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A variational algorithm to detect the clonal
copy number substructure of tumors from
scRNA-seq data

Antonio De Falco 1,2, Francesca Caruso 1,2, Xiao-Dong Su 3,
Antonio Iavarone 4,5 & Michele Ceccarelli 1,2

Single-cell RNA sequencing is the reference technology to characterize the
composition of the tumor microenvironment and to study tumor hetero-
geneity at high resolution. Here we report Single CEll Variational ANeuploidy
analysis (SCEVAN), a fast variational algorithm for the deconvolution of the
clonal substructure of tumors from single-cell RNA-seq data. It uses a multi-
channel segmentation algorithm exploiting the assumption that all the cells in
a given copy number clone share the same breakpoints. Thus, the smoothed
expression profile of every individual cell constitutes part of the evidence of
the copy number profile in each subclone. SCEVAN can automatically and
accurately discriminate between malignant and non-malignant cells, resulting
in a practical framework to analyze tumors and their microenvironment. We
apply SCEVAN to datasets encompassing 106 samples and 93,322 cells from
different tumor types and technologies. We demonstrate its application to
characterize the intratumor heterogeneity and geographic evolution of
malignant brain tumors.

Understanding intratumor heterogeneity and the interactions
between tumor cells and the immune system is the critical step to
explaining treatment failure and plays a crucial role in studying tumor
growth and evolution1,2. Single-cell RNA sequencing (scRNA-Seq) has
been successfully used to identify multiple transcriptional programs
activated in a single tumor3–5 and to prioritize key regulators of tumor-
host interaction6. To study the complexity of lineage identity, differ-
entiation, and proliferation of tumor cells and the impact of stromal
and immune components, a large number of unsorted cells from
tumor biopsies are subject towhole transcriptomics profiling and then
classified as malignant cells, stromal cells, and immune cells, and fur-
ther stratified into different compartments according to either
expression of specific markers6, and the orchestrated activation of
pathways5. The distinction of malignant from non-malignant cells is a
critical step in the follow-up analysis of scRNA-seq tumor datasets. The

basic idea to solve such a problem relies on estimating common copy
number alterations that characterize transformed cells. The copy
number profiles are obtained by considering the gene expression
profiles of each cell as a function of the genomic coordinates. The
moving average smoothing of the gene expression function is then
clustered in malignant and non-malignant cells. One of the most suc-
cessful methods based on this approach is the inferCNV algorithm4.
One drawback is that the clusters of reference cells require manual
identification, usually with a combination of approaches7,8. Moreover,
inferCNV and similar methods4,9 are particularly suited for smart-seq
data having high coverage and relatively low throughput, whereas they
exhibit sub-optimal performances on droplet-based methods with
very sparse coverage depth and higher throughput10. An approach to
overcome these limitations is represented by the CopyKAT method11

that automatically classifies malignant and non-malignant cells. It was
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successfully applied to analyze the clonal substructure of three triple-
negative breast tumors. However, the classification produced by
CopyKAT can be affectedby awrong identification of normal cells and,
similarly to other methods, was not designed to perform a complete
automatic identification of the clones, reporting their breakpoints, the
specific and shared alteration, and a clonal deconvolution in a com-
plete end-to-end pipeline.

Here, we present Single CEll Variational Aneuploidy aNalysis
(SCEVAN), a variational algorithm for automatically detecting the
clonal copy number substructure of tumors from single-cell data. Our
method automatically segregates malignant cells from non-malignant
cells, and clusters of malignant cells are then analyzed through an
optimization-based joint segmentation algorithm. We exploit the
notion that all the cells in a given copy number clone share the same
breakpoints with the smoothed expression profile of every individual
cell providing support for the definition of the copy number profile of
each subclone. Therefore, joint segmentation allows the enhancement
of systematic biases leading to the emergence of consistent break-
points. Afterward, SCEVAN performs a complete downstream analysis
to automatically identify tumor subclones, classifying their specific
and shared alterations up to a clone phylogeny. The joint segmenta-
tion algorithm implemented in SCEVAN is based on a variational fra-
mework developed in the field of Computer Vision, making use of the
Mumford–Shah energy model12 that has already been successfully
applied to detect copy number alterations in matched tumor–normal
pairs of high-density comparative genomic hybridization arrays13 and
used to detect fusion breakpoints14. Moreover, its joint version was
developed to identify recurrent copy number alterations in large

tumor cohorts15,16. Here, we benchmark the output of SCEVAN against
state-of-the-art methods and show that SCEVAN exhibits faster and
more accurate performance on synthetic and real data with reference
copy number from bulk tumor profiling. Finally, we used SCEVAN to
characterize the clonal substructure inmultiple scRNA-seq glioma and
head and neck cancer datasets.

Results
SCEVAN workflow
The workflow of SCEVAN (Fig. 1) starts from the raw count matrix with
genes on rows and cells on columns. The input count matrix is log-
transformed and then pre-processed by removing cells with a low
number of detected transcripts and selecting the most expressed
genes. A set of highly confident non-malignant cells are identified and
used to determine a copy number baseline and to compute the relative
matrix removing the baseline (Steps A and B). This matrix undergoes
an edge-preserving nonlinear diffusion filter assuming a piecewise
smooth function as the underlying model (Step C). The smoothed
matrix is then segmented using the joint segmentation algorithm to
obtain a copy number matrix (Step D). SCEVAN discriminates the
normal cells from tumor cells as those falling in the cluster containing
the highest number of confident normal cells (Step E). The different
subclones are obtained by analyzing the clusters of the tumor cells in
the Copy Number Matrix as detailed in the Methods (Step F). Then
each cluster is segmented independently from the smoothedmatrix to
obtain a copy number profile for any subclone (Step G). The segments
are classified in one of five predefined copy number states: deletion,
loss, neutral, gain, or amplification, using a majority vote applied to a
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Fig. 1 | SCEVANWorkflow. SCEVAN starts from the raw count matrix removing
irrelevant genes and cells. a Identification of a small set of highly confident normal
cells. b Relative gene expression obtained from removal of the baseline inferred
from confident normal cells. c Edge-preserving nonlinear diffusion filtering of
relative gene expression. d Segmentation with a variational region-growing algo-
rithm. e Identification of normal cells as those in the cluster containing themajority
of confident normal cells. f Identification of possible subclones using Louvain

