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Kagome qubit ice

Alejandro Lopez-Bezanilla1, Jack Raymond2, Kelly Boothby2,
Juan Carrasquilla 3,4, Cristiano Nisoli 1,5 & Andrew D. King 2,5

Topological phases of spin liquids with constrained disorder can host a
kinetics of fractionalized excitations. However, spin-liquid phases with distinct
kinetic regimes have proven difficult to observe experimentally. Here we
present a realization of kagome spin ice in the superconducting qubits of a
quantum annealer, and use it to demonstrate a field-induced kinetic crossover
between spin-liquid phases. Employing fine control over local magnetic fields,
we show evidence of both the Ice-I phase and an unconventional field-induced
Ice-II phase. In the latter, a charge-ordered yet spin-disordered topological
phase, the kinetics proceeds via pair creation and annihilation of strongly
correlated, charge conserving, fractionalized excitations. As these kinetic
regimes have resisted characterization in other artificial spin ice realizations,
our results demonstrate the utility of quantum-driven kinetics in advancing the
study of topological phases of spin liquids.

Dynamics in crystals typically proceed via the motion of topological
defects such as dislocation gliding1. One might expect the kinetics of
disordered systems to be naturally free. But in spin liquids, where
disorder is present but constrained, kinetics often also proceeds
through defects or excitations endowed with a conserved topological
charge2. For instance, frustrated spin systems, such as pyrochlore3,4 or
square5–7 spin ices, remaindisordered at low temperatures, leading to a
Pauling residual entropy, and their disorder is constrained by the so-
called ice rule8. There, kinetics consists of creation/annihilation and
walks of localized violations of the ice rule, in the form of emergent
magnetic monopoles9 that conserve a topological charge.

Among spin ices, the kagome ice model10–18 has been widely stu-
died because it mimics a remarkable variety of natural and artificial
systems, from rare-earth pyrochlores3, to nanomagnetic fabrications19,
gravitationally trapped colloids15, as well as many others20–28. Kagome
spin ice can in principle manifest unusual phases13–15, but the large
energy scales of artificial implementations pose an experimental
challenge; thorough measurements of these phases and the physical
conditions driving the phase-to-phase transition are scarce, and an
experimental description of their kinetics is entirely lacking.

Herewe present a kagome qubit ice realized in a superconducting
quantumannealer.Using this experimental platform,we study itsfield-
induced spin-liquid phases and quantum-activated kinetics. We
experimentally establish that topological constraints affecting the

dynamics proceed via charge-conserving fractionalized excitations.
Using thousands of programmable externalmagnetic fields,wedetune
the system from itsmore common ice-rule-obeying “Ice-I” phase into a
field-induced “Ice-II” phase, which exhibits charge order while
remaining spin-disordered.We then report on the essential differences
in quantum-activated kinetics between the two phases.

Results
Kagome spin ice
Kagome spin ice consists of magnetic dipoles as classical binary Ising
spins arranged along the edges of a hexagonal lattice and therefore on
the sites of a kagome lattice. They point from one triangular “ice ver-
tex” (kagomeplaquette) to another (Fig. 1a).We can thus introduce the
notion of a charge for a vertex, defined as the number of spins pointing
toward the vertex minus those pointing away from it. Because of the
odd coordination, a vertex can host only nonzero, odd charges q = −3,
−1, 1, 3 (Fig. 1b).

The simplest magnetic kagome model includes interactions only
among spins impinging on the same vertex. Since not all pairs of spins
at a vertex can simultaneously assume an energy-minimizing head-to-
tail configuration, the system is frustrated. The ground state is there-
fore an extensively degenerate ensemble of disordered spins obeying
the (pseudo-) ice rule: frustration is minimized when each vertex has
two spins pointing in and one pointing out, or vice-versa. This ice
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manifold is often called the Ice-I phase and can be thought of as a spin
liquid forming an overall neutral plasma of disordered ±1 magnetic
charges. In the Ice-II phase13,14,29, disordered spins still obey the ice rule
but charges are ordered in an ionic lattice30–33.

