10x Visiummouse brain dataset19

and showed that GraphST was the best method. The full analysis
results are available in Supplementary File 1.

GraphST’s spatial clustering of mouse olfactory bulb Stereo-seq
data better demarcated the laminar structure
In this second example, we used a coronalmouse olfactory bulb tissue
dataset acquired with Stereo-seq22. We first annotated the coronal
mouse olfactory bulb’s laminar structure using the DAPI-stained
image, identifying the olfactory nerve layer (ONL), glomerular layer
(GL), external plexiform layer (EPL), mitral cell layer (MCL), internal
plexiform layer (IPL), granule cell layer (GCL), and rostral migratory
stream (RMS) (Fig. 2D). Overall, all three tested methods (Seurat,
STAGATE, and GraphST) were able to separate the outer layers of the
organ, namely the ONL, GL, and EPL (Fig. 2E). The results of Seurat
were slightly poorer with greater mixing between clusters, which we
attribute to its lack of consideration of spatial information. For the
inner structure, only GraphSTwas able to demarcate the GCL and RMS
regions. Seurat was able to find the RMS but merged the GCL with the
outer IPL region. STAGATEwas unable to capture the laminar structure
for effective identification of the relevant inner layers, particularly the
RMS, GCL, and IPL regions. We next used the respective marker genes
of each anatomical region to validate GraphST’s results (Fig. 2F). Here,
we see good correspondence between GraphST’s clusters and the
known marker genes. For some marker genes, such as Mbp and Pcp4,
their high expression levels overlapped with neighboring regions. This
is expected as cell types are often shared among the different inner
structures of organs, and markers are likewise shared among similar
cell types. Overall, GraphST was able to leverage the whole tran-
scriptome and spatial information to discern the relevant anatomical
regions.

GraphST’s spatial clustering ofmouse hippocampus Slide-seqV2
datamore accurately discerned the relevant anatomical regions
In this example, we compared Seurat, STAGATE, and GraphST using a
mouse hippocampus dataset acquired with Slide-seqV2. For this
comparison, we employed the annotated Allen Brain Atlas as the
ground truth (Fig. 2G). Although Seurat was able to outline the major
anatomical regions, many clusters were intermixed (Fig. 2H). We
hypothesize that this was a result of Seurat capturing different cell
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types that reside across different anatomical regions; this highlights
the importance of local spatial information in achieving anatomically
relevant clustering. STAGATE and GraphST produced more spatially
consistent clustering and captured major anatomical regions such as
the dentate gyrus (DG) and the pyramidal layers within Ammon’s horn,
which can be further separated into fields CA1, CA2, and CA3. Here,
GraphST was better than STAGATE in delineating the CA3 and DG
regions with sharper boundaries and higher concordance with the

anatomical annotation (Fig. 2G) andmarker gene expressions (Fig. 2I).
Unlike the other two methods, GraphST was able to differentiate
between the third ventricle (V3), medial habenula (MH), and lateral
habenula (LH). In contrast, Seurat merged the LH with the rest of the
thalamus, while STAGATE merged the MH and LH into one region.

We further examined the regions’ marker gene expressions to
verify GraphST’s clustering (Fig. 2I). For most regions and their cor-
responding markers, they showed good alignment. In particular, only
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GraphST was able to demarcate the MH and LH regions with high
concordance based on their respectivemarkers, Nwd2 and Gpr151. For
the third ventricle, the Enpp2 expression did not align well with
GraphST’s detected V3 region, but the latter better resembled the V3
region in the annotated brain reference. For comparison, Seurat and
STAGATE’s V3 regions were closer to the shape of Enpp2 expression
region but did not match the anatomical shape well.

GraphST’s spatial clustering of mouse embryo Stereo-seq data
revealed finer-grained tissue structures
In this final clustering comparison, we used Stereo-seq acquired
datasets ofmouse embryos at E9.5 and E14.5, with 5913 bins and 25,568
genes, and 92,928 bins and 18,566 genes, respectively22. Tissue domain
annotations were obtained from the original study wherein Leiden
clustering from SCANPY37 was applied to the union of neighborhood
graphs constructed using spatial proximity and transcriptomic simi-
larity, and the computed clusters were annotated based on differen-
tially expressed genes. We first examine the clustering results of the
E9.5 embryo. Although the original annotation had 12 reference clus-
ters (Fig. 3A), we set the number of clusters in our testing to 22 to
acquire a higher resolution of tissue segmentation. STAGATE output
was notable, with many identified clusters collectively forming a thick
layer around the embryo (Fig. 3B). The identified clusters also did not
match the annotation well. In contrast, GraphST’s clusters better
matched the annotated regions (Fig. 3B and Supplementary
Fig. S3A–B). More importantly, they showed high concordance with
knownmarker genes of the major organs. Particularly, the liver region
marked by Afp, Fgb, Alb, Itih2, dermomyotome byMyog, mesenchyme
by Meox1, Meox2, Pcp4, head mesenchyme by Crym, Six2, Alx4, Scler-
otome by Pax1, Pax9,Meox1,Meox2, heart byMyl2,Myl7, Nppa,Myh6,
Myh7, Tnni3, Ttn, and connective tissue by Postn, were all wellmatched
by the clusters of GraphST (Fig. 3C and Supplementary Fig. S3C–D).
GraphST also demarcated two clusters for the embryo heart’s atrium
and ventricle chambers, with compartment-specific markers such as
Myl7 and Nppa marking the atrium and ventricle chambers, respec-
tively.Nppa is uniquewith a spatiotemporal expression pattern during
heart development, where it isfirst expressed in the developingmouse
heart at E8.0–8.538, specifically at the ventral portion of the linear heart
tube, which develops into the ventricles. At E9.0–9.5, Nppa is expres-
sedmostly in the left and right ventricles within the looped embryonic
heart, but its expressionbecomes restricted to the atria upon birth.We
also examined the transcription factors essential for heart develop-
ment and cardiac septation, namely Gata4, Tbx5, and Gata6, and their
regulon activities showed spatial distributions thatmatchedGraphST’s
clusters (Fig. 3C and Supplementary Fig. S3D). Although STAGATE was
also able to identify the two halves of the heart, albeit with a lower
concordance with cardiac gene expression, it was unable to identify
the other major organs.

We next compared the clustering results with the E14.5 mouse
embryo (Fig. 3D). Here, we set the number of clusters to 16,
matching the original annotation. STAGATE produced overly
smoothened clusters and failed to reveal any fine-grained tissue
complexity (Fig. 3E). In contrast, GraphST’s clusters were able to
capturemuch of the fine-grained structures in the embryo, and they

were also highly concordant with the original annotation, accu-
rately identifying major areas such as the heart, liver, and muscle
regions (Fig. 3F and Supplementary Fig. S4C). Furthermore,
GraphST was able to accurately outline the epidermis as confirmed
by the expressions of Krt5, Krt14, and Krt15 (Fig. 3G), while the ori-
ginal annotation assigned parts of the epidermis to the cavity
instead. GraphST was also better at delineating themeninges region
as a continuous closed loop. In contrast, the original annotation’s
meninges cluster appeared more fragmented and discontinuous.
Notably, the original annotation demarcated the choroid plexus as a
separate region, while GraphST clustered it as part of the meninges.
As the choroid plexus resides in the meninges’ innermost layer (the
pia mater) of three, it is difficult to be detected as a separate region.
Within the cranial region, GraphST demarcated several subareas
that were not in the original annotation. One key identified area is
the cerebral cortex, whichwe verifiedwith the expression of cortical
glutamatergic neuroblast markers Neurod6, Tbr1, and Eomes
(Fig. 3G). Though GraphST did not identify the olfactory epithelium
found in the original annotation, it was able to delineate a separate
olfactory epithelium cluster when we increased the number of
clusters to 20 (Supplementary Fig. S4D). Finally, GraphST also
delineated a cluster of osteoblasts marked by Nov and Mfap5. To
characterize this cluster, we employed gene set enrichment analysis
with Enrichr39, which suggested that this cluster is associated with
mouse osteoblasts from day 14 and day 21 of development (Sup-
plementary Fig. S4E). Overall, the mouse embryo clustering results
affirmed GraphST’s strength over STAGATE in identifying anato-
mically distinct regions in complex tissue samples.

GraphST corrects batch effects for vertical and horizontal inte-
gration of multiple tissue sections
Serial tissue slices are experimentally probed to increase accuracy and
enable reconstruction on the vertical axis. An obstacle to this data
integration is the presence of batch effects. To date, there are few
existing methods developed to integrate multiple tissue sections for
joint analysis. Here we compared GraphST with nonspatial methods,
Harmony and scVI, and the spatial method STAGATE in vertically
integrating serial tissue sections, using twomouse breast cancer serial
sections acquiredwith 10xVisiumas the test data.Wefirst assessed the
integration results visually with UMAP. In the uncorrected data, strong
batch effects were clearly present (Fig. 4A). After integration, both scVI
and Harmony were able to mix the two slices, but some batch-specific
separationwas still visible postintegration. GraphSTwas able to evenly
mix both slices while STAGATE was only able to pull the slices closer
(Fig. 4B). For quantitative assessment, we employed the widely used
metric iLISI (integration local inverse Simpson’s Index)16. GraphST
achieved the highest score of 1.846whileHarmony, scVI, and STAGATE
scored lower with 1.566, 1.568, and 1.233, respectively (Fig. 4C). In the
subsequent clustering, GraphST’s clusters in both slices were also
highly overlapping, unlike the clusters from Harmony, scVI, and STA-
GATE. This showed that GraphST was able to correct the batch effects
and accurately align the regions across different serial slices. The
clusters identified by Harmony, scVI, and STAGATE were also more
fragmented than GraphST’s.