clustering applied to a shared nearest-neighbor graph of the tumor cells.
g Segmentation with a variational region-growing algorithm applied to each sub-
clone. Segments are then classified in five copy number states. h Analysis of sub-
clones including clone tree, pathway activities (GSEA was performed for each
subclone using fgseaMultilevel which calculates P values based on an adaptive
multilevel splitting Monte Carlo scheme), and characterization of shared and spe-
cific alterations.
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mixturemodel classificationof each cell. Finally, SCEVANcharacterizes
truncal, shared, and clone-specific alterations comparing different
clusters, performing enrichment analysis up to a clone phylogeny
(Step H).

Malignant cell classification on synthetic data
To quantitatively evaluate the accuracy of SCEVAN in discriminating
malignant from non-malignant cells, we generated 500 synthetic
matrices with known tumor/normal classification (Supplementary
Data 3). We used a Multiple Myeloma dataset containing 17,267
malignant plasma cells and 57,719 immune cells of Liu et al.17. Based
on the specific markers used by the authors, we classified cell
clusters in eight immune compartments and tumor cells of each
patient. We trained a scDesign218 model for each cell type, specifi-
cally eight immune and 14 malignant models, one for each sample.
The synthetic scRNA-seq matrices were randomly generated by
choosing the following parameters: the number of total cells
(between 300 and 1000), the tumor purity (between 5 and 100%),
the number of cells for each immune cell type, and the scDesign218

malignant model from one of the 14 samples. The generated
matrices had on average 94% of zero values. We further added
dropout noise at different levels to each simulated sparse count
matrix. Dropout simulations have probabilities conditioned on
mean gene expression, such that lowly expressed genes have a
higher likelihood of dropout than highly expressed genes. This type
of noise is added using SPLATTER19 which uses a logistic function to
produce a probability that a count should be zero. The logistic
function is defined by a midpoint parameter, x0, the logarithm of
the expression level at which 50% of cells are replaced with zero.
The probability of a zero for each gene is then used to randomly
replace some of the simulated counts with zeros using a Bernoulli
distribution. We used three noise levels corresponding to the values
of x0 = −2, −1, 0, that respectively replace 7%, 17%, and 31% of non
null values with a 0. We applied SCEVAN and CopyKAT to these
synthetic matrices containing a total of 322,687 cells (Supplemen-
tary Fig. 1), obtaining with SCEVAN a mean F1 score of 0.948, 0.943,
0.909, 0.824 and with CopyKAT 0.798, 0.792, 0.763, 0.726, for no
noise and for each level of noise, respectively. It is worth noticing
that in some cases both methods can obtain a very low F1 score, this
is due to the fact that in cases of a an erroneous identification of the
cluster of a normal cell, for example, a cluster of tumor cells is
named as the reference normal, than a complete misclassification
can happen and an F1 score close to zero is obtained.

Malignant cell classification accuracy on real data
We also evaluated the accuracy of non-malignant cell classification
on real data, we applied our tool to several public datasets7,10,20–22 of
three different cancer types of scRNA-seq data (Glioblastoma
(GBM), Head and Neck Squamous Cell Carcinomas (HNSCC), Col-
orectal cancer) and from different sequencing technologies (Smart-
seq2, 10X Chromium), classifying a total of 106 samples and 93,322
cells (Supplementary Data 2). In all the considered datasets, the
identification of the non-malignant cell has been reported by the
authors through manual curation based on a combination of
approaches using copy number profile4, clustering, and cell mar-
kers. We compared our results in terms of F1 score23 with those
obtained by using CopyKAT11. SCEVAN, as shown in Fig. 2, achieves a
better classification score in 63% of the samples, whereas CopyKAT
performs better than SCEVAN in 23% of the samples. The F1 score for
all samples obtained with SCEVAN is 0.90 in contrast to the F1 score
of 0.63 obtained with CopyKAT. SCEVAN shows a low F1 SCORE in
samples with very few tumor cells (between 1 and 15), present
mostly in the case of Head & Neck cancer dataset (Supplementary
Data 2). For one of the samples (BT786), we could not get the results
from CopyKAT due to crashes.

Collectively, these results confirm that SCEVAN can accurately
discriminate between tumor and normal cells in different solid tumors
using the copy number profiles inferred from scRNA-seq.

Segmentation accuracy on synthetic data
To perform a quantitative evaluation of the segmentation results, we
generated a synthetic dataset modeling two realistic scenarios: Sce-
nario I, with just clonal alterations and all malignant cells share the
same alterations; Scenario II, where there are some clonal alterations
shared by all cells and also two populations of malignant cells having
subclone-specific alterations. For both scenarios, we generated syn-
theticmatriceswith different levels ofmagnitude of the synthetic copy
number alterations, starting from matrices previously obtained using
scDesign218. We considered only normal diploid cells and randomly
alter genomic regions generating synthetic aneuploid cells.

For each matrix, we randomly choose the number of aneuploid
cells (between 30 and 90% of total cells), the number of alterations
(between 1 and 10), the central position of each alteration (between 1
and thenumber of total genes), the number of genes belonging to each
alteration (between 50 and 1000), and in the case of scenario II the
assignment of each cell to one of the two subclones.

