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Structure of human NaV1.6 channel reveals
Na+ selectivity and pore blockade by 4,9-
anhydro-tetrodotoxin

Yue Li 1,2,3,7, Tian Yuan4,5,7, Bo Huang 6,7, Feng Zhou6, Chao Peng4,5,
Xiaojing Li1,3, Yunlong Qiu1,3, Bei Yang1, Yan Zhao 1,3 , Zhuo Huang 4,5 &
Daohua Jiang 2,3

The sodium channel NaV1.6 is widely expressed in neurons of the central and
peripheral nervous systems, which plays a critical role in regulating neuronal
excitability. Dysfunction of NaV1.6 has been linked to epileptic encephalo-
pathy, intellectual disability and movement disorders. Here we present cryo-
EM structures of human NaV1.6/β1/β2 alone and complexed with a guanidi-
nium neurotoxin 4,9-anhydro-tetrodotoxin (4,9-ah-TTX), revealing molecular
mechanismof NaV1.6 inhibition by the blocker. The apo-form structure reveals
two potential Na+ binding sites within the selectivity filter, suggesting a pos-
siblemechanism for Na+ selectivity and conductance. In the 4,9-ah-TTX bound
structure, 4,9-ah-TTX binds to a pocket similar to the tetrodotoxin (TTX)
binding site, which occupies the Na+ binding sites and completely blocks the
channel. Molecular dynamics simulation results show that subtle conforma-
tional differences in the selectivity filter affect the affinity of TTX analogues.
Taken together, our results provide important insights into NaV1.6 structure,
ion conductance, and inhibition.

Voltage-gated sodium (NaV) channels mediate the generation and
propagation of action potentials in excitable cells1,2. In humans, nine
NaV channel subtypes (NaV1.1–1.9) had been identified, which are
involved in a broad range of physiological processes due to their
tissue-specific distributions in various excitable tissues3,4. Subtype
NaV1.6, encoded by the gene SCN8A, is ubiquitously expressed in
neurons of both the central nervous system (CNS) and the peripheral
nervous system (PNS), especially enriched in the distal end of axon
initial segment (AIS) and in the node of Ranvier of myelinated excita-
tory neurons. The NaV1.6 channel is believed to play a primary role in
the initiation and propagation of action potentials in those neurons by
lowering the threshold voltage5–11. Emerging evidence suggests that

NaV1.6 is also expressed in some inhibitory interneurons and plays a
role in establishing synaptic inhibition in the thalamic networks12–14.
Compared with other NaV channel subtypes, NaV1.6 possesses unique
biophysical properties including activation at more hyperpolarized
voltage, higher levels of persistent current and resurgent current, and
higher frequency of repetitive neuronal firing in neurons such as cer-
ebellar Purkinje cells15–23. These features make NaV1.6 a critical and
favorable mediator in regulating neuronal excitability in those neu-
rons. Meanwhile, dozens of mutations in NaV1.6 have been linked to
human diseases, most of which exhibit gain-of-function phenotypes,
increase neuronal excitability, and cause different types of epileptic
encephalopathy24–28; whereas loss-of-function mutations are often
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associated with later onset seizures, intellectual disability, isolated
cognitive impairment and movement disorders29–31. Thus, NaV1.6 is an
important drug target; effective and subtype-selective therapeutics are
eagerly awaited for the treatment of NaV1.6-related epilepsy and other
neurological diseases.

Eukaryotic NaV channels are composed of a pore-forming α sub-
unit and auxiliary β subunits32. The four-domain α subunit exerts vol-
tage sensing, gate opening, ion permeation, and inactivation4,33.
Meanwhile, one or two β subunits bind to theα subunit to regulate NaV
channel kinetics and trafficking. Among the four types of β
subunits34–37, β1 and β3 subunits non-covalently bind to the α subunit,
while β2 and β4 subunits are covalently linked to the α subunit via a
disulfide bond32,38. To date, high-resolution cryo-electron microscopy
(cryo-EM) structures of seven mammalian NaV channels (NaV1.1–1.5,
NaV1.7–1.8) have been reported39–45. Together with the resting-state46,
open-state47, and multiple ligand-bound NaV channel structures48–50,
these structures revealed the general molecular mechanisms of vol-
tage-sensing, electromechanically coupling, fast inactivation, sodium
permeation, and ligand modulation. Among those NaV channel mod-
ulators, the guanidinium neurotoxin tetrodotoxin (TTX) has long been
used as a useful tool to study NaV channels, which can potently inhibit
NaV1.1–1.4 and NaV1.6–1.7 at nanomolar level (TTX-sensitive NaV
channels), and less potently inhibit NaV1.5, NaV1.8, and NaV1.9 at a
micromolar concentration (TTX-insensitive NaV channels). The
detailed binding mode of TTX had been revealed in the NaV channel-
TTX complex structures44,51. Furthermore, two guanidinium neuro-
toxin derivatives, ST-2262 and ST-2530, were reported as potent and
selective inhibitors for NaV1.7, indicating that TTX analogs could
potentially be developed as selective therapeutics52,53. Interestingly,
4,9-anhydro-tetrodotoxin (4,9-ah-TTX), a metabolite of TTX, has been
reported to selectively block NaV1.6 with a blocking efficacy of 40- to
160-fold higher than other TTX-sensitive NaV channels

54. However, the
structure of NaV1.6 and how 4,9-ah-TTX blocks NaV1.6 remain elusive.

In this work, we show a fully-functional shorter-form construct of
human NaV1.6 suitable for structural studies, and present cryo-EM
structures of NaV1.6/β1/β2 apo-form and in complex with 4,9-ah-TTX.
Complemented with electrophysiological results and molecular
dynamics (MD) simulations, our structures reveal NaV1.6 structural
features, sodium conductance, and pore-blockade by 4,9-ah-TTX.