Fig. 2 | GraphST clustering improves the identification of tissue structures in
the human dorsolateral prefrontal cortex (DLPFC), mouse olfactory bulb, and
mousehippocampus tissue. A Boxplots of adjusted rand index (ARI) scores of the
eight methods applied to the 12 DLPFC slices. In the boxplot, the center line
denotes themedian, box limits denote the upper and lower quartiles, and whiskers
denote the 1.5× interquartile range. B H&E image and manual annotation from the
original study. C Clustering results by nonspatial and spatial methods, Seurat,
Giotto, SpaGCN, BayesSpace, SpaceFlow, conST, STAGATE, and GraphST on slice
151673of theDLPFCdataset.Manual annotations and clustering results of the other
DLPFC slices are shown in Supplementary Fig. S1. D Laminar organization of the

mouse olfactory bulb annotated using the DAPI-stained image. E Spatial domains
identified by Seurat, STAGATE, and GraphST in the mouse olfactory bulb Stereo-
seq data. F Visualization of the spatial domains identified by GraphST and the
corresponding marker gene expressions. The identified domains are aligned with
the annotated laminar organization of the mouse olfactory bulb. G Allen Mouse
Brain Atlas with the hippocampus region annotated. H Spatial domains identified
by Seurat, STAGATE, and GraphST in mouse hippocampus tissue acquired with
Slide-seqV2. I Visualization of the spatial domains identified by GraphST and the
corresponding marker gene expressions. The identified domains are aligned with
the annotated hippocampus region of the Allen Mouse Brain Atlas.
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We next tested the methods on another mouse breast cancer
dataset with batch effects present (Fig. 4D). On the UMAP plots, batch
differences remained visible in the Harmony and STAGATE outputs
(Fig. 4E). scVI removed the batch effects much better than Harmony
and STAGATE, while GraphSTperformed the best by evenlymixing the
two slices. In terms of iLISI, Harmony and STAGATE significantly
underperformed GraphST, while scVI was comparable to GraphST

(Fig. 4F). In the subsequent clustering, GraphST again found clusters
that aligned well across the two slices. Most of Harmony’s clusters did
not align across the two slices. While scVI generated clusters that were
more consistent than Harmony’s, there were still fragmented clusters,
especially in section 2. STAGATE’s clusters showed better overlap than
in the previous example but were still poorer than GraphST’s, with
significant differences visible in clusters such as 2, 3, 4, and 8.
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As tissue samples can be significantly larger than the capture
slides used for spatial transcriptomics, horizontal integration enables
the data frommultiple capture slides to be stitched together. Here we
tested GraphST, STAGATE, and SpaGCN’s horizontal integration cap-
abilities using two sections of the mouse brain 10x Visium data with
both divided into two slices, anterior and posterior (Fig. 4G). We first
aligned the tissue slices of each section and performed clustering. For
comparison purposes, we set the number of clusters to 26 for all three
algorithms, the same number used in the demonstration of SpaGCN9.
Using the mouse brain atlas annotation40 (Fig. 4H), we compared the
results for both sections. We find that most of the clusters from STA-
GATE, SpaGCN, and GraphST showed good agreement with known
anatomy.However,manyof the SpaGCNclusterswere fragmented and
were not aligned along the shared edge of the two tissue sections.
GraphST and STAGATE performed better than SpaGCN and showed
much better alignment along the edge of the anterior and posterior
sections. The clusters fromboth GraphST and STAGATEwere accurate
at capturing the structures of the cerebral cortex layers, cerebellum,
and corpus callosum.However, somekey regions in the tissuewerenot
captured by STAGATE. For example, STAGATE failed to identify the
dorsal (top) and the ventral (bottom) horn of the hippocampus
regions, as indicated with white boxes on the H&E images (Fig. 4I). In
contrast, GraphSTwas able to reveal these regions. This example again
highlights GraphST’s consistent capability in aligning shared domains
across tissue sections while removing batch effects.

GraphST projects scRNA-seq to ST for cell-type deconvolution
of ST
Using scRNA-seq data as reference, GraphST can perform cell-type
deconvolution of ST data by mapping the single-cell gene expression
profiles onto the ST spots. Uponmapping, GraphST produces a cell-to-
spot mapping probability matrix that can be combined with cell-type
annotation to derive the spatial probability distribution of each cell
type, which is equivalent to cell-type deconvolution of spatial spots.
We compared GraphST’s deconvolution with cell2location, which, to
our knowledge, is the top-performing method for ST deconvolution41.
We first used the simulated datasets derived from seqFISH+ and
STARmap acquired ST data used in the benchmarking study. The ori-
ginal high-resolution data was overlaid with a coarse grid, and cellular
gene expression was summed within each grid square to simulate
spots capturing multiple cells. We calculated four indices, Pearson
correlation coefficient (PCC), structural similarity index measure
(SSIM), root mean squared error (RMSE), and Jensen–Shannon diver-
gence (JSD) to compare performance (Fig. 5A). With the seqFISH+
derived simulated dataset, GraphST slightly outperformed cell2loca-
tion in the first three indices PCC and SSIM (higher is better), and JSD
(lower is better), while being slightly poorer in terms of RSME (lower is
better). For the STARmap-derived dataset, GraphST also achieved
better PCC, SSIM, and JSD scores while having similar average per-
formance in terms of RSME.

To demonstrate the ability of GraphST at integrating scRNA-seq
data with ST data wherein each spot contains more than one cell, we
first tested GraphST and competing methods with a publicly available

10x Visium dataset acquired from human lymph node tissue contain-
ing germinal centers (GC)42. The reference scRNA-seq data used for
deconvolution was created from three studies on human secondary
lymphoidorgans and is composed of 34 cell types and 73,260 cells43–45.
The human lymph node is a dynamic environment with different cell
types spatially intermixed, creating a challenge for cell-type decon-
volution. We first visually compared the results of GraphST and cell2-
location by examining the mapping of cell types onto GC and non-GC
locations. The ground-truth annotations of the germinal centers used
here were obtained from the original cell2location study. Compara-
tively, GraphSTmappedmore GC preplasmablast (prePB) and cycling,
dark zone (DZ), light zone (LZ) B cells to the annotated germinal center
locations (Fig. 5B and C). Furthermore, the cycling and DZ B cells were
correctly colocalized. The LZ B cells and prePB cells also spatially
coincided as expected. The naïve B and preGC B cells were also cor-
rectly mapped to regions surrounding the GCs. We also quantified
performance using ROC curves for the light zone, dark zone, and
preplasmablast cells (Fig. 5D). In all three cases, GraphST achieved the
best performance with cell2location as a close second, while the
remaining methods were significantly poorer. Finally, we quantified
the GC cell-type mapping by computing the odds ratio between the
sum of deconvolution scores of GC spots and non-GC spots. For all
computed cell types (LZ, DZ, and prePB), GraphST’s results again
scored higher than cell2location, indicating a higher concordance
between ground-truth annotation and GraphST’s deconvolution
(Fig. 5E). The mapping results of all 34 cell types are found in the
Supplementary Figs. S5 and S6 for GraphST and cell2location,
respectively.

We also tested GraphST and cell2location on the human dorso-
lateral prefrontal cortex (DLPFC) dataset. The DLPFC has a clear
layered tissue structure (Fig. 5F) which can help better distinguish
performance differences between the methods. We first selected slice
#151673 (3639 spots and 33,538 genes) and paired it with the scRNA-
seq data used in the CellDART46 study with 78,886 cells and 30,062
genes and annotatedwith 33 cell types. The cell types spatiallymapped
by GraphST exhibited cortical layer-specific distribution patterns
(Fig. 5F). Here, we see Ex_10_L2_4, Ex_7_L4_6, Ex_1_L5_6, Ex_8_L5_6, and
Ex_4_L_6 form discernable ordered layers from the outermost to the
innermost, demonstrating GraphST’s capability to distinguish the
progressive layering of the cortical regions that are representative of
the actual physiological anatomy. GraphST also mapped the oligos
cells onto the WM layer, which is known to be enriched with oligo-
dendrocytes. In cell2location’s output, the oligos cell mappings were
similar to GraphST’s but without clear edges. Meanwhile, the other
cortex cell mappings were much more scattered and did not corre-
spond to their expected positions in the layers. Themapping results of
all 33 cell types are given in Supplementary Figs. S7 and S8 forGraphST
and cell2location, respectively.

We further tested GraphST and cell2location for cell-type
deconvolution with the mouse brain anterior dataset. GraphST simi-
larly showed mappings with higher density and sharper edges, while
cell2location’s mappings tend to be more diffuse. The full analysis
results are presented in Supplementary File 1.

Fig. 4 | GraphST enables accurate vertical and horizontal integrations of ST
data on mouse breast cancer and mouse brain anterior and posterior data,
respectively. A First set of mouse breast cancer sample images aligned with the
PASTE algorithm and plotted before batch effect correction. B UMAP plots after
batch effect correction and spatial clustering results from Harmony, scVI, STA-
GATE, and GraphST. Spots in the second column are colored according to the
spatial domains identified by the respective clustering methods. C Barplots of iLISI
metric for batch correction results from different methods on the first set of
samples. D Second set of mouse breast cancer sample images aligned and UMAP
plot before batch effect correction. EUMAP plots after batch effect correction and

the spatial clusters detected by Harmony, scVI, STAGATE, andGraphSTon sections
1 and 2, respectively. Similarly, spots in the second columnare colored according to
the spatial domains identified by the respective methods. F Barplots of iLISI metric
for batch correction results from different methods on the second set of samples.
G Horizontal integration results with two mouse brain samples, of which each
consists of anterior and posterior brain sections. Top: spatial joint domains iden-
tified by GraphST on sections 1 and 2. Middle: spatial joint domains identified by
STAGATE. Bottom: spatial joint domains identified by SpaGCN. H Annotated brain
section image from Allen Mouse Brain Atlas for reference. I H&E image of mouse
brain anterior and posterior.
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Accurate spatial mapping of cells to human breast cancer 10x
Visium data revealed T-cell suppression in IDC regions
In this comparison, we first performed clustering on a human breast
cancer 10x Visium dataset with 3798 spots and 36,601 genes. The data
weremanually annotatedby apathologist basedon theH&E image and
the spatial expression of reported breast cancer marker genes (Sup-
plementary Figs. S12A and S13). The data was annotated with 20

regions, so we specified the clustering parameters to obtain the same
number of clusters (Supplementary Fig. S12B). For Seurat, Giotto,
conST, and STAGATE, many of the computed clusters were frag-
mented and discontinuous, while SpaceFlow, BayesSpace, SpaGCN,
and GraphST produced less disjointed clusters. This result was also
reflected in the ARI scores where Seurat, Giotto, SpaceFlow, and
STAGATE had lower scores in the range of 0.39–0.47, while
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BayesSpace, SpaGCN, and GraphST had higher scores between 0.54
and 0.57. We next applied GraphST to deconvolute the cell types
present in each spot by mapping cells from the DISCO scRNA-Seq
human breast tissue atlas47 onto the breast cancer ST dataset (Fig. 6A).
The fibroblasts, perivascular cells, lymphatic endothelial, and vascular
endothelial cellswereexpectedlymappedonto theHealthy andTumor
edge regions, while themyoepithelial cells weremostlymapped to the
Tumor edge regions. The luminal and luminal progenitor cells were
primarily mapped onto the IDC and DCIS/LCIS regions.