Kagome qubit ice
In this work, we realize kagome spin ice in a quantum annealer. Its
superconducting flux qubits are described by the transverse field Ising
Hamiltonian

HQ = � Γ
X
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where σ̂x and σ̂z are Pauli matrices on the qubits, J is an energy pre-
factor on the classical Ising Hamiltonian, hi are per-qubit program-
mable longitudinalfields34, and Jij is programmable two-qubit couplers.
Γ is a transverse field entangling the Pauli matrices and thus controls
quantum fluctuations.

Kagome spin ice can be mapped to a classical Ising model35, and
therefore to the Hamiltonian of Eq. (1). Consider alternating A and B
vertices pointing up (▵) and down (▿), respectively, in Fig. 1a. We
assign an Ising spin value si = +1 if it points into the A vertex, and si = −1
if it points into the B vertex (Fig. 1b). Then, standard kagome ice cor-
responds to the Hamiltonian

HI = J
X

hi,ji
sisj +

X

i

hisi ð2Þ

where each nearest-neighbor spin is coupled antiferromagnetically.
We then embed the kagome lattice in the graph of available two-

body couplers, as shown in Fig. 1c, by modifying an embedding of a
Z2 lattice gauge theory into the transverse-field Ising model36. Each
kagome site is represented by a ferromagnetic three-qubit chain, and
nearest-neighbor chains are coupled antiferromagnetically with two
physical couplers. (Three qubits are needed for each kagome lattice
site because it is not possible to directly couple two arbitrarily cho-
sen qubits.)We use h and J (with no index) to denote the total field on
a three-qubit chain and the total coupling between two neighboring
chains, respectively, obtaining the kagome qubit ice (KQI) Hamilto-
nian
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where ~Γ = Γ3=J2FM is an effective transverse field on the three-qubit
chains for a ferromagnetic chain coupling JFM37, ~σi denotes a logical
moment represented by a three-qubit chain, and indices i and j are also
over three-qubit chains, rather than individual qubits.

Phases
When Γ= ~Γ =0 and h =0, the extensively degenerate ground state
manifold of HKQI corresponds to that of HI, which is the commonly
seen Ice-I phase19. But we can go beyond this regime. In nanoscopic
realizations, another phase of lower entropy is possible30,31,33,38. In such
systems, it is driven by the long-range nature of the dipolar
interactions13,14. It still has disordered ice-rule obeying spins, but with
charges ordered in an ionic lattice where A and B vertices have
opposite charges. While the spins remain disordered, though at lower
entropy13,14,39, their disorder is topologically constrained: it can be
mapped to a dimer cover model12,39 and considered a case of classical
topological order2,29,40,41. This is often called the Ice-II phase, and its
topological nature should show topologically protected kinetics. (Note
also that Ice-II can also be considered a broken symmetry phase with
unsaturated order parameters in the context of magnetic
fragmentation18,42,43).

Indeed, the kinetics in the Ice-I phase is not gapped: It is pos-
sible to flip a single spin—or indeed an extensive number of single
spins—without violating the ice rule and thus without creating an
excitation (see also Supplementary Informations). Thus, the system
can kinetically explore the phase from within the local low-energy
manifold.

Instead, in the Ice-II phase any individual spin flip disrupts the
charge balance, thus creating an excitation. Therefore2 the kinetics of
the Ice-II phase must proceed either via pair creation, motion, and
annihilation of gapped excitations, or else via cooperative, ungapped
flips of entire loops of head-to-tail spins which do not alter the charge
distribution. Suchkineticswas never probed in previous realizations of
kagome ice because the Ice-II phase has proved very hard to
reach30,31,33,38 (see Supplementary Informations). Fortunately, the
quantum annealer offers another route: we can induce it by the field h,
acting on σz, and then we can study field-induced Ice-II kinetics.

If we define a staggered charge qs on a vertex such that qs = −q for
A vertices and qs = q for B vertices, then the field h determines the
vertex energies ε−3, ε−1, ε+1, ε+3 for vertices with qs = −3, −1, 1, and 3,
respectively, as shown in Fig. 2 (see also SI).

For 0 < h/J < 4, ε+1 has the lowest energy, leading to the charge-
ordered, spin-disordered Ice-II phase as the ground state. Within this
window, Fig. 2 shows a regime crossover at h/J = 2. The lowest excita-
tions are charge-order violations upsetting the ionic crystals of charges
when 0 < h/J < 2, and ice rule violations when 2 < h/J < 4. The two types
of excitations are degenerate at h/J = 2 where the excitation gap is
highest.