Results
Construct optimization of NaV1.6 for cryo-EM study
To conduct structural studies of NaV1.6, human wide-type NaV1.6
(named NaV1.6

WT) was co-expressed with human β1 and β2 subunits in
HEK293F cells and was purified similarly to previously reported NaV
channels41,44. Although the amino acid sequence of NaV1.6 is highly
conserved with other NaV channel subtypes (e.g., 70% identity with
NaV1.7); however, the purified NaV1.6

WT sample exhibited poor quality
and did not permit high-resolution structural analysis (Supplementary
Fig. 1a, b). Construct optimization had been proven to be successful in
improving the sample quality of NaV1.7 and NaV1.5

55,56, we therefore
carried out construct screening of human NaV1.6 by removing
unstructured intracellular loops and C-terminus. We found that dele-
tion of S478-G692 between DI and DII (NaV1.6

ΔDI-DII), S1115-L1180
between DII and DIII (NaV1.6

ΔDII-DIII), or R1932-C1980 of the C-terminus
(NaV1.6

ΔCter) showed improved sample homogeneity based on the size-
exclusion chromatography (SEC) profiles (Supplementary Fig. 1a).
Strikingly, when we combined these modifications and deleted all of
the three unstructured regions, it displayed a sharp mono-disperse
SEC profile, which is much better than that of NaV1.6

WT and any of the
single-deletion constructs (Fig. 1a, b, Supplementary Fig. 1a). We next
examined the functional characteristics of the triple-deletion con-
struct by whole-cell voltage-clamp recording of NaV1.6-expressing
HEK293T cells. The candidate construct exhibits typical voltage-
dependent activation and inactivation (Fig. 1c). The resulting V1/2

values of the voltage-dependence of activation and steady-state fast
inactivation are −31.3 ± 0.3mV (n = 15) and −77.3 ± 0.2mV (n = 15),
respectively,which are close to the reportedV1/2 values of humanwide-
type NaV1.6

57,58. These results confirmed that the triple-deletion con-
struct fulfills similar electrophysiological functions to the NaV1.6

WT.
The preliminary cryo-EM analysis of this triple-deletion construct
showed that the micrograph contains a rich distribution of mono-
disperse particles, which gave rise to much better 2D class averages
with well-resolved features than the NaV1.6

WT (Supplementary Fig. 1b,
c). Thus, this triple-deletion construct (named NaV1.6

EM) was selected
for further structural studies.

The overall structure of human NaV1.6
The purified NaV1.6

EM/β1/β2 sample was frozen in vitreous ice for cryo-
EM data collection (Supplementary Fig. 2). After processing, the final
reconstructionmap from the best class of ~41 k particles was refined to
an overall resolution of 3.4Å (Fig. 2a, Supplementary Figs. 3–5). As
expected, the resulting NaV1.6

EM/β1/β2 structure closely resembles the
reported structures of human NaV channels due to high sequence
similarity (Fig. 2b). For example, the binding modes of the β subunits
are consistentwith the structures of humanNaV1.7/β1/β2 andNaV1.3/β1/
β241,44; the pore-forming α-subunit of NaV1.6

EM can be well super-
imposed with NaV1.7 with a backbone (1107 Cα) root mean square
deviation (RMSD) of 1.4 Å (Fig. 2c). However, marked local conforma-
tional differenceswere observed between the two structures, especially
in the extracellular loops (ECLs) (Fig. 2c, d). The ECLs are less conserved
regions among the nine NaV channel subtypes (Supplementary Fig. 6a),
which form the outer mouth of the selectivity filters (SFs) and con-
tribute to the binding of β subunits. Superposition of theDomain I ECLs
of NaV1.6

EM andNaV1.7 shows that the ECLI of NaV1.6
EM lacks the shortα2

helix, but instead forms an extended hairpin-like turn (Fig. 2d).
Importantly, the ECLI of NaV1.6

EM exhibits more N-linked glycosylation
modification sites than NaV1.7; N308-linked glycosylation site appears
to be unique for NaV1.6 based on the sequence alignment (Supple-
mentary Fig. 6a). Although these structural differences in the ECLs do
not affect the binding of β subunits to NaV1.6 (Fig. 2a), the glycosylation
and other modifications shape the surface properties of NaV1.6, which
play important roles in its trafficking, localization, and pathology59,60.
For instance, a unique glycosylation site in the ECLI of NaV1.5 blocks the
binding of the β1 subunit to NaV1.5

43.
We next compared the fast inactivation gate and intracellular

activation gate between NaV1.6
EM and NaV1.7, which only display subtle

conformational shifts (Fig. 2e, f), indicating that those key structural
elements are highly conserved to fulfill their similar biological roles.
Consistently, the signature fast inactivation gate, Ile-Phe-Met motif
(IFM-motif), binds tightly to its receptor site adjacent to the intracel-
lular activation gate (Fig. 2e), resulting in a non-conductive activation
gate constricted by A411, L977, I1464, and I1765 from the four S6
helices, respectively (Fig. 2f). The van der Waals diameter of the acti-
vation gate is less than 6 Å, suggesting that the gate is functionally
closed (Fig. 3a, b).