Focusing on the immune cells, we found a significant presence of
diverse immune subsets, namely T cells and macrophage/DC/mono-
cytes (myeloid cells) in the IDC regions (IDC 5, 6, 7, and 8). The cor-
respondence of the single cells with their mapped regions was also
visualized with UMAP (Fig. 6B, C). Of the DCIS/LCIS regions, 4 and 5
only had macrophage/DC/monocytes present, while 1 and 2 had no
immune cells mapped onto them. The cell-type deconvolution found
only small amounts of B and plasma cells in the sample. B cells were
mainly mapped to IDC 3 and a portion of Tumor edge 3, while small
concentrations of plasma cells were found in the various Tumor edge
regions. Macrophages being present in tumor tissues is of clinical
concern as they are linked to tumor progression and hence poor
patient survival48. The lack of B cells is also significant as it is associated
with poor patient prognosis49.

As the T cells were found across different tissue regions (DCIS/
LCIS, Healthy, IDC, and Tumor edge), we further investigated their
differences (Fig. 6C). We first computed the differentially expressed
genes (DEGs), followed by the associated differentially regulated
pathways. We found the T cells in IDC regions to have the largest
number of DEGs, including genes associated with T-cell exhaustion
(LAG3, CTLA4, TIGIT, HAVCR2, PDCD1), and CXCL13 (Fig. 6D). In the
pathway analysis, the most significant differentially regulated path-
ways were associated with leukocyte activation and response (Fig. 6E).
These results highlighted T-cell dysregulation within the tumor
environment. Such T cells were also observed by Zhang et al.50 and
Bassez et al.51 in other human breast cancer samples, and both studies
demonstrated their reactivation with anti-PD-L1 therapy to harness
their cytotoxicity against the tumor cells.

When comparing the spatial mapping of cells from adjacent
normal and solid tumor sites, adjacent normal cells were mainly
mapped onto the Healthy (1, 2) and Tumor edge (1, 2, 4, 5) regions
(Fig. 6F, Supplementary Fig. S12C). The DCIS/LCIS regions (1, 2) also
showed high levels of adjacent normal cell mapping. Conversely, the
solid tumor-derived cells mostly mapped to the IDC regions. Unlike
other DCIS/LCIS regions, DCIS/LCIS 4 also had more solid tumor-
derived cells mapped to it. Other regions, notably Tumor edge 3 and
DCIS/LCIS 5, had a mix of cell mappings from both adjacent normal
and solid tumor cells. Thesemappings suggested that DCIS/LCIS 4 and
5 were more advanced in tumor development than other DCIS/LCIS
regions. For Tumor edge 3, its lower region was mapped with tumor
cells, while the upper region was primarily mapped with adjacent
normal cells. Interestingly, GraphST merged the upper portion of
Tumor edge 3 with DCIS/ICIS 1, which was also mapped with adjacent
normal cells (Supplementary Fig. S12B and C). Another notable feature
of Tumor edge 3’s lower region was that it had one of the two rare

concentrations of B cells in this tissue sample. Further investigation is
needed to reveal the reasons behind B cell infiltration into this region
but not others, as B cell infiltration is considered positive for patient
prognosis49. In conclusion, this case study demonstrated the value of
cell type and sample type deconvolution in exploring the hetero-
geneity present within tissues that may otherwise not be apparent
from the histological analysis. Moreover, such analysis can also help to
determine the appropriate number of regions for clustering purposes.

Discussion
Spatial transcriptomics is a powerful experimental approach that
measures gene expression while retaining the associated spatial
context. This combination of gene expression and spatial infor-
mation enables spatially informed clustering to identify coherent
tissue domains that are biologically relevant. While powerful, ST
faces technological limitations that computational approaches
can help mitigate. First, ST capture areas are currently limited in
size, necessitating multiple adjacent tissue slides to capture larger
tissue samples. Horizontal data integration is thus needed for
integrated studies. Extension to the three-dimensional character-
ization of a sample will require vertical data integration of serial
tissue slides. Second, the two major experimental approaches in
ST have their respective limitations, namely sequencing-based
approaches with a low spatial resolution with each spot containing
more than one cell and imagingmethods with lower gene coverage
at a higher subcellular resolution. Here, additional RNA-seq data
offers the opportunity to infer the cellular composition or cellular
transcriptome for the two approaches, respectively. In particular,
scRNA-seq with single-cell resolution genome-wide gene coverage
but no spatial information is highly relevant. We can perform ST
spot cellular deconvolution with scRNA-seq, as well as assign cells
and their transcriptomes to spots. In this paper, we presented
GraphST, a graph self-supervised contrastive learningmethod that
can effectively and efficiently perform spatial clustering, spatial
transcriptomics data integration, and scRNA-seq data transfer
onto ST data. GraphST employs graph neural networks to learn
informative representations of the gene expression profiles with
spatial locations. The learned representations are further refined
using graph self-supervised contrastive learning with the spatial
context information to be more informative and discriminative.
For scRNA-seq data transfer, we use an auto-encoder to first
extract features from the scRNA-seq data while reducing the noise
before using spatially informed contrastive learning to train the
cell-to-spot mapping matrix.

When clustering spots in diverse ST datasets, GraphST was better
than competing methods at identifying biologically accurate struc-
tures in highly heterogeneous tissue samples. We also demonstrated
GraphST’s ability at vertical and horizontal data integration with mul-
tiple tissue samples. GraphST detected domains that were more con-
tinuous across samples and more accurate when integrating ST data
horizontally. When integrating ST data vertically, it identified biologi-
cally coherent spatial domains that aligned across samples while
removing the batch effect present. Finally, we validated GraphST’s
ability to map scRNA-seq data onto ST-acquired spots to quantify the

Fig. 5 | Comparing the accuracy of GraphST with top deconvolution method
cell2location in predicting spatial distributions of scRNA-seq data with simu-
lated data, human lymph node, and the slice 151673 of DLPFC. A Boxplots of
PCC, SSIM, RMSE, and JSD metrics for cell2location and GraphST results on simu-
lated data created from seqFISH+ and STARmap experimental data. In the boxplot,
the center line denotes the median, box limits denote the upper and lower quar-
tiles, and whiskers denote the 1.5× interquartile range. n = 8 (12) different predicted
cell types for simulated data created from seqFISH+ (STARmap) experimental data.
B Left, annotations of germinal center (GC) locations fromcell2location’s study (GC
locations annotated with yellow). Right, H&E image of human lymph node data.

C Comparison between cell2location and GraphST on the spatial distributions of
selected cell types, namely B_Cycling, B_GC_DZ, B_GC_LZ, B_GC_prePB, B_naive, and
B_preGC.DQuantitative evaluation via AUC of three cell types (B_GC_DZ, B_GC_LZ,
and B_GC_prePB) localized in the GCs using the annotated locations shown in (B).
E Quantitative evaluation of GC cell type mapping of three cell types (B_GC_DZ,
B_GC_LZ, and B_GC_prePB) between cell2location andGraphSTusing the odds ratio
metric. F Comparison between cell2location and GraphST on the spatial distribu-
tion of cell types Ex_10_L2_4, Ex_7_L4_6, Ex_1_L5_6, Ex_8_L5_6, Ex_4_L_6, and Oligos_1
with slice 151673 of the DLPFC dataset.

Article https://doi.org/10.1038/s41467-023-36796-3

Nature Communications |         (2023) 14:1155 11



0 5 10 15 20 25 30 35

-log10(P)

CORUM:280: HMGB1-HMGB2-HSC70-ERP60-GAPDH complex

GO:0009615: response to virus

GO:0043030: regulation of macrophage activation

R-HSA-6798695: Neutrophil degranulation

GO:0002456: T cell mediated immunity

GO:0043068: positive regulation of programmed cell death

GO:0009617: response to bacterium

WP5115: Network map of SARS-CoV-2 signaling pathway

GO:0071674: mononuclear cell migration

WP5092: Interactions of natural killer cells in pancreatic cancer

M272: PID CD8 TCR DOWNSTREAM PATHWAY

GO:0001906: cell killing

GO:0045619: regulation of lymphocyte differentiation

GO:0002697: regulation of immune effector process

GO:0032103: positive regulation of response to external stimulus

R-HSA-1280215: Cytokine Signaling in Immune system

GO:0002695: negative regulation of leukocyte activation

GO:0050778: positive regulation of immune response

GO:0045321: leukocyte activation

GO:0002694: regulation of leukocyte activation

A

B

E

C

F

D

Tumor_edge_5

IDC_4

Healthy_1

IDC_3

IDC_2

Tumor_edge_3

IDC_8

Tumor_edge_2

DCIS/LCIS_5

IDC_6

Tumor_edge_6

Healthy_2

IDC_5

DCIS/LCIS_4

IDC_7

Tumor_edge_1

DCIS/LCIS_1

DCIS/LCIS_2
Tumor_edge_4

IDC_1

0

1

2

3

4

D
C
IS

.L
C
IS

H
ea

lth
y

ID
C

Tu
m

or
_e

dg
e

Identity

E
x

p
re

ss
io

n
 L

ev
el

LAG3

0

1

2

3

D
C
IS

.L
C
IS

H
ea

lth
y

ID
C

Tu
m

or
_e

dg
e

Identity

E
x

p
re

ss
io

n
 L

ev
el

PDCD1

0

1

2

3

4

D
C
IS

.L
C
IS

H
ea

lth
y

ID
C

Tu
m

or
_e

dg
e

Identity

E
x

p
re

ss
io

n
 L

ev
el

TIGIT

0

1

2

3

D
C
IS

.L
C
IS

H
ea

lth
y

ID
C

Tu
m

or
_e

dg
e

Identity

E
x

p
re

ss
io

n
 L

ev
el

HAVCR2

0

2

4

6

D
C
IS

.L
C
IS

H
ea

lth
y

ID
C

Tu
m

or
_e

dg
e

Identity

E
x

p
re

ss
io

n
 L

ev
el

CXCL13

0

1

2

3

4

D
C
IS

.L
C
IS

H
ea

lth
y

ID
C

Tu
m

or
_e

dg
e

Identity

E
x

p
re

ss
io

n
 L

ev
el

CTLA4

Fig. 6 | GraphST enables comprehensive and accurate spatial mapping of
scRNA-seq data in human breast cancer data. A Manual annotation and spatial
distribution of major cell types mapped by GraphST, namely B cell, luminal cell, T
cell, fibroblast, lymphatic endothelial cell, NK cell, plasma cell, myoepithelial cell,
pDC, luminal progenitor, macrophage/DC/monocyte, Perivascular cell, and vas-
cular endothelial cell. B Visualization of scRNA-seq data and spatial localization of
cell types with UMAP generated from the output cell representations of GraphST.