To generate synthetic amplification (deletion), we increase
(decrease) the count values of the genes belonging to the alteration.
Specifically, we draw a uniform random value ρ in (0, α) and replace
each gene count xij by xij(1 + ρ) for amplifications and xij/(1 + ρ) for
deletions. Therefore, we increase/decrease the counts of the genes
belonging to the alteration by a percentage between 0 and 100α%. We
performed for each scenario four experiments corresponding to
α = 2, 3, 4, generating for each scenario, and value of α, 100 matrices.

To define an appropriate evaluation metric for the segmentation
produced by various segmentation algorithms, as previously
suggested24, we scored as True Positive (TP) the breakpoints that lie
within a tolerance threshold of distance (e.g., 20 genes) from the true
breakpoints, and a false negative (FN) if there are nobreakpoints in this
tolerance area. The synthetic dataset was used to compare the accu-
racy of SCEVAN andCopyKAT,we also considered other segmentation
approaches such as GFLars24 amethod optimizing a squared loss and a
regularization term based on group LASSO, and GenoCN,25 a method
based on HMM segmentation. The details about the adopted para-
meters for this comparison are reported in the “Methods” section.

Using a threshold of 20 genes, SCEVAN obtains significantly
higher F1 scores than other methods in each scenario and experiment
(Supplementary Fig. 2). It is interesting to note that in some cases
SCEVAN, as well as the other tools, gets a low score. This is due to a
several factors. When all the breakpoints are identified at a distance
greater that the tolerance threshold, or the method fails to identify
most the alterations, then the corresponding classification score is
close to zero. Moreover, since the synthetic matrices, as well the syn-
thetic alterations, are randomly generated, it is possible that the
alterations are located in regions where the average gene expression is
low. In such cases, even for high amplitude of the alteration (the
parameter α), the segmentation task becomes extremely challenging
with the possibility to low detection accuracy.

The role of the parameters on the performance of the considered
segmentation methods needs also to be investigated. In general, seg-
mentation algorithms adopt some regularization parameters to con-
trol the amount of smoothing and the coarseness of the segmentation,
such as the parameter β for SCEVAN that controls the convergence of
the hierarchical region-merging procedure and defines a stopping
criterion for the increasing sequence of the regularization parameters
(“Methods”) and KS.cut for CopyKAT. Since an exhaustive exploration
of the parameters for the considered algorithms may lead to over-
optimistic results which are difficult to replicate in scenarios with real
data, we use a dynamic programming approach that progressively
selects optimal subsets of the breakpoints reported by a given
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method24 (jpruneByDP procedure of the jointseg Bioconductor pack-
age). With this setting, it is possible to compute a precision-recall (PR)
curve for the output of various algorithms varying the size of selected
optimal subsets of breakpoints. Here, we computed the mean area
under the PR curve (AUC) as a function of the tolerance parameter for
100 simulated matrices at different levels of the magnitude of altera-
tion α (Supplementary Fig. 3).

We observed that SCEVAN reaches consistently better AUC than
the other segmentationmethods and as the αparameter increases, i.e.,
when the steps in the genomics alterations are more noticeable, the
improvement is even more evident.

We also evaluate the performance varying the segmentation
parameters of SCEVAN and CopyKAT. For CopyKAT, we vary the
parameter KS.cut in the interval suggested by the authors (0.05, 0.10,
0.15, 0.20, 0.25, 0.30, 0.35, 0.4), and for SCEVAN we vary the para-
meter β (0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0). In both cases, the increase of
these values results in coarser segmentations. PR curves are calculated
for matrices with different α (2, 3, and 4), with clonal and subclonal
scenarios, and using different tolerance values (10, 20, 30, and 40
genes). This analysis also confirms that SCEVAN’s accuracy is higher
even with varying parameters and tolerance values (Supplementary
Fig. 4). The results above refer to a limited number of alterations
(between 1 and 10), we have observed that the overall accuracy is not
significantly influenced by the number of simulated genomic altera-
tions. Rather, it is influenced by the magnitude of the alteration α and

the local distribution of the smoothed gene expression signal around
the discontinuities induced by the breakpoints.

In the experiments reported in the sequel, we use the default
value (β = 0.5) to produce slightly finer segmentations on real data
accounting for more focal lesions. For the clonal analysis, the algo-
rithm uses a slightly larger value (β = 3.0) to reduce the effect of the
noise in the final output. Finally, the synthetic dataset is publicly
available and could serve as a reference benchmark for other single-
cell CNV inference algorithms.

Segmentation accuracy using reference data
After evaluating the accuracy of ourmethod in the identification of the
copy number breakpoints on synthetic data, we evaluated its accuracy
on real datasets where we have both the single-cell RNA-seq and
reference copy number profiles obtained from bulk DNA sequencing.
Since, in this case, we are using real single-cell datasets, here we
compare results produced by SCEVAN, inferCNV, and CopyKAT. Since
CopyKAT returns just the segment mean, whereas the output of
inferCNV is the inferred copy number status, when comparing both
methods with SCEVAN we use both the segment mean, mentioned
hereafter as LogRatio, and the copy number status called by the mix-
turemodel algorithm (“Methods”). We use as ground truth 26 samples
of a Glioblastoma multiregional dataset22 with the CNV status from
low-depth whole-genome sequencing (WGS) on the bulk biopsies
(Fig. 3c) and seven samples (81012 Primary, 59114 Relapse-1, 58408

