Article

Room-temperature photosynthesis of propane from CO₂ with Cu single atoms on vacancy-rich TiO₂

Received: 25 May 2022

Accepted: 14 February 2023

Published online: 27 February 2023

Check for updates

Yan Shen^{1,2,11}, Chunjin Ren^{3,11}, Lirong Zheng⁴, Xiaoyong Xu^{\oplus 5}, Ran Long^{\oplus 6}, Wenqing Zhang⁶, Yong Yang ^{\oplus 7}, Yongcai Zhang ^{\oplus 5}, Yingfang Yao ^{\oplus 1,2,8}, Haoqiang Chi¹, Jinlan Wang ^{\oplus 3}, Qing Shen⁹, Yujie Xiong ^{\oplus 6}, Zhigang Zou ^{\oplus 1,2,8} & Yong Zhou ^{\oplus 1,8,10}

Photochemical conversion of CO₂ into high-value C₂₊ products is difficult to achieve due to the energetic and mechanistic challenges in forming multiple C-C bonds. Herein, an efficient photocatalyst for the conversion of CO₂ into C_3H_8 is prepared by implanting Cu single atoms on $Ti_{0.91}O_2$ atomically-thin single layers. Cu single atoms promote the formation of neighbouring oxygen vacancies (V₀s) in Ti_{0.91}O₂ matrix. These oxygen vacancies modulate the electronic coupling interaction between Cu atoms and adjacent Ti atoms to form a unique Cu-Ti-V_O unit in Ti_{0.91}O₂ matrix. A high electron-based selectivity of 64.8% for C_3H_8 (product-based selectivity of 32.4%), and 86.2% for total C_{2+} hydrocarbons (product-based selectivity of 50.2%) are achieved. Theoretical calculations suggest that Cu-Ti-Vo unit may stabilize the key *CHOCO and *CH₂OCOCO intermediates and reduce their energy levels, tuning both C_1 - C_1 and C_1 - C_2 couplings into thermodynamically-favourable exothermal processes. Tandem catalysis mechanism and potential reaction pathway are tentatively proposed for C_3H_8 formation, involving an overall ($20e^- - 20H^+$) reduction and coupling of three CO₂ molecules at room temperature.

Using sunlight to generate fuels from CO_2 and water has the potential to reduce CO_2 emissions and facilitate the large-scale storage of renewable energy¹⁻⁵. Currently, light-driven reduction of CO_2 is mainly limited to two-electron-reduced CO and further reduced C_1 hydrocarbons such as methane (CH₄)^{6,7} and C₂ products such as ethene

 $(C_2H_4)^8$ and ethane $(C_2H_6)^9$ in few cases. However, the formation of C_3 products by artificial photosynthesis is rare^{10,11} and generally relies on a higher-order reaction pathway that requires the sequential formation of multiple C-C bonds¹², which involves the integration of two consecutive steps of CO₂-to-CO and CO-to-C₂₊ at different catalytic

¹Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China. ²College of Engineering and Applied Sciences, Nanjing University, Nanjing, China. ³School of Physics, Southeast University, Nanjing, China. ⁴Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. ⁵Chemistry Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China. ⁶Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China. ⁷Key Laboratory of Soft Chemistry and Functional Materials (MOE), Nanjing University of Science and Technology, Nanjing, China. ⁸School of Science and Engineering, the Chinese University of Hong Kong (Shenzhen), Shenzhen, China. ⁹University of Electrocommunication, Graduate School of Informatics and Engineering, Chofu, Tokyo, Japan. ¹⁰School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, China. ¹¹These authors contributed equally: Yan Shen, Chunjin Ren. e-mail: jlwang@seu.edu.cn; yjxiong@ustc.edu.cn; zhouyong1999@nju.edu.cn

centres¹³⁻¹⁶. These C-C couplings are usually challenging endothermic processes with huge uphill energy barriers owing to the high energy levels of the key C_2 and C_3 intermediates¹⁷⁻²⁰. These energy barriers result from the lack of effective catalytic centres that can stabilize these multicarbon intermediates^{21,22}.

Single-atom (SA) catalysts with maximum atom utilization efficiency and unique catalytic performance have emerged as an attractive frontier in heterogeneous catalysis^{23,24}. Atomically thin twodimensional (2D) materials are suitable platforms to anchor metal SAs^{25,26}. These 2D single-layer (SL) materials can not only improve the activity of catalytic reactions²⁷, but also provide ideal models to gain atomic-level insights into real active sites and reaction mechanisms of catalytic processes through experimental and theoretical techniques^{25,28}.

Herein, we report that implanting Cu SAs in Ti_{0.91}O₂ atomic SLs allows the construction of a unique Cu-Ti-V₀/Ti_{0.91}O₂-SL photocatalyst for highly efficient and selective conversion of CO₂ into C₃H₈. The Cu SA promotes the neighboring Ti_{0.91}O₂ to generate oxygen vacancies (V_0s) and form a Cu-Ti-V₀ unit in the Ti_{0.91}O₂ matrix. The Cu-Ti-V₀/ Ti_{0.91}O₂-SL photocatalysis system efficiently converts CO₂ into C₂₊ products at room temperature with high electron-based selectivity of 64.8% for C₃H₈ (product-based selectivity of 32.4%) and 86.2% for overall C₂₊ hydrocarbons (product-based selectivity of 50.2%). As suggested by theoretical calculations, the Cu-Ti-Vo units may stabilize the key *CHOCO and *CH2OCOCO intermediates and reduce their energy levels, tuning both C₁-C₁ and C₁-C₂ couplings into thermodynamically favorable exothermal processes. Based on the simulation results, tandem catalytic mechanism and reaction pathway for the production of C_{2+} hydrocarbons are proposed, involving an overall 20 e⁻²⁰ H⁺ reduction and two sequential C-C coupling processes of three CO_2 molecules (3 CO_2 + 20 e^- + 20 H^+ \rightarrow C_3H_8 + 6 H_2O). Our work provides an alternative paradigm for the photoconversion of CO₂ into multicarbon solar fuels, and represents a progressive step toward imitating natural photosynthesis.