C Heatmap of the spatial distribution of cell types. D The gene expression of six
T-cell exhaustion-related markers in different annotated domains. E Functional
enrichment results of the IDC domain specific differentially expressed genes. Sta-
tistical significance was assessed by the hypergeometric test, and p-values were
adjusted by the Benjamini–Hochberg p-value correction algorithm. The statistical
test was one-sided. F Predicted spatial distribution of cells from two sample types,
adjacent normal and solid tumor.
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spatial distribution of cell types. We exemplified GraphST’s utility in
analyzing tissue microenvironment by deconvoluting both the cancer
cells and immune milieu present in breast cancer tissue.

The key features of GraphST responsible for its superior perfor-
mance are the useof graph neural networks and contrastive learning in
capturing gene expression together with spatial information. While
existing methods such as SpaGCN and STAGATE also use graph neural
networks to learn gene expression and spatial information, they show
poorer clustering performance and lack the ability to accomplish
batch integration. The main differences between GraphST and these
methods lie in the use of graph self-supervised contrastive learning to
strengthen the latent representation learning and additional pre-
servation of local spatial context information of spots. This makes the
learned representation more informative and discriminative, thus
improving clustering performance. Moreover, while there are simila-
rities between GraphST and STAGATE in the integration of multiple
samples, STAGATE’s limited capability in batch effect removal greatly
limited its performance in vertical integration. On the other hand,
although conST and SpaceFlow also adopted graph contrastive
learnings for spatial clustering, GraphST possesses major technical
differences and performance advantages compared to the other two
methods. GraphST is different from conST and SpaceFlow in its defi-
nition of positive/negative pairs, formulation of the objective function
and contrastive loss, and training procedure (details in Supplementary
File 1). These differences enable GraphST to outperform conST and
SpaceFlow in the spatial clustering task. We have conducted several
ablation studies to confirm that each of these differences improves the
effective integration of gene expression and spatial context to obtain
informative and discriminative spot representations (Supplementary
File 1). Moreover, both conST and SpaceFlow were mainly developed
for spatial clustering only. In addition to spatial clustering, GraphST
can also be applied to two other important ST data analysis tasks,
multisample integration and cell-type deconvolution of ST.

In cell-type deconvolution, GraphST also offers improvements
over competingmethods. Most existing deconvolutionmethods, such
as SPOTLight28 and cell2location29, require accompanied cell-type
annotation. Moreover, they do not consider spatial information in
their deconvolution. In contrast, GraphST employs augmentation-free
contrastive learning and spatial information to learn the cell-to-spot
mapping matrix. The learning process does not require prior cell-type
information, and thus the mapping matrix is able to flexibly project
arbitrary cell attributes (e.g., cell type and sample type) onto the spa-
tial space. Thus, GraphST can directly project scRNA-seq data onto the
spatial spots to achieve cell-level deconvolution. While the mapping
matrix learning process is similar between GraphST and Tangram,
there are notable differences. Tangram only uses the raw gene
expression, while GraphST employs augmentation-free contrastive
learning to learn the mapping matrix and take in both the spatial
location information and the informative and noise-reduced gene
expression from the graph deep learning modules as input.

We designed GraphST to be user-friendly and capable of proces-
sing data acquired from different experimental platforms. GraphST
has been validated on 10x Visium, Slide-seqV2, and Stereo-seq data,
and we plan to extend it to other ST platforms, such as MERFISH and
Nanostring CosMx SMI. GraphST is also designed to be computation-
ally efficient in handling challenges from large datasets. We anticipate
that future developments in ST technologies will bring about sub-
cellular resolutionwith full gene expressionprofiling, aswell as general
growth in dataset sizes. The largest dataset we tested contained about
100,000 spots (E14.5 mouse embryo), and it required 30mins of wall-
clock time on a server with Intel Core i7-8665U CPU and NVIDIA RTX
A6000 GPU. We believe that our algorithm can handle existing data-
sets as well as newer ones in the near future. We also plan to further
improve performance through distributed computing and batch
training implementations.

Methods
Data preprocessing
For spatial clustering, GraphST takes in gene expression counts and
spatial position information. Raw gene expression counts are first log-
transformed and normalized by library size via the SCANPY package37.
The normalized gene expression counts are then scaled to unit var-
iance and zero mean. Finally, the top 3000 highly variable genes
(HVGs) are selected to be input into the GraphST model. For ST cell-
type composition deconvolution, scRNA-seq data is similarly pre-
processed, where the raw gene expression counts are first log-
transformed and normalized by library size and then scaled to unit
variance and zero mean. Subsequently, the top 3000 highly variable
genes are selected. To ensure consistent feature information, the
commonpreprocessedHVGsof the scRNA-seq and ST data are used as
input to GraphST to learn the latent representations of cells and spots,
respectively.

Graph construction for spatial transcriptomics data
The strength of spatial transcriptomics is the associated spatial
information that can be exploited to identify similar cell states that
are also spatially co-located and thus demarcate tissue sub-
structures. To make full use of the spatial information, we convert
it into an undirected neighborhood graph G= V ,Eð Þ with a pre-
defined neighbor number k. In the graph G, V represents the set of
spots while E is the set of connected edges between spots. A 2
RNspot ×Nspot is defined as the adjacency matrix of graph G with Nspot

denoting the number of spots. If spot j 2 V is the neighbor of spot
i 2 V , aij = 1, otherwise 0. Thus, for a given spot, its neighbors are
defined by its proximity to other spots based on the Euclidean
distance computed from the spatial location information. Finally,
we select k spots as its neighbors from the top nearest neighbors.
From our testing, GraphST achieved its best performance in most
of the tested datasets with k set to 3.

Graph self-supervised contrastive learning
For spatial clustering, a graph self-supervised contrastive learning
framework is proposed to learn the spot representations from the
input gene expression profiles and spatial information. Figure 1A
illustrates the overview of this framework, divided into three major
steps: (1) data augmentation, (2) GNN-based encoder for representa-
tion learning, and (3) self-supervised contrastive learning for repre-
sentation refinement. GraphST takes the gene expression profiles and
theneighborhoodgraph as input andoutputs the spot representations
for spatial clustering and multiple ST data integration. The details of
each step are described next.

Data augmentation
For subsequent contrastive learning, we first generate a corrupted
neighborhood graph via data augmentation. Specifically, given a
neighborhood graph G and the normalized gene expressionmatrix
X , we create the corrupted graph by randomly shuffling the gene
expression vectors among the spots while keeping the original
graph’s topological structure unchanged. Let G0 = ðV 0,E 0Þ and X 0

denote the corrupted graph and shuffled gene expression profiles,
respectively.

GNN-based encoder for representation learning
We designed a GNN-based encoder to learn spot representations that
capture the informative parts of the gene expression profiles and
spatial locations. The encoder takes theneighborhoodgraphG and the
normalized gene expression profiles in X as inputs, and the decoder
outputs the reconstructed gene expressionsHs. Specifically, we utilize
a graph convolutional network (GCN)52 as encoder to learn a latent
representation zi for spot i by iteratively aggregating the representa-
tions of its neighbors. Formally, the l-th layer representations in the
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encoder can be formulated as follows,

Zl
s = σ eAZl�1

s W l�1
e +bl�1

e

� �

, ð1Þ

where eA=D�1
2AD�1

2 represents the normalized adjacentmatrix whereD
is a diagonal matrix with diagonal elements being Dii =

PNspot

j = 1 Aij . We

and be denote a trainable weightmatrix and a bias vector, respectively.
σð�Þ is a nonlinear activation function such as ReLU (Rectified Linear
Unit). Zl

s denotes the l-th layer output representation and Z0
s is set as

the original input gene expressions X . We denote Zs as the final output
of the encoder, where the i-th row zi denotes the latent representation
of spot i.

After that, the latent representations Zs are fed into a decoder to
reverse them back into the raw gene expression space. Different from
the encoder, the decoder adopts a symmetric architecture to recon-
struct the gene expression. Specifically, the decoder is defined as fol-
lows,

Ht
s = σ eAHt�1

s Wt�1
d +bt�1

d

� �

, ð2Þ

where Ht
s denotes the reconstructed gene expression profiles at the

t-th layer andH0
s is set as the output representation Zs of the encoder.

Wd and bd represent the trainable weight matrix and bias vector,
respectively, which are shared by all nodes in the graph. To make full
use of the gene expression profiles, we train the model by minimizing
the self-reconstruction loss of gene expressions as follows:

Lrecon =
X

Nspot

i = 1

∣∣xi � hi∣∣
2
F , ð3Þ

As the output of the decoder, Hs denotes the reconstructed gene
expression profiles. xi and hi are the original normalized gene
expression and reconstructed gene expression for spot i, respectively.