Fig. 2 | Benchmark of malignant cell classification task. F1 score obtained with
SCEVAN and CopyKAT11 in the classification of malignant and non-malignant cells
for each cancer type. Colorectal cancer20 n = 47,285 cells examined over 23 scRNA-
seq independent experiments, Glioblastoma7,10,22n = 40,320 cells examinedover63

scRNA-seq independent experiments, Head and Neck Squamous Cell Carcinomas21

n = 5717 cells examined over 20 scRNA-seq independent experiments (Supple-
mentary Data 2). Source data are provided as a Source Data file.
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Primary, 58408 SMM, 27522 Primary, 57075 Relapse-1, and 37692 Pri-
mary) of Multiple Myeloma (MM) dataset22 with the CNV Status
obtained using whole-exome sequencing (WES) on the bulk biopsies
(Fig. 3d). We re-sampled the output of SCEVAN, CopyKAT, and
inferCNV to the same resolution of the ground truth by taking one
value every 1Mb (“Methods”). The boxplots of Fig. 3 show the Pearson
correlation between the inferred copy number profiles and the refer-
ence copy number obtained in all samples. SCEVAN as segment mean
(LogRatio) has a mean correlation of 0.57 (max 0.81) on the multi-
regional GBM dataset and 0.44 (max 0.71) on the MM dataset. The
copy number call of SCEVANhas amean correlation of 0.54 (max 0.84)
on the multiregional GBM dataset and 0.46 (max 0.76) on the MM
dataset. CopyKAT has a mean correlation of −0.03 (max 0.52) on the
multiregional GBM dataset and 0.29 (max 0.52) on the MM dataset.
Whereas inferCNV has a mean correlation of 0.44 (max 0.88) on the
multiregional GBM dataset and 0.35 (max 0.63) on the MM dataset.

Since inferCNV does allow automatic identification of the non-
malignant cells, for the generation of these results, we used the set of
non-malignant cells classified by SCEVAN. The lower accuracy of
CopyKAT is probably due to the wrong classification of malignant and
non-malignant cells. However, since the misclassification of normal
cells could be eventually corrected by manual inspection, instead of
using the whole multiregional dataset,22 we performed the same
comparison using just the samples where CopyKAT achieves an F1

classification score above 0.50. This comparison evaluated the accu-
racy of segmentation on real-world data, limiting the effect of malig-
nant/non-malignant misclassification. On the 13 samples where
CopyKAT reaches the best classification results, we obtained amedian
correlation between the inferred CNV profile and the CNV from the
bulk WGS of 0.648 and 0.309 for SCEVAN and CopyKAT respectively,
as reported in Supplementary Fig. 5a.

As a further comparison, we run CopyKAT using the non-
malignant cells identified by SCEVAN. With this approach, CopyKAT
obtained a much higher correlation with the ground truth. On the
26 samples of the GBM multiregional dataset,22 it achieved a mean
correlation of 0.33, as shown in Supplementary Fig. 5b. However, using
the same classification of non-malignant cells, SCEVAN achieves a
significantly higher correlation (P value 1.3e−5) than CopyKAT.

We also evaluated the robustness of the segmentation with
respect tomisclassification of the normal cells. We randomly removed
from the reference control cells several cells at steps of 5%. We used
eight samples from the GBM multiregional dataset22. As shown in
Supplementary Fig. 6, SCEVAN is robust to a high percentage of mis-
classified cells. The correlation of the copy number variation profile of
themalignant cells with the ground truth remains stable for errors less
than 60% and, in some cases, up to 95%. These results further confirm
the robustness of the segmentationmethod for themisclassification of
normal cells.

Fig. 3 | Benchmark of inferred copy number profile. a, b Copy number profile
inferred with SCEVAN (segment mean (LogRatio) and CNV status), inferCNV,
CopyKAT, the corresponding ground truth from low-depth WGS of sample S5P422

and fromWES of sample 58408 Primary17. c, d Boxplots show themedian as center,
the lower andupper hinges that correspond to the25th and the75thpercentile, and
whiskers that extend to the smallest and largest value nomore than 1.5*IQR. Values
that stray more than 1.5*IQR upwards or downwards from the whiskers are con-
sidered potential outliers and represented with dots. Significance was computed
by a two-sided Wilcoxon signed-rank test (ns: P value > 0.05, *P value < = 0.05,

****P value <=0.0001). c Pearson correlation between the copy number inferred
with differentmethods and the ground truth from low-depthWGS for 26 samples22.
SCEVAN obtains a significantly higher correlation than CopyKAT (LogRatio P value
1.3e−05 and CNV status P value 3.0e−07) and inferCNV (LogRatio P value 0.02).
d Pearson correlationwith the ground truth fromWES for seven samples17. SCEVAN
obtains a significantly higher correlation than CopyKAT (LogRatio and CNV status
P value 0.016) and inferCNV (LogRatio P value 0.016 and CNV status P value 0.031).
Source data are provided as a Source Data file.
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These data indicate that SCEVAN accurately infers DNA copy
number profiles from high-throughput scRNA-seq data.

Computational efficiency comparison
SCEVAN is also particularly efficient since the main segmentation step
is based on a greedy region-growing algorithm. To validate its per-
formance in terms of computational efficiency, we compare the clas-
sification step of the malignant cells and the segmentation step
separately. In the former case, the direct comparison of the execution
times showed that SCEVAN is 2–7× faster (Supplementary Fig. 7a) in
the discrimination phase between malignant and non-malignant cells.
Afterward, when we compare the time required for segmentation, on
the multiregional GBM dataset,22 SCEVAN is 2× faster than CopyKAT
and 5× than inferCNV, instead for the Multiple Myeloma data17,
sequenced with 10x Genomics technology, CopyKAT becomes parti-
cularly slow, due to large number of cells. Specifically, as shown in the
Supplementary Fig. 7b, SCEVAN is 11× faster than inferCNV and 19×
than CopyKAT.

These results show that the greedy segmentation algorithm
implemented in SCEVAN is particularly efficient with respect to other
tools for copy number inference from scRNA-seq.

Intratumoral heterogeneity in glioblastoma
Glioblastoma (GBM) is the most aggressive form of brain tumor. It is
characterized by high heterogeneity, with several clonal and subclonal
tumor cell populations, glioma stem cells, and an immuno-repressive
tumor microenvironment7,26,27.