Results

Formation and characterization of Cu-Ti-Vo units

Atomically thin layers of Ti_{0.91}O₂-SL were synthesized by exfoliating the layered protonic lepidocrocite-type titanate of H_{0.7}Ti_{1.825}O₄^{29,30}. The absence of peaks in the corresponding X-ray diffraction (XRD) pattern suggests the complete exfoliation into single layers³¹ (Supplementary Fig. 1). Cu SAs were then implanted in Ti_{0.91}O₂-SL to form Cu-Ti-V₀/Ti_{0.91}O₂-SL through a modified wet-chemical route, followed by a rapid thermal treatment (RTT) in an Ar atmosphere³² (see Methods for details). The amount of Cu loading was detected to be 0.29 wt% by inductively coupled plasma-optical emission spectrometry (ICP-OES). The XRD pattern of Cu-Ti-V₀/Ti_{0.91}O₂-SL was similar to that of pristine Ti_{0.91}O₂-SL (Supplementary Fig. 1). The thickness of Cu-Ti-V₀/ $Ti_{0.91}O_2$ -SL was found to be 0.85 nm using atomic force microscopy (AFM) (Supplementary Fig. 2), which corresponded closely to the theoretical monolayer thickness (0.75 nm)^{30,33,34}. Field emissionscanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) images show the ultrathin sheet-like morphology of Cu-Ti-V₀/Ti_{0.91}O₂-SL without discernible nanoparticles (NPs) (Fig. 1a-c), potentially implying the atomic-scale size of the Cu embedded in the Ti_{0.91}O₂ matrix. The isolated bright dots in atomic resolution aberration-corrected high angle annular dark-field-scanning transmission electron microscopy (AC HADDF-STEM) images (Fig. 1e) directly confirm the atomic dispersion of the Cu in the matrix. Energy dispersive X-ray spectroscopy (EDS) mapping (Fig. 1f-i) indicates that Cu is evenly distributed throughout the atomically thin $Ti_{0.91}O_2$ matrix.

Fourier transforms of the Cu K-edge extended X-ray absorption fine structure (EXAFS) spectra of Cu-Ti-V₀/Ti_{0.91}O₂-SL (Fig. 2a) contain a prominent peak at -1.56 Å, assigned to Cu-O coordination in the first shell with a coordination number of 4 according to the EXAFS fitting analysis (Supplementary Fig. 3 and Supplementary Table 1). The characteristic metallic Cu-Cu bonding at -2.24 Å is not observed, further validating the single-atom distribution of Cu. A minor scattering peak at -2.42 Å is attributed to Cu-Ti coordination in the second shell based on the EXAFS fitting results^{34,35}. The presence of Cu-Ti coordination, originating from the strong electronic interaction between Cu and adjacent Ti atoms, suggests that Cu is present in the atomically dispersed Cu-Ti dual-metal coordination form³⁶.

The normalized Cu K-edge X-ray absorption near-edge structure (XANES) spectra show that the near-edge absorption energy of Cu-Ti-V₀/Ti_{0.91}O₂-SL is higher than that of Cu foil and lies between the energies of Cu₂O and CuO (Fig. 2c), indicating that the average oxidation state of Cu is between +1 and +2, which is verified by Cu LMM Auger electron spectra (AES) and Cu 2*p* X-ray photoelectron spectra (XPS) as well as the theoretical results (Supplementary Fig. 4a, c). The near-edge absorption energy and white-line intensity of Ti K-edge XANES for Cu-Ti-V₀/Ti_{0.91}O₂-SL are higher than those for Ti_{0.91}O₂-SL (Fig. 2d), suggesting the presence of Ti species with lower electronic density, which is confirmed by the Ti^{δ+} (δ > 4) species in Ti 2*p* XPS spectra^{37,38} (Supplementary Fig. 4b). The formation of these electron-poor Ti centres and the partially oxidized Cu centres proves the electron donation to Cu SAs from the coordinated Ti atoms as a result of the strong electronic interaction in the Cu-Ti dual-metal coordination.

The O 1*s* XPS spectrum of Cu-Ti-V_O/Ti_{0.91}O₂-SL displays a peak attributed to V_O at 531.6 eV^{39,40} (Supplementary Fig. 5). The electron paramagnetic resonance (EPR) spectra also show a V_O signal at a g value of 2.003⁴⁰ (Fig. 2b), suggesting the formation of V_Os in Cu-Ti-V_O/Ti_{0.91}O₂-SL. In contrast, no V_O signal is observed for Ti_{0.91}O₂-SL (Fig. 2b and Supplementary Fig. 5). Density functional theory (DFT) computations reveal that the formation energy of V_O is 5.66 eV in Ti_{0.91}O₂-SL, while the value sharply decreases to 2.39 eV with Cu anchoring, implying that the introduction of Cu SAs can facilitate the formation of neighboring V_Os in the Ti_{0.92}O₂ matrix.

The strong coordination interaction of the anchored Cu SA with neighboring Ti atoms originates from the presence of $V_{0}s$. A control sample without V₀s (denoted as Cu-O/Ti_{0.91}O₂-SL) was synthesized through a similar RTT in an air atmosphere (see Methods, Fig. 2b, f and Supplementary Fig. 6 for details). The projected density of states (PDOS) of Cu-Ti-V₀/Ti_{0.91}O₂-SL (Fig. 2g) demonstrates that the *d*-band centre (ϵ_d) of Cu (-2.52 eV) is in good agreement with adjacent Ti (-2.58 eV), inducing a strong electronic coupling effect in the dualmetal sites³⁶. The crystal orbital Hamilton population (COHP) between Cu SAs and the closest Ti atoms was then calculated to quantitatively study the intensity of Cu-Ti interactions with and without Vos. The less antibonding orbital populations and a more negative value of integrated-crystal orbital Hamilton population (ICOHP) for Cu-Ti-Vo/ Ti_{0.91}O₂-SL than Cu-O/Ti_{0.91}O₂-SL prove that the Cu-Ti electronic interaction is much stronger when Vos are present (Fig. 2h, i). Charge density differences and Bader charge analysis (Fig. 2j) suggest that 0.3 edirectly transfers to Cu SAs from the neighboring Ti atoms in Cu-Ti- V_0 / Ti_{0.91}O₂-SL, which causes notable electron accumulation at Cu sites and substantial electron depletion at Ti sites, revealing the asymmetric electron distribution at Cu-Ti coordination. In comparison, without Vos, Cu-O/Ti_{0.91}O₂-SL displays no discernible electron perturbation at Ti sites, and electrons are localized within Cu-O coordination (Fig. 2k), demonstrating that Cu SAs share negligible interactions with Ti atoms and are in a relatively isolated single-metal form, confirmed by XPS and EPR (Fig. 2b and Supplementary Fig. 6). Therefore, both experimental and theoretical analyses indicate that Cu-Ti-Vo units are formed in the Ti_{0.91}O₂ matrix for Cu-Ti-V₀/Ti_{0.91}O₂-SL. In contrast, isolated Cu-O sites are formed in the Ti_{0.91}O₂ matrix without V_Os for Cu-O/Ti_{0.91}O₂-SL.