Self-supervised contrastive learning for representation
refinement
To make the representation Hs more informative and discriminative,
we further adopt a self-supervised contrastive learning (SCL) strategy
to ensure that the model captures the local spatial context of spots.
Specifically, with the original and corrupted graphs G and G0 as inputs,
the GNN-based encoder first generates two corresponding repre-
sentation matrices Zs 2 RNspot ×d and Z 0

s 2 RNspot ×d for the spots.
Motivated by DGI (Velickovic et al.)53, we aggregate the neighbors’
representations as the local context of a spot i, i.e., gi, representing the
spot’s neighborhood microenvironment. Assuming that a spot in the
spatial data usually contains cell type and gene expression similar to its
local context, the readout function is defined by a sigmoid of themean
of the representations of immediate neighbors instead of global
neighbors unlike DGI. For spot i in the graph, its representation zi and
the local context vector g form a positive pair, while its corresponding
representation z0i from the corrupted graph and the local context
vector g form a negative pair. The key idea behind SCL is to maximize
the mutual information of positive pairs while minimizing the mutual
information of negative pairs. By using contrastive learning, spatially
adjacent spots will have similar representations, while nonadjacent
spots will have dissimilar representations. Next, we use binary cross-
entropy (BCE) to model SCL. Formally, the contrastive loss can be
defined as:

LSCL = � 1
2Nspot

X

Nspot

i= 1

E X ,Að Þ logΦ zi, gi

� �� �

+E X 0 ,A0ð Þ log 1�Φ z0i, gi

� �� �� �

� �

0

@

1

A,

ð4Þ

where Φ �ð Þ is a discriminator D:Rd ×Rd!R, a dual neural network
that distinguishes the positive pairs from negative pairs. Φ zi,g

� �

denotes the probability score that is assigned to the positive pair ðzi,gÞ.
Considering that the corrupted graph G0 has the same topological
structure as the original graph G, we define a symmetric contrastive
loss LSCL corrupt for the corrupted graph to make the model more
stable and balanced,

LSCL corrupt = � 1
2Nspot

X

Nspot

i= 1

E X 0 ,A0ð Þ logΦ z0i,g
0
i

� �� �

+E X ,Að Þ log 1�Φ zi, g
0
i

� �� �� �

� �

0

@

1

A,

ð5Þ

Overall loss function
The representation learning module of ST data is trained by minimiz-
ing the self-reconstruction loss and contrastive loss. Briefly, the overall
training loss of this module is defined as:

L= λ1Lrecon + λ2 LSCL +LSCL corrupt

� �

, ð6Þ

where λ1and λ2 are the weight factors that trade-off the impacts of
the reconstruction loss and the contrastive loss. Empirically, we set λ1
and λ2 as 10 and 1. The training of this module is independent of the
next scRNA-seq and ST data integration module, and we employ the
Adam optimizer54 for the optimization. The learning rate and training
epoch are set to 0.001 and 600 for both spatial clustering andmultiple
STdata integration tasks,while0.001 and 1200 areused for the scRNA-
seq and ST data integration task.

Spatial domain assignment via clustering and refinement
Aftermodel training, weuse the reconstructed spatial gene expression
Hs from the decoder (Fig. 1A) with the nonspatial assignment algo-
rithm,mclust55, to cluster the spots intodifferent spatial domains. Each
cluster is regarded as a spatial domain, containing spots with similar
gene expression profiles and are spatially proximate. For tissue slices
with manual annotation, we set the number of clusters to be the same
as the ground truth. For tissue slices without manual annotations, we
test different cluster counts and select the count that gives the highest
Silhouette score56. Although the reconstructed spatial gene expression
Hs was obtained using both gene expression and spatial information,
some spots may be wrongly assigned to spatially disparate domains.
We consider such occurrences to be noise and that their presencemay
influencedownstreambiological analysis. To resolve this, we extended
our model with an optional optimization step. In this step, for a given
spot i, its surrounding spots within an r radius circle are treated as its
neighbors. GraphST reassigns the spot i to the same domain as the
most common label of its surrounding spots. Setting r to 50 gave the
best clustering performance in our benchmarks. This step is not
recommended for ST data with fine-grained domains (e.g., mouse
brain anterior and posterior) or acquired using Stereo-seq and Slide-
seqV2. In this study, we only applied this refinement step to the human
brain DLPFC and the human breast cancer dataset.

Vertical and horizontal integration of multiple tissues via
implicit batch effect correction
The discussion so far assumes only a single tissue slice as input. For
biological analysis of tissue samples, integrated analysis of multiple
tissue slices can yield greater insights. Two types of multiple sample
analysis are possible, vertically split tissue slices (such as the mouse
breast cancer sections 1 and 2) and horizontally split tissue slices (such
as the mouse brain anterior and posterior sections). For the former,
one major challenge for integrated analysis is the presence of batch
effects among different slices, hindering data integration. For the lat-
ter, the challenge is to assign spots to domains such that the domains
straddling the joining edge are aligned.
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To overcome these challenges, we extended our GraphST model
to handle the integrated analysis of multiple tissue slices. Here we
consider an example with two slices, though the model can be exten-
ded to handlemore slices. There are threemajor steps, as illustrated in
Fig. 1B. First, for two given tissue slices, we employ the algorithm
PASTE57 to align their H&E images to ensure that the two slices are
adjacent in space. Next, with the aligned spatial coordinates, a joint
neighborhood graph for the two slices is constructed in the same way
aswith a single slice. The joint constructionof theneighborhoodgraph
makes it possible to consider both intra- and inter-slice adjacent spots
as neighbors for a specific spot, enabling feature smoothing between
adjacent spots across slices during the representation learning. Finally,
with the joint neighborhood graph and gene expressions as inputs,
GraphST learns the joint representation of the spots from the two
slices for downstream spatial clustering (Fig. 1A).

For vertical integration, GraphST implicitly removes batch effects
betweensliceswithoutexplicitbatchfactordetection.Thebatcheffects
mainlyoriginatefromthediscrepanciesinfeaturedistributionsbetween
batches. InGraphST, twoaspectscontribute tobatcheffectelimination.
First, GraphST learns the representation by iteratively aggregating
representationsofneighbors,whichsmoothsthefeaturedistributionof
batchesandhelpsdiminishthedifferencesbetweenbatches.Second,by
using the graph self-supervised contrastive learning, the learned
representationcaptures localcontext information,whichfurthermakes
spatially adjacent spots have similar representations.

PASTE (probabilistic alignment of ST experiments) for multiple
tissue slice alignment
We employed PASTE57 to align and integrate multiple tissue slices into
a single consensus slice. PASTE leverages both gene expression simi-
larity and spatial distances between spots to align and integrate spatial
transcriptomics data. In our analysis, we used center slice integration
to overcome variability in individual slices due to varying sequencing
coverage, tissue dissection, or tissue placement on the array. We first
filtered genes with min_counts = 15 in each individual slice using
Scanpy. We then filtered for common genes for each individual slice
and used PASTE’s ‘center_align’ algorithm or center slice integration
mode. In this mode, PASTE infers a ‘center’ slice consisting of a low-
rank expressionmatrix and a collection of mappings from the spots of
the center slice to the spots of each input slice and integrates the ST
slices to the center slice by combining a fused Gromov–Wasserstein
barycenter with nonnegative matrix factorization (NMF).

Spatially informed contrastive learning for scRNA-seq and ST
data integration
To integrate scRNA-seq and ST data, we aim to learn a trainable
mapping matrixM of dimensions Ncell ×Nspot to project cells from the
scRNA-seq data into the spatial space (Fig. 1C). Each element Mij in M
represents the probability of cell i being mapped to spot j, with the
constraint that the total probability for all the cells is 1 for each spot,
i.e.,

PNcell
i Mij = 1.

The mapping matrix M is learned using the gene expression
profiles of the scRNA-seq and ST data. Unlike Tangram34, which learns
the mapping matrix directly using the raw gene expressions with high
noise levels, GraphST retains and refines the informative and noise-
reduced features from the raw gene expression profiles of both the
scRNA-seq and ST data via deep learning modules before learning the
mapping matrix. Specifically, for ST data, we take the output Hs of
Module 1 (Fig. 1A) as the input for the mapping matrix learning
(Fig. 1C). For the scRNA-seq data, we learn the cell representations via
an auto-encoder. Specifically, with the normalized gene expression ei
as input, a latent representation qi of cell i is learned by an encoder:

qi = f en ei
� �

, ð7Þ

where f enð�Þ is a multiple-layer neural network. After that, cell gene
expression yi is reconstructed by a decoder:

yi = f de qi

� �

, ð8Þ

where f deð�Þ is a multiple-layer neural network like the encoder. After
model training, we can obtain the reconstructed cell gene expression
matrix Hc, with which we can predict the spatial gene expression
matrix H0

s by combining it with mapping matrix M:

H0
s =M

T � Hc: ð9Þ

To learn the mapping matrix M, we designed an augmentation-
free contrastive learning mechanism to align the predicted spatial
gene expression H0

s with the reconstructed spatial gene expression Hs

(Fig. 1A). The overall loss Lmap of the mapping matrix learning is for-
mulated as:

Lmap = � α
X

Nspot

i= 1

X

j2Ni

log
exp sim h0

i,hj

� �

=τ
� �

PNspot

p=2i exp sim h0
i,hp

� �

=τ
� � +β∣∣Hs � H0

s ∣∣
2
F ,

ð10Þ

where simði,jÞ denotes the cosine similarity of spot pair i,j calculatedby
their representations, Ni is the set of neighbors of spot i, and τ
represents temperature parameter (set as 1 by default). Here the first
term computes the contrastive learning loss, aiming to maximize the
similarities of positive pairs andminimize thoseof negative pairs. For a
given spot i, positive pairs are defined as those that it makes with
spatially adjacent spots, while negative pairs are those made with
spatially nonadjacent spots. The second term is to ensure that the
predicted gene expression is proportional to the reconstructed
gene expression. We use α and β as weight factors to control the
weightage consideration of the contrastive and reconstruction losses.
α and β are set to 1 and 10, respectively.