SCEVAN can automatically infer clonal substructure from single-
cell data by analyzing the clusters of the CNA matrix that show sig-
nificantly different genomic alterations (“Methods”). As an application
of this approach, we considered one of the samples reported in a
recent study7, the MGH105 sample. SCEVAN identifies four sub-
populations that have different alterations on chromosome 6 (Sup-
plementary Fig. 8). Interestingly, whereas canonical scRNA-seq pro-
cessing analyses could not reach the resolution for the identification of
four subclones7, instead the existence of these subclones had been
previously described through the application of DNA single-cell DNA
methylation platforms26.

In sample BT1160, SCEVAN uncovers the presence of three
tumor cell sub-populations, as shown in Fig. 4a, b. Phylogenetic
reconstruction of the clone tree shows two close clones (subclones
1 and 2) and a significantly far third subclone (Fig. 4c). To better
understand how individual clones fuel tumor growth and clonal
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Fig. 4 | Deconvolution of the clonal substructure. a Clonal structure of sample
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−log10(P value) per cell of GBM cellular states5 computed by the
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yaGST package38. Source data are provided as a Source Data file.
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selection, we investigated the reported alterations. SCEVAN iden-
tifies several truncal alterations, such as the amplification on Chr 5
(q23.2–q31.3), shared alterations, such as the deletion on Chr 10
(q22.1–q26.3), and subclone-specific alterations, such as the
amplification in the green subpopulation on Chr 1 (q31.2–q32.1) and
Chr 19 (q13.32–q13.33) (Fig. 4d). Interestingly, subclone-specific
functional analysis reveals a differential activation of pathways that
resemble a recent metabolic classification of Glioblastoma5. Sub-
clone 1 (light blue) enriches pathways characteristic of the Neuro-
nal subtype, subclone 2 (blue) has cells belonging to the
Mitochondrial, and subclone 3 (green) contains cells with Pro-
liferative/Progenitor subtype (Fig. 4e). Indeed, this finding is con-
firmed by the enrichment of individual cells for every
subtype (Fig. 4f). The Proliferative/Progenitor subclone has several
specific amplifications (1q21.3–q22, 1q31.2–1q32.1, 3q26.32–3q27.2,
4q32.1–4q35.1, 6p22.1, 8p11.22–8q21, 19q13.32–19q13.22). To iden-
tify drivers of the different cellular states, we performed differ-
ential analysis between genes with genomic coordinates in regions
of the subclone-specific alterations. The top differentially expres-
sed gene lying in the alterations specific to the subclone 3 was the
Ubiquitin-conjugating enzyme E2T (UBE2T) gene, which is sig-
nificantly up-regulated (P value 2.69e−43 log fold change 1.10)
(Supplementary Fig. 10) enriching the activity of the pathway of
DNA Repair. This gene encodes for the exclusive ubiquitin-
conjugating enzyme (E2) that partners with the Fanconi Anemia
(FA) ubiquitin ligase (E3). The E2T-FA complex is required for DNA
interstrand crosslink repair as the monoubiquitination event
implemented by E2T is essential for the recruitment of downstream
DNA repair factors by FA28.

Furthermore, the analysis of copy number substructure can
characterize the clonal status of specific tumor-associated genes.
SCEVAN reveals that in samples BT1160 and MGH102, alterations of
tumor suppressor genes CDKN2A and PTEN are subclonal (Fig. 5).
Indeed, in sample BT1160, the deletion on Chr 10 (q22.1–q26.3), con-
taining PTEN (10q23.31), is shared between two out of three subclones,
while in the remaining sub-population, this alteration is not present.
Also, in the sample MGH102, the region 9p21.3 containing the gene
CDKN2A is deleted in two of the four subclones. These results suggest

that SCEVAN can resolve clonal copy number substructure in tumors
from scRNA-seq data and identify subclonal differences and glioma-
specific cancer states.

Clonal evolution in multiregional GBM tumor
Glioblastoma heterogeneity has also been investigated in the spatial
and temporal axes22,29 because a single biopsy may not be informative
of the whole tumor. Multiple biopsies allow us to characterize the
clonal architecture and evolutionary dynamics of GBM30.

We used SCEVAN for the evolutionary analysis of clonal structure
for multiregional scRNA-seq samples of GBM22. For example, we con-
sidered one case, GS1, with seven biopsies, two taken at the tumor
periphery and the remaining at the core of the tumor. The clonal
analysis of each sample with SCEVAN allows to infer an evolutionary
tree of the clones (Fig. 6). Copy number alterations develop along
several branches, and the peritumoral samples (P2/P3) are in a branch
separated from the core samples, in which there is no amplification in
chromosomes 4 and 8.Moreover, the amplification present on Chr 2 is
clonal in peripheral samples and subclonal in some core samples (P1/
P4/P7).

Clonal structure of primary and metastatic lymph
SCEVAN (and similar approaches) can address important questions,
such as identifying similarities and differences between primary
tumors and metastases. For this purpose, we considered primary
HNSCC tumors and corresponding lymph node metastases21. Of the
four considered cases, just one specific sample, the patient (HNSCC5),
presented a different clonal structure between primary tumor and
lymph node metastasis, particularly, the absence of amplification of
chromosome 7 (p22.3–p13) in the lymph node metastasis, as shown in
Fig. 7. Interestingly, this is the locus of Glycoprotein non-metastatic b
(GPNMB) which is downregulated in lymph node metastasis (Supple-
mentary Fig. 9). Furthermore, GPNMB increases tumor growth and
metastasis in multiple contexts31. For the remaining patients
(HNSCC20,HNSCC25,HNSCC26,HNSCC28) the clonal structure of the
lymph node metastasis appeared to be the same as in the primary
tumor. Therefore, we obtained a high correlation (Pearson correlation
between 0.79 and 0.89) comparing the clonal profiles of the primary
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Fig. 5 | Tumor suppressor genes in the clonal substructure. Compact repre-
sentation of clonal structure inferred with SCEVAN of scRNA-seq samples BT1160

and MGH1027, in which the alterations containing tumor suppressor genes PTEN
and CDKN2A are subclonal. Source data are provided as a Source Data file.
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tumor and lymph nodemetastasis pairs. Thesedata show that SCEVAN
can be used to study the clonal evolution of metastatic cancer.