Then, for h/J > 4, the ground state degeneracy vanishes, replaced
by an ordered state in which all A and B vertices have charges −3 and 3,
respectively.

To estimate pseudo-equilibrium properties of the kagome
qubit ice in these different phases, we begin with a random spin
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Fig. 1 | Kagome qubit ice. a Kagome spin ice consists of magnetic dipoles on the
edgesof a hexagonal lattice, whichpoint in or out of triangular plaquettes (vertices)
of the dual kagome lattice (gray lines). b Each vertex in a given configuration has a
nonzero charge: ±1-charged vertices satisfy the kagome ice rule; ±3-charged ver-
tices donot. Denoting triangles pointing up and down byA andB, respectively, one
canmapdipoles to Ising spins according towhetheror not the dipole points into an

A triangle. c In the kagome qubit ice, each kagome site is realized using a ferro-
magnetically coupled three-qubit chain. Sites impinging on the same triangular ice
vertex are coupled antiferromagnetically, leading to geometric frustration.
dOptical image of the superconducting quantum annealing processor in a sample
holder. 2742 qubits are used to realize 913-spin kagome ice.
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state and repeatedly expose the system to quantum fluctuations as
described by Eq. (1), by cycling the transverse field Γ on and off. An
appropriate magnitude of transverse field drives the kinetics of
this kagome qubit ice without erasing the state memory, as pre-
viously demonstrated in square ice7. After each exposure, we read

out a classical spin state. This leads to a sequence of states
amenable to statistics (see SI).

Figure 3 summarizes experimental results for varying h/J. Fig-
ure 3a shows real-space samples, represented as vertex charges, for
increasing values of h. At h = 0 we see the expected disordered charge
plasma of the Ice-I phase. Increasing h first leads to the ionic ordering
of the charge (the Ice-II phase) eventually giving way to a polarized
state in which the longitudinal field overcomes the ice rule, forming
ionic crystals of ±3 charge, and all spins have value si = 1.

Figure 3b shows the corresponding result in reciprocal space
via the Fourier transform of the spins defined as SðqÞ /Pij
eiqðri�rj Þðhsisji � hsiihsjiÞ. Our sign convention for the spins leads to the
appearance of peaks only in the Ice-II phase and its proximity, and the
formation of pinch points in the topologically protected region when
h/J = 2.5. In Fig. 3c, cuts of the Fourier transform through the high-
symmetry points in the extended Brillouin zone clearly show growing
peaks at K in the proximity of the Ice-II phase. These peaks correspond
to the expected logarithmic divergence of the dipolar correlations12

(see also Fig. 5 in ref. 12, obtained from a dimer model). They, and the
pinchpoints, follow therefore from the topological properties induced
on the phase by the charge ordering. From an implementationpoint of
view, S(q) reveals a highly symmetric system in which the multi-qubit
embedding of kagome spins preserves isotropy. This is an important
advance over the previous work7.

Fig. 3 | Field-induced charge phases and qubit ice structure. a Charge states for
varying external field h. At h =0, vertices have no energetic preference between −1
and +1 charge (light blue and red respectively), leading to charge disorder. As h
increases, A and B vertices energetically favor −1 and +1 charges, respectively,
leading to long-range order in the staggered charge. Eventually, h polarizes the
sites, leading to a preponderance of −3 and +3 charged vertices (dark blue and red

respectively). b Fourier transforms S(q) calculated from QA experimental output,
with Brillouin zone in gray. c Cuts of S(q) for varying h/J through high-symmetry
points Γ, K, and Γ0 (shown in b) show the effect of the longitudinal field on peak
height at K and pinch-point width at Γ0. d Charge order parameter. e Proportion of
vertices obeying the ice rule (error bars negligible).

Fig. 2 | Ice vertex energies (normalized to J). In the Ice-I phase (h =0), the ice-rule
vertex states ε+1 and ε−1 are degenerate (the subscripts denote the staggered
charge). Detuning h leads to an energetic preference towards the (staggered) +1-
charged configurations. Within the ice region 0 ≤ h/J ≤ 4, the energy gap is max-
imized at h/J = 2, where charge-imbalance excitations degenerate with ice-rule
excitations.
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Figure 3dplots the charge order parameter, defined asone-thirdof
the average staggered charge of a vertex. The two broad plateaus at
±1/3 correspond to the Ice-II phases.

