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Soil moisture-evaporation coupling shifts
into new gears under increasing CO2

Hsin Hsu 1 & Paul A. Dirmeyer 1,2

When soilmoisture (SM) content falls within a transitional regime between dry
and wet conditions, it controls evaporation, affecting atmospheric heat and
humidity. Accordingly, different SM regimes correspond to different gears of
land-atmosphere coupling, affecting climate. Determining patterns of SM
regimes and their future evolution is imperative. Here, we examine global SM
regimedistributions from ten climatemodels. Under increasingCO2, the range
of SM extends into unprecedented coupling regimes in many locations. Solely
wet regime areas decline globally by 15.9%, while transitional regimes emerge
in currently humid areas of the tropics and high latitudes. Many semiarid
regions spend more days in the transitional regime and fewer in the dry
regime. These imply that a larger fraction of the world will evolve to experi-
ence multiple gears of land-atmosphere coupling, with the strongly coupled
transitional regime expanding the most. This could amplify future climate
sensitivity to land-atmosphere feedbacks and land management.

Soil moisture (SM) variability can control the water and heat fluxes at
the land surface, affecting air temperature and humidity1–4. This can
establish feedbacks wherein, as the soil gets drier, the synchronous
decrease in latent heat flux (LE, the energy used for evaporation) and
increase in sensible heat flux (H)5,6 results in a warmer and drier over-
lying atmosphere7–9. Increasing SM can set opposite changes into
motion —each chain of events ultimately alters cloud formation and
precipitation10–15. Such positive local feedbacks play an important role
in extreme events such as droughts, floods, and heatwaves6,16–20. Fur-
thermore, heterogeneous SM patterns that induce heterogeneous
atmospheric heating and moistening can modulate mesoscale circula-
tions and precipitation patterns21–28, triggering or maintaining mesos-
cale convective systems (MCSs)29,30, and propagating drought events31.
All of these phenomena are rooted in the physical linkage between
surface heat fluxes and SM, the foundation of SM-induced feedback.

SM-induced feedback can be strengthened or suspended in cer-
tain conditions. Such a shift in gears happens when surface fluxes
disconnect from SM control under specific conditions32–36. Such a
disconnection is related to important SM thresholds (Fig. 1): thewilting
point (WP) and the critical soil moisture (CSM). WP is a criterion of
vegetation hydraulic pressure that determines whether osmosis hap-
pens.When soils are drier thanWP, water is unable to enter plant roots

and supply transpiration, the main evaporation component con-
tributing to LE. Consequently, the sensitivity of evaporation to SM
variability drops when SM<WP. This is called the dry regime. CSM is
the threshold separating causes of evaporation limitation: water
availability versus energy availability3. When SM>CSM, SM does not
regulate evaporation37,38. Evaporation may even decline, as very wet
soils correspond to periods of rainfall, cloudiness, and limited sun-
shine. In this wet regime, LE is also insensitive to SM variations. Only
when SM is betweenWPandCSM, lying in the transitional regime, does
LE reliably increase with increasing SM. The dry and transitional
regimes together can be summarized as moisture-limited, while the
wet regime is energy-limited.

Transitions among these three SM regimes have recently been
shown to have a potential influence on extremes. The 2010/11 flooding
in northern Australia moistened the land surface beyond the usual
moisture-limited regime and decoupled land from atmosphere39.
Reduced evaporation led towetter land conditions that couldmaintain
the flood. On the contrary, as SM dries, passing from the transitional
regime to the dry regime, the available energy for surface heat fluxes
goes mostly into H, exacerbating near-surface atmospheric heating.
Consequently, air temperature becomes hypersensitive to declining
SM, as has been evidenced recently in theUnited States40 and Europe41.
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Accordingly, SM regime transitions are good indicators of the
shifting gears between modes of local SM:LE coupling that are an
essential component of SM-induced feedback. Though an improved
understanding of how SM-induced feedback can change under global
warming has been a priority for some time3, studies have focusedmore
on quantifying the change of coupling in a climatological sense, such
as a projected strengthening in land–atmosphere9,42–46 or an expansion
in areas experiencing strong coupling47,48. However, the climate in
many locations is composed of days with and without active SM:LE
coupling and thus the existence of SM-induced feedbacks. This sug-
gests that under global warming, in addition to stronger control of SM
on LE, the climatological strengthening in coupling can also be
attributed to amore frequent control of SMonLE, i.e.,moredayswhen
SM is between WP and CSM, or even the situation where a transitional
SM regime emerged locally when it did not exist previously. Thus,
investigation on whether a warming climate leads to the shift, emer-
gence, or disappearance of SM regimes, along with corresponding
changes in the frequency of SM in each SM regime, has been lacking
but is needed.

