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Surprising combinations of research con-
tents and contexts are related to impact and
emerge with scientific outsiders fromdistant
disciplines

Feng Shi 1,2 & James Evans 2,3,4

We investigate the degree to which impact in science and technology is
associatedwith surprising breakthroughs, and how those breakthroughs arise.
Identifying breakthroughs across science and technology requiresmodels that
distinguish surprising from expected advances at scale. Drawing on tens of
millions of research papers and patents across the life sciences, physical sci-
ences and patented inventions, and using a hypergraph model that predicts
realized combinations of research contents (article keywords) and contexts
(cited journals), here we show that surprise in terms of unexpected combi-
nations of contents and contexts predicts outsized impact (within the top 10%
of citations). These surprising advances emerge across, rather than within
researchers or teams—most commonly when scientists from one field publish
problem-solving results to an audience from a distant field. Our approach
characterizes the frontier of science and technology as a complex hypergraph
drawn from high-dimensional embeddings of research contents and contexts,
and offers a measure of path-breaking surprise in science and technology.

19th Century philosopher and scientist Charles Sanders Peirce argued
that neither the logics of deduction nor induction alone could
characterize the reasoning behind path-breaking new hypotheses in
science, but rather their collision in a process he termed abduction.
Abduction begins as expectations born of theory, experience or tra-
dition become disrupted by unexpected or surprising findings1. Sur-
prise stimulates scientists to forge new claims thatmake the surprising
unsurprising. Hereweempirically demonstrate across the life sciences,
physical sciences, and patented invention that, following Peirce, sur-
prising discoveries and inventions are predictors of outsized impact.
But it is unclear where new hypotheses come from. One account is
serendipity or making the most of surprising encounters2,3, encapsu-
lated in Pasteur’s oft-quoted maxim “chance favors only the prepared
mind”4, but this poses a paradox. The successful scientific mind must
simultaneously know enough within a scientific or technological

context to be surprised at anomalies, but enough outside that context
to imagine why they should not be surprising. Here we show how
surprising successes systematically emerge across, rather than within
researchers; most commonly when those in one field surprisingly
publish problem-solving results to audiences in a distant other.

We frame surprise in science and technology as the violation of
expectations held by those within a scientific field about future
advance5. This demands that we predict the composition of future
research with sufficient accuracy that what cannot be forecast will
surprise the community of scientists and inventors who also compete
to anticipate the future6,7. Our generative model deviates from pre-
viouswork that simply scores a paper or patent’s novelty bycomparing
its components to those of an average or random one8,9. It also
deviates from work that focuses on the institutional structures that
influence discovery in science10–15. This conceptual shift to directly
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model research outputs leads to better assessments of research
novelty and its reception as surprise by researchers within scientific
and technical communities. Because of this complex interplay, we use
unexpected, novel, surprising, and their derivations interchangeably in
this paper.

Prior literature8,16–19 has achieved success in modeling discoveries
and inventions with a combinatorial process. Our approach builds on
this, drawing inspiration from recent demonstrations that beyond
simple combinations, higher-order structure is critical for under-
standing complex networks, from transportation and neural
networks20 to foodwebs21,22. We model advancing science and tech-
nology with an embedding of scientific contents and contexts from
biomedical and physical science articles and technology patents.
Contents refer to the substance of papers and patents such as con-
cepts and methods, while contexts refer to scientific or technological
disciplines from which concepts and methods are drawn.

Distinguishing contents from contexts allows us to characterize
thenatureof a discoveryor invention’s novelty and associated surprise
more precisely than before23. A new combination of contents may
surprise because it has never succeeded before, even though it may
have been considered and attempted previously in a shared
context24–27. A new discovery or invention that cuts across divergent
contexts may surprise because it has neither been attempted nor
imagined before—a combination of ideas inaccessible within a single
disciplinary conversation. The separate consideration of contents and
contexts also allows us to contrast scientific discovery with technolo-
gical search: Fields and their boundaries are clear and ever-present for
scientists at all phases of scientific production, publishing and pro-
motion, but largely invisible for technological invention and its certi-
fication in legally protected patents and marketed products.