Unlike most existing deconvolution methods, such as SPOTLight
and cell2location, ourGraphSTmodel is independent of the scRNA-seq
annotation information (e.g., cell types) during the mapping process.

Spot-targeted annotation transfer
As the output of Module 3 (Fig. 1C), we can obtain the mappingmatrix
M 2 RNcell ×Nspot , which canbe treated as a general transfer function. For
certain annotations of scRNA-seq data, such as cell types, disease
states, or disease grade, we can transfer it into the spatial space easily
via M. Briefly, let Scell 2 RNcell ×Nannot cell denote a one-hot annotation
matrix with rows representing cells and columns representing anno-
tation labels, and Nannot cell is the number of annotation labels. The
probability distribution Pspot 2 RNspot ×Nannot cell of cell annotations in the
spots is formulated as:

Pspot =M
T � Scell : ð11Þ

To circumvent the influences of spots with low scores, we
empirically retain the scores of the top 10% cells for each spot in Pspot

and set the remaining values to 0.

Domain-targeted annotation transfer
Although we can determine the spatial distribution of annotations
(taking cell type as anexample) in theH&E images, somecell typesmay
span different spatial domains such that it becomes difficult to dis-
tinguish which cell types are found in which spatial domains. There-
fore, we further extend our model to transfer annotations of scRNA-
seq data into the spatial domain. With function (11), we can derive the
annotation-to-spot projection matrix Pspot 2 RNspot ×Nannot cell . We
assume that Sspot 2 RNspot ×Nannot spot represents a one-hot annotation

Article https://doi.org/10.1038/s41467-023-36796-3

Nature Communications |         (2023) 14:1155 15



matrixwithNannot spot denoting the number of spatial domains. Similar
to the spot-targeted annotation transfer, the probability distribution
Pdomain 2 RNannot spot ×Nannot cell of cell annotations in spatial domains is
formulated as:

Pdomain = S
T
spot � Pspot : ð12Þ

Mouse breast cancer experiments
All animalworkwasapprovedby theNUS Institutional AnimalCare and
Use Committee (IACUC) and was in accordance with the National
Advisory Committee for Laboratory Animal Research (NACLAR)
Guidelines (Guidelines on the Care and Use of Animals for Scientific
Purposes) (Protocol approval R18-0635). Here, 1 × 105 metastatic
murine breast cancer cells (4T1) taggedwith luciferasewere implanted
into the mammary fat pads of 16- to 20-week-old Balb/cNTac mice.
Tumor growth was monitored over 2 weeks using a digital caliper.
Tumors were excised and extracted at 2 weeks for spatial
transcriptomics.

Histology and RNA quality assessment
4T1 implanted mammary pad tumors during posttreatment were
excised, immediately embedded in optimal cutting temperature (OCT)
compound, and frozen on dry ice. Cryoblocks were kept at −80 °C and
sent for histology analysis to obtain 20-µm sections. RNA quality was
assessed for all tissue blocks using the RNeasy Mini kit (Qiagen). Ten
sections were obtained from each cryoblock to verify the RNA quality
for each respective block. Then, 600 µl of buffer RLT was added to the
10 sections and subsequently disrupted using a QIAshredder by cen-
trifuging for 2mins at maximum speed. RNA was extracted from the
lysate with the RNeasy Mini kit using instructions from the “Purifica-
tion of Total RNA from Animal Tissues” section, and quality was
assessed via the RNA integrity number (RIN) value determined using
the Agilent 2100 Bioanalyzer (Agilent). Cryoblocks-derived sections
with RIN value ≥ 8 were used for the subsequent spatial tran-
scriptomics experiments.

Spatial transcriptomics
Sections obtained at 20 µm were placed within the grids on pre-
chilled Visium Tissue Optimization and Gene Expression slides
(10x Genomics) and stored at −80 °C. For H&E staining, slides with
sections were thawed at 37 °C for 1 min before fixation in methanol
at −20 °C for 30mins. H&E staining was performed according to
the manufacturer’s protocol (10x Genomics; CG000160), with
hematoxylin staining reduced from 7mins to 5.5 mins. The optimal
tissue permeabilization time of individual cryoblocks of each
group was obtained from time-course assays performed on tissue
optimization slides. This optimal timing was then used on the gene
expression slides with the respective blocks to capture mRNA
post-permeabilization. Images were all obtained and stitched
together using EVOS FL Auto 2 (Thermofisher Scientific) with a 20x
objective (Fluorite with correction collar; 20x objective, 0.7 N.A),
and the raw images were saved in the TIF format. Fluorescence
images were acquired using an RFP filter cube (531/40 nm Ex; 593/
40 nm Em) with a 20x objective (Plan fluorite). The created RNA-
seq libraries were then sequenced with Novaseq.

Data description
For spatial clustering, we employed five spatial gene expression data-
sets (see Supplementary Table S1 for details). The first dataset was the
LIBD human dorsolateral prefrontal cortex (DLPFC) with 12 tissue sli-
ces acquired with 10x Visium36 (http://research.libd.org/spatialLIBD/).
The number of spots in each slice ranged from 3460 to 4789, with
33,538 genes captured. Each slice was manually annotated to contain
five to seven regions, namely the DLPFC layers and white matter. The

second dataset of mouse brain tissue was downloaded from the pub-
licly available 10x Genomics Data Repository (https://www.
10xgenomics.com/resources/datasets). This dataset had two sec-
tions, of which we selected the anterior section. The selected section
contained 2695 spots with 32,285 genes captured and was manually
annotated with 52 regions using the Allen Brain Atlas reference
(https://mouse.brain-map.org/static/atlas). The third dataset of the
mouse olfactory bulb was acquired using Stereo-seq22, which was fur-
ther processed and annotated12,58. The data contained 19,109 spots and
14,376 genes. The fourth dataset of the mouse hippocampus was
acquired with Slide-seqV2 and was downloaded from (https://portals.
broadinstitute.org/single_cell/study/slide-seq-study). The section used
was Puck_200115_08, with 52,869 spots. The last dataset consisted of
Stereo-seq data acquired from two mouse embryos (E9.5 and E14.5)22,
which we downloaded from https://db.cngb.org/stomics/mosta/. The
E9.5 embryo data consisted of 5913 bins and 25,568 genes, while the
E14.5 embryo data consisted of 92,928 bins and 18,566 genes.

In the second task of multiple sample integration, we performed
vertical integration on two datasets and one for horizontal integration
(see Supplementary Table S1 for details). For vertical batch integration,
both datasets were acquired from mouse breast cancer tissue that is
described above. We utilized two sets of samples derived from this
tissue, of which each set is composed of two vertically adjacent sec-
tions. The number of spots ranged from 1868 to 3042 for each section,
with 32,285 genes captured. For horizontal integration, we employed
both sections (anterior & posterior) of the mouse brain tissue dataset
that was also used for clustering.

In the third taskof ST cell compositiondeconvolutionwith scRNA-
seq reference data, we employed both simulated and experimentally
acquired data. The first example tested simulated data obtained from
the benchmarking study by Li et al.41, downloaded fromhttps://github.
com/QuKunLab/SpatialBenchmarking/tree/main/FigureData/Figure4.
We used datasets 4 and 10 from the study. Dataset 4 was generated
from mouse cortex experimental data acquired with seqFISH+ and
Smart-seq, with 72 spots created. Dataset 10 was generated using
mousevisual cortex tissuedata capturedwith STARmapandSmart-seq
technologies, with 189 spots created. For experimentally acquired
datasets, we used four examples (see Supplementary Tables S1 and S2
for details). The first example consisted of human lymph node tissue
data acquired with spatial transcriptomics and scRNA-seq, both
obtained from an existing study by Kleshchevnikov et al.29. The ST data
contained 4035 spotswith 36,588 geneswhile the scRNA-seq consisted
of 73,260 cells with 10,217 genes captured. The second example
employed the anterior section of the mouse brain sample data. The
scRNA-seq reference used was acquired frommousewhole cortex and
hippocampus tissues, encompassing more than 1.1 million cells with
22,764 genes captured (https://portal.brain-map.org/atlases-and-data/
rnaseq/mouse-whole-cortex-and-hippocampus-10x). The third exam-
ple used the human brain sample DLPFC dataset, of which we used
slice #151673. The corresponding snRNA-seq data of archived post-
mortem dorsolateral prefrontal cortex (BA9) tissue was acquired with
the 10xGenomics Chromiumplatform (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE144136). The snRNA-seq dataset was com-
posed of 78,886 cells with 30,062 genes46. The final deconvolution
example utilized the human breast cancer sample obtained from the
publicly available 10x Genomics Data Repository (https://www.
10xgenomics.com/resources/datasets/human-breast-cancer-block-a-
section-1-1-standard-1-1-0). The dataset contained 3798 spots with
36,601 genes and was manually annotated with 20 regions. The cor-
responding scRNA-seq data were downloaded from the database
DISCO47, consisting of cells from two different samples, i.e., adjacent
normal and solid tumor (https://www.immunesinglecell.org/). The
data consisted of 476,571 cells with 5000 genes, which we down-
sampled to 46,080 cells while maintaining the relative cell-type
composition.
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Comparison with baseline methods and evaluation
To showcase the effectiveness of GraphST in spatial clustering, we
compared GraphST with seven state-of-the-art methods, the non-
spatial method Seurat7 and spatial methods Giotto8, SpaGCN9,
SpaceFlow14, conST15, BayesSpace11, and STAGATE12. To evaluate the
performance of multiple tissue slice integration, we compared
GraphST with Harmony16, scVI17, and STAGATE for vertical integration
and STAGATE and SpaGCN for horizontal integration. For ST cell-type
deconvolution with scRNA-seq data, GraphST was compared with
cell2location, which had been benchmarked to be the best existing
method41, as well as Seurat, RCTD, SPOTlight, and NNLS.

Seurat. Seurat is a popular single-cell transcriptomics analysis
library that has been extended to handle spatial transcriptomics data.
We used the default pipeline and default parameters in Seurat as
described in the spatial clustering vignette. As we were unable to
specify the number of clusters in Seurat, we ran the FindClusters
function at different resolutions and chose the resolution that gave us
the desired number of clusters.