In this study, we determine the global patterns of existing SM
regimes and their projected changes from state-of-the-art climate
models. This enables quantification of how SM values migrate among
dry, transitional, and wet regimes due to global warming. Such diag-
nostic analyses can indicate which gear of SM-induced feedback is
dominant at any location, and what changes may occur. To examine
these responses under warming with a climate model consensus per-
spective, daily data from ten climate models participating in the

Fig. 1 | The influence of soil moisture on the partitioning of surface heat fluxes
with a fixed amount of available energy. The full range of soil moisture (SM) can
be separated intodry, transitional, andwet regimes by the thresholds of SM (wilting
point WP and critical soil moisture CSM) or can be separated as moisture-limited
conditions and energy-limited conditions separated by CSM. The transitional
regime between WP and CSM is where latent heat (LE; the energy that supplies
evaporation) and sensible heat (H) have a strong sensitivity to SM variations. Given
a fixed amount of available energy (net radiation minus ground heat flux), varia-
tions in LE andH are shownas a function of SM (increasing from left to right) by the
vertical lengths of the blue (evaporative flux) and the red (thermal exchange)
symbols, respectively. The shutdown of LE when SM falls into the dry regime leads
to available energy exclusively supplying sensible heat. In thewet regime, LE ceases
to increase with increasing SM.
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Fig. 2 | Global distribution of soil moisture regimes and their shifts under
global warming. Soil moisture (SM) regimes at each grid cell determined by the
multi-model mode of the selected segmented regression candidate (a) among the
five depicted regressions (b): wet regime (a.k.a. energy-limited; green), transitional
regime (purple), dry + transitional (a.k.a. moisture-limited; brown), transitional +
wet (yellow), and dry + transitional +wet (blue). For the candidate schematics on
the left, soil moisture (SM) increases along the x-axis, and the evaporation rate (LE)

increases along the y-axis. In the global map (60°S–60°N), the color of each grid
cell represents the elected candidate from the pre-industrial climate and the cross
color (over the square color) indicates a new candidate emerging in a warming
climate at that grid cell. The alluvial diagram (c) shows the shift in the coverage of
each candidate, calculated as the percentage of the global land area between 60°S
to 60°N. (Source data are provided as a Source Data file78).
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Coupled Model Intercomparison Project Phase 6 (CMIP6) from simu-
lations proxying pre-industrial climate and warming climate
(Methods) is used.

Results
Pre-industrial and projected patterns of soil moisture regimes
Breakpoint analysis based on theoretical SM:LE behavior49,50(see
Methods) is used to find the two critical values, WP and CSM at each
location, and determine which SM regimes are active there. A total of
five candidates, representing different combinations of active SM
regimes, are used to represent which regimes are active in each grid
cell (Fig. 2b).We assign binary digits 0 and 1 to indicate the presence of
the dry, transitional, andwet regime, in order, following the letter C for
“candidate” (e.g., C010 for the transitional regime only). Figure 2 dis-
plays the spatial pattern of consensus SM regimes among the climate
models and how they are projected to change under increasing CO2.
This is determined by the mode of the candidate selected among all
climate models. The five colors correspond to each of the five candi-
dates. Grid cells are colored according to the pre-industrial climate

model consensus, and crosses within grid cells indicate the projected
candidate in a warming climate (crossed grid cells account for 13.9% of
the global analyzed area).Note that the values ofWP andCSMmayalso
change (see Fig. S1 and Discussion).