Results
To predict new innovations in science and technology, we develop a
model that generates normal discoveries as combinations of prior
knowledge28–31. Our model articulates a simple cognitive process: Sci-
entists and inventors combine things together that are (1) scientifically
or technologically close and (2) cognitively salient. While formally
simple, this model is more effective than those from the literature and
even advanced deep learningmodels in capturing surprise and impact
(see SI for detailed comparisons). Following from this design, we
model the likelihood that contents or contexts become combined in
the future as a function of (1) their proximity in a latent embedding
space derived from the complex network structure of prior relation-
ship among contents and contexts and (2) their salience to scientists
through prior usage frequency.

Specifically, we develop a generative hypergraph model that
extends the mixed-membership stochastic block model32 into high-
dimensions, characterizing complete combinations of contents and
contexts (Fig. 1). Themodel (1) constructs a continuous embedding for
nodes from the hypergraph of contents or contexts in a given year, (2)
allows that embedding to evolve stochastically, then (3) draws a new
hypergraph from the updated embedding, which forms our prediction
for next year’s combinations in published articles33. This design allows
us to predict which new combinations are expected to occur based on
current trends in content andcontext. This, in turn, allowsus to identify
surprising combinations—those least likely according to our model—
when they arise and forecast their impact (see “Methods” for details).

In this study, we apply ourmethodology to threemajor corpora of
scientific knowledge and technological advance: 19,916,562 biomedi-
cal articles published between 1865 and 2009 from the MEDLINE
database; 541,448 articles published between 1893 and 2013 in the
physical sciences from journals published by the American Physical
Society (APS), and 6,488,262 patents granted between 1979 and
2017 from the US Patent database (see “Methods” for details.)
We operationalize research contents as keywords distilled within

community-curated ontologies—Medical Subject Heading (MeSH)
terms for MEDLINE papers, Physics and Astronomy Classification
Scheme (PACS) codes for APS papers, and United States Patent Clas-
sification (USPC) codes for patents. We operationalize contexts as
disciplinary journals and conferences referenced within a paper
(or technology classes cited by a patent). For each dataset in each year
we build a hypergraph of contents where each node corresponds to a
content keyword and each hyperedge (a “link” between ≥2 nodes) to a
research paper or patent that combines all such keywords.Meanwhile,
for each dataset in each year we separately build a hypergraph of
contexts where each node corresponds to a journal or conference (or
major technological area for patents) and each hyperedge to a paper
or patent that references these disciplinary contexts as sources of
inspiration and influence.

Across biomedical sciences, physical sciences, and inventions, our
model correctly distinguishes between a content combination that
turned into a publication and a randomcombinationmore than 95% of
the time for a given year when trained on data from previous years
(Biomedicine: AUC =0.98; Physics: AUC=0.97; Inventions: AUC =
0.95). New context combinations are also predictable (Biomedicine:
AUC =0.99; Physics: AUC=0.88; Inventions: AUC=0.83). See “Meth-
ods” for detailed model evaluations. The successful prediction of
future combinations suggests that our model inscribes a space of
latent knowledge. Researchers tend towander locally across this space
in generating new papers and patents. This aligns with previous find-
ings regarding inertia and conservative search in science24,34–37 and
gives us further confidence in the model.

With a measure of what science and technology is expected, we
can assess the novelty of a combination h as its improbability or
surprisal38. Isofar as we model contents and contexts separately—a
paper is simultaneously a combination of contents (e.g., curated key-
words) and a combination of contexts (e.g., cited journals)—we also
measure the content and context novelty of a paper separately cor-
responding to the suprisal of its content and context combinations,
respectively.

The research our model identifies as surprising is perceived and
labeled as groundbreaking by established scientists who review it for
the Faculty Opinions platform—formerly Faculty of 1000 (facultyopi-
nions.com), as detailed below (and in Supplementary Fig. 7 and SI).
Surprising papers also achieve outsized impact. For example, the work
of Grynkiewicz and colleagues39 defines a novel family of chemical
compounds including Fura-2, discovered to be highly fluorescent and
bind to free calcium. This was a surprising discovery—pulling diverse
properties together that crossed traditional field boundaries with
content and context novelties in the99th percentile and receivingmore
than 16,000 citations to date. Research by Yanagisawa and
colleagues40 isolated endothelin, one of the most potent vasocon-
strictors at the time (1988), and employed several distinct, community
spanning methods to examine its properties and mechanisms, dis-
covering its potential as a modulator of ion channels. This discovery is
in the 95th percentile of content and context novelty, receiving more
than 14,000 citations since publication. By contrast, content and
context novelties diverge inworkbyAltschul and others41, which lies in
the 97th percentile of context novelty, but only the 15th percentile of
content novelty. The work used a computer system to search protein
andDNAdatabases anddid not itself represent a surprising biomedical
discovery, but produced a widely used tool sourced from across the
computational and bio-sciences fields, making it one of the 15 most
cited articles of all time42.