Discussion
We described a variational segmentation approach to identify
genomic copy number profiles from scRNA-seq data. The adopted
joint segmentation algorithm is based on the notion that the cells in
a given copy number clone share the same breakpoints. Thus, the
expression profile of every individual cell, seen as a function of the
genomic coordinates, contributes to the evidence of copy number
alteration in each subclone. SCEVAN uses a set of stromal and
immune signatures and the fact that malignant cells often harbor
aneuploid copy number events to discriminate between trans-
formed cells andmicroenvironment cells automatically. We used an
extensive collection of annotated datasets of different tumor types
confirming that SCEVAN is more accurate and faster than state-of-
the-art methods. Our evaluation has shown that this approach is
viable in cases with high purity and subjects with a significant
amount of immune infiltration. Therefore, SCEVAN is particularly
suited in studies where unsorted populations of single cells need to

be analyzed to characterize, for example, the interaction between
malignant cells and their microenvironment6.

The primary use of SCEVAN consists of delineating the clonal
substructure in solid tumors based on differences in CNAs and
studying the temporal and geographic evolution of tumors. In addi-
tion, we used SCEVAN to deconvolve the clonal structure of glioma
tumors. For example, in one patient, we found the presence of cell
populations with differential activation of glioma cellular states, con-
firming that the clonal architectures drive the heterogeneity of glioma
subtypes5. Functional analysis of subclones revealed drivers of cellular
states, such as the Proliferative/Progenitor (PPR) glioma subtype. We
identified UBE2T as the top amplified and differential expressed gene
in the PPR clone. Interestingly, UBE2T can be pharmacologically
inhibited32, and therefore it results as a potential therapeutic target for
PPR cells. Moreover, we have shown that with SCEVAN, we can char-
acterize the clonal status of onco-suppressor genes such as PTEN and
CDKN2A. Such characterization may be of interest for diagnostics or
therapeutic targeting and for the exploitation of approaches based on
synthetic lethality33. Clonal deconvolution extracted from scRNA-seq
canalsobe used to study regional and temporal tumor evolution, aswe

Fig. 6 | Temporal deconvolution of the clonal substructure. Compact repre-
sentation of clonal structure inferred with SCEVAN of multiregional scRNA-seq

samples of patient GS122 and a phylogenetic tree deduced from clonal structure of
the samples. Source data are provided as a Source Data file.
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have shown in the case of a multiregional GBM dataset, and for the
characterization of the difference between primary and metastases.

SCEVAN has been evaluated here with different single-cell tech-
nology and recently used in a large study integrating millions of single
cells from 538 samples and 309 patients across 29 datasets using the
most commonly applied platforms such as 10x Chromium, Smart-
seq2, GEXSCOPE, inDrop and Drop-Seq34.

Some limitations of our SCEVAN rely mainly on its basic
assumption that their aneuploidy can identify cancer cells. However,
there are cases such as liquid cancers (e.g., leukemia), pediatric can-
cers, Ependymomas, and others are known to harbor a minimal
number of genomic alterations. Thus, our approach (and similar) may
not be suited in this case.

Methods
Preprocessing of scRNA-seq data
The preprocessing phase is aimed at filtering out low-quality and irre-
levant cells. Specifically, the cellswith less than 200detectedgenes and
the genes expressed in less than 1%of cells are removed. The remaining
genes are annotated by adding their genomic locations to the matrix
using an Ensembl-based annotation package35 and then genes are
sorted according to genomic coordinates. After annotation, the genes
involved in the cell cycle pathway, obtained from REACTOME36, are
filtered to reduce artificial segments caused by the cell cycle11.

Identification of highly confident non-malignant cells
The input dataD is anm × n single-cell gene expressionmatrix wherem
is the number of cells andn is the number of genes orderedby genomic

positions. To segregate malignant from non-malignant cells, SCEVAN
follows a multi-step approach. A small set of high-confidence normal
cells is used to build a relative expression matrix and as a seed for
identifying the cluster of normal cells. Then, the relative expression
matrix is segmented and clustered as described in the following para-
graphs. A set of gene signatures from public collections6,37, including
cells of the tumor microenvironment, stromal and immune cells, such
as lymphocytes, macrophages, microglial cells, dendritic cells, neu-
rons, and others (Supplementary Data 1), is used to identify the high-
confidence normal cells.We apply theMann–Whitney–Wilcoxon single
sample gene set test gene set implemented in the yaGST package38 and
assume as normal confident cells the top classified cells with P value
less than 10−10 andNormalizedEnrichment Score (NES) greater than 1.0.
We restrict the search to a maximum of 30 high-confidence non-
malignant cells.

Then the copy number baseline, estimated from the median
expression of confident normal cells, is removed from the count
matrix, thus obtaining the relative matrix Dr =D� ~b

T
where ~b is the n-

dimensional vector with the median value of confident normal cells. If
no confident normal cells are found, we assume that the sample is pure
and contains only malignant cells. In this case, a synthetic baseline is
removed fromthemalignant cells. The synthetic baseline is obtainedby
subtracting from each gene a random value extracted from a gaussian
distribution with zero mean and the same standard deviation of the
considered gene. To take into account the heterogeneity of the sample
and to avoid smoothing CNV subclones, this step is applied to clusters
of the count matrix. The number of clusters is automatically chosen by
using the Calinski–Harabasz criterion, we use hierarchical clustering.