Over tropical rainforests, candidates C001 and C011 dominate in
the pre-industrial climate (Fig. 2a). Only for C011 can SM fall within the
transitional regime in these locations, signifying active SM:LE coupling.
This situation becomes more common under warming as C011
expands in area, particularly over the Amazon. Over semiarid regions
suchas the Sahel, Australia, and southernGreat Plains, candidates C011
and C111 dominated during the pre-industrial period. C111 expands in a
few of these regions under warming. In arid regions, SM does not
always remain in the dry regime. C110 and C111 occupy the Sahara,
Chile, and Arabia. This could be because rare precipitation events
moisten the land surface enough to spark significant evapotranspira-
tion that registers in our breakpoint analysis. SM surpasses CSM in
more locations as C111 emerges under warming.

Overall, the global area where LE is sensitive to SM outside high
latitudes (60°S–60°N) increases by 3.6% under global warming, as
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Fig. 3 | The disparity of soil moisture regimes among climate models and their
changes under global warming. Sum(δ) quantifies the disparity amongmodels in
soil moisture (SM) regimes compared to the multi-model consensus (see Methods
for formulation); a larger sum(δ) indicates greater disparity and, thus, the lower
consensus. a Displays sum(δ) for piControl simulations. b Displays the sum(δ)
change under global warming (1pctCO2 minus piControl). c, e, g Display the

individual consensus of detection of the dry, transitional, and wet regimes,
respectively. d, f, h Display the corresponding changes in the consensus under
global warming. Histograms in each panel display the fractional land area (60°S to
60°N) having the specific value of sum(δ) or change in sum(δ). (Source data are
provided as a Source Data file78).
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indicated by the summation of candidates for which the transitional
regime is active, shown in the alluvial diagram in Fig. 2c. Only 22.6% of
global land areas are identified as uncoupled (C001) for pre-industrial
climate; a 3.6% expansion in a global areawith active SM:LE amounts to
shrinkage of 15.9% in the uncoupled area.

Model agreement regarding soil moisture regimes
The metric sum(δ), previously defined50 (See Methods), is used to
quantify the disparity among climatemodel simulations of SM regimes
for the pre-industrial climate (Fig. 3) and how these disparities change
under global warming. Similarly, its decomposition into sum(δdry),
sum(δtran), and sum(δwet) in Fig. 3 reflect the degree ofmodel disparity
in simulating dry, transitional, and wet regimes individually.

The strong disparity in representing the SM transitional regime is
found over rainforests (Fig. 3e), especially over the Amazon, and this
disagreement is largely reconciled in awarmingworld (Fig. 3f). The dry
regime is detected in a few climate models around the edge of the
Amazon (Fig. 3c). The consensus is relatively high in semiarid regions
compared to the rest of the world (Fig. 3a). Disagreement is mainly
found for dry regime detection (Fig. 3c). Note that some climate
models do not simulate a dry regime over the Sahara, as sum(δdry) is
not zero (Fig. 3b). Over this area, detection of the wet regime is also
inconsistent across models (Fig. 3g) and the consensus is even less
under warming (Fig. 3h).

The fractions of the area with a change in any specific value of
sum(δ) and their changes are displayed in the histogram of each panel.
Disagreement regarding SM regimes is mainly contributed by
sum(δdry). The overall consensus of modeled SM regimes increases
under warming, due mainly to better agreement in the detection of
transitional and wet regimes.

Main migration tendency for soil moisture between regimes
under global warming
A locally emergent SM regime does not necessarily indicate that SM is
predominantly migrating into that specific regime (see Table. S1 for a
local example). We examine the net migration of SM between regimes

under global warming (see Methods). This yields seven possible cate-
gories: nomigrationof SMor amigrationof SMbetween any twoof the
threedefined SMregimes. The results are shown in Fig. 4, with symbols
indicating different levels of agreement. The fraction of land area
(60°S–60°N) within each category is displayed using the color matrix.