Giotto. Giotto is a toolbox designed for spatial data analysis. We
followed the tutorial in Giotto’s Github repositorywith default settings
to preprocess the data. For clustering, we used the hidden random
Markov randomfieldmodel-basedmodule designed for spatial pattern
discovery. Specifically, we used the Giotto functions, init_hmrf_v2 and
do_hmrf_v2 with default parameter values. The HMRF workflow is
given at: https://bitbucket.org/qzhudfci/smfishhmrf-r/src/master/
TRANSITION.md.

SpaGCN. SpaGCN is a graph convolutional network approach that
integrates gene expression, spatial location information, and histolo-
gical images for ST data analysis. SpaGCN is one of the only two other
methods that can perform horizontal ST data integration. Following
the tutorial, we applied SpaGCN to spatial clustering and horizontal ST
data integration with the default parameter settings. In particular, the
parameter ‘histology’ was set to ‘False’. The learning rate and max
training epoch were set to 0.05 and 200, respectively.

conST. conST is a contrastive learning-based method that com-
bines gene expression, spatial information, and morphology for ST
data analysis. We applied conST on the DLPFC samples for spatial
clustering with default parameter settings. Specifically, the parameter
‘use_img’ was set to ‘False’. The number of neighbors was set to 10
when constructing the neighborhood graph. The training epoch and
learning rate were set to 200 and 0.01, respectively.

SpaceFlow. SpaceFlow is a deep graph network that is developed
for ST data analysis by combining gene expression profiles with their
spatial locations. We ran SpaceFlow for comparison on spatial clus-
tering. We used the default parameter settings to preprocess data and
run the model. In particular, the gene with expression in fewer than
three cells and cells with expression of fewer than 100 genes were
removed. After that, the normalized expression was multiplied by a
scale factor of 10,000 and log-transformed with a pseudo-count one.
As feature inputs, 3000 highly variable genes were selected. The
learning rate, training epoch, and regularized weight factor were set at
0.001, 1000, and 0.1, respectively.

BayesSpace. BayesSpace uses a Bayesian model with a Markov
random field to model spatial transcriptomics data for clustering,
utilizing both spatial and gene expression information. We followed
the analysis tutorial for BayesSpace in its GitHub repository and used
the following parameters, nrep = 50,000 and gamma= 3, platform=
“Visium” and mode = “normal”.

STAGATE. STAGATE is another deep learning model-based
method that combines an auto-encoder with a graph attention
mechanism to learn latent representation by modeling both gene
expression profiles and spatial location information. We ran STAGATE
for spatial clustering and vertical and horizontal ST data integration.
All experiments were implemented using the recommended para-
meters in the package vignette. Specifically, with raw gene

expressions, the top 3000highly variable geneswerefirst selected and
then log-transformed and normalized according to library size. The
parameter ‘alpha’ was set to 0. The learning rate and training epoch
were left at the default 0.0001 and 500, respectively.

Harmony. Harmony is a nonspatial batch correction method. We
used Harmonypy (https://github.com/slowkow/harmonypy) for batch
integration of the two mouse breast cancer datasets. The dataset was
first preprocessed using the standard Scanpy workflow, including log-
normalization, scaling, and PCA dimension reduction. We used the
PCA embeddings and sample batch information as input to Harmo-
nypy and obtained the batch-corrected embeddings.

scVI. scVI is another nonspatial batch correction method that
combines stochastic optimization with deep neural networks. We
employed the scVI package (version 0.19.0) for batch integration. The
input dataset was preprocessed using the standard Scanpy workflow.
After log-normalization, 1200 highly variable genes were selected as
input for data integration. Themodel was set up and trained using the
following default parameters: ‘n_hidden: 128, n_latent: 10, n_layers: 1,
dropout_rate: 0.1, dispersion: gene, gene_likelihood: zinb, latent_dis-
tribution: normal’. The output of corrected latent embeddings was
then used for downstream analysis.

cell2location. cell2location employs a Bayesian model to estimate
the spatial distribution of cell types in the ST data of a given tissue
using single-cell or nuclei RNA-seq data as reference. We first per-
formed the initial preprocessing of removing mitochondrial genes
from the ST data. For the scRNA-seq reference dataset, we performed
very permissive gene selection using the following parameters: ‘cell_-
count_cutoff = 5’; ‘cell_percentage_cutoff = 0.03’ and ‘nonz_mean_cut-
off = 1.12’. We used these selection criteria instead of the standard
highly variable gene selection to retain rare marker genes while
removingmost of the uninformative genes. To estimate reference cell-
type signatures from the single-cell RNA-seq profiles, we used cell2-
location with the default negative binomial regression. We used the
following parameters: ‘max_epochs = 250’; ‘batch_size = 2500’; ‘train_-
size=1’; ‘lr=0.002’; ‘use_gpu=True’ to train the model and export the
estimated cell abundance for each cell type. In the next step, cell2lo-
cation performed spatial mapping by taking the spatial dataset and
estimated cell abundance for each cell type from scRNA-seq reference
dataset as input to output the estimated cell abundance at all spatial
locations. Here, we set the hyperparameters: ‘N_cells_per_location=30’
(number of cells per location) and ‘detection_alpha=20’ (for within-
experiment variation in RNA detection) and other parameters such as:
‘max_epochs=30000’; ‘batch_size=None’; ‘train_size=1’ and ‘use_gpu=-
True’. The cell abundance in each spatial location was visualized in
scatter plots with Scanpy’s ‘scanpy.pl.spatial’ command.

RCTD. RCTD is a model-based approach that leverages cell type
profiles learned from single-cell RNA-seq to decompose cell type
mixtures. We followed the guidelines on the RCTD GitHub repository:
https://raw.githack.com/dmcable/spacexr/master/vignettes/spatial-
transcriptomics.html. The model was set up and trained using the
following parameters: doublet_mode = ‘full’.

SPOTlight. SPOTlight is a nonnegative matrix factorization
regression model that uses a modified nonnegative least squares
(NNLS) method to deconvolute ST capture locations (spots). We fol-
lowed the guidelines on the SPOTlight GitHub repository: https://
marcelosua.github.io/SPOTlight/. The model was set up and trained
using the following parameters, transf = ‘uv’, method = ‘nsNMF’.

NNLS. (AutoGeneS) NNLS is a computational method to estimate
the absolute cell abundance of cell types given the reference sig-
natures of cell types. NNLS implementation is a part of the AutoGeneS
package.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. No
data were excluded from the analyses. The experiments were not
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randomized. The investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Datasets analyzed in this paper are available in raw form from their
original authors (see Supplementary Tables S1 and S2). The data used
in this study have been uploaded to Zenodo and is freely available at:
https://zenodo.org/record/6925603#.YuM5WXZBwuU.

Code availability
An open-source Python implementation of the GraphST toolkit is
accessible at https://github.com/JinmiaoChenLab/GraphST.

References
1. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue archi-

tecture using spatial transcriptomics. Nature 596, 211–220
(2021).

2. Liao, J., Lu, X., Shao, X., Zhu, L. & Fan, X. Uncovering an organ’s
molecular architecture at single-cell resolution by spatially
resolved transcriptomics. Trends Biotechnol. 39, 43–58 (2021).

3. Hunter, M. V., Moncada, R., Weiss, J. M., Yanai, I. & White, R. M.
Spatially resolved transcriptomics reveals the architecture of the
tumor-microenvironment interface. Nat. Commun. 12, 6278
(2021).

4. Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to
study Alzheimer’s disease. Cell 182, 976–991.e19 (2020).

5. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering
cell-cell interactions and communication from gene expression.
Nat. Rev. Genet. 22, 71–88 (2021).

6. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast
unfolding of communities in large networks. J. Stat. Mech. Theory
Exp. 2008, P10008 (2008).

7. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial
reconstruction of single-cell gene expression data.Nat. Biotechnol.
33, 495–502 (2015).

8. Dries, R. et al. Giotto: a toolbox for integrative analysis and visuali-
zation of spatial expression data. Genome Biol. 22, 78 (2021).

9. Hu, J. et al. SpaGCN: integrating gene expression, spatial location
and histology to identify spatial domains and spatially variable
genes by graph convolutional network. Nat. Methods 18,
1342–1351 (2021).

10. Pham, D. et al. stLearn: integrating spatial location, tissue mor-
phology and gene expression to find cell types, cell-cell interac-
tions and spatial trajectories within undissociated tissues. Preprint
at bioRxiv https://doi.org/10.1101/2020.05.31.125658 (2020).

11. Zhao, E. et al. Spatial transcriptomics at subspot resolution with
BayesSpace. Nat. Biotechnol. 39, 1375–1384 (2021).

12. Dong, K. & Zhang, S. Deciphering spatial domains from spatially
resolved transcriptomics with an adaptive graph attention auto-
encoder. Nat. Commun. 13, 1739 (2022).

13. Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for
spatial transcriptomics data with graph neural networks. Nat.
Comput. Sci. 2, 399–408 (2022).

14. Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular
spatiotemporal organization of cells with SpaceFlow. Nat. Com-
mun. 13, 4076 (2022).

15. Zong, Y. et al. conST: an interpretable multi-modal contrastive
learning framework for spatial transcriptomics. Preprint at bioRxiv
https://doi.org/10.1101/2022.01.14.476408 (2022).

16. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-
cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

17. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep
generative modeling for single-cell transcriptomics. Nat. Methods
15, 1053–1058 (2018).

18. Asp, M., Bergenstråhle, J. & Lundeberg, J. Spatially resolved tran-
scriptomes—next generation tools for tissue exploration. Bioessays
42, e1900221 (2020).

19. 10x Genomics. https://www.10xgenomics.com/resources/
datasets/ (2023).

20. Rodriques, S. G. et al. Slide-seq: a scalable technology for mea-
suring genome-wide expression at high spatial resolution. Science
363, 1463–1467 (2019).

21. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via
deterministic barcoding in tissue. Cell 183, 1665–1681.e18 (2020).

22. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse
organogenesis using DNA nanoball-patterned arrays. Cell 185,
1777–1792.e21 (2022).