Figure 3e confirms the high ice-rule obedience throughout the
Ice-I and Ice-II phases,whichbreaks down ath/J > ∣4∣where, fromFig. 2,
the lowest energy vertex no longer obeys the ice rule.

Topologically protected quasi-classical kinetics
These measurements validate the annealer’s effectiveness as an
experimental platform for probing phases of the Ising kagome spin ice
system near a low-temperature equilibrium. By employing con-
secutive output states separated dynamically by a relatively short
exposure to a relativelyweak transverse field Γ (compared to J), we can
also probe the quasi-classical kinetics.

As mentioned above, in the Ice-II ground state a single spin flip
always corresponds to fractionalized excitations, as either violation of
the Ice-II charge-order constraint, or a violation of the kagome ice rule
(Fig. 2). We can define a topological charge (or t-charge) as qt = q +1,
qt = q−1 for A and B vertices, respectively. In the Ice-II charge-ordered
ground state, the topological charge is zero on all vertices. Instead,
excitations of the Ice-II phase are topologically charged. Their t-charge

Fig. 4 | Kinetics and field-induced topological protection. aWithin the quantum
annealer, the kinetics is driven by a reverse anneal protocol wherein the qubits (Eq.
(1)) are exposed to quantum fluctuations (Γ) and thermal fluctuations ðT=J Þ for a
duration of 1μs between projected classical output states. b Quantum annealer
output samples. For eachh/J, two consecutive states are shown, alongwith the spin-
flip difference between them. For the states, up and down triangles denote charge-
order violations and ice-rule violations, respectively. For the spin–flip differences,
crosses denote excitations in state i, and circles denote excitations in state i + 1. For

h/J = 2.5, near the middle of the field-induced Ice-II phase, the two excitation types
are nearly degenerate, with a large gap. Thus excitations are suppressed although
they can move freely. c and d Flipped spins c form a subgraph of the dual honey-
comb lattice (d), and the degree distribution in this subgraph relates to quasi-
particle behavior; d = 2 sites correspondwith closed loops or long chains of flipped
spins, indicating collective spin flips or motion of fractional excitations. e Field-
dependence of the degree distribution indicates different field-induced kinetic
regimes (error bars negligible).

Fig. 5 | Quantum annealing schedule and protocol. a Transverse field Γ(s)
and Ising energy scale J ðsÞ as a function of annealing parameter s. Note that
the total coupling between two three-qubit chains is 1:8J . b Quantum
evolution Monte Carlo method. A sequence of classical readout states is
generated by repeated exposure to quantum fluctuations and thermal
fluctuations.
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is conserved: flipping a spin creates a pair of fractional excitations of
t-charges ± 2 and zero net t-charge. Further flips can separate the t-
charges, which can then be annihilated when meeting other, opposite
ones. This situation of paired fractional excitations is very reminiscent
of square and pyrochlore ice7,44, although here the topological charge
is not themagnetic charge, as it can describe both a violation of the ice
rule and a violation of the charge order.

To probe the thermal and quantum-activated kinetics of the Ice-I
and Ice-II phases, we compare QA output samples. Between con-
secutive samples, the qubits are exposed to the transverse field for
1 μs, and at the same time J is dropped. This protocol is depicted in
Fig. 4a (see also Fig. 5). Since the system is in a thermal bath at 12mK,
this allows both quantum and thermal fluctuations to drive
dynamics7.

In agreement with the description above, our results show a
kinetics of fractionalized excitations, that can be created and annihi-
lated inpairs of opposite topological charge, andmore rarely a kinetics
consisting of flips of entire loops of spins—which can always be con-
strued mathematically as creations followed by the annihilation of
topologically charged pairs.

Figure 4b shows two representative samples from each of
h/J =0.5, 2.5, 4, corresponding roughly to the boundaries and the
middle of the field-induced Ice-II phase. Ice-rule and charge-order
violations are shown as triangles. Between the two samples, we

highlight the spins that flip during the exposure to fluctuations, as well
as the motion of fractional excitations.

At h/J =0.5 the charge order is fragile and we are close to the Ice-I
phase (see also Fig. 3d). We see many excitations popping up errati-
cally, and they are charge order violations, due to their small energy
cost (see also Fig. 2).