Photocatalytic CO₂ reduction performance

All of the photocatalytic CO_2 reduction metrics reported in this study were measured in CO_2 -saturated acetonitrile aqueous solution

Fig. 1 | Morphological and structural characterization of Cu-Ti-V₀/Ti_{0.91}O₂-SL. a FE-SEM and b, c TEM images, d, e AC HAADF-STEM images, and f-i EDS mapping.

(acetonitrile: water = 5:1 by volume) unless otherwise specified, and the testing details are described in the Methods section (Supplementary Fig. 7). Unexfoliated layered titanate (denoted as Ti_{0.91}O₂-B) mainly produces CO, with a formation rate of 7.0 µmol g⁻¹ h⁻¹ (Fig. 3b). Ti_{0.91}O₂-SL displays an enhanced CO production rate of 67.0 μ mol g⁻¹ h⁻¹, indicating that the atomically thin 2D geometry is favorable for the improvement of CO₂ activity through the potential exposure of many rich active sites and a shortened charge-transfer distance from the interior to the surface^{26,41}. Both CO and CH₄ were detected on Cu-O/Ti_{0.91}O₂-SL with yields of 61.0 and 11.3 μ mol g⁻¹ h⁻¹, respectively. Cu-Ti-V₀/Ti_{0.91}O₂-SL exhibit significant yields of C₂H₄ (7.6 μ mol g⁻¹h⁻¹) and C₃H₈ (13.8 μ mol g⁻¹h⁻¹), together with a small amount of CH_4 and trace C_2H_6/C_3H_6 , in addition to CO (18.6 μ molg⁻¹h⁻¹) (Fig. 3a, b), showing a strong capability of C-C coupling. No H₂ production was detected (Supplementary Fig. 8), and O₂ was generated roughly stoichiometrically (Supplementary Fig. 9). The quantum efficiency (QE) was obtained 0.48%, 0.15%, and 0.06% at the wavelength of 385, 415, and 520 nm, respectively. A high electronbased selectivity of C_3H_8 of 64.8% was achieved (32.4% of the product-based selectivity), and that of total C2+ products was as high as 86.2% (50.2% of the product-based selectivity) (Fig. 3c and Table 1). The photocatalytic performance of Cu-Ti-V₀/Ti_{0.91}O₂-SL was also tested in pure water. The production rates of all carbon-based products decreased in pure water as compared with those (Supplementary Fig. 10). Moreover, the overall selectivity of C₂₊ products becomes lower in pure water, and the selectivity of C₃H₈ is less than C_2H_4 (Supplementary Fig. 11). H_2 is detected with a formation rate of ~2.2 μ mol g⁻¹ h⁻¹ in pure water. The improved activity and selectivity are most likely due to the high CO₂ solubility in acetonitrile, which largely increases the local accessibility of CO₂, thus enhancing the contact between the catalyst and CO₂ molecules to facilitate C-C coupling. To the best of our knowledge, the efficiency and selectivity of C₃H₈ production in our work outperform most of the reported photocatalysts in acetonitrile medium, and also rank among the top

Fig. 2 | Electronic structure of Cu-Ti-V₀/Ti_{0.91}O₂-SL. a Fourier transforms of EXAFS spectra at the Cu K-edge. b EPR spectra. Normalized XANES spectra at the c Cu K-edge and d Ti K-edge. e, f The atomic structure configuration (colour codes:

light blue (Ti), blue (Cu), and red (O)). **g** PDOS and d-band centres of Cu 3*d* and Ti 3*d* orbitals. **h**, **i** COHP between Cu and adjacent Ti. **j**, **k** Charge density differences (yellow represents electron accumulation, and purple denotes electron depletion).

of the reported C_{2+} production photocatalysts in non-acetonitrile medium (Supplementary Table 3).

The substantially suppressed CO production and increased C_{2+} production on Cu-Ti-V₀/Ti_{0.91}O₂-SL, compared with pristine Ti_{0.91}O₂-SL, imply that the formation of C_{2+} products is potentially derived from the coupling depletion of the *CO intermediate. CO was used to substitute CO₂ as the starting reactant on Cu-Ti-V₀/Ti_{0.91}O₂-SL, and a

considerable amount of C_3H_8 and C_2H_4 was indeed detected (Supplementary Fig. 12), further confirming *CO as an important intermediate for the present C_{2+} products. The distinctive CO_2 photoreduction activity and high selectivity of C_3H_8 and total C_{2+} products are still well maintained after three-cycle tests of 15 h in total (Supplementary Figs. 13 and 14), and the post-reaction characterizations of Cu-Ti-V_O/Ti_{0.91}O₂-SL display no obvious structural and

Table 1 | Selectivity of different products on $Ti_{0.91}O_2$ -SL, Cu-O/ Ti_{0.91}O_2-SL, and Cu-Ti-V_O/Ti_{0.91}O₂-SL.^a

Catalyst	Electron-based selectivity (%)			Product-based selectivity (%)				
	со	CH ₄	C_2H_4	C₃H ₈	со	CH ₄	C_2H_4	C ₃ H ₈
Ti _{0.91} O ₂ -SL	94.7	5.3	Not detectable		98.6	1.4	Not detectable	
Cu-O/ Ti _{0.91} O ₂ -SL	57.4	42.6	Not detectable		84.4	15.6	Not detectable	
Cu-Ti-V _O / Ti _{0.91} O ₂ -SL	8.7	5.1	21.4	64.8	43.4	6.3	17.8	32.4