Surprise relates to impact
We sytematically examine how surprise relates to citation impact and
awards by dividing biomedical science (MEDLINE) papers into citation
deciles and normalizing novelty scores, transforming them into per-
centiles. The decile-averaged content and context novelties increase
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significantly with citation decile, as shown in Fig. 2a, b. The same
pattern is observed in physical science (APS) papers and patents
(Supplementary Figs. 4 and 5). Further, Nobel prize-winning papers,
which are all in the top 10% citation group, have lower-than-average

context novelty, but high content novelty. Most general award-
winning papers across Biology and Medicine lie in the top 10% of
citations and follow the same pattern. This divergence between cita-
tions and awards for paperswith high context novelty follows from the

Fig. 1 | Illustration of the embedding space and example combinations.
a Illustrationof themanifold inscribing all embeddings θ and an evaluation of three
articles or patents (hyperedges h1-3) in terms of their surprising combinations.
Articles/patents h1 and h3 represent projects that combine scientific or technical
components near one another in θ, making each of high probability and low (ϵ)
surprise—similar tomany related papers from the past. By contrast, paper h2 draws
a novel combination of components unlike any paper from the past, making it of

low probability and high (≫ϵ) surprise. See Supplementary Fig. 2 for a real density
plot of the MeSH terms. b, Actual three-dimensional projection of the embeddings
of a sample ofMeSHcodes fromMEDLINE articles in our analysis. Also included are
MeSH terms in the most surprising article (combination in the middle), the least
surprising article (combination on the left), and a random article in between
(combination on the right) among this sample of articles including four
MeSH terms.
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distinction in audience. Citations are conferred by all scientists who
credit an advance, but awards are offered by disciplinary communities,
which overvalue advances within their contexts and undervalue trans-
disciplinary research that violates context boundaries43.

The probability of being a hit paper—in the top 10% of most cited
papers published in the same year—increases monotonically with
novelty percentile. For biomedical (MEDLINE) papers, those with the
most surprising combinations of context are on average four times
more likely to be a hit paper than random, surprising content combi-
nations are two times more likely (Fig. 2c), and the most surprising
content and context combinations are approximately five times more
likely (Fig. 2d). These effects are amplified for super hits in the top 1%
most cited papers (see Supplementary Fig. 6 and SI.) On average,
nearly 50% of papers in the group of highest joint content and context
novelties are hit papers, as shown in Fig. 2d. This predictive power
outperforms other predictive models of hit papers in the literature.
Moreover, it improves upon baseline models that predict impact with
features—like content and context—available prior to publication (See
SI for a detailed comparison.).

Content versus context novelty
Both content and context novelties predict outsized impact, but they
provide nearly independent information regarding the ongoing

construction of scientific ideas and technological artifacts. The cor-
relation between propensities for content and context combinations
are low across biomedical science (MEDLINE: Pearson-r(5259751)
<0.001, two-tailed p =0.94), physical science (APS: Pearson-
r(136274) = 0.03, two-tailed p < 0.001), and invention (USPatent:
Pearson-r(2019493)<0.001, two-tailed p =0.29). These findings sug-
gest that our separation of content and context is necessary as they
capture distinctive aspects of a scientific or technical advance. The
experienced distinction between content and context novelty is rein-
forced by expert classifications of biomedical papers from the Faculty
Opinions platform, in which selected publishing scientists post favor-
ite papers (74% of which are hits) and annotate them with predefined
tags including “New finding”, “New drug target”, “Technical advance”,
“Interesting hypothesis”, and “Controversial”. When we consider
papers selected and tagged by experts between 1990 and 2000,
comparing against each other and all published papers from that
period, we find that content novelty is most strongly and distinctively
associatedwithNewfindings andDrug targets,while context novelty is
most distinctively linked to Controversial, Interesting hypothesis
and Technical advance (see Supplementary Fig. 7 and SI for details).
These associations are above baseline, and distinct from one another.
These associations provide support for our argument that novel
content combinations yield legible advances within research fields,