At h/J = 2.5 we see far fewer excitations, and the kinetics consists
of their wandering. We also see the flipping of closed loops of spins.
One fractional excitation escapes off the boundary, one appears from
the boundary, and one moves to another location through a chain of
flipped spins. This picture is consistent with the large energy gap
shown in Fig. 2, which suppresses the pair creation of excitations.

At h/J = 4, we again see a regime inwhich excitations can appear at
low cost; these cheap excitations are now ice-rule violations, in con-
trast to the charge-order violations seen near the Ice-I phase, con-
sistent with the energetics (see also Fig. 2).

To quantify the creation/annihilation and motion of fractional
excitations, we consider the subgraph of the honeycomb lattice whose
edges correspond to flipped spins (Fig. 4c, d) between consecutive
states. We measure the degrees (valencies) of honeycomb sites in this
graph. A closed loop of flipped spins results in only degree-two hon-
eycomb sites. Conversely, an open chain of flipped spins will have
degree two in the interior, and degree one on the ends. This can involve
the motion of a fractional excitation, with or without creation/

Fig. 6 | Embedding of the kagome lattice into the qubit graph. a and b Each
kagome site is represented by three qubits, coupled together ferromagnetically in a
chain (Jij= −1.5). The entire qubit graph and embedding are shown in a with green
and orange lines representing FM and AFM couplers, respectively; b shows a

detailed zoom, with operable and inoperable qubits represented by filled and
empty circles, respectively. c and d The embedding shown in a realizes a 729-site
kagome lattice, which can be viewed as Ising spins (c), or magnetic dipoles (d).
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annihilation. In general, degree-two spins correspond to the motion of
excitations,while degree-one spins correspond to creation/annihilation.

Figure 4e shows that the system is overall most active around
h/J =0 andh/J = 4, which corresponds to points of degeneracy (see also
Fig. 2) where excitations are cheapest. The plot of the relative fre-
quency of excitation motion over pair creation/annihilation shows a
maximum around h/J = 2, the point of the maximum gap, where exci-
tations are most expensive and kinetics consists mostly of their ran-
domwalk,much likemonopoles in squareor pyrochlore spin ice at low
temperature.

The non-monotonicity of the curves in Fig. 3e shows that in
kagome qubit ice, by tuning the gap of the phase, the topological
protection of the kinetics can be controlled, from a hard-to-
distinguish soup of excitations at h/J = 0, 4, to a clear picture of

creation/annihilation and motion of fractionalized excitations
around the value h/J = 2.

Discussion
We have realized kagome qubit spin ice in 2742 superconducting flux
qubits of a quantum annealing processor and explored its field-
induced spin-liquid ice phases. We have studied the quantum-acti-
vated, topologically protected kinetics of the Ice-II phase and shown
that it proceeds via creation/annihilation and propagation of charge-
conserving fractionalized excitations. We emphasize that quantum
fluctuations are used here only to drive kinetics, but can be employed
in the future to study entangled states. Furthermore, the kagome
antiferromagnet in a transverse field Γ has a rich ground-state phase
diagram45 arising from high-order perturbations in Γ, which may be

Fig. 7 | Suppressed disorder with fine-tuned Hamiltonian terms. Example data
are shown for nominal AFM coupling values of J =0.9 and local fields of h =0.6.
a and b Over 100 iterations, tightly concentrated average qubit magnetizations,
and spin–spin correlations of coupled pairs indicate a balanced degenerate ice
system. c–e This is achieved by small adjustments of couplers (c), adjustment of

fields (d), and qubits are balanced using flux-bias offsets at h =0 that are also used
at nonzero h. Note the twomodes in d, where boundary spins are assigned roughly
half the field of bulk spins, in accordance with their degree in the graph, to achieve
similar magnetizations.
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probed in future work. Our results demonstrate that quantum annea-
lers are capable of implementing exotic programmable phases of
frustrated spin liquids, whose gap and topologically protected kinetic
regimes can be finely tuned.

Methods
Quantum annealing methods
The QA processor used in this work was a D-Wave Advantage QPU
(Fig. 1d) housed in Burnaby, BC, Canada, operating at T = 12 mK and
accessed remotely. The QPU contains 5627 operable superconducting
flux qubits ofwhichweused 2739 to implement our kagomequbit spin
ice. The architecture is discussed in ref. 46.