23. Fu, X. et al. Continuous polony gels for tissue mapping with high
resolution and RNA capture efficiency. Preprint at bioRxiv https://
doi.org/10.1101/2021.03.17.435795 (2021).

24. Cho, C.-S. et al. Microscopic examination of spatial transcriptome
using Seq-Scope. Cell 184, 3559–3572.e22 (2021).

25. Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in
tissues by RNA seqFISH. Nature 568, 235–239 (2019).

26. Cable, D. M. et al. Robust decomposition of cell type mixtures in
spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022).

27. Andersson, A. et al. Spatial mapping of cell types by integration of
transcriptomics data. Preprint at bioRxiv https://doi.org/10.1101/
2019.12.13.874495 (2019).

28. Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight:
seeded NMF regression to deconvolute spatial transcriptomics
spots with single-cell transcriptomes. Nucleic Acids Res. 49,
e50 (2021).

29. Kleshchevnikov, V. et al. Cell2locationmaps fine-grained cell types
in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).

30. Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for
spatial transcriptomics. Nat. Biotechnol. 40, 1349–1359 (2022).

31. Aliee, H. & Theis, F. J. AutoGeneS: automatic gene selection using
multi-objective optimization for RNA-seq deconvolution. Cell Syst.
12, 706–715.e4 (2021).

32. Lawson, C. L. & Hanson, R. J. Solving Least Squares Problems
(SIAM, 1995).

33. Dong, R. & Yuan, G.-C. SpatialDWLS: accurate deconvolution of
spatial transcriptomic data. Genome Biol. 22, 145 (2021).

34. Biancalani, T. et al. Deep learning and alignment of spatially
resolved single-cell transcriptomes with Tangram. Nat. Methods
18, 1352–1362 (2021).

35. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch
effects in single-cell RNA-sequencing data are corrected by
matching mutual nearest neighbors. Nat. Biotechnol. 36,
421–427 (2018).

36. Maynard, K. R. et al. Transcriptome-scale spatial gene expression in
the human dorsolateral prefrontal cortex. Nat. Neurosci. 24,
425–436 (2021).

37. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell
gene expression data analysis. Genome Biol. 19, 15 (2018).

38. Christoffels, V. M. et al. Chamber formation and morphogenesis in
the developing mammalian heart. Dev. Biol. 223, 266–278 (2000).

39. Kuleshov,M. V. et al. Enrichr: a comprehensive gene set enrichment
analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97
(2016).

40. Allen Institute for Brain Science. Allen Brain Atlas: Mouse Brain
https://mouse.brain-map.org/static/atlas (2008).

41. Li, B. et al. Benchmarking spatial and single-cell transcriptomics
integration methods for transcript distribution prediction and cell
type deconvolution. Nat. Methods 19, 662–670 (2022).

Article https://doi.org/10.1038/s41467-023-36796-3

Nature Communications |         (2023) 14:1155 18

https://zenodo.org/record/6925603#.YuM5WXZBwuU
https://github.com/JinmiaoChenLab/GraphST
https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1101/2022.01.14.476408
https://www.10xgenomics.com/resources/datasets/
https://www.10xgenomics.com/resources/datasets/
https://doi.org/10.1101/2021.03.17.435795
https://doi.org/10.1101/2021.03.17.435795
https://doi.org/10.1101/2019.12.13.874495
https://doi.org/10.1101/2019.12.13.874495
https://mouse.brain-map.org/static/atlas


42. 10x Genomics. V1_Human_Lymph_Node - Datasets - Spatial Gene
Expression - Official 10x Genomics Support. https://support.
10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_
Human_Lymph_Node (2020).

43. James, K. R. et al. Distinct microbial and immune niches of the
human colon. Nat. Immunol. 21, 343–353 (2020).

44. Park, J.-E. et al. A cell atlas of human thymic development defines
T cell repertoire formation. Science 367, eaay3224 (2020).

45. King, H. W. et al. Single-cell analysis of human B cell maturation
predicts how antibody class switching shapes selection dynamics.
Sci. Immunol. 6, eabe6291 (2021).

46. Bae, S. et al. CellDART: cell type inference by domain adaptation of
single-cell and spatial transcriptomic data. Nucleic Acids Res. 50,
e57 (2022).

47. Li, M. et al. DISCO: a database of Deeply Integrated human Single-
Cell Omics data. Nucleic Acids Res. 50, D596–D602 (2022).

48. Carron, E. C. et al. Macrophages promote the progression of pre-
malignant mammary lesions to invasive cancer. Oncotarget 8,
50731–50746 (2017).

49. Hu, Q. et al. Atlas of breast cancer infiltrated B-lymphocytes
revealed by paired single-cell RNA-sequencing and antigen
receptor profiling. Nat. Commun. 12, 2186 (2021).

50. Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets
associated with response to PD-L1 blockade in triple-negative
breast cancer. Cancer Cell 39, 1578–1593.e8 (2021).

51. Bassez, A. et al. A single-cell map of intratumoral changes during
anti-PD1 treatment of patients with breast cancer. Nat. Med. 27,
820–832 (2021).

52. Kipf, T. N. & Welling, M. Semi-supervised classification with graph
convolutional networks. In International Conference on Learning
Representations (2017).

53. Veličković, P. et al. DeepGraph Infomax. Preprint at https://doi.org/
10.48550/ARXIV.1809.10341 (2018).

54. Kingma, D. P. &Ba, J. Adam: amethod for stochastic optimization. In
International Conference on Learning Representations (2015).

55. Fraley, C., Raftery, A. E., Murphy, T. B. & Scrucca, L.mclust Version 4
for R: Normal Mixture Modeling for Model-Based Clustering, Clas-
sification, and Density Estimation. Report No. 597 (University of
Washington, 2012).

56. Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. J. Comput. Appl. Math. 20,
53–65 (1987).

57. Zeira, R., Land, M., Strzalkowski, A. & Raphael, B. J. Alignment and
integration of spatial transcriptomics data. Nat. Methods 19,
567–575 (2022).

58. Fu, H. et al. Unsupervised spatially embedded deep representation
of spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.
1101/2021.06.15.448542 (2021).

Acknowledgements
Theworkwas supported byAI, Analytics and Informatics (AI3) Horizontal
Technology Programme Office (HTPO) seed grant (Spatial tran-
scriptomics ST in conjunction with graph neural networks for cell–cell
interaction #C211118015) from A * STAR, Singapore; Open Fund Indivi-
dual Research Grant (Mapping hematopoietic lineages of healthy and
high-risk acutemyeloid leukemia patientswith FLT3-ITDmutations using
single-cell omics #OFIRG18nov-0103) from Ministry of Health, Singa-
pore; Singapore National Research Foundation grant #NRF-CRP19-2017-

04; Industry Alignment Fund (Pre-Positioning) grant (SinGapore Immu-
NogrAm for ImmunoOncoLogy #IAF-PP H19/01/a0/024) from the
National Research Foundation, Singapore; the National Research Foun-
dation, Singapore, and Singapore Ministry of Health’s National Medical
Research Council under its Open Fund-Large Collaborative Grant (“OF-
LCG”) (#MOH-OFLCG18May-0003); Singapore National Medical
Research Council (#NMRC/OFLCG/003/2018); Singapore A*STAR Cen-
tral Research Fund.

Author contributions
J.C. conceptualized and supervised the project. Y.L. designed themodel
with feedback fromH.F. andM.W. Y.L. developed theGraphST software.
Y.L., K.S.A., and J.C. wrote the manuscript. Y.L., K.S.A., and J.C. led the
data analysis with input from M.L., K.L.K.C., R.S., C.Z., and H.X. Y.L.
contributed to figure design and generation. Z.O. and L. Z. annotated
and interpreted the brain datasets. K.L.K.C. performed the 10x Visium
experiments to generate themouse breast cancer spatial transcriptomic
data. K.S. and L.H.K.L. performed the mouse experiments, provided the
breast cancer tissues, and annotated the ST data. A.C. and L.L. provided
the Stereo-seq data of the mouse olfactory bulb.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-36796-3.

Correspondence and requests for materials should be addressed to
Jinmiao Chen.

Peer review information Nature Communications thanks Qing Nie and
the other anonymous reviewer(s) for their contribution to the peer
review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-36796-3

Nature Communications |         (2023) 14:1155 19

https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Human_Lymph_Node
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Human_Lymph_Node
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Human_Lymph_Node
https://doi.org/10.48550/ARXIV.1809.10341
https://doi.org/10.48550/ARXIV.1809.10341
https://doi.org/10.1101/2021.06.15.448542
https://doi.org/10.1101/2021.06.15.448542
https://doi.org/10.1038/s41467-023-36796-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST
	Results
	Overview of GraphST
	GraphST’s spatial clustering of human dorsolateral prefrontal cortex 10x Visium data improved the identification of known layers
	GraphST’s spatial clustering of mouse olfactory bulb Stereo-seq data better demarcated the laminar structure
	GraphST’s spatial clustering of mouse hippocampus Slide-seqV2 data more accurately discerned the relevant anatomical regions
	GraphST’s spatial clustering of mouse embryo Stereo-seq data revealed finer-grained tissue structures
	GraphST corrects batch effects for vertical and horizontal integration of multiple tissue sections
	GraphST projects scRNA-seq to ST for cell-type deconvolution of ST
	Accurate spatial mapping of cells to human breast cancer 10x Visium data revealed T-cell suppression in IDC regions

	Discussion
	Methods
	Data preprocessing
	Graph construction for spatial transcriptomics data
	Graph self-supervised contrastive learning
	Data augmentation
	GNN-based encoder for representation learning
	Self-supervised contrastive learning for representation refinement
	Overall loss function
	Spatial domain assignment via clustering and refinement
	Vertical and horizontal integration of multiple tissues via implicit batch effect correction
	PASTE (probabilistic alignment of ST experiments) for multiple tissue slice alignment
	Spatially informed contrastive learning for scRNA-seq and ST data integration
	Spot-targeted annotation transfer
	Domain-targeted annotation transfer
	Mouse breast cancer experiments
	Histology and RNA quality assessment
	Spatial transcriptomics
	Data description
	Comparison with baseline methods and evaluation
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