Fig. 7 | Clonal copy number comparison of matched primary and metastatic
tumor. Copy number profile of primary (P) and metastatic lymph nodes (L) from

samples of Head and Neck cancer dataset (HNSCC5, HNSCC25,HNSCC26,
HNSCC28)21. Source data are provided as a Source Data file.
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From now on, the relative gene expression matrix will be con-
sidered the sampled version of a function u defined on the genome
with values inRm. In the case of single-cell data, the sampling is based
on the relative expression values of each gene, in previous works, we
have used a similar formalism for aCGH arrays16 where the sampling
points are the position of each SNP probes, or for Whole Exome data39

the sampling points are the genomic positions position of exons.

Edge-preserving smoothing
Before the segmentation phase, one of the key steps of SCEVAN is to
smooth the relative expression function. Since the segmentation step
described below assumes a piecewise-constant model of the copy
number signal, we preliminarily proceed to perform a nonlinear
smoothing of the gene expression alongwith the genomic coordinates
to regularize the gene expression signal, reduce the outliers and at the
same time to preserve the discontinuities which are the breakpoints
between the copy number segments.We apply a filter grounded in the
Bayesian framework of edge-preserving regularization,40 which con-
siders the minimization of the total variation (TV) functional

Z
ϕð∣∇u∣Þ ð1Þ

where u is them-dimensional relative gene expression signal,∇ u is its
gradient andϕ( ⋅ ) is a discontinuity-adaptive prior41. In particular, here
we use ϕðxÞ= log coshðxÞ, which has been shown to produce a well-
posed minimization problem overcoming the non-differentiability of
the TV at the origin42. The iterative numerical scheme implemented in
SCEVAN is just the one-dimensional adaptation of the stable finite
difference scheme previously reported42.

Single-cell joint segmentation algorithm
SCEVAN uses a multichannel segmentation procedure that inputs all
the cells in a given clone to identify the boundaries of homogeneous
copy number. The procedure is based on the Mumford and Shah
energy originally developed to analyze images. In their original work12,
the authors introduced the basic properties of variational models for
computer vision aimed at defining the mathematical foundations for
appropriate decomposition of the 2D domain Ω of a vector-valued
function u0 : Ω ! Rm into a set of disjoint connected components
(Ω= ∪ l

i = 1Ωi, Ωi \Ωj = ;, 1 ≤ i,j ≤ l,i≠j). The set of points on the
boundary between the Ωi is denoted as Γ. This partition is modeled
such that the signal varies smoothly within a component and dis-
continuously between the disjoint components. This problem is
known as piecewise smooth approximation. Here we adopt a special
case of the Mumford–Shah model, when the approximation u of the
signal u0 is constrained to be a piecewise constant function. This is
best suited for CNV segmentation. In this case, the optimal segmen-
tation is obtained by minimizing the following:

Eðu,ΓÞ=
X
i

Z
Ωi

ðu0 � uiÞ2dxdy+ λ∣Γ∣ ð2Þ

whereΓ is theboundarybetween the connected componentsΩi and ∣ ⋅ ∣
indicates its length and ui is the restriction of u toΩi. It is easy to show
that the minimum for this model can be obtained by posing ui as the
mean of u0 within each connected component Ωi. Hence, this func-
tional represents a compromise between the accuracy of the approx-
imation and the parsimony of the boundaries. It is essential to notice
that the resulting segmentation depends on the scale parameter λ.
Indeed, it determines the number of computed regions: when λ is small
many boundaries are allowed, and the resulting segmentation will be
fine. As λ increases, the segmentation will be coarser and coarser.

In our case of segmenting the genome in regions of homo-
geneous copy number, we define a segmentation Γ = {b1,⋯ , bM+1}

as a set of ordered positions (breakpoints) partitioning the genome
into M connected regions R = {R1,⋯ , RM}. Each region Ri will con-
tain all genes whose genomic coordinates lie between breakpoints
{bi, bi+1}. We are modeling a function defined on a one-dimensional
domain in Eq. (2), ∣Γ∣ reduces to the number of regions M.
According to the original algorithm proposed in ref. 16, to minimize
this function, adjacent regions Ri and Ri+1 are iteratively merged in a
pyramidal manner to create larger segments, and the reduction of
the energy can be shown as:

Eðu,ΓnfbigÞ � Eðu,ΓÞ= ∣Ri∣∣Ri + 1∣
∣Ri∣+ ∣Ri + 1∣

∣∣ui � ui+ 1∣∣
2 � λ ð3Þ

where ∣Ri∣ is the length of the i-th region, and ui is a m-dimensional
vector with the mean value of gene between bi and bi+1, ∣∣ ⋅ ∣∣ is the L2
norm and \ is the set difference. To minimize (2), we follow a greedy
procedure. We start with a segmentation having n regions, one for
eachgene. Then, at each step, wemerge the adjacent regions that yield
themaximumdecrease of the energy functional uponmerging. Since λ
decides the end ofmerging, choosing an appropriate value is crucial to
ensure the quality of the final segmentation. As in ref. 16, the selection
for λ at each merging step is done dynamically, depending on two
factors: the region’s size and the mean values of the consecutive
regions being considered for the merge. Hence, the cost of merging
two regions Ri and Ri+1, associatedwith a breakpoint bi, is computed as
follows:

~λi =
∣Ri∣∣Ri+ 1∣
∣Ri∣+ ∣Ri + 1∣

∣∣ui � ui+ 1k2, ð4Þ

if ~λi<λ, the adjacent regions are merged and the i-th breakpoint
removed. Otherwise, the energy function has reached a local mini-
mum, and no merging can be done further. Therefore, λ is updated
to the smallest of λi + ϵ, continuing the merging. The sequence of λ
values is monotonically increasing as it corresponds to the amount
of decrease of the energy functional at each step in (Eq. (3)). In ref. 13,
we adopted a stopping criterion in such a way that the final seg-
mentation is obtained when the increase in λ stabilizes and merging
any further does not correspond to a significant decrease of the
energy. The final stopping value is based on the variability of the
adjacent region and the total variability of the data, ν. The total
variability is computed as the sum of the standard deviation
of all cells after the smoothing step. The stopping criterion is
Δλ = λi+1 − λi ≤ βν, where β is a positive constant, representing the
only parameter of the segmentation algorithm.