Fig. 2 | Association between surprise and citation impact or awards for MED-
LINE papers.Mean content (a) and context (b) novelty for papers within each
citation decile are plotted against the deciles, tracing a monotonic rise; Including
averages for papers of Nobel prizes in Physiology or Medicine and general awards
in Biology and Medicine. A piece-wise linear line connecting the data points is
shown in each plot, with an error bar of 1 SEM around each data point which is too

small to be observable. Probability of being a hit paper is plotted against content
and context novelty separately (c) and jointly (d), manifesting a monotonic
increasewith novelty. Each dot in c represents a (novelty percentile, hit probability)
data point for a certain year, and a third-order regression line to the data points is
shown with a 95% bootstrap confidence interval. Source data are provided as a
Source Data file.
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while novel context combinations generate field-violating controversy
and surprise.

Distinctions between science and technology
Results for patents relate to those from the biological and physical
sciences in ways that illuminate distinctions between institutions of
scientific and technological advance. The most surprising patents are
two times more likely to be hits than random (Supplementary Fig. 5),
but context novelty possesses less predictive power for patents. Dis-
ciplinary boundaries are weaker in technology space, where patent
examiners, unlike scientific reviewers, do not enforce them.The lackof
discrete fields enables inventors to search more widely, but removes
the signal from violations of context in the prediction of advance.
When we calculate content similarity between cited journals and
venues where citing papers are published (see “Methods” for details),
we see that scientists cite contexts similar to their publishing venue
500% more intensively than contexts that are distant (Fig. 3a)44, pre-
senting their work as if “standing on the shoulders” of likely
reviewers45. Inventors of patented technologies cite distant sources
with at least the same likelihood as those nearby. They are not
reviewed by peers and present their work as if to highlight their novel
distinction from neighboring work. Following from this difference, we
find that the distribution of collective attention differs in science ver-
sus technology. We quantify the spread of attention with the normal-
ized entropy of the number of publications containing each content
node, shown in Fig. 3b. Keywords in the patent space receive more
equal attention (higher entropy), while attention is more peaked and
focused in biological and physical science.

Sources of innovation
Finally, we assess sources of surprising advance in the form of sur-
prising researchers, surprising research teams, and surprising research
expeditions. A surprising scientist or inventor is one with an unex-
pected biography combining diverse research experiences. A surpris-
ing team is one comprising an unexpected combination of team
members—scientists or engineers from an unusual collection of
backgrounds. A surprising research expedition is one in which scien-
tists or inventors travel from their disciplines an unexpected distance
or direction to address problems framed by a distant audience. Using
context embeddings, inscribed by journals and conferences, and Eq. 2,
we quantify (1) career novelty for a scientist or engineer as the

improbability or surprisal of the combination of contexts in which she
has ever published, (2) team novelty by the surprisal of contexts
brought together across teammembers’ publication histories, and (3)
expedition novelty by the average distance between team members’
publishing backgrounds and the publication venue of their focal paper
or patent (See “Methods” for formal definitions). Figure 4a shows that
for biomedical (MEDLINE) papers the probability of being a hit paper
increases gradually with career and team novelty, but expedition
novelty rises more quickly as the strongest predictor.

Papers representing the most surprising publication expeditions
are 3.5 times more likely than random to be hit papers. Three-
dimensional novelty distributions graphed in Fig. 4b also show that
career and team novelties are correlated, suggesting that successful
teams not only have members from multiple disciplines, but also
members with diverse backgrounds who stitch interdisciplinary teams
together. Successful knowledge expeditions (i.e., those that result in
publications), however, are most correlated with breakthrough dis-
covery. Figure 4b reveals howhigh expedition novelty in the absence of
team and career novelty remains associated with an increased prob-
ability of hit papers. Thepatternof effects in thephysical sciences (APS)
is consistent with those in the biomedical sciences (MEDLINE) with the
association between expedition novelty and the probability of hit
papers even more pronounced (Supplementary Fig. 8). These findings
align with observations in the literature that creative researchers
including Nobel laureates search across structural holes46,47, as well as
literature on individual and team impacts48–52. This pattern is different
for patents (Supplementary Fig. 9) where expedition novelty is not
significantly associatedwith hits because (1) novelty is theprimarybasis
of patent evaluation, (2) subfields are not enforced and, as a result, (3)
expedition novelty is so frequent that it loses its value as a signal of
outsized impact: its skewness is .61, nearly three times larger than in the
life sciences (skewness 0.26) and the flipside of physics, where such
expeditions are less common (−0.36).

