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Hyperbolic band topology with non-trivial
second Chern numbers

Weixuan Zhang 1,2,4, Fengxiao Di1,2,4, Xingen Zheng 1,2, Houjun Sun 3 &
Xiangdong Zhang 1,2

Topological band theory establishes a standardized framework for classifying
different types of topological matters. Recent investigations have shown that
hyperbolic lattices in non-Euclidean space can also be characterized by
hyperbolic Bloch theorem. This theory promotes the investigation of hyper-
bolic band topology, where hyperbolic topological band insulators protected
by first Chern numbers have been proposed. Here, we report a new finding on
the construction of hyperbolic topological band insulators with a vanished
first Chern number but a non-trivial second Chern number. Our model pos-
sesses the non-abelian translational symmetry of {8,8} hyperbolic tiling. By
engineering intercell couplings andonsite potentials of sublattices in each unit
cell, the non-trivial bandgaps with quantized second Chern numbers can
appear. In experiments, we fabricate two types of finite hyperbolic circuit
networks with periodic boundary conditions and partially open boundary
conditions to detect hyperbolic topological band insulators. Our work sug-
gests a new way to engineer hyperbolic topological states with higher-order
topological invariants.

Topological band theory provides a unified framework for character-
izing a wide range of topological states of quantum matters1–8 and
classical wave systems9–16. In this theory, band structures of both
quantum and classical systems with space-translation symmetries can
be classifiedby topological invariants defined in themomentumspace.
The pioneering example is the first Chern number (or TKNN invariant)
for topological band structures in two-dimensional (2D) Brillouin
zone17–19. Such a topological invariant plays a key role in characterizing
various low-dimensional topological phases, such as the 2D quantum
Hall effect, topological insulators and superconductors, and topolo-
gical semimetals. Except for the first Chern number, the nth Chern
numbers defined in 2n-dimensional manifolds can also identify many
novel topological states in high dimensions. For example, the second
Chernnumberprovides criteria for the appearanceof 4DquantumHall
effect20 and 5D topological semimetals with non-abelian Yang-mono-
poles or linked Weyl surfaces21,22. In much higher dimensions, the 6D

quantum Hall effect is characterized by the third Chern number fol-
lowing a similar extension-method. To date, topological band theory
accomplished with different types of topological invariants is mainly
focusing on the periodic system in Euclidean space.

On the other hand, hyperbolic lattices, which are regular tessel-
lations in the curved space with a constant negative curvature, have
been widely investigated as mathematical objects over past decades23.
The recent ground-breaking implementation of two-dimensional
hyperbolic lattices in circuit quantum electrodynamics24 and topolec-
trical circuits25 has stimulated numerous advances in hyperbolic
physics26–33. Inspired by the exotic geometric properties of hyperbolic
lattices, there are many investigations on the construction of hyper-
bolic topological states in real space34–36. For example, the non-
Euclidean analog of the quantum spin Hall effect in hyperbolic lattices
has been proposed with a tree-like design of the Landau gauge34. In
addition, the boundary-dominated hyperbolic Chern insulator has
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been theoretically proposed and experimentally fulfilled by circuit
networks35. Those intriguing features of topological states are probes
on illustrating non-Euclidean topology, and suggest a new way for
designing highly efficient topological devices with compact bulk
domains.

Interestingly, the newly developed hyperbolic band theory and
crystallography of hyperbolic lattices37–39 suggest that the hyperbolic
lattices obeying discrete non-abelian translation groups can also pos-
sess a reciprocal-space description using generalized Bloch theorem.
In this theory, the hyperbolic eigenstates are automorphic functions
and the associated Brillouin zone is a higher-dimensional torus. Moti-
vated by the hyperbolic band theory, the hyperbolic topological band
insulators with non-trivial first Chern numbers have been theoretically
created40. Moreover, hyperbolic graphene with the feature of topolo-
gical semimetal has also been proposed41. While, up to now, the
revealedhyperbolic band topologies aremost related to thefirst Chern
number. Generalization of the hyperbolic band topology with low-
dimensional topological invariants to that with high-dimensional
topological invariants is expected to introduce more novel effects.
Hence, the question is whether hyperbolic topological states with non-
zero nth Chern numbers exist, and how to realize those novel hyper-
bolic topological phases in experiments.