Classification of malignant and non-malignant cells
The joint segmentation algorithm, applied to the relative gene
expression matrix, returns a set of breakpoints and the interpolating
function u minimizing (2), which is simply the mean gene expression
between consecutive breakpoints in each cell. Hence, an intermediate
CNA m × n matrix (m is the number of cells and n is the number of
genes) is computed by substituting each expression value with the
mean gene expression between consecutive breakpoints in each cell.
This matrix is then clustered into two groups using hierarchical clus-
tering. All the cells in the cluster containing the highest number of
confident normal cells (if confident normal cells have been detected as
described above) are then classified as non-malignant. The final CNA
matrix is then obtained by subtracting the vector of the mean value of
all the identified normal cells.

Differential subclonal structure characterization
To deconvolve the clonal structure of a given sample, the CNA
matrix containing just tumor cells is clustered using Louvain
clustering43 applied to a shared nearest-neighbor graph44 (Fig. 1,
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step F). Each cluster represents a potential subclone. Therefore the
joint segmentation algorithm is re-applied considering just the cells
of the cluster (Fig. 1, step G). The segmentation results are classified
with the CNV calling algorithm described below and analyzed to
identify subclone-specific alterations, shared alterations between
subsets of clones, and clonal alterations. Segments in each clone
representing the same copy number alterations at genomic dis-
tances less 10Mb are first merged together. Afterward, two altera-
tions in different clones are considered the same if the respective
start or end breakpoints are at a genomic distance of less than 10Mb
and differ in size by less than 40%. The list of potential clone
alterations is further filtered, retaining only clones having specific
alterations.

CNV calling
To obtain an estimate of the copy number status of each segmented
region, we apply a mixture model-based algorithm to the mean
expression level of each cell within each segment. This value is mod-
eled as a mixture of five truncated normal distributions as in ref. 45.
The parameters of themixture are estimated using the EMalgorithm46,
starting from empirically chosen initial fixed parameters (Supple-
mentary Table 1). Then each segmented region is classified in one of
five copy number states deletion (0), loss (1), neutral (2), gain (3), or
amplification (4). The final classification of each segmented region is
obtained using the majority vote algorithm, starting from the classifi-
cation for each cell in the relative segment.

Comparison with other tools and analysis of bulk data
The raw count matrices of scRNA-seq samples reported in classifica-
tion and copy number inference comparisons reported in the paper,
are analyzed following the steps of SCEVAN Workflow (Methods) and
with CopyKAT v1.0.5 and inferCNV v1.4.0. InferCNV was run using the
author’s recommendations for the parameters denoise=TRUE,
HMM=TRUE, HMM_type=’i6’, and cutoff=0.1 (for MM dataset)17,
cutoff=1.0 (for multiregional GBM dataset)4.

The copy number variation profile from bulk biopsies was used as
ground truth. In the case of Multiple Myeloma17, CNVkit v0.9.9 was
used for segmentation. The integer Copy Number was assigned based
on cutoffs specified in the CNVkit documentation (−1, −0.25, 0.2, and
0.7) (Supplementary Data 4). For the 26 Glioblastoma multiregional
samples of low-depth whole-genome sequencing (WGS) on the bulk
biopsies22, the copy number variations computed every 1-Mb window
by Yu et al.22 was segmented using DNAcopy (v1.62.0)47 (Supplemen-
tary Data 5). The ground truth extracted from WES and WGS have of
course different resolutions with respect to the single-cell data.
Therefore, we first re-sampled the output of each method and the
ground truth at the same genomic resolution. Specifically, for each
position of the genome at 1-Mb distance we take the log ratio value or
copy number integer value depending on the considered method.
Then the Pearson correlation is computed between this re-sampled
vector and the ground truth11. CNVkit andDNAcopy use circular binary
segmentation (CBS), which is not used by any of themethods SCEVAN,
CopyKAT, and inferCNV compared. This choice avoids a possible bias
in the comparison.

For the comparison of breakpoints detection on synthetic data,
we also use GenoCN v1.40.0 and the method doGFLars of jointseg
v1.0.2. Since they do not have their own smoothing method, we use
smooth.CNA of DNAcopy47 as previously suggested24.

The remaining parameters not mentioned are set as default
parameters.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The scRNA-seq data used in this paper are publicly available on the
Gene Expression Omnibus (GEO): Colorectal cancer GSE13246520;
Glioblastoma GSE1319287, GSE10322410, GSE11789122; Head and Neck
Squamous Cell Carcinomas GSE10332221; Multiple Myeloma
GSE22306017. All copy number variation profile from Bulk sequencing
are available as Supplementary Information files, and raw data from
multiregional GBM dataset22 of Bulk sequencing of genomic DNA is
available at Genome Sequence Archive (GSA) under accession number
HRA000179, upon request from the DAC. The synthetic data gener-
ated are made public at the following link https://zenodo.org/record/
6628423. REACTOME pathway database is publicly available from
Molecular Signature Database (MSigDB v7.4). Source data are pro-
vided with this paper.

Code availability
SCEVAN is available in open source as an R package at the following
address https://github.com/AntonioDeFalco/SCEVAN48.
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