Potential Na+ sites in the SF
The ion path of NaV1.6 has two constriction sites, the extracellular SF
and intracellular activation gate, respectively (Fig. 3a, b). The sodium
selectivity of mammalian NaV channels is determined by the extra-
cellular SF61,62, which is composed of an Asp from DI, Glu from DII, Lys
from DIII, and Ala from DIV, known as the DEKA-locus63,64. Based on
structural analysis, the acidic residues of the DEKA-locus are believed
to act as a high-field strength site, which attracts and coordinates Na+;
and the Lys in DIII was proposed as a favorable binding ligand for Na+

which facilitates the ions passing through the SF43,65. In coincidence
with other mammalian NaV channels43,44, the SF of NaV1.6

EM adopts an
asymmetric conformation composed of the DEKA-locus (Fig. 3b, c). No
oblivious Na+ binding site had been identified in previous structures of
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mammalian NaV channels. In contrast, densities for Ca2+ were con-
sistently reported in the structures of bacterial CaVAb channel and
mammalian CaV1.1, CaV2.2, and CaV3.1 channels

66–69. Interestingly, two
strong blobs of EM densities were observed in the SF of NaV1.6

EM

(Fig. 3d, e), which are deduced as potential Na+ binding sites because
Na+ ions are the only major cations in the solutions throughout the
purification processes. The upper site (namely Na1) closely engages
E936 of the DEKA-locus and an additional acidic residue E939 (Fig. 3c).
The distances of this Na1 to the E936 and E939 are at ~3.5 Å, suggesting
that Na+ in Na1 site may still be hydrated. Meanwhile, D370 of the
DEKA-locus contributesminorly to thisNa+ binding site at a distance of
~7.5 Å (Fig. 3c). This observation is in line with previous studies show-
ing that E936/K1413 of the DEKA-locus are the most prominent resi-
dues for Na+ permeation and selectivity, while D370 of the DEKA-locus
is not absolutely required63. This potential Na1 site may represent the
first step for Na+ conductance, that is, E936 of the DEKA-locus attracts
and captures one hydratedNa+ from the extracellular solutionwith the
assistance of E939. The second blob of density is located inside the SF,
namely the Na2 site, which is about ~5.3 Å away from the Na1 site
(Fig. 3d, e). Interestingly, the Na2 is close to the short side-chain resi-
due A1705 of the DEKA-locus and is coordinated with the strictly
conserved E373 at a distance of ~3.3 Å (Fig. 3c, d). We also noticed that

D370/E936 of the DEKA-locus contribute negligibly to the Na2 at dis-
tances of 5.6–6.6 Å (Fig. 3c). Thus, we hypothesize that the Na2 may
represent the second step for sodium conductance, that is, after cap-
tured and partially dehydrated inNa1 site, at least partially-dehydrated
Na+ can fit into the Na2 site which is going to enter the narrowest
asymmetric constriction site of the SF. The possible partial dehydra-
tion of Na+ in the Na2 site is reflected by its relatively weaker density
compared to theNa1 (Fig. 3d, e). Furthermore, theK1413 points its long
side-chain deep into the SF, forming the narrowest part of the SF. It has
been proposed that this residue serves as a key coordination ligand in
favor of Na+ or Li+ but is unfavorable for other cations43. In linewith this
hypothesis, Na+ from the Na2 site can quickly pass through the SF and
enter the central cavity accelerated by the amino group of the K1413.
We foundadditional elongateddensity below theK1413 at a distanceof
~3.5 Å, which may represent a third Na+ site (namely Na3) (Fig. 3d, e).
Consistently, previous MD simulations studies suggested that two Na+

ions spontaneously occupy the symmetric SF of the bacterial NaV
channels, and three Na+ sites were proposed in the asymmetric SF of
the eukaryotic NaV channel

70–72, which are similar to the Na2, Na3 sites
and Na1-3 sites of our NaV1.6 structure, respectively.

In CaV channels, the Ca2+ binding sites were revealed in the
SFs66–68,73, suggesting a possible step-wise “knock-off” mechanism for
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Fig. 1 | Topology and functional characterization of the NaV1.6EM/β1/β2 com-
plex. a Topology of the NaV1.6/β1/β2 complex. The α subunit consists of DI (pur-
ple), DII (yellow), DIII (pink), and DIV (cyan) connected by intracellular linkers, a
mCherry fluorescent protein tag fused at the C-terminus. Scissors indicate the
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highlighted in light blue and gray, respectively. The samecolor codes for NaV1.6/β1/
β2 are applied throughout the manuscript unless specified. b Size exclusion
chromatogram profiles of the purified NaV1.6

WT (black) and the NaV1.6
EM (red).

c Electrophysiological characterization of the NaV1.6
EM construct. The voltage

protocols and representative current traces are shown on the left panels. To

characterize the voltage-dependence of activation, NaV1.6
EM expressing

HEK293T cells were stimulated by a 100ms test pulse varying from −80mV to
10mV in 5mV increments from a holding potential of −120mV, with a stimulus
frequency of 0.2 Hz. To measure the steady-state fast inactivation, HEK293T cells
were stimulated by a test step to −10mV after a 500ms prepulse varying from
−130mV to −20mV in 5mV increments, from a holding potential of −120mV and a
stimulus frequency of 0.2 Hz. The resulting normalized conductance-voltage (G/V)
relationship (squares, n = 15) and steady-state fast inactivation (circles, n = 15)
curves are shownon the right panel. Data are presented asmean± SEM.nbiological
independent cells. Source data are provided as a Source data file.
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Ca2+ conducntance66. Superposition of the SFs of the NaV1.6
EM and the

CaVAb shows that the Na1 and Na2 sites are roughly at the same height
levels as Ca1 and Ca2 sites in CaVAb, respectively (Fig. 3d, e). However,
the two Na+ sites are off the central axis of the SF, while the Ca2+ sites
are in the center (Supplementary Fig. 7). This difference is in agree-
mentwith the asymmetric characteristics of the SFs ofmammalian NaV
channels. As shown in the NaV1.6

EM structure, similar to the CaV chan-
nels, two ormore potential Na+ sites exist in the SFs of NaV channels. In
fact, the SFs of NaV and CaV channels are closely related, point-
mutations in the SF of the NaV channel can convert it into a highly Ca2+

favorable channel66,74. Nevertheless, these subtle compositional and

conformational differences at the SFs determine the ion selectivity and
conductance.