In this work, we report the first experimental observation of
hyperbolic band topology with non-trivial second Chern numbers
in electric circuit networks. Our model possesses the translational
symmetry of a {8,8} hyperbolic tiling, and the corresponding
momentum space is 4D. By engineering intercell couplings and
onsite potentials of the hyperbolic model, topological bandgaps
with non-zero second Chern numbers appear. The effectiveness
of hyperbolic band theory with discretized crystal momentums is
further confirmed by the consistence of calculated eigen-spectra
to that based on the direct diagonalization. In experiments, we
fabricate two types of hyperbolic circuits with periodic boundary
conditions (PBCs) and partially open boundary conditions (OBCs)
to demonstrate hyperbolic band topological states protected by
second Chern numbers. By recovering the circuit admittance
spectra and measuring impedance responses of hyperbolic cir-
cuits with PBCs, non-trivial bandgaps are clearly illustrated.
Moreover, the topological boundary states are observed in
hyperbolic circuits with partially OBCs, where the significant
boundary impedance peaks appear in topological bandgaps.
Furthermore, the measured impedance distributions are also
matched to profiles of topological boundary states of hyperbolic
models. Our work suggests a new method to engineer hyperbolic
topological states with higher-order topological invariants, and
gives an opportunity to explore much novel topological states in
non-Euclidean spaces.

Results
The theory of hyperbolic band topology with second Chern
numbers
We start to design a tight-binding lattice model in the 2D hyperbolic
space. Figure 1a illustrates the Bravais lattice of designed hyperbolic
model in a Poincaré disk, where the translational symmetry of a {8,8}
hyperbolic tiling exists. The {8,8} hyperbolic lattice corresponds to the
tessellation of the Poincaré disk by octagons, and each site has a
coordination number of eight. Each unit cell (enclosed by the pink
block), which is the fundamental tile in 2D hyperbolic space, contains
four sublattice sites, as marked by colored dots in bottom inset. The
onsite potentials of these sublattices equal tom − a, m + a, −m + a and
−m − a, respectively. These quantities are called as mass terms in the
following. The infinite hyperbolic model can be constructed by tiling
the 2D hyperbolic space with the unit cell along eight translational
directions, which aremarked by colored arrows labeling from γ1 to γ�1

4 .
The inter-cell couplingpatterns along thesedirections are illustrated in

four subplots of Fig. 1b, where different coupling strengths [ ± Jj (j = 1,
2, 3, 4), ± tj (j = 1, 3), and ± itj (j = 2, 4)] are represented by different
types of solid and dashed lines.

Following the hyperbolic band theory, our proposed latticemodel
in 2D hyperbolic space can be described in the momentum space. In
particular, we can equip inter-cell couplings of the hyperbolic unit cell
with twisted boundary conditions along four translation directions,
where the U(1) phase factors eikj (j = 1, 2, 3, 4) along directions given
by γ1, γ2, γ3, and γ4 are introduced, as shown in Fig. 1a. The phase
factors related to their inverses are in the form of e�ikj (j = 1, 2, 3, 4).
In this case, four wave-vectors k1, k2, k3, and k4 can be regarded
as Bloch vectors in 4D momentum space. Thus, we can apply Bloch’s
theorem in such a momentum space, making the corresponding
Brillouin zone (BZ) become 4D. The hyperbolic Bloch Hamiltonian
of our tight-binding lattice model can be expressed as
H =d kð Þ � Γ + iaΓ 1Γ4, where the vector d kð Þ is in the form of
d kð Þ= ft1 sinðk1Þ,t2 sinðk2Þ,t3 sinðk3Þ,t4 sinðk4Þ,m+

P4
j = 1 JjcosðkjÞg and

the vector of gammamatrices Γ = {Γ1, Γ2, Γ3, Γ4, Γ5} satisfies the Clifford
algebra. Detailed expressions of these matrices are written as
Γ 1 = � σ2

N
I, Γ2 = σ1

N
σ1, Γ3 = σ1

N
σ2, Γ4 = σ1

N
σ3, and Γ5 = σ3

N
I.

I is the 2 by 2 identity matrix and σj (j = 1, 2, 3) are Pauli matrices. See
Supplementary Note 1 for the detailed deviation ofHðkÞ by the Fourier
transform of real space hyperbolic Hamiltonian.

Figure 1c–e present the calculated hyperbolic energy bands at
k1 = k4 =0 with three different mass terms (m =0, a =0), (m =0.7,
a =0.2) and (m = 0.7, a = 3.2), respectively. The value of tj and Jj (j = 1, 2,
3, 4) always equal to 1. It can be seen that Dirac points appear at ε = 0
with the mass term being zero (m =0, a =0). Those Dirac points are
protected by the existence of time-reversal symmetry and inversion
symmetry. It is noted that the non-zero values ofm and a canbreak the
inversion and time-reversal symmetries, respectively. In this case, by
introducing the non-zero mass term with (m =0.7, a = 0.2), the Dirac
points are gapped, as shown in Fig. 1d.We can define the secondChern
number in the 4D momentum space (corresponding to four transla-
tion directions) of 2D hyperbolic model as C2 =