The tendency of SM to extend into the transitional regime grows
in a warmer climate over some semiarid regions. Individual model
changes are displayed in Fig. S3. Spread among climate models at any
location can be large. This is mainly due to differences among models
in the detection of WP and/or CSM. Nevertheless, the trend of how SM
migrates in a changing climate demonstrates strong agreement in
many regions. Over northwestern India, the Sahel, northern Australia,
and central Asia, SM shifts from the dry regime to the transitional
regime, as suggested bymost climatemodels. On the other hand, over
southern Africa, western and central Australia, migration is from the
transitional regime to the dry regime, corresponding to the regions
that C111 emerges under warming. Over arid regions, despite the
strong disparity in detected SM regimes (Fig. 3), how SM migrates
between the regimes under warming is consistent among the climate
models (Fig. 4). In the Sahara, Chile, and Arabian Peninsula, SM lies
more frequently in the dry regime, usually indicated by at least 7 of the
10 climate models. Migrations between the dry and transitional
regimes account for 60% of the global area (red + blue) categories in
the colormatrix of Fig. 4) andmigration fromdry to transitional (blue)
is the major tendency across the globe (42.4%). Robust results with at
least 7 of 10 climate models agreeing on the same tendency are often
found over arid regions and semiarid regions. Generally, no significant
migration of SM between the regimes due to warming is shown over
the deep tropics (Fig. 4). Sporadic responses are found over the
Amazon and the maritime continent, while spatial patterns are not
homogeneous and are not consistent among the climate models.

Discussion
SM regimes are a good determinant for the type of local
land–atmosphere coupling, which is determined by the relationships
between surface heat fluxes and SM (Fig. 1). Under global warming, SM
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Fig. 4 | The main migration of soil moisture frequency between regimes under
global warming. For each climate model, the change in the percentage of days
(1pctCO2 minus piControl) that soil moisture (SM) is in each regime is calculated,
and its significance is tested by a chi-square test of independence with p <0.05. If
no significant difference in at least one SM regime is found, that grid cell is classified
as experiencing no migration (blank). If there is a significant difference in any SM
regime, net migration is classified as a shift from the SM regime with the largest

decrease in frequency to the regime that has the largest increase. The main
migration is obtained by the mode among the climate models. Grid cells with an
agreement of at least 5 of 10models are marked with dots; agreements of at least 7
of 10models aremarkedwith crosses. The color key also displays the percentage of
land area (60°S–60°N) experiencing eachmigration in a warming climate (24.9% of
the global land area shows no migration). (Source data are provided as a Source
Data file78).
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can extend to unprecedented SM regimes in many locations (Fig. 2).
There is a trend in many locations toward more gears of SM:LE cou-
pling being experienced, and thus more shifting between gears, sug-
gesting less stable hydroclimates. Specifically, more locations
experience the transitional regimewhile few locations show that an SM
regime will vanish (Fig. 2). A consequence of this broadening of SM:LE
candidates is that model consensus grows with increasing CO2 (Fig. 3).
For both the pre-industrial and the warming climate, SM spans at least
two regimes over most of the world (Fig. 2). This suggests that evalu-
ating the temporal variation of coupling is necessary when investi-
gating topics relevant to land surface processes, especially for extreme
events. Furthermore, the expanding transitional regime could amplify
local climate sensitivity to land–atmosphere feedback. This could
make some regions more susceptible to unintended consequences
from land management practices that alter soil moisture, such as irri-
gation, cropping choices, urbanization, and water resource
management.

The WP and CSM are well defined by the breakpoint analysis
(see Methods); however, WP and especially CSM can be sensitive to
ecological and environmental factors. Therefore, values estimated
here act as a climatology of the varying breakpoints of each ana-
lyzed period. WP is mostly determined by soil and plant properties.
For most climate models, plants are prescribed identically in
piControl and 1pctCO2 simulations. This results in a negligible
change in WP under increasing CO2 (Fig. S1b). CSM is affected not
only by vegetation characteristics51 but also by climate conditions
such as vapor pressure deficit and insolation52–54. As these condi-
tions do change in a warming climate, there can be larger shifts in
CSM under increasing CO2, as seen in Fig. S1c. Accordingly, an
emerging SM regime under global warming is often not completely
attributable to a shift in SM distribution, but shifts in WP or CSM
may also contribute. For instance, a transitional regime is seen to
emerge over the Amazon. In addition to a drier SM distribution
(Fig. S1a), there is also a trend toward higher values for CSM
(Fig. S1c), which embrace a wider range of SM in the transitional
regime, bolstering its emergence.