 $^{\rm a}$ The details regarding the calculation of electron- and product-based selectivity of CO, CH4, C_2H_4 and C_3H_8 are presented in the Methods section.

morphological changes (Supplementary Figs. 15-17), demonstrating the excellent stability of the catalyst. Notably, with the decrease in the Cu loading amount, the C₂₊ yield declines as the lower Cu loading reasonably reduces the number of Cu-Ti-Vo units, restraining C-C coupling (Supplementary Figs. 18 and 19). Moreover, higher Cu loading results in Cu aggregation into nanoclusters (NCs) and nanoparticles (NPs), subsequently lowering the selectivity of C₂₊ products, which is probably due to the weaker coupling interaction between Cu and the Ti_{0.91}O₂ matrix as the metal particle size increases^{42,43} (Supplementary Fig. 18). A series of control experiments were performed in the absence of illumination, the catalyst or CO₂, and no detectable CO or other hydrocarbon products were detected. The ¹³CO₂ isotope labeling experiment and the time profile of relative abundance of ¹³C labeled products confirm that the carbon source for CO and other hydrocarbon products originates from the input CO₂ gas⁴⁴ (Supplementary Figs. 20 and 21, and Supplementary Table 4).

The light utilization and the charge carrier dynamics of the asprepared catalysts were studied. The absorption edge of singlelayer Ti_{0.91}O₂-SL displays a blue shift compared with layered Ti_{0.91}O₂-B due to the quantum confinement effect of monolayer structure, while the light absorption is enhanced after implantation of Cu single atoms (Supplementary Fig. 22). Photoelectrochemical (PEC) measurements confirm the enhanced charge separation and migration efficiency of Cu-Ti-V₀/Ti_{0.91}O₂-SL, ascribed to the 2D atomically-thin structure, which effectively shortens the charge transfer distance from body to surface and lowers charge recombination possibility (Supplementary Fig. 23). The fast charge carrier dynamics of Cu-Ti-V₀/Ti_{0.91}O₂-SL is kinetically favorable for the multi-electron reactions of generating C_{2+} products. Moreover, CO_2 adsorption isotherms reveal that Cu-Ti-V₀/Ti_{0.91}O₂-SL possesses the highest CO₂ uptake capacity, which is a priority for CO₂ activation and reduction (Supplementary Fig. 24).

on Ti_{0.91}O_2-SL, Cu-O/Ti_{0.91}O_2-SL, and Cu-Ti-V_0/Ti_{0.91}O_2-SL. (Error bars indicate standard deviations.).

Theoretical calculations for CO₂ photoreduction mechanism

The substantial suppression of CO production and promotion of C₂₊ production by Cu-Ti-V₀/Ti_{0.91}O₂-SL, in sharp contrast to pristine Ti_{0.91}O₂-SL, has demonstrated the key role of Cu-Ti-V_O units in coupling *CO intermediates into C2+ products. In fact, our in situ diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) characterization using ¹²CO₂ and ¹³CO₂ has detected the formation of the key *COOH, *CO, *CHO, and *CHOCO intermediates on Cu-Ti-V₀/Ti_{0.91}O₂-SL (Fig. 4a, Supplementary Figs. 25 and 26, and Supplementary Note 1), indicating the coupling of *CO into *CHOCO intermediates. However, it is not feasible to experimentally establish a direct spatial correlation between the active sites and the evolution of reaction intermediates to allow for deeper understanding on CO2 photoreduction mechanism on atomic level. For this reason, density functional theory (DFT) calculations with a computational hydrogen electrode (CHE) model^{45,46} was employed in an attempt to describe one potential mechanism for the reaction of CO₂-to-C₂₊ products on Cu-Ti-V_O/Ti_{0.91}O₂-SL.

In the calculations, Cu-Ti-V₀/Ti_{0.91}O₂-SL are featured with two types of catalytic centres for CO₂ reduction: the Cu atom-free Ti_{0.91}O₂ matrix domain and the Cu-Ti-V₀ unit domain. On Ti_{0.91}O₂ domain, CO₂ is reduced to *CO through *COOH intermediate⁴⁷ (Fig. 4b and Supplementary Fig. 27). DFT results suggest the easy desorption of *CO on Ti_{0.91}O₂ matrix rather than further hydrogenation or C-C coupling (Supplementary Note 2), consistent with the experimental observation of the dominant CO product on pristine Ti_{0.91}O₂-SL. On Cu-Ti-V_O unit domain, the absorbed CO₂ is firstly converted to *CHO through *COOH and *CO intermediates⁴⁸ (Supplementary Fig. 27). Then, the *CHO at Cu-Ti-Vo unit may couple with the CO diffusing from neighboring Ti_{0.91}O₂ domain to generate *CHOCO⁴⁹⁻⁵¹ with free energy change of -1.63 eV (see Supplementary Note 3 for more details about potential pathways). The following C₁-C₂ coupling (*CH₂OCO + *CO \rightarrow *CH₂OCOCO) is also calculated to be a thermodynamically-favorable exergonic reaction (-0.13 eV) (Supplementary Note 3). As a contrast, it is worth noting that on the Cu-O site without Vos, C-C coupling processes are found to be challenging owing to the large uphill energy changes, while the hydrogenation of *CO into CH₄ is more preferred (Fig. 4c)^{52,53}. Meanwhile, for Cu-Ti-V_O unit, some of the *C₂ species will continue to hydrogenate through a series of proton-electron steps to form C₂H₄. The free energy change of the potential determining step (PDS) is calculated as 0.62 eV for the C₃H₈ formation pathway (Fig. 4d) and 0.90 eV for the C₂H₄ formation pathway (Supplementary Fig. 28), suggesting the easier formation of C₃H₈ than C₂H₄. This is in accordance with our photocatalytic experimental observation of the higher yield of C_3H_8 than C₂H₄ on Cu-Ti-V₀/Ti_{0.91}O₂-SL. The overall reaction pathway for the reduction of CO₂ to C₃H₈ and C₂H₄ over Cu-Ti-V₀/Ti_{0.91}O₂-SL is tentatively described in Supplementary Fig. 29. In summary, the

Fig. 4 | Mechanism studies of CO₂ reduction on Cu-Ti-V₀/Ti_{0.91}O₂-SL. a ln situ DRIFTS spectra of the photocatalytic CO₂ reduction on Cu-Ti-V₀/Ti_{0.91}O₂-SL. Gibbs free energy diagrams of CO₂ reduction on b Ti_{0.91}O₂ matrix, c Cu-O site, and d Cu-Ti-V₀ unit.

above results suggest a tandem catalysis mechanism^{13-16,54-56}, where the Cu-free $Ti_{0.91}O_2$ matrix may be preferential to participate in the reduction of CO₂ to CO, and Cu-Ti-V_O unit is more beneficial to the exergonic C-C coupling to C₂₊ products (Supplementary Fig. 30).