1
8π2

R
d4k trðΩ� ^Ω�Þ,

where the integral is taken over the 4D BZ of the {8,8} hyperbolic tiling
and the trace runs over the wedge product of Berry curvature (Ω�) for
all energy bands lower than the Fermi energy. In this case, we find that
the opened bandgap (the shaded region) possesses a non-trivial sec-
ond Chern number with C2 = 3 but a vanishing first Chern number. In
addition, by further increasing the value of a (m =0.7, a = 3.2), the
topological bandgap around ε=0 is closed, and other two bandgaps
around ε= ±3:2 appear, as shown in Fig. 1e. We also calculate the
second Chern numbers of these two bandgaps, and find that they all
equal to zero. While, the non-zero first Chern number defined in 2D BZ
formed by the momentum pair ðk1,k4Þ equals to C1 k1,k4

� �
= � 1

(C1 k1,k4

� �
= 1) for the energy gap around = � 3:2 ðε= 3:2Þ. From above

results, we can see that by suitably tuning mass terms, our proposed
lattice model in the 2D hyperbolic space can exhibit topological phy-
sics with non-trivial second Chern numbers. In addition, we note that
our proposed hyperbolic Bloch Hamiltonian with a =0 has the same
form with that of 4D quantum Hall model in Euclidean space42, indi-
cating that exotic topological physics should also exist in the finite
hyperbolic model.

To explore the nontrivial hyperbolic topological physicswith non-
zero secondChernnumbers in a finite lattice, wefirstly imposePBCs to
the hyperbolic model with twelve units, which are enclosed by pink
circles in Fig. 1a and are labeled from ‘a’ to ‘l’. It is important to note
that there aremany different ways for the realization of PBCs in a finite
hyperbolic model. A recent study39 has shown that the number of
connection patterns for the 12-unit hyperbolicmodel with PBCs equals
to that of distinct normal subgroups of index twelve for the Fuchsian
group Γ f8,8g of the hyperbolic Bravais lattice {8,8}. Because of the non-
abelian nature of hyperbolic translation group Γ f8,8g, the high-
dimensional representation may appear. In this case, different
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boundary connections for PBCs could make the finite hyperbolic
model obey or violate hyperbolic band theory. The finite lattice model
with PBCs is called as the abelian (non-abelian) cluster when the
hyperbolic band theory is satisfied (broken). Detailed descriptions on
inter-cell couplings between boundary units of abelian and non-
abelian clusters are illustrated in Supplementary Fig. 1 of Supplemen-
tary Note 2. Because, only abelian clusters satisfy the U(1) hyperbolic
Bloch band theory, which gives the nontrivial second Chern numbers
in 2Dhyperbolic space, in the following,we always focus on the abelian
clusters.

Then, we perform a direct diagonalization of finite hyperbolic
clusterswith differentmass terms, andnumerical results arepresented
in Fig. 2a (m =0.7,a =0.2) andFig. 2b (m =0.7,a = 3.2)with blue circles.
For comparation, we also explore hyperbolic band theory with dis-
cretized hyperbolic crystal momentums to calculate eigen-spectra of
finite hyperbolic clusters with non-trivial topologies, as shown in
Fig. 2a, b with red dots. See Supplementary Note 3 for detailed dis-
cussions onhyperbolicband theory of abelian clusters.We can see that
there is an exact match between energy spectra computed by two
different ways, indicating the effectiveness of hyperbolic band theory.

The locations of nontrivial bandgaps marked by orange shaded
regions are consistent with that of k-space eigen-spectra. The trivial
gapsmarked by blue shaded regions are due to thefinite discretization
of hyperbolic crystal momentum. It is worthy to note that the sig-
nificant difference exists for energy spectra of abelian and non-abelian
hyperbolic clusters, manifesting that the non-abelian cluster could not
be described byU(1) hyperbolic band theory (see Supplementary Fig. 2
in Supplementary Note 4). To further illustrate the distribution of
hyperbolic bulk modes, in Fig. 2c, d, we plot the spatial profiles of
eigenmodesmarkedby arrows in Fig. 2a, b.Dashedblocks enclose four
sublattices in unit cells labeled from ‘a’ to ‘l’. We can see that extended
bulk eigenmodes on a specific type of sublattices appear for abelian
clusters with PBCs.