Blockade of NaV1.6 by 4,9-ah-TTX
The guanidinium neurotoxin TTX and its derivatives can potently
inhibit eukaryotic NaV channels

75. TTXwas reported to bemore potent
in inhibiting NaV1.6 than other TTX-sensitive NaV channels76. Interest-
ingly, one of the TTX metabolites, 4,9-ah-TTX, has been reported to
preferentially block NaV1.6 over the other eight NaV channel
subtypes54. We first examined the TTX sensitivity of NaV1.6

EM, NaV1.2,
and NaV1.7, yielding IC50 values of 1.9 nM (n = 5), 4.9 nM (n = 5), and
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16.7 nM (n = 4), respectively. Consistent with previous reports, TTX
indeed favors NaV1.6 (Supplementary Fig. 6c). Then we tested the
inhibitory effects of 4,9-ah-TTX on NaV1.2, NaV1.7, and NaV1.6

EM. As
illustrated in Fig. 4a–c, 4,9-ah-TTX gradually inhibits both NaV1.7 and
NaV1.6

EM in a concentration-dependentmanner.However, the resulting
IC50 values of 4,9-ah-TTXare significantly different, which are257.9 nM
(n = 6) for NaV1.2, 1340 nM (n = 6) for NaV1.7 and 52.0 nM (n = 5) for
NaV1.6

EM, respectively (Fig. 4c). Those results confirmed that the
potency of 4,9-ah-TTX is ~27-fold weaker than TTX in inhibiting
NaV1.6

EM, and 4,9-ah-TTX is indeed a NaV1.6 preferred blocker.
To better understand the underlying mechanism of NaV1.6

modulation by 4,9-ah-TTX, we solved the cryo-EM structure of
NaV1.6

EM/β1/β2 in complex with 4,9-ah-TTX (named NaV1.6
4,9-ahTTX)

at a resolution of 3.3 Å (Supplementary Fig. 4). The overall
structure of NaV1.6

4,9-ahTTX is indistinguishable to the NaV1.6
EM

(RMSD at 0.2 Å). However, unambiguous EM density located
above the SF of NaV1.6

4,9-ahTTX was observed, which fits a 4,9-ah-
TTX molecule very well (Fig. 4d, e, Supplementary Fig. 4b). A
closer look shows that the 4,9-ah-TTX occupies the Na+ binding
sites and sticks into the SF of NaV1.6 via extensive interactions
(Fig. 4f). D370 and E373 from DI, E936, and E939 from DII, and
D1708 from DIV form electrostatic interactions with the 4,9-ah-
TTX, Y371, and K1413 also contribute to stabilizing the blocker by
forming van der Waals interactions (Fig. 4f). Superposition of the

NaV1.6
4,9-ahTTX and the TTX bound NaV1.7 (NaV1.7

TTX) show a very
similar binding mode for the two blockers (Fig. 4f–h). This similar
binding mode is reasonable because the chemical structures of TTX
and 4,9-ah-TTX are very similar; secondly, these key interacting
residues are identical among the TTX-sensitive NaV channels (Sup-
plementary Fig. 6b). However, subtle conformational differences
were observed. The 4,9-ah-TTX binds ~1.4 Å deeper in the pocket of
NaV1.6 than TTX in NaV1.7 (Fig. 4h). In addition, the 4,9-ah-TTX lacks
two hydroxyl groups at the 4 and 9 positions of TTX, which form two
more hydrogen-bonds with E364 and G1407 of NaV1.7, respectively
(Fig. 4g). TTX should form the same interactions with NaV1.6 as found
in NaV1.7. Thus, the binding of TTX to NaV1.6 is stronger than the
binding of 4,9-ah-TTX, which agrees with the higher potency of TTX
in inhibiting NaV1.6 than 4,9-ah-TTX (Fig. 4c and Supplemen-
tary Fig. 6c).

Then how does 4,9-ah-TTX preferentially inhibit NaV1.6 over
NaV1.7 in a nearly identical pocket? By carefully checking the pore-loop
sequences of NaV1.6, we found that L1712 in theDIV P-loop ofNaV1.6 is a
major different residue in the P-loop regions not similar to other NaV
channels (Supplementary Fig. 6b). We tested the effect of 4,9-ah-TTX
on L1712Amutant ofNaV1.6 (NaV1.6

L1712A), the resulting IC50 value of 4,9-
ah-TTX for NaV1.6

L1712A is 61.1 nM (n = 4), which is close to that of the
NaV1.6

EM (Supplementary Fig. 6d). This result suggests that L1712 is not
relevant to the binding of 4,9-ah-TTX. To test whether the accessibility
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d, e Comparison of the Na+ binding sites of NaV1.6
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affects the binding of 4,9-ah-TTX, we substituted the ECLI of NaV1.6
(F273-F356) with that of NaV1.7 (F267-F347) or the ECLIII (F1349-V1399)
with that of NaV1.7 (F1343-V1392), namely NaV1.6

ECL1 and NaV1.6
ECL3,

respectively. Surprisingly, the substitution of the ECLI dramatically
drops the IC50 values of the 4,9-ah-TTX and TTX by 149-fold and 86-
fold, respectively; in contrast, ECLIII substitution only decreases the
IC50 values of the 4,9-ah-TTX and TTX by 2.6-fold and 1.1-fold,
respectively (Supplementary Fig. 6d, e). These results show that the
ECL substitutions especially ECLI do affect the potency of TTX analogs,
but do not discriminate them.