The above result suggests favorable exergonic reactions for both C_1 - C_1 and C_1 - C_2 couplings on Cu-Ti- V_0 unit, which is in sharp contrast with Cu-O sites and other previously-reported catalysts with challenging endergonic C-C couplings¹⁷⁻²⁰. Such downhill energy changes of C-C coupling on Cu-Ti- V_0 unit are probably owing to the low energy levels of the *CHOCO and *CH₂OCOCO intermediates (Supplementary Fig. 31). A stable multiple-bonding configuration containing one Cu-C bond and two Ti-O bonds is built for the adsorption of *CHOCO on Cu-Ti- V_0 unit (Supplementary Fig. 32). Moreover, a five-membered ring is formed between *CH₂OCOCO and Cu-Ti- V_0 unit, largely alleviating the electron accumulation and relaxing the intermolecular and intramolecular effect of Cu-Ti- V_0 unit may jointly stabilize these key *C₂₊ intermediates and lower their adsorption energy levels to promote C-C couplings.

Discussion

A unique Cu-Ti-V_O unit in atomically thin Ti_{0.91}O₂ monolayer nanosheets was developed for highly efficient and selective photoconversion of CO₂ to C₃H₈. Theoretical calculations suggested that the Cu-Ti-V_O unit, as a favorable reaction centre for both C₁-C₁ and C₁-C₂ couplings, can effectively facilitate the multistep photocatalytic reduction of CO₂ by reducing the energy levels of the key *CHOCO and *CH₂OCOCO intermediates via electronic and geometric effects. A tandem mechanism and possible reaction pathway are proposed for the conversion of CO₂ to C₃H₈. The results of our study may open an alternative avenue for designing and synthesizing tandem photocatalysts with dual-metal active sites and coordination vacancies that modulate the behavior of reaction intermediates for the production of multicarbon fuels driven by light.

Methods

Synthesis of catalysts

Cu-Ti-V₀/Ti_{0.91}O₂-SL: Single-layer Ti_{0.91}O₂ nanosheets were synthesized according to previous literature²⁹, and the specific procedure is

presented below. The parent Cs compound, $Cs_{0.7}Ti_{1.825}O_4$, was obtained by repeating twice the heat treatment (800 °C, 20 h) for the mixture of 10 mmol Cs_2CO_3 and 53 mmol anatase TiO₂. The interlayer Cs ions were extracted by stirring 5 g of the as-prepared $Cs_{0.7}Ti_{1.825}O_4$ in 500 mL of 1 M HCl solution for 24 h. After four cycles of acid exchange, the solid was washed with DI water to remove excess acid and then dried in a freeze dryer. Layered protonic lepidocrocite-type titanate of $H_{0.7}Ti_{1.825}O_4$ was obtained.

0.4 g of the as-prepared layered $H_{0.7}Ti_{1.825}O_4$ was shaken with 100 mL of 0.08 M tetrabutylammonium (TBA) hydroxide aqueous solution for a week to produce stable colloidal suspensions of atomically thin $Ti_{0.91}O_2$ single layers. The colloidal suspensions were then dried in a freeze dryer.

The Cu-en precursor was prepared by mixing 30 mL of 0.025 g/L CuCl₂·2H₂O aqueous solution with 360 µL of ethanediamine (en) at room temperature. Then, this Cu-en precursor was added to 7 g of the as-prepared colloidal suspensions of single-layer $Ti_{0.91}O_2$. After stirring for 5 h, the solid was filtrated, washed with deionized water, and dried in a freeze dryer to obtain a single-layer Cu-en/ $Ti_{0.91}O_2$ sample. Then, the Cu-Ti-V₀/ $Ti_{0.91}O_2$ -SL sample was prepared by rapid thermal treatment (RTT) of single-layer Cu-en/ $Ti_{0.91}O_2$ in an Ar atmosphere at 500 °C for 1 min³². Briefly, the powders were put into a quartz tube, which was then inserted into a tube furnace preheated to 500 °C. Under Ar flow, the powders were kept at that temperature for 1 min, and then the quartz tube was quickly removed and rapidly cooled to room temperature.

Cu-O/Ti_{0.91}O_2-SL: The sample was prepared by the same method as Cu-Ti-V_0/Ti_{0.91}O_2-SL, except that the RTT process was conducted in an air atmosphere.

Cu-Ti-V₀/Ti_{0.91}O₂-SL (lower): The sample was prepared by the same method as Cu-Ti-V₀/Ti_{0.91}O₂-SL, except that an aqueous solution of 0.0125 g/L CuCl₂·2H₂O was used.

Cu NC/Ti_{0.91}O_2-SL: The sample was prepared by the same method as Cu-Ti-V_0/Ti_{0.91}O_2-SL, except that an aqueous solution of 0.1g/L CuCl_2'2H_2O was used.

Cu NP/Ti_{0.91}O₂-SL: The sample was prepared by the same method as Cu-Ti-V₀/Ti_{0.91}O₂-SL, except that an aqueous solution of 0.2 g/L CuCl₂·2H₂O aqueous was used, and RTT was maintained at 10 min.

 $Ti_{0.91}O_2$ -B: The sample was prepared by treating layered protonic lepidocrocite-type titanate of $H_{0.7}Ti_{1.825}O_4$ with the same RTT process as used for Cu-Ti-V₀/Ti_{0.91}O₂-SL.