Next, to investigate the topological boundary states resulting
from the non-zero second Chern number, the OBC should be intro-
duced into the topological latticemodel in 2Dhyperbolic space.While,
the full OBC could induce the appearance of a macroscopic fraction of
boundary sites, making the definition of non-trivial bulk-energy gaps
become fuzzy (see numerical results of Supplementary Fig. 3 in Sup-
plementaryNote 5). Toovercomethis obstacle, theOBC isonly set on a
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Fig. 1 | The tight-binding lattice model in 2D hyperbolic space with second
Chern numbers. a The Bravais lattice {8,8} of proposed hyperbolic models in a
Poincaré disk. The translation group of the designed hyperbolic model is a Fuch-
sian group definedby Γf8,8g = <γ1,γ2,γ3,γ4,γ
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where γ1 to γ�1
4 manifest group generators of the hyperbolic Bravais lattice in a

Poincaré disk and are marked by eight colored arrows. Dots filled with different
colors in the bottom inset illustrate four sublattices in a single unit and the cor-
responding onsite potentials equal to m − a, m + a, −m + a, −m − a, respectively.

Pink circles labeled from ‘a’ to ‘l’ label twelve units of the finite hyperbolic lattice
model.bThe inter-cell coupling patterns of four sublattices along eight translation
directions. Different types of solid and dashed lines correspond to different cou-
pling strengths. c–e The calculated hyperbolic energy bands at k1 = k4 =0 with
three different mass terms (m =0, a =0), (m =0.7, a =0.2), and (m =0.7, a = 3.2).
The value of tj and Jj (j = 1, 2, 3, 4) always equal to 1. The orange shaded regions
correspond to non-trivial bandgaps with non-zero first or second Chern number.
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few boundary units in the hyperbolic cluster. In this case, we delete
eight inter-cell couplings between boundary units marked by letters of
‘i’, ‘l’, ‘e’, ‘b’, ‘c’, and ‘d’. In particular, open boundaries along five and
four directions are introduced to units ‘i’ and ‘l’. And, the open
boundary condition along a single direction (two directions) is applied
for ‘b’ unit (‘e’,’c’, ‘d’ units). Hence, ‘i’, ‘l’, ‘e’, ‘b’, ‘c’, and ‘d’ are boundary
units, where the corresponding coordination numbers of four sub-
lattices in these units equal to 6, 8, 12, 14, 12, and 12, respectively (see
Supplementary Fig. 4 in Supplementary Note 6 for details on partially
OBCs). The coordination number of sublattices in other bulk units is
16. As shown in Fig. 2e, f, wenumerically calculate the energy spectra of
the hyperbolic cluster sustaining partial open boundaries with the
mass termbeing (m =0.7,a = 0.2) and (m =0.7, a = 3.2), respectively. In
addition, to quantify the localization degree of each eigenmode on
boundary sites, a quantity V ðεÞ= P

i2boundary ∣ϕiðεÞ∣2=
P

i ∣ϕiðεÞ∣2 is cal-
culated (illustrated by the colormaps in Fig. 2e, f). ϕiðεÞ is the prob-
ability amplitude at lattice site i with the eigen-energy being ε. As
expected, we find that the topological boundary states appear in
nontrivial bandgaps possessing either non-zero first or second Chern
number. In addition, the spatial distributions of topological boundary
modes (marked by arrows in Fig. 2e, f) are displayed in Fig. 2g, h. Forty-
eight points correspond to all lattice sites in the hyperbolicmodel with
twelve units, where four sublattices in each unit are enclosed by
dashed blocks. It is clearly shown that thesemidgap topological states
exhibit the feature of significant boundary localizations around
hyperbolic units sustaining open boundaries. In addition, it is impor-
tant to note that, owing to different dimensions between momentum-
andposition-spaces of thehyperbolicmodel, themethod for the three-
dimensional cut through the four-dimensional Brillouin zone of {8,8}

hyperbolic lattice remains inconclusive. In this case, the way to intro-
duce open boundaries along a fixed direction in the hyperbolic cluster
is still to be explored, making the chiral propagation induced by
topological invariants in themomentum space becomehard to realize.
While, we still find that midgap boundary states can only exist in
bandgaps of hyperbolic clusters with non-trivial second Chern num-
bers. These properties are consistent with key features of topological
boundary states induced by nontrivial Chern numbers.

In fact, the observation of theoretically predicted hyperbolic band
topology with nontrivial second Chern numbers is not an easy task in
real quantumand classical wave systems. In the next part, we construct
2D hyperbolic circuit networks to simulate those exotic topological
phenomena.