To further dissect the preferential inhibition of NaV1.6 by 4,9-
ah-TTX, we carried out MD simulations of TTX binding to NaV1.6 or
NaV1.7, and 4,9-ah-TTXbinding toNaV1.6 orNaV1.7. Six independent
100 ns MD simulations were performed for each complex and the

trajectories were used for binding affinity calculations using the
method ofMolecularMechanics with Generalized Born and Surface
Area solvation (MM/GBSA)77. The simulation results show that the
binding affinity of TTX to NaV1.6 is significantly higher than that of
4,9-ah-TTX to NaV1.6, and the affinity of 4,9-ah-TTX to NaV1.6 is
greater than 4,9-ah-TTX to NaV1.7 (Supplementary Fig. 8a). These
MD binding affinity results fairly agree with our electro-
physiological results (Fig. 4c, Supplementary Fig. 6c). The simula-
tions also show that there is only one predominant conformation
for 4,9-ah-TTX binding to NaV1.6; while there are four major con-
formations for 4,9-ah-TTX binding to NaV1.7 (Fig. 5a, Supplemen-
tary Fig. 8b–f). More specifically, E373, E936, and E939 mainly
contributed to the binding of 4,9-ah-TTX to NaV1.6, consistent with
our structural observation (Fig. 4f, Supplementary Fig. 8f);
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however, E930 and E927 of NaV1.7, the counterparts of E939 and
E936 in NaV1.6, appeared to be very dynamic and contributed less
stably to the binding of 4,9-ah-TTX (Fig. 5b). A contact analysis
(Supplementary Fig. 9) was conducted to provide more details to
understand the dynamics of the ligands (Supplementary Fig. 10).
Specifically, E930 and E927 inNaV1.7 interactwith 4,9-ah-TTXwith a
frequency ranging from 21% to 87% for the most populated con-
formation cluster, whereas the frequency is over 90% for the
interactions between such ligand and E939 and E936 in NaV1.6.
Superposition of the two representative conformations provides us
an assumption that R922 of P1II helix is more flexible in NaV1.7 than
the equivalent R931 in NaV1.6 because of the small side-chain T1409
on P2III helix, which in turn increases the flexibility of E930 and E927
and thereby negatively affects the binding of 4,9-ah-TTX to NaV1.7
(Fig. 5c). To validate this assumption, we tested the potency of 4,9-
ah-TTX on NaV1.6 with double-mutations of M1416T/D1417I
(NaV1.6

M1416T/D1417I) using whole-cell voltage-clamp recordings. The
resulting IC50 value is 257 nM (n = 5), which is 5-fold less potent than
that of NaV1.6

EM, in coincidencewith the findings byMD simulations
(Fig. 5d). Taken together, our results confirmed that TTX has the
highest affinity to NaV1.6 among the TTX-sensitive NaV channels;
the TTX analog 4,9-ah-TTX is less potent than TTX in inhibiting
NaV1.6, but does exhibit preferential inhibition of NaV1.6
over NaV1.7.

Pathogenic mutation map of NaV1.6
The NaV1.6 channels are abundantly distributed in neurons of both the
CNS and the PNS. Compared to other NaV channel subtypes, theNaV1.6
channel has unique properties including activation at more hyperpo-
larized potential and generating a large proportion of resurgent cur-
rent and persistent current, which plays important roles in regulating
neuronal excitability and repetitive firing17,19. To date, at least 16 gain-
of-function mutations in NaV1.6 causing hyperactivity are linked to
Developmental and Epileptic Encephalopathy (DEE)78; meanwhile, 9
loss-of-function mutations in NaV1.6 causing reduced neuronal excit-
ability are associated with intellectual disability and movement dis-
orders. We highlighted 14 gain-of-function and 7 loss-of-function
mutations in our NaV1.6

EM structure (Fig. 6). The 14 gain-of-function
mutations are mainly distributed in the VSDs, fast inactivation gate,
and activation gate. In particular, mutations G1475R, E1483K, M1492V,
and A1650V/T target the fast inactivation gate, presumably causing
overactivity of the NaV1.6 variants by impairing the binding of the IFM-
motif to its receptor site. Mutation N1768D, located at the end of the
DIV-S6 helix, was reported to generate elevated persistent current and
resurgent current24,79, which may cause improper gate closing to
generate these aberrant currents. Meanwhile, two loss-of-function
variants, G964R and E1218K cause intellectual disability without
seizure30. G964 is located in the middle of S6II, which is believed to
serve as a hinge in the pore-lining S6 helix during gating80. A G964R
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mutation can certainly impair the flexibility of the S6II helix; in addi-
tion, the additional long side-chain of the mutant can cause clashes
with neighboring residues. E1218 belongs to the extracellular
negatively-charged clusters (ENCs) of VSDIII, which play an important
role in interacting with the positively-charged gating-charges. The
E1218K mutation provides an opposite charge which can disrupt the
voltage sensing. Thismutantmay also destabilize the variant, reflected
by its significantly reduced express level30.