Characterization

XRD data were measured on an X-ray diffractometer (Rigaku Ultima III, Japan) by Cu-K α radiation (λ = 0.154178 nm) at 40 kV and 40 mA with a scan rate of 5° min⁻¹. AFM analysis was performed on an MFP3D microscope (Asylum Research, MFP-3D-SA, USA) with a cantilever operating in tapping mode. The morphology was characterized by FE-SEM (FEI NOVA NANOSEM 230). TEM images were taken on an FEI Tecnai F20 TEM apparatus. Atomic-resolution STEM-HAADF images were obtained on a double spherical aberration-corrected STEM/TEM FEI Titan3 Cubed 60-300, and the samples were suspended on micron-scale carbon grids of Mo mesh. The Cu concentration was determined by ICP-OES with an Avio200 instrument. The XAFS spectra (Cu K-edge and Ti K-edge) were collected at the 1W1B station at the Beijing Synchrotron Radiation Facility (BSRF). The storage rings at BSRF were operated at 2.5 GeV with an average current of 250 mA. Using a Si (111) double-crystal monochromator, the data collection was conducted in transmission/fluorescence mode using an ionization chamber. All spectra were collected under ambient conditions. The EXAFS data were processed according to standard procedures using the ATHENA module implemented in the IFEFFIT software package. The k3weighted EXAFS spectra were obtained by subtracting the postedge background from the overall absorption and then normalizing with respect to the edge jump step. Subsequently, k^3 -weighted $\chi(k)$ data of the Cu K-edge underwent Fourier transform to real (R) space using Hanning windows (dk = 1.0 Å^{-1}) to separate the EXAFS contributions from different coordination shells. To obtain the quantitative structural parameters around the central atoms, least squares curve parameter fitting was performed using the ARTEMIS module of IFEFFIT software packages. The chemical states of the samples were detected by XPS and AES, which were equipped with an ultrahigh vacuum Thermo Fisher Scientific electron spectrometer by using Al Kα radiation (1486.6 eV) as the X-ray source, and the binding energies were calibrated according to the C1s peak of adventitious carbon at 284.6 eV. The in situ DRIFTS spectra were obtained on a Bruker IFS 66 v FT spectrometer with Harrick diffuse reflectance with ZnSe and quartz windows at BL01B in NSRL, Hefei.

Measurements of photocatalytic CO₂ reduction

Photocatalytic CO₂ reduction experiments were performed in a Pyrex reaction vessel with a top irradiation window. Typically, 10 mg of photocatalyst powder was suspended in a 15 mL CO₂saturated solution containing 12.5 mL acetonitrile and 2.5 mL H₂O in a 166 mL quartz reaction cell. Before illumination, the system was filled with CO₂ (purity >99.999%) to 1 atm. The reactor was then irradiated by a 300 W Xe lamp (PerfectLight, PLS-SXE300). During irradiation, 0.1 mL of gas was collected from the reaction headspace every hour, and the gaseous products were analysed by using gas chromatography (GC-2014C, Shimadzu Corp., Japan). The isotope experiment was conducted using ¹³CO₂ as feedstock, and the products were analysed using gas chromatography–mass spectrometry (7890 A and 5975 C, Agilent). The quantum efficiency was evaluated using a LED lamp (PerfectLight) with the wavelength of 385,415, or 520 nm as the light source.

The electron-based selectivity of C₃H₈ was calculated using (1):

$$Sel_{electron}(C_{3}H_{8}) = \left(\frac{n(C_{3}H_{8}) \times 20}{n(CO) \times 2 + n(CH_{4}) \times 8 + n(C_{2}H_{4}) \times 12 + n(C_{3}H_{8}) \times 20}\right) \times 100\%$$
(1)

The product-based selectivity of C_3H_8 was calculated using (2):

$$Sel_{product}(C_{3}H_{8}) = \left(\frac{n(C_{3}H_{8})}{n(CO) + n(CH_{4}) + n(C_{2}H_{4}) + n(C_{3}H_{8})}\right) \times 100\%$$
(2)

The electron-based selectivity of C_{2+} products was calculated using (3):

$$\operatorname{Sel}_{\operatorname{electron}}(C_{2+}) = \left(\frac{n(C_{2}H_{4}) \times 12 + n(C_{3}H_{8}) \times 20}{n(\operatorname{CO}) \times 2 + n(\operatorname{CH}_{4}) \times 8 + n(C_{2}H_{4}) \times 12 + n(C_{3}H_{8}) \times 20}\right) \times 100\%$$
(3)

The product-based selectivity of C_{2+} products was calculated using (4):

$$\operatorname{Sel}_{\operatorname{product}}(\operatorname{C}_{2^+}) = \left(\frac{n(\operatorname{C}_2\operatorname{H}_4) + n(\operatorname{C}_3\operatorname{H}_8)}{n(\operatorname{CO}) + n(\operatorname{CH}_4) + n(\operatorname{C}_2\operatorname{H}_4) + n(\operatorname{C}_3\operatorname{H}_8)}\right) \times 100\% \quad (4)$$

where *n* is the formation rate.

The quantum efficiency was calculated using (5):

$$QE = \frac{N(CO) \times 2 + N(CH_4) \times 8 + N(C_2H_4) \times 12 + N(C_3H_8) \times 20}{N(photon)} \times 100\%$$
(5)

where N is the number of evolved gas molecules or incident photons.

Computational details

All calculations were performed based on density functional theory (DFT) through the Vienna ab initio Simulation Package (VASP)⁵⁷. Projector-augmented-wave (PAW) pseudopotentials⁵⁸ were used to treat the core electrons, while interactions between electrons were described by the Perdew-Burke-Ernzerhof (PBE)⁵⁹ exchangecorrelation functional of the generalized gradient approximation (GGA). For all the calculations, the vacuum space in the z-direction was 20 Å to avoid potential interactions between periodic surfaces. The DFT-D3 method of Grimme⁶⁰ was applied to describe the van der Waals dispersion forces. DFT + U approach^{61,62} with U = 3.5 eVwas considered to evaluate the influence of strongly correlated d electrons on the calculated free energies. According to our previous report⁶³, the results of calculated free energies obtained from DFT + U and DFT are consistent. Therefore, regular DFT was employed in this work. The Monkhorst-Pack k-point grid with $3 \times 3 \times 1$ mesh was applied until the maximal forces on each ion were smaller than 0.02 eV/Å. The convergence criterion of the energy was set to 10⁻⁴ eV, and a cut-off energy of 450 eV was used for the plane wave expansion. The Gibbs free energy change (ΔG) was defined as follows^{45,64}:

$$\Delta G = \Delta E + \Delta E_{\rm ZPE} - T\Delta S \tag{6}$$

where ΔE is the energy difference between the reactants and product obtained through DFT calculations. ΔE_{ZPE} and ΔS are the changes in the zero-point energies (ZPE) and entropy⁶⁵. *T* represents the temperature and was set as 298.15.