Experimental observation of hyperbolic band topology with
second Chern numbers by artificial circuit networks
Motivated by recent experimental breakthroughs in realizing various
quantum phases by electric circuits43–52, in the following, we design
hyperbolic circuit networks to observe the above proposed hyper-
bolic band topology with second Chern numbers. Figure 3a illus-
trates the photograph image of the fabricated circuit sample, which
corresponds to the periodic hyperbolic cluster with twelve units (as
illustrated in Fig. 1a). It is noted that several non-planar wire-cross-
ings exist in our fabricated hyperbolic circuits. To realize those non-
planar wire-crossings, the fabricated printed circuit board (PCB)
possesses multilayers to arrange all planar and non-planar wire-
crossings (see Methods for details). The enlarged view of the unit a
(enclosed by the pink circle) is plotted in the right chart. Specifically,
four circuit nodes connected by capacitors C (enclosed by the green
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Fig. 2 | Numerical results of finite hyperbolic clusters with PBCs and partially
OBCs. a, b The eigen-spectra of hyperbolic abelian clusters under PBCs, and the
mass terms are (m =0.7, a =0.2) and (m =0.7, a = 3.2). The blue circle and red dots
correspond to numerical results obtained by the direct diagonalization and U(1)
hyperbolic band theory, respectively. c, d The spatial profiles of eigenmodes
(marked by blue and orange arrows in Fig. 2a, b) for the topological hyperbolic
clusters under PBCs with mass term being (m =0.7, a =0.2) and (m =0.7, a = 3.2),

respectively. e, f The eigen-spectra of hyperbolic abelian clusters under partially
OBCs, and the mass terms are (m =0.7, a =0.2) and (m =0.7, a = 3.2), respectively.
The colormap corresponds to the quantity V ðεÞ. g, h The spatial profiles of eigen-
modes (marked by red and green arrows in Fig. 2e, f) for the topological hyperbolic
clusters with partial OBCs, and the mass terms are (m =0.7, a =0.2) and (m =0.7,
a = 3.2), respectively. Orange and blue shaded regions correspond to non-trivial
and trivial bandgaps, respectively.
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block) are considered to form an effective lattice site. Voltages on
these four nodes are defined by Vi,1, Vi,2, Vi,3, andVi,4, which could be
suitably formulated to construct a pair of pseudospins (V↑i,↓i = Vi,1 +
Vi,2e ± iπ/2 + Vi,3eiπ + Vi,4e ± i3π/2) for realizing required site couplings. The
schematic diagrams for the realization of different inter-cell cou-
plings are shown in Fig. 3b. In particular, to simulate the real-valued
hopping rate J (t), four capacitors CJ (Ct) are used to directly link
adjacent nodes without a cross. For the realization of inter-site cou-
plings with direction-dependent hopping phases Je ± iπ=2 (te± iπ=2) and
Jeiπ (teiπ), four pairs of adjacent nodes are connected crossly via four
capacitors CJ (Ct) in different ways. In addition, each circuit node is
grounded by an inductor Lg . Four types of capacitors C1 = ðm� aÞCg ,
C2 = ðm+aÞCg , C3 = ð�m+aÞCg and C4 = ð�m� aÞCg are used for
grounding on four sites in each unit to simulate the effective mass
term. Moreover, to ensure the positive grounding capacitance on
each node, an extra capacitor Cu equaling to ðm+aÞCg is added to
connect each circuit node to the ground.

Through the appropriate setting of grounding and connecting,
the circuit eigenequation is identical to that of the hyperbolic tight-
binding lattice model. Details for the derivation of circuit eigenequa-
tions are provided in Supplementary Note 7. In particular, the prob-
ability amplitude at the lattice site i is mapped to the voltage of
pseudospin V#,i. Amplitudes of the effective inter-cell couplings equal
to tj = � 1 and Jj = � 1 with (j = 1, 2, 3, 4). The eigenenergy of hyperbolic
lattice model is directly related to the eigenfrequency of circuit net-

work as ε= f 0
2
=f 2 � 2� ð8CJ +8Ct +CuÞ=C with f 0 = ð2π

ffiffiffiffiffiffiffiffiffi
CLg

q
Þ
�1
. It is

noted that the tolerance of circuit elements is only 1% to avoid the
detuning of circuit responses, and circuit parameters are set as
C = 2 nF, CJ=t = 1 nF, Cg = 2 nF, and Lg = 3.3 uH.