SM migration between regimes under global warming (Fig. 4)
shows a zonally consistent pattern. Such a response of SMdistribution
under warming is presumably due to changes in the large-scale
atmospheric circulation and/or regulated hydrological cycle55–57.SM
migrates from the dry to transitional regimes over the Sahel, southern
Arabian Peninsula, and Northern Australia. The increase in the number
of days that SM actively controls LE might strengthen the SM-induced
feedbacks in these regions, which have been long-recognized as “hot
spots” of land–atmosphere interactions58–65.

Meanwhile, SM regimes migrate from the transitional to dry
regime over the Sahara, northern Arabian Peninsula, southern Africa,
and western and central Australia. As a result, the arid regions spend
more days in the dry SM regime, while the transitional semiarid to
semi-humid regions spend more time in the transitional SM regime.
Although this appears to correspond to the “wet gets wetter, dry gets
dryer” paradigm66,67, results here do not necessarily suggest that
transitional regions getwetter and arid regions get drier. Asmentioned
above, critical SM values can shift under a warmer climate, and thus
parts of the SM spectrum can slide into different regimes without a
significant change in the SM distribution. How precipitation, LE, and
temperature individually affect the shifting gears of SM:LE coupling
needs to be disentangled.

Regimes detected over higher latitudes (above 50°) or higher
altitudes could be underrepresented, especially for the pre-industrial
climate. Inactive SM:LE coupling is mainly attributed to snow cover
that cuts off the connection between soil and atmosphere. For
instance, C110 is suggested to best describe the SM distribution over
eastern Siberia in some climate models (Fig. S2). This does not guar-
antee the detection of a dry regime. The subarctic climate there leads

to notable moist and warm conditions during summer, driving eva-
poration. Winter is the dry season from a precipitation perspective;
however, regardless of the dryness of SM, the snow cover stops the
evaporation of soil moisture. As the number of days that land is cov-
eredby snowvaries greatly among climatemodels, a less reliable result
is likely over such areas (Fig. 3a, c, g). Nevertheless, a consistent pat-
tern is seen under climate warming. In Fig. 2, C011 expands poleward
over North America and Eurasia. With more snow-free days under
warming conditions, the sensitivity of LE to SM emerges, and
land–atmosphere interactions could become important in regions
where they currently are not42.

Some locations indicate different soil moisture regimes in differ-
ent climate models within the same 50-year climate; such disparities
can be large (Fig. 3). We argue that this disparity is not guaranteed to
decline even if more climatemodels could be included in this analysis.
The metric sum(δ) quantifies uncertainties that can be extended to
characterize the fidelity of projections of extreme events linked to
SM:LE coupling, such as heatwaves, in multi-model analysis. Figure 3
can help to indicate the usefulness ofmulti-model projections relevant
to land surface processes at any location. Specifically, a better con-
sensus is reached over semiarid regions (e.g., the Sahel, India, and
Southern Great Plain), while discrepancies are relatively strong over
the rest of the globe (Fig. 3a).

Few climatemodels simulate a dry regime over heatwave-active
regions such as western North America (Fig 2 and Fig. S2). A similar
pattern of biased SM dry regimes in historical simulations of climate
models has been pointed out previously by comparison to
observationally-constrained data sets using the same regime
detection method50, wherein the dry regime is more commonly
indicated in North America, Europe, and Australia. However, here
we have used pre-industrial simulations instead of historical simu-
lations that correspond to the period of observational data sets, for
reasons described in the Methods summary; the lack of SM dry
regime is seen globally in all analyzed climatemodels (Fig. 2). As the
dry regime is more prevalent in a warming climate (Fig. 3d), the lack
of dry regimemight be attributed to a wetter climate during the pre-
industrial period, rather than a problematic parameterization that
prevents soil wetness to fall below the WP. Furthermore, different
strategies of how climate models represent phenology68 can affect
WP, introducing another uncertainty in the aggregated result of SM
regime detection. Moreover, different land models that inherently
simulate different soil moisture distributions69, which also often
differ from observations, remains an issue50. This leads to an
essential discrepancy among preferred SM regimes in the climate
models inducing uncertainty in the multi-model diagnoses and
estimatedmigrations in this study. Regarding these issues, a stricter
validation of models’ SM regimes may become possible in the
future, based on promising developments in global SM
observations70–74. A more comprehensive analysis of each compo-
nent of SM-induced feedback in climate models will further help to
evaluate the credibility of this study and to understand the causes of
bias and change of models’ SM regimes.