Statistics & reproducibility

No statistical method was used to predetermine the sample size. No data were excluded from the analyses. The experiments were not randomized.

Data availability

The data that support the findings of this study are available within the paper and its supplementary information files or are available from the

corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

All related codes regarding DFT simulations in this study are provided in the Source Data file.

References

- Rao, H., Schmidt, L. C., Bonin, J. & Robert, M. Visible-light-driven methane formation from CO₂ with a molecular iron catalyst. *Nature* 548, 74–77 (2017).
- Hepburn, C. et al. The technological and economic prospects for CO₂ utilization and removal. *Nature* 575, 87–97 (2019).
- 3. Bushuyev, O. S. et al. What should we make with CO₂ and how can we make it? *Joule* **2**, 825–832 (2018).
- Cestellos-Blanco, S., Zhang, H., Kim, J. M., Shen, Y.-X. & Yang, P. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. *Nat. Catal.* 3, 245–255 (2020).
- Loh, J. Y. Y., Kherani, N. P. & Ozin, G. A. Persistent CO₂ photocatalysis for solar fuels in the dark. *Nat. Sustain.* 4, 466–473 (2021).
- Tu, W., Zhou, Y. & Zou, Z. Photocatalytic conversion of CO₂ into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. *Adv. Mater.* 26, 4607–4626 (2014).
- Jiang, Z. et al. Filling metal-organic framework mesopores with TiO₂ for CO₂ photoreduction. *Nature* 586, 549–554 (2020).
- Gao, W. et al. Vacancy-defect modulated pathway of photoreduction of CO₂ on single atomically thin AgInP₂S₆ sheets into olefiant gas. *Nat. Commun.* 12, 4747 (2021).
- Tu, W. et al. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO₂-graphene 2D sandwich-like hybrid nanosheets: Graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO₂ into methane and ethane. *Adv. Funct. Mater.* 23, 1743–1749 (2013).
- Yu, S. & Jain, P. K. Plasmonic photosynthesis of C₁-C₃ hydrocarbons from carbon dioxide assisted by an ionic liquid. *Nat. Commun.* **10**, 2022 (2019).
- Li, N. et al. Toward high-value hydrocarbon generation by photocatalytic reduction of CO₂ in water vapor. ACS Catal. 9, 5590–5602 (2019).
- 12. Wang, X. et al. Efficient upgrading of CO to C₃ fuel using asymmetric C-C coupling active sites. *Nat. Commun.* **10**, 5186 (2019).
- Zhang, H. et al. Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. *Nat. Commun.* **10**, 3340 (2019).
- Meng, D. L. et al. Highly selective tandem electroreduction of CO₂ to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts. *Angew. Chem. Int. Ed.* 60, 25485–25492 (2021).
- Zhang, T. et al. Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes. *Nat. Catal.* 5, 202–211 (2022).
- Chen, C. et al. Cu-Ag tandem catalysts for high-rate CO₂ electrolysis toward multicarbons. *Joule* 4, 1688–1699 (2020).
- 17. Zhu, J. et al. Asymmetric triple-atom sites confined in ternary oxide enabling selective CO_2 photothermal reduction to acetate. J. Am. Chem. Soc. **143**, 18233–18241 (2021).
- Wang, W. et al. Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II). J. Am. Chem. Soc. 143, 2984–2993 (2021).
- Wang, T. et al. Engineering catalytic interfaces in Cu^{δ+}/CeO₂-TiO₂ photocatalysts for synergistically boosting CO₂ reduction to ethylene. ACS Nano 16, 2306–2318 (2022).
- Zhu, S. et al. Selective CO₂ photoreduction into C₂ product enabled by charge-polarized metal pair sites. *Nano Lett.* 21, 2324–2331 (2021).

- Peng, C. et al. Double sulfur vacancies by lithium tuning enhance CO₂ electroreduction to n-propanol. *Nat. Commun.* **12**, 1580 (2021).
- Diercks, C. S., Liu, Y., Cordova, K. E. & Yaghi, O. M. The role of reticular chemistry in the design of CO₂ reduction catalysts. *Nat. Mater.* 17, 301–307 (2018).
- 23. Chen, Y. et al. Single-atom catalysts: synthetic strategies and electrochemical applications. *Joule* **2**, 1242–1264 (2018).
- Zhang, Y., Xia, B., Ran, J., Davey, K. & Qiao, S. Z. Atomic-level reactive sites for semiconductor-based photocatalytic CO₂ reduction. *Adv. Energy Mater.* **10**, 1903879 (2020).
- Wang, Y. et al. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. *Chem. Rev.* 119, 1806–1854 (2019).
- Jiao, X. et al. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO₂ photoreduction. *Chem. Soc. Rev.* 49, 6592–6604 (2020).
- Di, J. et al. Isolated single atom cobalt in Bi₃O₄Br atomic layers to trigger efficient CO₂ photoreduction. *Nat. Commun.* **10**, 2840 (2019).
- Zhang, B., Fan, T., Xie, N., Nie, G. & Zhang, H. Versatile applications of metal single-atom@2D material nanoplatforms. *Adv. Sci.* 6, 1901787 (2019).
- Sasaki, T., Watanabe, M., Hashizume, H., Yamada, H. & Nakazawa, H. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it. J. Am. Chem. Soc. 118, 8329–8335 (1996).
- Wang, L., Sasaki, T., Ebina, Y., Kurashima, K. & Watanabe, M. Fabrication of controllable ultrathin hollow shells by layer-by-layer assembly of exfoliated titania nanosheets on polymer templates. *Chem. Mater.* 14, 4827–4832 (2002).
- Song, Y. et al. Photocatalytic hydrogen evolution over monolayer H_{1.07}Ti_{1.73}O₄·H₂O nanosheets: Roles of metal defects and greatly enhanced performances. *Appl. Catal. B: Environ.* 221, 473–481 (2018).
- 32. Ren, Y. et al. Unraveling the coordination structure-performance relationship in Pt_1/Fe_2O_3 single-atom catalyst. *Nat. Commun.* **10**, 4500 (2019).
- Geng, F. et al. Unusually stable ~100-fold reversible and instantaneous swelling of inorganic layered materials. *Nat. Commun.* 4, 1632 (2013).
- Yi, D. et al. Regulating charge transfer of lattice oxygen in singleatom-doped titania for hydrogen evolution. *Angew. Chem. Int. Ed.* 59, 15855–15859 (2020).
- Lee, B. H. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO₂ photocatalysts. *Nat. Mater.* 18, 620–626 (2019).
- 36. Gao, R. et al. Pt/Fe₂O₃ with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. *Nat. Energy* **6**, 614–623 (2021).
- Wang, Q. et al. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. *J. Am. Chem. Soc.* 142, 7425–7433 (2020).
- Zhang, F.-F. et al. Iridium oxide modified with silver single stom for boosting oxygen evolution reaction in acidic media. ACS Energy Lett. 6, 1588–1595 (2021).
- Xiao, M. et al. Molten-salt-mediated synthesis of an atomic nickel co-catalyst on TiO₂ for improved photocatalytic H₂ evolution. *Angew. Chem. Int. Ed.* 59, 7230–7234 (2020).
- 40. Chen, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. *Angew. Chem. Int. Ed.* **59**, 1295–1301 (2020).
- Bi, W., Wu, C. & Xie, Y. Atomically thin two-dimensional solids: an emerging platform for CO₂ electroreduction. ACS Energy Lett. 3, 624–633 (2018).