To explore the topological states in hyperbolic circuit samples, we
firstly recover the frequency spectra of circuit samples with different
mass terms under PBCs (see Methods for details), as shown in Fig. 3c
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Fig. 3 | Experimental results on hyperbolic band topology with second Chern
numbers in artificial circuit networks with PBCs. a The photograph image of the
fabricated hyperbolic circuit sample under PBCs. Right charts present the front and
back sides of enlarged views. White dash circles labeled from ‘a’ to ‘l’ label twelve
units of the finite hyperbolic lattice model. Group generators γ1 to γ�1

4 are marked
by eight colored arrows. b The schematic diagram for the realization of different
inter-cell couplings. c, d The recovered circuit frequency spectra with the mass
term being (m =0.7, a =0.2) and (m =0.7, a = 3.2) under PBCs. e, f The measured

impedance responses of four bulk nodes marked by four white stars in the ‘a’ unit
cell with mass terms being (m =0.7, a =0.2) and (m =0.7, a = 3.2), respectively. g
and h Simulation results of frequency-dependent impedance responses with mass
terms being (m =0.7, a =0.2) and (m =0.7, a = 3.2). i, jMeasured spatial impedance
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respectively. Orange and blue shaded regions correspond to non-trivial and trivial
bandgaps, respectively.
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(with m =0.7, a =0.2) and Fig. 3d (with m = 0.7, a = 3.2), respectively.
We can see that the recovered frequency spectra of circuit possess
identical amounts of bandgaps with respect to eigen-spectra calcu-
lated by hyperbolic band theory in Fig. 2a, b, giving the experimental
demonstration of correctness for hyperbolic band theory. The differ-
ence of relative sizes of each bandgap results from the nonlinear
relationship between ε and f . It is known that impedance responses of
different circuit nodes in the frequency-domain are related to the local
density of states of corresponding quantum lattice models. In this
case, we measure the frequency-dependent impedance response of
four sublattices in a unit cell to illustrate the corresponding bulk
spectrum. Measured results are plotted in Fig. 3e, f with mass terms
being (m = 0.7, a =0.2) and (m =0.7, a = 3.2), respectively. It is shown
that there is no impedance peak in frequency ranges of [0.499MHz,
0.538MHz], [0.58MHz, 0.607MHz], and [0.669MHz, 0.774MHz] for
(m =0.7, a = 0.2) and [0.464MHz, 0.483MHz], [0.499MHz,
0.556MHz], and [0.58MHz, 0.619MHz] for (m =0.7, a = 3.2), respec-
tively. The absence of impedance peaks at some frequency ranges
(marked by shaded regions) is a direct evidence for the existence of
bandgaps with PBCs. The frequency ranges of circuit bandgaps are
consistent with energy gaps of the lattice model. Figure 3g, h presents
the simulation results of frequency-dependent impedance responses
of identical circuit nodes used in experiments by LTSPICE software. A
good consistence between simulations andmeasurements is obtained,
and the larger width of measured impedance peaks compared to
simulation counterparts is originated from the large lossy effect in
fabricated circuits (see Supplementary Fig. 5 in Supplementary
Note 8). In addition, the spatial impedance distribution at 0.607MHz
(0.464MHz) of the circuit sample withm =0.7 and a =0.2 (m =0.7 and
a = 3.2) is further measured, as presented in Fig. 3i (Fig. 3j). It is clearly
shown that the spatial impedance profiles are matched to the corre-
sponding extended bulk modes in Fig. 2c, d.

Then, to further investigate the topological properties of hyper-
bolic circuit samples, we turn to the circuit networks with partially
OBCs, where the midgap boundary states resulting from non-trivial
bulk topologies appear. Firstly, we consider the case with the mass
term equaling to (m = 0.7, a = 0.2). The measured frequency-
dependent impedance response of a boundary node, which corre-
sponds to the sub-nodewith the effective onsite potential being −m + a
in the ‘l’ unit, is shown in Fig. 4a with the green line. In addition,
impedances of four bulk nodes in the ‘a’ unit are also measured. It is
seen that the disappearance of bulk impedance peak in three fre-
quency ranges (marked by blue and orange regions) indicates the
existence of bulk bandgaps. It is also found that there is a significant
impedance peak of the boundary node in the frequency range of
[0.58MHz, 0.607MHz] (marked by the shaded region in orange),
which is matched to the topological bandgap with nonzero second
Chern numbers for the hyperbolic cluster. Figure 4b presents the
associated simulation results, which are consistent with measure-
ments. To obtain the spatial distribution of topological boundary state
induced by non-trivial second Chern numbers, we further measure the
spatial impedanceprofile at 0.598MHz, as shown in Fig. 4c.We can see
that the measured impedance distribution is strongly concentrated
around boundary units, which is consistent with the spatial profile of
topological boundary mode plotted in Fig. 2g.