Discussion
In this study, we presented cryo-EM structures of human NaV1.6/β1/β2
apo-form and complexed with the NaV1.6 preferred blocker 4,9-ah-
TTX. To facilitate the structural studies, we obtained the core con-
struct of NaV1.6

EM which displayed improved sample quality. This
construct and the structures can be a useful tool for future NaV1.6-
related structural and biochemical studies. The apo-form
NaV1.6 structure reveals three potential Na+ sites, which are coordi-
nated by the important residues in the SF, suggesting a possible
mechanism for Na+ recognition, selection, and conductance. By com-
parison with the Ca2+ sites in the bacterial and mammalian CaV
channels66–69, the unique asymmetric SF of mammalian NaV channels
provides a precise tunnel to separateNa+ fromother cations. However,
the exact hydration state of those potential Na+ sites cannot be iden-
tified here due to the resolution limit. Future high-resolution structure
of NaV1.6 would be required to investigate more detailed mechanisms
of Na+ conductance. The 4,9-anhydro-TTX bound NaV1.6 structure
demonstrated that 4,9-anhydro-TTXand its closely-related analogTTX
share a similar binding pocket, which is composed of nearly identical
residues above the SFs. However, TTX has greater potency than 4,9-
anhydro-TTX in inhibiting NaV1.6 very likely due to TTX can form two
additional hydrogen bondswith NaV1.6. OurMD simulations show that
4,9-anhydro-TTX exhibits a more stable binding mode and greater
binding energy with NaV1.6 than NaV1.7. Specifically, the increased
flexibility of E930 and E927 may cause the loose binding of 4,9-anhy-
dro-TTX toNaV1.7. Those results potentially explain thehigher potency
of TTX to NaV1.6 than other TTX-sensitive NaV channels and the
favorable inhibition of NaV1.6 by 4,9-anhydro-TTX. In addition, an
interesting observation needed to be mentioned here is the existence
of some differences between the binding poses of 4,9-anhydro-TTX in
the NaV1.6

4,9-ahTTX EM structure and our MD simulation models (Fig. 4f,
Supplementary Fig. 8f). The MD study was conducted with the
assumption that the NH group of guanidine in 4,9-anhydro-TTX is fully
protonated into NH2

+. However, since such NH in the EM structure is
only ~3 Å from the amine group of Y371, it implies an uncertainty of the
protonation state of the guanidine of 4,9-anhydro-TTX. When we
performed another MD study using unprotonated 4,9-anhydro-TTX
and found that the ligand adopts a similar binding pose as observed in

the EM structure. Our findings on the protonation state of 4,9-anhy-
dro-TTX binding with NaV1.6 requires further systemic investigation.
Taken together, our results provide important insights into NaV
channel structure, Na+ selectivity and conductance, andmodulationby
TTX and its analog 4,9-anhydro-TTX.

Methods
Whole-cell recordings
HEK293T cells were maintained in Dulbecco’s Modified Eagle Medium
(DMEM, Gibco, USA) supplemented with 15% Fetal Bovine Serum (FBS,
PAN-Biotech, Germany) at 37 °C and 5%CO2. The P2 viruses of NaV1.6

EM

and NaV1.6 variants were obtained using Sf9 insect cells and used to
infect HEK293T cells for 9 h. The plasmids expressing NaV1.2

WT or
NaV1.7

WT were transfected into HEK293T cells using lipofectamine
2000 (Thermo Fisher Scientific, USA). 12–24 h after transfection or
infection, whole-cell recordings were obtained using a HEKA EPC-10
patch-clamp amplifier (HEKA Electronic, Germany) and PatchMaster
software (HEKA Electronic, Germany). The extracellular recording
solution contained (in mM): 140 NaCl, 3 KCl, 1 CaCl2, 1 MgCl2, 10 Glu-
cose, and 10 HEPES (310mOsm/L, pH 7.30 with NaOH). The recording
pipette intracellular solution contained (in mM): 140 CsF, 10 NaCl, 1
EGTA, and 10 HEPES (300mOsm/L, pH 7.30 with CsOH). The pipettes
were fabricated by a DMZ Universal Electrode puller (Zeitz Instru-
ments, Germany) using borosilicate glass, with a resistance of
1.5–2.5MΩ. The currents were acquired at a 50kHz sample rate and
series resistance (Rs) compensation was set to 70–90%. All experi-
ments were performed at room temperature.

Data analyses were performed using Origin 2020b (OriginLab,
USA), Excel 2016 (Microsoft, USA), and GraphPad Prism 9.1.1 (Graph-
Pad Software, USA). Steady-state fast inactivation (I–V) and
conductance-voltage (G–V) relationships were fitted to Boltzmann
equations:

I=Imax = 1=ð1 + expððVm � V1=2Þ=kÞÞ ð1Þ

G=Gmax = 1=ð1 + expððVm� V1=2Þ=kÞÞ ð2Þ

G= I=ðVm � ENaÞ ð3Þ

where I is the peak current, G is conductance, Vm is the stimulus
potential, V1/2 is the half-maximal activation potential, ENa is the
equilibrium potential, and k is the slope factor.