Discussion
We offer support for Pierce’s contention that abduction characterizes
advance by showing that surprise anticipates disproportionate impact
in science and technology. Up to 50% of outsized impact can be pre-
dicted by improbability under models that predict new research pro-
ducts. Moreover, we demonstrate how abduction is a collective
process, typically occurring across teams of scientists and inventors

Fig. 3 | Citation and attention bias in science versus technology. a Likelihood of
citing context nodes variously familiar with the publication venue for papers in
MEDLINE (blue), APS (orange), andUS Patent (green). A 3rd-order regression line to
the data points from each dataset is shown with a 95% bootstrap confidence
interval. Papers in MEDLINE and APS reference contexts similar to those in which
they are published more intensively than contexts that are distant. Patents, by
contrast, reference close or distant sources with roughly the same likelihood.

b Entropy of attention on the content nodes over time. The entropy of attention is
calculated as the entropy of the number of publications associated with each
content node. To compare entropy across years and datasets, it is normalized by
the logarithm of the number of content nodes each year in each dataset. The
content nodes in the patent space receive more equal attention (higher entropy),
compared to MEDLINE and APS, across the years shown in the figure. Source data
are provided as a Source Data file.
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rather than within them. The most surprising successes occur not
through interdisciplinary careers or multi-disciplinary teams53,54, but
expeditions of scientists from one disciplinary context traveling to
another. This implies that abduction is routinely social, where scien-
tists from distant fields achieve substantial impact in advancing on a
topic or challenge by bringing them into conversation with alien
insights and perspectives.

We note several limitations associated with our study. In our
analysis, we only evaluate our surprisemeasureonpapers that pass the
filter of peer review.We would like to test our model andmeasures on
papers that did not make it through that process—presumably some
containing speculative associations culled in review. Unpublished
historical papers in most fields remain inaccessible, and we defer their
investigation for future research, butwe expect that the impactwefind
associated with surprise hinges on the collective skepticism novel
work endures through peer review55. Another limitation follows from
our coarse-grained operationalization of paper contents as keywords
and contexts as cited journals. Like unpublished papers, full-text his-
torical papers are unevenly available, and high-quality information
extraction (e.g., equations, chemicals) from scanned technical journals
poses a continuing challenge. Moreover, our modeling task distin-
guishes realized papers from random ones, rather than registering
accuracy at predicting all published papers. Finally, our representation
of each paper as a hyperedge—an unstructured bag of keywords—
ignores the structural recipe at the heart of its scientific contribution.
Despite these limitations, our analysis provides a model and measure
of surprise that predicts some part of how scientists evaluate research
articles and use them in future science.

Combinatorial frameworks have been a promising approach to
conceptualizing novelty17. Here we operationalize this with an gen-
erative model based on hypergraph embedding and empirically
demonstrate the power of higher-order structures in predicting future
publications and patents that exceeds prior prediction efforts and
even advanced deep learning architectures in capturing novelty and
impact. By showing the generative sufficiency of the combinatorial
approach for identifying next years’ keyword combinations underlying
published discoveries and patented inventions, we demonstrate that it
is not simply one among many ways to conceptualize and model
novelty, but the preferredmodel fromwhich to anticipate advance. By
revealing that the contents and contexts of research manifest a neg-
ligible correlation (<0.1), and that they map onto different scientific
judgments from experts, this study disentangles and calls attention to
two conceptually distinct dimensions of a novel contribution that had
formerly been understood and measured as one. Moreover, while
several have demonstrated a bias against novelty for receiving grants
or achieving publication9,56,57, we show how this is generally replaced
by an impact bias favoring novelty among papers selected for suc-
cessful publication.

Our findings suggest how models that predict expected and sur-
prising advance represent tools for evaluating the degree to which
scientific and technical institutions facilitate progress. For example,
our results indicate that granting scientific awards for breakthrough
progress, from Nobel Prizes to the plaques and certificates sponsored
by nearly every scientific society, tend to reward conservative sur-
prises. Scientific societies convene conferences, publish journals, and
honor surprising combinations of scientific contents already familiar

Fig. 4 | Association between scientists’ backgrounds and impact. a Probability
that a hit biomedical paper was produced by scientists manifesting greater career,
team and expedition novelty; with career and team novelty closely correlated and
expedition novelty sharply deviating. A 3rd-order regression line to the data points

from each novelty type is shown with a 95% bootstrap confidence interval. b Hit
probability as a function of career, team, and expedition novelties jointly with hit
probability denoted by color. See “Methods” for details on how the heatmaps are
produced. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-36741-4