- Article
- van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. *Nat. Catal.* 2, 955–970 (2019).
- Guo, Y. et al. Low-Temperature CO₂ methanation over CeO₂-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect. ACS Catal. 8, 6203–6215 (2018).
- Jiang, H. et al. Photocatalytic reduction of CO₂ on Cu₂O-loaded Zn-Cr layered double hydroxides. *Appl. Catal. B: Environ.* 224, 783–790 (2018).
- Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).
- Liu, X. et al. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438 (2017).
- Ran, L. et al. Engineering single-atom active sites on covalent organic frameworks for boosting CO₂ Photoreduction. *J. Am. Chem.* Soc. **144**, 17097–17109 (2022).
- Calle-Vallejo, F. & Koper, M. T. M. Accounting for bifurcating pathways in the screening for CO₂ reduction catalysts. ACS Catal. 7, 7346–7351 (2017).
- Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. *Nat. Energy* 4, 732–745 (2019).
- Garza, A. J., Bell, A. T. & Head-Gordon, M. Mechanism of CO₂ reduction at copper surfaces: Pathways to C₂ products. ACS Catal. 8, 1490–1499 (2018).
- Liu, Q. et al. Regulating the *OCCHO intermediate pathway towards highly selective photocatalytic CO₂ reduction to CH₃CHO over locally crystallized carbon nitride. *Energy Environ. Sci.* 15, 225–233 (2022).
- Li, X. et al. Selective visible-light-driven photocatalytic CO₂ reduction to CH₄ mediated by atomically thin CuIn₅S₈ layers. *Nat. Energy* 4, 690–699 (2019).
- 53. Wang, Z.-W. et al. Selective photocatalytic reduction CO_2 to CH_4 on ultrathin TiO₂ nanosheet via coordination activation. *Appl. Catal. B: Environ.* **288**, 120000 (2021).
- Cao, B., Li, F.-Z. & Gu, J. Designing Cu-based tandem catalysts for CO₂ electroreduction based on mass transport of CO intermediate. ACS Catal. 12, 9735–9752 (2022).
- 55. Li, Z. et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts. *Joule* **3**, 570–583 (2019).
- Meng, S. L., Ye, C., Li, X. B., Tung, C. H. & Wu, L. Z. Photochemistry journey to multielectron and multiproton chemical transformation. *J. Am. Chem.* Soc. **144**, 16219–16231 (2022).
- 57. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. *Phys. Rev. B* **47**, 558–561 (1993).
- Blöchl, P. E. Projector augmented-wave method. *Phys. Rev. B* 50, 17953–17979 (1994).
- Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* 77, 3865–3868 (1996).
- Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **132**, 154104 (2010).
- Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: hubbard U instead of stoner I. *Phys. Rev. B* 44, 943–954 (1991).
- Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. *Phys. Rev. B* 57, 1505–1509 (1998).
- 63. Ren, C. et al. A universal descriptor for complicated interfacial effects on electrochemical reduction reactions. *J. Am. Chem. Soc.* **144**, 12874–12883 (2022).

- Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. *Energy Environ. Sci.* 3, 1311–1315 (2010).
- Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: A userfriendly interface facilitating high-throughput computing and analysis using VASP code. *Comput. Phys. Commun.* 267, 108033 (2021).

Acknowledgements

The authors wish to acknowledge the support of the National Key R &D Program of China (2018YFE0208500, 2021YFA1500700), the NSF of China (21972065, 22033002, 92261112), the NSF of Jiangsu Province (No. BK20220006), the Hefei National Laboratory for Physical Sciences at the Microscale (KF2020006), the Program for Guang-dong Introducing Innovative and Entrepreneurial Team (2019ZL08L101), the University Development Fund (UDF01001159) and Cross-Subject Project of Chemistry Discipline of Yangzhou University (yzuxk202014).

Author contributions

Y.S, Y.Zho., Y.X, J.W, Q.S., and Z.Z conceived the idea and designed the present work. C.R. performed the DFT calculations. Y.S., X.X., Y.Zha., Yi.Y., and H.C. conducted the experiments. L.Z. performed the XANES and EXAFS measurements. R.L. and W.Z. performed the in situ DRIFTS test. Yo.Y. contributed to the ¹³CO₂ isotope labeling experiment.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-023-36778-5.

Correspondence and requests for materials should be addressed to Jinlan Wang, Yujie Xiong or Yong Zhou.

Peer review information *Nature Communications* thanks the anonymous reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

© The Author(s) 2023