Next, we change the effective mass term to (m =0.7, a = 3.2) and
detect the topological boundary states induced by the first Chern
number in hyperbolic circuits with partially OBCs. The measured
frequency-dependent impedances of two boundary nodes, which
correspond to sub-nodes with effective onsite potentials being -m + a
and -m-a in the ‘l’ unit, are shown by green and pink lines in Fig. 4d.
Impedances of four bulk nodes in the ‘a’ unit are also measured. It is
shown that there are large impedance peaks of boundary nodes in the
frequency ranges of [0.464MHz, 0.483MHz] and [0.58MHz,
0.619MHz], which are in accord with non-trivial energy gaps for the

hyperbolic cluster with nonzero first Chern numbers. The experi-
mental results are also consistent with circuit simulations, as shown in
Fig. 4e. Furthermore, in Fig. 4f, we measure the spatial impedance
profile at 0.469MHz, that is in a good consistent with the topological
boundary state shown in Fig. 2h. Based on the above experimental
results, it is clearly shown that the hyperbolic band topologies with
non-trivial second and first Chern numbers have been successfully
achieved in our designed artificial circuit networks.

Discussion
We report the first experimental observation of hyperbolic band
topology with non-trivial second Chern numbers in artificial circuit
networks. Our designed hyperbolic model possesses the non-abelian
translational symmetry of a {8,8} hyperbolic tiling, where the hyper-
bolic structure can be constructed by applying non-abelian transla-
tional operations generated by four generators of γ1–γ4 to different
units. In this case, four generators can bemapped to four translational
directions, inducing a 4D momentum space of the 2D hyperbolic lat-
tice. By engineering intercell couplings and onsite potentials of four
sublattices, topological bandgaps possessing non-trivial second Chern
numbers can appear in the designed 2D hyperbolic model. To explore
the nontrivial topological states in finite hyperbolic models, we firstly
impose PBCs to construct abelian hyperbolic clusters with nontrivial
bandgaps. The hyperbolic eigen-spectra calculated by direct diag-
onalizations are consistent with that evaluated by hyperbolic band
theory. Then, we apply the partially OBCs to finite hyperbolic models,
and find that the topological boundary states appear in nontrivial
bandgaps with non-zero second Chern numbers. In experiments, we
design and fabricate hyperbolic circuits with both PBCs and partially
OBCs to detect the hyperbolic topological states. By recovering the
circuit frequency spectra andmeasuring the impedance responses, the
non-trivial bandgaps with either first or second Chern number and
associated topological boundary states are clearly illustrated. In
addition, the measured spatial impedance distributions are consistent
with eigenmodes of the designed latticemodel in 2D hyperbolic space.
Furthermore, it is worth noting that there are no limitations on
hyperbolic clusters listed in ref. 39 that can be implemented in circuit
lattices, where any non-local and non-planar connections can be
implemented by suitably designing circuit PCBs with multilayers.
Moreover, there is no technical limitation that hinder further enlarging
hyperbolic clusters. While, to ensure the large hyperbolic clusters to
possess high-quality performances as their small-scale counterparts,
the lossy effect in designed circuits as well as the influence of parasitic
capacitances in large-scale PCBs should be carefully optimized. In this
case, electric circuits are versatile platforms for emulatingmore exotic
hyperbolic physics in future works.

Moreover, it is worth noting that our circuit implementation of
hyperbolic physics possesses two breakthroughs compared to pre-
vious works on the construction of hyperbolic circuits. One is that the
present work reports the first experimental realization of hyperbolic
latticemodels with periodic boundary conditions, where the designed
and fabricated circuits have a highly non-planar and complicated
network structure. Based on the hyperbolic circuit cluster with peri-
odic boundary conditions, the hyperbolic hand theory has been
experimentally demonstrated at the first time. In addition, the pre-
viously proposed boundary-dominated topological states in hyper-
bolic circuits are induced by the real space Chern numbers, and the
associated circuit networks possess the fully open boundaries. While,
our circuit firstly demonstrates the high-dimensional topology in 2D
hyperbolic circuits, where the partially open boundary condition (not
the fully open boundary condition) is a prerequisite. In this case, our
work shows that the curvature can trigger the appearance of high-
dimensional topological states in 2D systems. Such a phenomenon is
the unique hyperbolic physics that has not been revealed in
previous works.
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Our work suggests a method to engineer topological states with
4Dmomentum spaces in 2D hyperbolic space. Different fromprevious
experiments on the implementation of four-dimensional quantumHall
model with 2D topological charge pumps53,54 and non-local circuit
connections55, the dimension enhancement of our proposed hyper-
bolic band topology protected by second Chern numbers is purely
resulting from the unique property of Fuchsian translation group
induced by the negative curvature. Except for the 4D quantum Hall
physics, we could also investigate other 4D topological states, such as
hexadecapole insulator and non-abelian Tensor monopoles, in 2D
hyperbolic space by inversely designing the hyperbolic lattice model
guided by the associated Euclidean Hamiltonian. In addition, it is
known that even much higher dimensional momentum spaces (for
example Γf12,12g and Γf16,16g correspond to six- and eight-dimensional
momentum spaces) could be engineered in 2D hyperbolic space,
paving a new way to explore much higher-dimensional band topolo-
gies in curved spaces.