The global maps provided here can suggest locations worthy of a
regional study of the physics that drive SM:LE coupling and atmo-
spheric responses. For example, SM lingers more in the transitional
regime over the Sahel in a warming climate. Does this only indicate
more days with active SM:LE coupling, or will this strengthen
the magnitude of SM:LE coupling and thus affects long-term
temperature climatology? Over Australia, SM that shifts into the dry
regime in the north and into the transitional regime in the south could
lead to an opposing shift of gears in SM-induced feedback. Investi-
gating further the underlying mechanisms and how they impact
extremes can help us to understand land–atmosphere interactions,
potentially aid prediction and mitigation, and assess climate vulner-
abilities with a new perspective.
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Methods
Ten climate models participating in CMIP6 are used: MIROC6, AWI-
ESM-1-1-LR, CMCC-ESM2, CanESM5, CNRM-CM6-1-HR, NorESM2-MM,
IPSL-CM6A-LR, MRI-ESM2-0, GFDL-CM4, and INM-CM4-8 (see
Table S2). Thesemodels are selectedbecause theyprovidedaily SMand
LE fields from DECK simulations75 for both the piControl and 1pctCO2
cases (data are available online at: https://esgf-node.llnl.gov/search/
cmip6/) at the time of our analysis. Daily SM (CMIP variable mrsos; soil
water content in the top 10 cm) and LE (CMIP variable hfls) fields are
taken from these simulations. The ensemble member r1i1p1f1 is used in
all simulations except for CNRM-CM6-1-HR, where r1i1p1f2 is used.

To provide a robust indication of the shifts in SM regimes under
warming, analysis is performed for the portion of 1pctCO2 runs
spanning the 100th to 150th year, the time that the concentration of
CO2 passes from ~2.5 times the piControl level to 4 times, and is
compared to the results from a 50-year period of the piControl run.
(see Table S2 for the model years used) SM and LE fields from each
model are regridded to a common 2˚ × 2˚ global grid; data are inter-
polated from the nearest grid cell. We note that daily LE fields are
available from more models than daily H fields, so that SM:LE is used
here to determine SM regimes. The piControl simulation is used
instead of the historical simulation as the baseline for comparison
because it is more consistent with 1pctCO2 runs. The historical simu-
lation includes forcings in addition to greenhouse gases, such as land
cover change and aerosol variability, that complicate diagnoses;
comparison between piControl and 1pctCO2 runs yields a clean
assessment of the response to increasing CO2.

Soil moisture regime determination
Segmented regression49,50 is used to define the two soil moisture
thresholds (WP andCSM) as breakpoints in piecewise linearfits to data
where SM is the independent variable. This analysis is performed for
eachmodel and simulation. At each grid cell, five different segmented
regression candidates are fitted to the distribution of available total
daily LE versus SM for each simulation by each climate model; these
segmented regression candidates are determined as follows: Locally,
at least one SM regime (dry, transitional, orwet regime), to amaximum
of all three SM regimes, can be determined depending on whether
either or both of the SM thresholds are detected. This yields six pos-
sible combinations of SM regimes, called candidates: a solely dry
regime C100, a solely transitional regime C010, a solely wet regime
C001, a dry + transitional regime C110, a transitional +wet regime
C011, and a dry + transitional +wet regime C111.

A solely dry or wet regime with SM:LE dependency (candidates
C100 or C001) is indicated by a one-segment regression with zero-
slope. These are found to arise almost exclusively over rainforests and
at high latitudes where soils are almost always wet. Rare cases can also
be found at coastal regions dominated by maritime air. Thus, we treat
all zero-slope cases as candidate C001. A solely transitional regime is
indicated by a one-segment regression consisting of a segment with a
positive slope (C010). Two segment regressions have one breakpoint.
A dry + transitional regime is indicated by a two-segment regression
consisting of a constant (dry) segment followed by a positive slope
segment (C110). The transitional + wet regime is indicated by two-
segment regression consisting of a positive slope segment followed by
a constant (wet) segment (C011). A full dry + transitional +wet regime
is indicated by the candidate with a three-segmented regression and
two breakpoints, consisting of a positive slope connecting two con-
stant segments (C111).