In quantum annealing, the Hamiltonian (1) in the Main Text is
controlled by an annealing parameter s ranging from 0 to 1:

HQðsÞ= � ΓðsÞ
X

i

σx
i +J ðsÞ

X

i

hiσ
z
i +
X

ij

Jijσ
z
i σ

z
j

 !
, ð4Þ

where Γð0Þ≫J ð0Þ and Γð1Þ≈0≪J ð1Þ.
Thus a typical “forward anneal”, in which s is ramped linearly for

the duration of anneal time ta (s = t/ta) begins in an easily prepared
superposition ground state and ends in a low-energy state of a classical
Ising Hamiltonian. For simulating spin systems, it has proven useful7,47

to employ a “quantum evolution Monte Carlo” method, in which a
chain of classical samples S0,…Sk is generated (see Fig. 5). To generate
Si, the system is initialized in state S0 at the end of the anneal (s = 1),
then “reverse annealed” back to some intermediate s*, paused at s* to
allow equilibration for some time tp, then quickly quenched back to
s = 1. Although thismethod can be used to estimate observables from a
transverse field Ising model at s*47, here we just use quantum fluctua-
tions as a driver of mixing dynamics between low energy states in the
kagome ice system.

In this work, we generate chains of k = 128 samples, starting with a
random initial state S0. To estimate equilibrium properties (Fig. 3 of
Main Text) we use tp = 256μs and discard the first 64 samples of each
chain (and the random initial state) as Monte Carlo burn-in. For
dynamics inquiries (Fig. 4 of Main Text and Fig. 5) we use tp = 1μs. In
both cases, we interrogate the Hamiltonian of Eq. (4) using s* = 0.32,
which was chosen to give an appropriate amount of mixing in one
microsecond (smaller s leads to faster mixing since both Γ=J and T=J
are larger7). When statistical quantities are estimated, we take the
average of 200 repeated experimental iterations; each iteration
includes a call to the QPU for each value of h probed.

Graph embedding
The qubits in theQA processor are intercoupled in a “Pegasus” layout48,
inwhich aqubit is coupled toup to 15 other qubits. From these available
couplers, we select a geometry that represents a kagome graph using
three qubits per kagome spin as depicted in Fig. 1c of theMain Text.We
show the full embedded lattice in Fig. 6. The kagome embedding does
not require theuse of all qubits, and it is possible to embedadefect-free
lattice with no site vacancies, despite the existence of some inoperable
qubits (empty circle in Fig. 6, panel c).

Since ferromagnetic chains are sometimes broken, they are
majority-voted to provide an unambiguous mapping from the qubit
system to the kagome system. We run all experiments presented herein
with Jij=0.9 forAFMcouplers and Jij=−1.5 for FMcouplers. This choice of
ferromagnetic coupling is sufficient to guarantee that chains are almost
never broken in QPU output, despite the frustration in the system.

Disorder suppression
In this application, we perform many experiments on a single pro-
grammed lattice, whose classical ground state is highly degenerate.
Under such conditions, it is appropriate to refine the general-purpose
QA calibration by exploiting symmetries in the system.

For example, when h = 0 each qubit should have average mag-
netization si

� �
=0. Thus we tune per-qubit flux offsets to balance

qubits at zero for h = 0, then use the same flux offsets when h ≠0. In
this experiment, we are not interested in probing boundary condi-
tions. Rather, we want to simulate the thermodynamic limit of an
infinite system. In an infinite system, for any fixed h, the correlation of
two neighboring kagome sites hsisji is the same. Thus we fine-tune the
AFM couplers to promote this property. Since the three-qubit FM
chains are almost never broken, we do not fine-tune the FM couplers.
Similarly, for anyfixedh ≠0, themagnetizationof eachqubit should be
equal; we fine-tune the per-qubit fields hi to promote this property
(maintaining the property that the average 1

N

P
ihi does not change

from the nominal value h). These calibration refinements are per-
formedbefore collecting the analyzeddata. Figure 7 shows an example
of this refinement for J = 0.9, h =0.6, with the magnetizations and
correlations achieved, and the programmed values that achieve them.

Data availability
All data are available upon request.
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