To assess the potency of 4,9-anhydro-TTX and TTX on NaV
channels, HEK293T cells were held at −120 mV and the inward sodium
currents were elicited by a 50-ms step to −10 mVwith a low frequency
of 1/15 Hz. The concentration-response curves were fitted to a four-
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parameter Hill equation with constraints of Bottom=0 and Top = 1:

Y =Bottom+ ðTop� BottomÞ� 1 + 10 X�lgIC50ð Þ
� �

ð4Þ

where Y is the value of IDrug/IControl, Top is the maximum response,
Bottom is the minimum response, X is the lg of drug concentration,
and IC50 is the drug concentration producing the half-maximum
response. The significance of fitted IC50 values compared to the
control was analyzed using the extra sum-of-squares F test. The drug
inhibition statistics are presented in Supplementary Table 1.

NaV1.6/β1/β2 cloning and expression
The DNA fragments encoding humanNaV1.6 (UniProt ID: Q9UQD0), β1
(Uniprot ID: Q07699), and β2 (Uniprot ID: O60939) were amplified
from a HEK293 cDNA library. The full-length or truncated NaV1.6, β1,
and β2 genes were cloned into the pEG BacMam vector, respectively.
For NaV1.6

EM, residues of inter-domain linkers 478–692, 1115–1180, and
1932 to the last residue were deleted by PCR to optimize the bio-
chemical properties of the purified protein sample. Specifically,
NaV1.6

EM was fused before a PreScission Protease recognition site,
which is succeeded by amCherry fluorescent protein and a Twin-Strep
II tag at the C terminus. A superfolder green fluorescent protein
(sfGFP) and His10 tag were introduced at the C terminus of β1. The
sequences of all primers used in this study are provided in Supple-
mentary Table 2. For protein expression, recombinant baculoviruses
were generated in Sf9 cells using the Bac-to-Bac baculovirus expres-
sion system (Invitrogen, 11496015). HEK293F (Gibco, 11625019) cells
were culturedunder 5%CO2 at 37 °Candwereused for transfectionat a
density of 2.5 × 106 cells/ml. The NaV1.6

EM, β1, and β2 viruses were co-
transfected intoHEK 293F cells at a ratio of 1% (v/v) supplementedwith
1% (v/v) FBS. After 8–12 h, sodium butyrate was added into the culture
at a final concentration of 10mM, and the cell was incubated for
another 48 h under 30 °C. Cells were then harvested by centrifugation
at 1640 × g for 5min, andfinally stored at−80 °C after freezing in liquid
nitrogen.

Purification of human NaV1.6/β1/β2 complex
The NaV1.6/β1/β2 complex was purified following a protocol as was
applied in the purification of the NaV1.3/β1/β2 complex41. Cells
expressing NaV1.6

EM complex were resuspended in buffer A (20mM
HEPES pH 7.5, 150mM NaCl, 2mM β-mercaptoethanol (β-ME),
aprotinin (2μg/mL), leupeptin (1.4μg/mL), pepstatin A (0.5μg/mL))
using a Dounce homogenizer and centrifuged at 100,000 × g for 1 h.
After resuspension in buffer B (buffer A supplemented with 1% (w/v)
n-Dodecyl-β-D-maltoside (DDM, Anatrace), 0.15% (w/v) cholesteryl
hemisuccinate (CHS, Anatrace), 5mM MgCl2 and 5mM ATP), the
suspension was agitated at 4 °C for 2 h and the insoluble fraction was
removed by centrifugation again at 100,000 × g for 1 h. The super-
natant containing solubilized NaV1.6

EM was then passed through
Streptactin Beads (Smart-Lifesciences, China) via gravity flow at 4 °C
to enrich the protein complex. The resin was subsequently washed
with buffer C (buffer A supplemented with 0.03% (w/v) glycol-
diosgenin (GDN, Anatrace)) for 10 column volumes. The purified
NaV1.6

EM complex was eluted with buffer D (buffer C plus 5mM
desthiobiotin (Sigma, USA)) and was subsequently concentrated to
1mL using a 100 kDa cut-off Amicon ultra centrifugal filter (Merck
Millipore, Germany). The concentrated protein sample was further
purified by size exclusion chromatography (SEC) using a Superose 6
Increase 10/300GL (GE Healthcare) column pre-equilibrated with the
buffer E (20mM HEPES pH 7.5, 150mM NaCl, 2mM β-ME, 0.007%
GDN). Finally, the fractions containing homogeneous-distributed
protein particles were collected and concentrated to ~4mg/mL for
cryo-EM sample preparation.

Cryo-EM sample preparation and data acquisition
For the preparation of cryo-EM grids, 300-mesh Cu R1.2/1.3 grids
(QuantifoilMicro Tools, Germany) were glow-discharged under H2-O2
condition for 60 s. A droplet of 2.5μL of purifiedNaV1.6

EM complexwas
applied to the grid followed by blotting for 4–5 s at 4 °C under 100%
humidity using a Vitrobot Mark IV (Thermo Fisher Scientific, USA). In
the case of the preparation of NaV1.6

EM complexwith 4,9-anhydro-TTX,
50μM 4,9-anhydro-TTX (Tocris, UK) was added to the sample before
vitrification. Cryo-EM data were collected on a 300-kV Titan Krios
transmission electron microscope (Thermo Fisher Scientific, USA)
equipped with a Gatan K2 Summit Direct Electron Detector (Gatan,
USA) located behind the GIF quantum energy filter (20 e-V). SerialEM81

wasused to collectmovie stacks at amagnification of ×130,000 (1.04 Å
pixel size) with a nominal defocus range from –1.2 to –2.2 μm. A total
dose of 50–60 e−/Å2 was acquired for each movie stack under a dose
rate of ~9.2 e-/(Å2s) and dose-fractionated into 32 frames. A total of
3,985 and 2929 movie stacks were collected for the apo- and 4,9-
anhydro-TTX-bound NaV1.6 complex, respectively.