Methods
Sample fabrications and circuit measurements
We exploit electric circuits by using LCEDA program software, where
the PCB composition, stack-up layout, internal layer and grounding
design are suitably engineered. Here, designed PCBs have six layers,
where two layers are used for the inner electric layers and remaining
four layers are used to arrange all planar and non-planar wire-cross-
ings. Using the multilayer design of circuit PCBs, we note that electric
circuits provide an ideal platform for embedding hyperbolic clusters
with non-planar wire crossings on a flat physical geometry. It is worth
noting that the all grounded components are grounded through blind
buried holes. Moreover, all PCB traces have a relatively large width
(0.75mm) to reduce the parasitic inductance, and the spacing between
electronic devices is also large enough to avert spurious inductive
coupling. The SMP connectors are welded on the PCB nodes for the
signal input. To ensure the tolerance of circuit elements and series
resistance of inductors to be as low as possible, we use a WK6500B
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Fig. 4 | Experimental results on hyperbolic topology edge states induced by
second Chern numbers in artificial circuit networks with partially OBCs.
a, b The measured and simulated impedance responses of bulk and boundary
nodes in the hyperbolic circuit with the mass term being (m =0.7, a =0.2) under
partially OBCs. Here, four bulk nodes correspond to four sublattices in ‘a’ unit cell
and the boundary node is the sub-node with the effective onsite potential being
−m + a in the ‘l’ unit. c Themeasured spatial impedance profile at 0.598MHz of the
hyperbolic circuit with mass term being (m =0.7, a =0.2). d, e The measured and
simulated impedance responses of bulk and boundary nodes in the hyperbolic

circuit with the mass term being (m =0.7, a = 3.2) under partially OBCs. Here, four
bulk nodes are consistent with that used in (a, b), and two boundary nodes cor-
respond to sub-nodes with effective onsite potentials being −m + a and −m − a in
the ‘l’unit. Bulk andboundary nodes aremarkedbywhite and yellowstars in Fig. 3a.
fThe spatial impedanceprofile at0.469MHzof the hyperbolic circuitwith themass
termbeing (m =0.7, a = 3.2) under partially OBCs. Red starsmark impedance peaks
related to non-trivial boundary states. Orange and blue shaded regions correspond
to non-trivial and trivial bandgaps, respectively.
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impedance analyzer to select circuit elementswith a high accuracy (the
disorder strength is only 1%) and low losses.

To effectively excite hyperbolic circuits with complex couplings,
four subnodes, which act as a single lattice site in the tight-binding
lattice model, should be suitably excited with required phase differ-
ences. It is noted that eigen-spectra of hyperbolic circuits with respect
to a pair of pseudospins V"i =Vi,1 +Vi,2e

iπ=2 +Vi,3e
iπ +Vi,4e

i3π=2 and
V↓i =Vi,1 + Vi,2e ‒ iπ/2 + Vi,3e iπ + Vi,4e ‒ i3π/2 are degenerated. In this case, we
can set the input signals at four circuit nodes as ðV0, 0,� V0, 0Þ to
simultaneously excite these two pseudospins, where the measured
impedance spectra and impedance profiles possess the same form by
uniquely excite one of pseudospins [V"i = ðV0, iV0,� V0,� iV0Þ or
V#i = ðV0,� iV0,� V0,iV0Þ]. In addition, to recover the circuit fre-
quency spectrum, the global voltage responses of all circuit nodes
should be measured by lock-in amplifiers with a high dynamical range
when theAC currentwith a constant amplitude is injected into a circuit
node. Then, we repeat this procedure by exciting each circuit node.
The current source can be realized by a voltage source connected to
the PCB through a shunt resistance. Here, Vi (j) corresponds to the
measured voltage at node i under the current excitation at node jwith
Ij. Based on the measured voltages and input currents, we can get the
inverse of circuit Laplacian G (Gij =Vi (j)/Ij). In this case, the circuit
Laplacian can be obtained as J =G−1. Based on the recovered circuit
Laplacian, the Hamiltonian of the associated hyperbolic lattice model
can be written as H = ð 1

ω2LgC
� 2� 8CJ +8Ct +Cu

C Þ*I� J with I being an
identicalmatrix (see Supplementary note 6 for details). In this case, we
can get the circuit frequency spectrum (f =ω=2π) and the associated
mode profiles with eigenvalues and eigenvectors of the recovered
circuit Laplacian.

Data availability
All data are displayed in themain text and Supplementary Information.
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