Nature Communications |         (2023) 14:1641 6



to their members, even though surprising context combinations are
more predictive of outsized citations and apparent scientific influence.
This suggests that awards may represent a conservative influence on
scientific advance43,58,59. Similarly, our findings reveal that scientists
amplify the familiarity of their work to colleagues, editors, and
reviewers, increasing their references to familiar sources by nearly
500%, likely in order to gain favor and appear relevant to reviewers and
readers—to build on the shoulders of their audience60–64. This rein-
forces the internal focus of dense fields, which collectively learn more
about less. Inventors, by contrast, cite and search widely to know less
aboutmore65, providing new evidence for complementarities between
search in science and technology and justifying why fundamental
insights emerge not only from fundamental but also practical
investigations66–68.

Finally, in exploring collective abduction, our work formalizes the
concept of a ‘knowledge expedition’, where scientists from one intel-
lectual region travel to a distant other and address a problem familiar
to the new audience, but with a surprising approach. These expedi-
tions are distinct from interdisciplinary scientists or multidisciplinary
teams, and if successful, they increase the likelihood that their work
will disrupt the frontier and refocus scientific attention. This insight
lays out a research agenda to understand the nature and influence of
trans-disciplinary research expeditions. This becomes important in
the wake of recent research demonstrating that scientific subfields
may defend their internal approaches and understanding against
invasion from outsiders69,70. Moreover, our findings call for analysis
and experiments to explore the causal relationship between cross-
disciplinary expeditions and punctuated advance. If expeditions do
prove to systematically cause such advance, trans-disciplinary ven-
tures could be systematically measured71,72, catalyzed73, incentivized74

and expanded. The suggestive importance of expeditions for impact-
ful surprise contrasts with research that focuses on inter- and multi-
disciplinarity as primary sources of advance75–77, suggesting that they
are also consequences of it. Furthermore, a causal relationship
between expeditions and advance would hold implications for grad-
uate education, which might be redesigned to target scientific and
technological breakthroughs by sponsoring the trans-disciplinary
search for problems, framing every student, team and expedition as
an experiment, whose complex combination of backgrounds could
condition novel hypotheses with the potential not only to succeed or
fail, but radically alter the knowledge they conceive and the technol-
ogy they create.

Methods
There are no human or animal subjects involved in this study.
According to the University of Chicago Social and Behavioral Sciences
Institutional Review Board, the study “does not meet the definition of
regulated human subjects research requiring review per 45 CFR
46.102(e)(1).”

Data
This work investigates three major corpora of scientific and techno-
logical knowledge: 19,916,562 papers published between 1865 and
2009 in biomedical sciences from the MEDLINE database, 541,448
papers published between 1893 and 2013 in physical sciences from all
journals published by the American Physical Society, and 6,488,262
patents granted between 1979 and 2017 from the US Patent database
(USPTO). The building blocks of content for those articles and patents
are identified using community-curated ontologies—Medical Subject
Heading (MeSH) terms for MEDLINE, the Physics and Astronomy
Classification Scheme (PACS) codes for APS, and United States Patent
Classification (USPC) codes for patents. Then we build hypergraphs of
content where each node represents a code from the ontologies and
each hyperedge corresponds to a paper or patent that realizes a
combination of the nodes.

We acknowledge the potential conservative influence from using
established keywordontologies rather than all of thewords from titles,
abstracts or full-text of articles and patents. Nevertheless, we note that
the ontologies we examine do evolve over time, with active additions
following the concentration of research in a given area. Moreover,
these ontologies allow us to use the community of authors (APS),
annotators (MEDLINE), and examiners (USPTO) to crowdsource the
disambiguation of scientific and technological terms. Futureworkmay
explore how words differ from keywords, especially in the emergence
of new fields.