Data processing
For the data processing of apo and 4,9-anhydro-TTX-bound NaV1.6
complex, a similar procedure was performed and a detailed diagram
was presented in Supplementary Figs. 3 and 4. All the data were pro-
cessed in RELION3.082 or cryoSPARC83. Movies weremotion-corrected
and dose-weighted using MotionCor2. Contrast transfer function
(CTF) estimation was performed with GCTF84. Particles were picked
using the AutoPick tool in RELION with templates and extracted into
256× 256-pixel boxes. Several rounds of 2D and 3D classifications were
performed to remove junk particles, followed by 3D autorefine,
Bayesian polish, and CTF refinement to improve the map quality. The
final EM density maps were generated by the non-uniform (NU)
refinement in cryoSPARC and reported at 3.4 Å and 3.3 Å, respectively,
according to the golden standard Fourier shell correlation (GSFSC)
criterion.

Model building
The sequenceof humanNaV1.6 andNaV1.7 were aligned using Jalview85,
and a homology model of NaV1.6 was generated using the molecular
replacement tool in PHENIX86. The atomic models of β1 and
β2 subunits were extracted from the structure of NaV1.7 (PDB ID: 6J8I).
All of themodelswerefitted into the cryo-EMmapas rigid bodies using
the UCSF Chimera87. Restraints for 4,9-anhydro-TTX were derived by
eLBOW in PHENIX and examined in Coot88. All residues were manually
checked and adjusted to fit the map in Coot and were subsequently
subjected to rounds of real-space refinement in PHENIX. Model vali-
dation was performed using the comprehensive validation (cryo-EM)
in PHENIX. The cryo-EM data collection, refinement, and model vali-
dation statistics are presented in Supplementary Table 3.

All figures were prepared with UCSF ChimeraX89 or PyMOL
(Schrödinger, USA)90.

Molecular dynamics simulations
The structures and force fields for protein, DMPC lipids, and ligands
were prepared using the CHARMM-GUI website. The Amber ff14SB
force field was used for both protein and lipids with the TIP3P model
for water molecules91. The GAFF2 force field parameters were used for
the ligands92. The simulated systems were solvated in water with
150mM NaCl. The energy minimization was performed using the
steepest descent method, followed by six equilibrium steps. During
the 2 ns equilibrium steps, the protein backbone atoms were
restrained to their initial positions using a harmonic potential with a
force constant of 1 kcalmol−1 Å−2 and the restraints were subsequently
removed. Berendsen’s coupling scheme was used for both tempera-
ture and pressure93.Watermolecules and all bond lengths to hydrogen
atoms were constrained using LINCS94. Finally, six independent
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production runs were performed for 100ns. The overall temperature
of the system was kept constant, coupling independently for protein,
lipids, and solvents at 303.15 K with a Nose-Hoover thermostat95. A
constant pressure of 1 bar was maintained using a Parrinello–Rahman
barostat in a semi-isotropic coupling type for x/y, and z directions,
respectively96. The temperature and pressure time constants of the
couplingwere 1 and 5 ps, and the compressibilitywas 4.5 × 10−5 bar−1 for
pressure. The integration of the equations of motion was performed
by using a leapfrog algorithm with a time step of 2 fs. Periodic
boundary conditions were implemented in all systems. A cutoff of
0.9 nm was implemented for the Lennard–Jones and the direct space
part of the Ewald sum for Coulombic interactions. The Fourier space
part of the Ewald splitting was computed by using the particle-mesh-
Ewald method97, with a grid length of 0.12 nm on the side and a cubic
spline interpolation.

The binding affinities were calculated by MM/GBSA method98–101.
The MM part consists of the bonded (bond, angle, and dihedral),
electrostatic, and van der Waals interactions. The solvation free ener-
gies were obtained by using the generalized Bornmodel (GB part), and
the non-polar term is obtained from a linear relation to the solvent-
accessible surface area (SA part). For each independent trajectory, the
first 20 ns trajectory was discarded and 800 frames from 20–100 ns
were used for MM/GBSA calculations. The final binding affinity for
each ligand-protein complexwas obtained by taking the average of the
six independent trajectories. Regarding the clustering analysis, struc-
ture alignmentwasfirst performed for each twoof the structures in the
trajectory by using Least Squares algorithm which aligns two sets of
structure by rotating and translating one of the structures so that the
RMSD betweenmatching atoms of the two structures isminimal. Then
the clustering analysis was performed by using GROMOS102 with a
RMSD cut-off of 1.5 Å to determine the structurally similar clusters. All
the simulations were performed using the GROMACS 2021 suite of
programs103.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon reasonable request. The three-dimensional cryo-EM
density maps have been deposited in the Electron Microscopy Data
Bank (EMDB) under accession codes EMD-34387 (NaV1.6/β1/β2) and
EMD-34388 (NaV1.6/β1/β2-4,9-anhydro-TTX). The atomic coordinates
have been deposited in the Protein Data Bank (PDB) under accession
codes 8GZ1 (NaV1.6/β1/β2) and 8GZ2 (NaV1.6/β1/β2-4,9-anhydro-TTX).
The UniProt accession codes for the sequences of human NaV1.6, β1,
and β2 are Q9UQD0, Q07699, and O60939, respectively. The
accession codes for the coordinates of NaV1.7, CaVAb, and CaV3.1
used in this study are 6J8J (NaV1.7), 4MS2 (CaVAb), and 6KZO (CaV3.1).
Source data are provided as a Source data file. Source data are
provided with this paper.
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