Bayesian information criterion (BIC) for statisticmodel selection76

is used to select the best fit among the five segmented regression
candidates:

BIC =nlnðRSS=nÞ+ klnðnÞ ð1Þ

where n is the sample size, RSS is the residual sum of squares, and k is
the number of model parameters, which is used to penalize regres-
sions with a more complex structure to prevent overfitting. At the
same time, values of the WP and CSM, if detected by the best-fitted
regression, are recorded at each grid cell. It is possible for WP or CSM
to change between simulations for the same model, and this aspect is
also investigated. Akaike information criterion was also tested and
found to produce nearly identical results.

Agreement of model soil moisture regimes
We have previously designed an index δ to count the number of SM
regimes for which model detection disagrees between any two
candidates50.

δ = ∣a� x∣+ ∣b� y∣+ ∣c� z∣ ð2Þ

where a, b, and c are the dry, transitional, and wet binary bit, respec-
tively, of a candidate value (e.g., for a particular model); x, y, and z
represent the same digits as a, b, and c for another source of candidate
values (e.g., for validation data). For example, candidate 001 and
candidate 110 have bitwise opposite detected regimes resulting in a
maximal δ = 3. Candidate 111 and candidate 110 only have a disagree-
ment on the detection of the wet regime, and thus δ = 1. By replacing x,
y, and z with the digits of the mode of the candidate obtained among
all climate models, δ can represent how a specific climate model
departs from themulti-model consensus. Accordingly, the summation
of the δ values obtained for all pairs of each available climate model
and the mode can represent how disparately the climate models
simulate local SM regimes. Consequently, the lower the summation of
δ, the better the agreement and the stronger the consensus of SM
regimes among the climate models.

Migration of soil moisture among regimes
The fraction of days that SM stays in each SM regime is calculated for
each simulation. The changes of these fractions are calculated for days
that SM stays in the same regime between piControl and 1pctCO2
(Fig. S3). Then, the chi-square of independence test77 is applied to
determine if the change of the fraction is statistically significant. If a
difference in the fraction of days for any of the three regimes is sig-
nificant at the 95% confidence level, the regime with the largest
decrease is tagged as the regime that SM shifts out of, while the regime
with the largest increase is tagged as the regime that SM shifts into.
These tags yield seven categories: no statistically significant migration
of SM or a migration of SM between two of the three SM regimes.
Finally, themodeof the category is obtained for each grid cell from the
same grid cell of each simulation by each climate model.

We also provide the same analysis using total soil moisture con-
tent (CMIP variable mrso). Only 4 out of the 10 climate models (MRI-
ESM-0, CNRM-CM6-1-HR, INM-CM4-8, and MIROC6) provide this
variable for the same experiments and periods as for surface soil
moisture data. These analyses suggest shrinkage in the solely wet
regime area over the tropics (Fig. S4) and overall growth of the tran-
sitional regime (Fig. S5). Despite lower credibility due to fewer ana-
lyzed climate models and less clarity in the patterns of change, these
results also indicate shifts in the dominant SM regime under global
warming.

Data availability
CMIP6model data were available at: https://esgf-node.llnl.gov/search/
cmip6/. Specific fields used in this work can be assessed by checking
the boxes of the website with corresponding model names, experi-
ments, time steps, and variables indicated in the Methods. The data
generated in this study have been deposited in the repository under
https://github.com/hhsu81819/Soil-moisture-regime-and-projection/
tree/2.0v (https://doi.org/10.5281/zenodo.7586396).
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Code availability
The code for generating the results and plots of this study have been
deposited in the repository under https://github.com/hhsu81819/Soil-
moisture-regime-and-projection/tree/2.0v (https://doi.org/10.5281/
zenodo.7586396). The alluvial diagram in Fig. 2 is generated by:
https://www.mathworks.com/matlabcentral/fileexchange/66746-
alluvial-flow-diagram.
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