Medline. MEDLINE is the U.S. National Library of Medicine’s (NLM)
bibliographic database. It contains abstracts, citations, and other
metadata for more than 25 million journal articles in biomedicine and
health, broadly defined to encompass those areas of the life sciences,
behavioral sciences, chemical sciences, and bioengineering. The ver-
sion of data used in this study contains 19,916,562 papers published
between 1865 and 2009. Because coverage for papers prior to 1966 is
limited, our main analysis focuses on papers published in and after
1966, but with pre-1966 papers as background information
when predicting new content and context combinations. To allow
the published papers to accumulate enough citations for assessing
their impact, our novelty analysis focuses on papers published in
and before 2000. In sum, all papers are used to estimate the hyper-
graph embeddingmodel and 10,057,935 papers areused in the novelty
analysis.

Medical Subject Headings (MeSH) is the National Library of
Medicine’s controlled terminology used for indexing articles in MED-
LINE. It is designed to facilitate the determination of subject content in
the biomedical literature.MeSH terms are organized hierarchically as a
tree with the top-level terms (called headings) corresponding tomajor
branches such as “Diseases” and “Chemicals and Drugs”, with multiple
levels under each branch. Terms in the bottom level are the most fine-
grained, detailed concepts associated with distinct biological phe-
nomena, chemicals, andmethods.We use the bottom-level terms from
the three branches that are central to the biomedical field— “Diseases”,
“Chemicals and Drugs”, and “Analytical, Diagnostic and Therapeutic
Techniques and Equipment” (or methods for short)—as nodes
in the hypergraphs of content of MEDLINE papers. Terms from
the Diseases branch include conditions such as “lathyrism” and
“endometriosis”; examples from the Chemicals and Drugs branch
include “elastin”, “tropoelastin”, “aminocaproates”, “aminocaproic
acids”, “amino acids”, “aminoacetonitrile”, and “amyloid beta-protein”;
and examples from the Analytical, Diagnostic and Therapeutic
Techniques and Equipment branch include “polyacrylamide gel elec-
trophoresis”, “ion exchange chromatography”, and “ultracentrifuga-
tion”. NLM curators manually affix MeSH codes to papers as they are
ingested into MEDLINE and made available through the popular
PubMed platform.

APS. The APS dataset is released by the American Physical Society
(APS). It contains 541,448 papers published between 1893 and 2013 in
12physics journals:Physical Review,Physical ReviewA,B, C, D, E, I andX,
Physical Review Special Topics - Acceler and Physics, Physical Review
Letters, and Reviews of Modern Physics.

The dataset contains basic metadata for each paper including
title, publication year, abstract, etc. It also contains the Physics and
Astronomy Classification Scheme (PACS) codes associated with each
paper. We use the PACS codes as nodes in hypergraphs of content to
characterize APS papers. Similar to MeSH, PACS is also a hierarchical
partition of the whole spectrum of subject matter in physics, astron-
omy, and related sciences. Example PACScodes include “Mathematical
methods in physics”, which range from “Quantum Monte Carlo
Methods” to “Fourier analysis”; “Instruments…” such as “Electron and
ion spectrometers” and “X-ray microscopes”; “Specific theories…” like

Article https://doi.org/10.1038/s41467-023-36741-4

Nature Communications |         (2023) 14:1641 7



“Quark-gluon plasma” and “Chiral Langrangians”; and “...specific par-
ticles” ranging from “Baryons” to “Quarks”. Unlike MeSH codes, which
are added by curators, PACS codes are affixed by authors to their own
papers through the publishing process. The PACS codes were devel-
oped by the American Institute of Physics in 1970 and have been used
by APS since 1975. Since PACS codes are not available for papers
published before 1975 and the coverage of them in papers prior to
1980 is limited, our main analysis is restricted to APS papers published
after 1980, but with the pre-1980 papers as background information
when predicting new content and context combinations. To allow the
published papers to accumulate enough citations for assessing their
impact, our novelty analysis focuses on papers published in and before
2000. In sum, all papers are used to estimate the hypergraph
embeddingmodel and 148,786 papers are used in the novelty analysis.

The dataset only contains citations between the APS papers. In
order to obtain external citations we query the Web of Science (WOS)
database to collect all the journals citedby theAPSpapers. Particularly,
in the WOS database we find all the papers published by the 12 APS
journals, and then all the journals cited by those papers. The journals
are thenused asnodes in hypergraphs of context for theAPSpapers. In
addition, we query the WOS database to collect the number of cita-
tions a paper receives for more accurate assessment of the paper’s
impact.

US Patents. The US Patent dataset is released by the US Patent &
Trademark Office (USPTO). It contains 6,488,262 patents published
between 1976 and 2015. The dataset contains basic metadata for each
patent such as title, publication year, USPC (United States Patent
Classification) codes, etc. The USPC is a classification system used by
USPTO to organize all U.S. patent documents and other technical
documents into specific technology groupings based on common
subject matter. The USPC is a two-layer classification system. The top
layer consists of terms called classes, and each class contains sub-
components called subclasses. According to USPTO, a class generally
delineates one technology from another and every patent is assigned a
main class. As such, weuse the class codes as nodes in the hypergraphs
of context for patents. Subclasses delineate processes, structural fea-
tures, and functional features of the subject matter encompassed
within the scope of a class, and thus we use subclass codes as content
nodes for the patents. In total, there are 158,073 subclass codes
(content nodes) and 496 class codes (context nodes).

To allow the granted patents to accumulate enough citations for
assessing their impact, our novelty analysis focuses on patents granted
in and before 2000. In sum, all patents are used to estimate the
hypergraph embedding model and 2,436,257 patents between 1976
and 2000 are used in the novelty analysis.

Nobel prize papers. The Nobel prize-winning papers are derived from
the Nobel laureates dataset by Li et al.78, which contains publication
histories of nearly all Nobel prize winners from the past century.
However, the focus of that dataset is on the Nobel laureates, but our
study focuses on award-winning papers. While it is relatively easy to
find out the person who won a prize, it is hard to pinpoint the papers
that contribute to the winning of the prize. Li et al. take a generous
approach by including papers cited by Nobel lectures and papers
published in the same period of one’s prize-winning work (while
satisfying several inclusion criteria). This results in noise for our ana-
lysis as not every paper in their dataset is a prize-winning paper. As a
conservative solution, for every Nobel laureate we take their most
cited paper in the dataset and use only those papers as award-winning
papers in our analysis. We acknowledge that a few Nobel prizes are
attributed to an opus of work and this filtering process might miss a
few relevant papers, but themost important (in termsof impact) paper
for every prize is kept, with every paper representing an award-
winning paper.

General award-winningpapers. In Fig. 2, we compare the content and
context novelty of our entirepopulationofMEDLINEpaperswith those
receiving awards. The general awards data is from Foster et al.25. They
define award-winning papers as those authored by a scientist whowon
an international award or prize. They first created a large list of prizes
by drawing from the category pages for biology awards, medicine
awards, and chemistry awards in Wikipedia and then validated them
with several biomedical scientists. Then they identified the winners of
137 different prizes and awards frombiology,medicine, and chemistry.
For eachwinner, if at all possible, they retrieved all paperswritten from
0 year to 30 years before the award was granted.

False positives could be introduced due to mis-assignments of
papers to awards. However, as these false-positive papers would be
typical rather than award-winning, they likely behave like the majority
of published papers and dilute the effectwe report. False negatives are
also possible if we missed papers published by certain award winners.
For instance, papers written by authors with non-English characters in
their names are underrepresented. These false negatives similarly
dilute our estimate of the distinctivenessof award-winning papers. Our
non-Nobel prize findings should therefore be viewed as a conservative
estimate of the difference between prize winning papers and the pool
of all papers. Still, we are able to identify that prize winning papers are
significantly higher in content novelty than the average paper within a
given citation decile, but that they are not systematically higher in
context novelty, likely because awards are typically conferred by a
single context—a journal, association, or field.

Hypergraph embedding model
Wemodel discoveries and inventions as hypergraphs of contents and
contexts with a combinatorial process that assembles previous con-
cepts and technologies from prior papers or patents. Past research
examining combinatorial discovery and invention has modeled only
partial combinations, deconstructing new products into component
pairs8,79 and resting onmature analysis tools for simple graphs, which
define direct links between entities. Here we model science and
technology as a complex hypergraph drawn from an embedding
of research contents and contexts, where individual discoveries or
inventions are rendered as complete sets of each. For a given
hypergraph, whether composed of content or context nodes, the
propensity of any combination of nodes to form a hyperedge is
modeled as a product of two factors: proximity between nodes in the
combination and their cognitive salience. Combinations with higher
propensity will be more likely to turn into papers and patents,
agreeing with the intuition that people tend to search locally and
pursue trending topics.

To formalize this idea, each node i is associated with a latent
vector θi that embeds the node in a latent space constructed to opti-
mize the likelihood of observed papers and patents. Each entry θid of
the latent vector denotes the probability that node i belongs to a latent
dimensiond, and thus

PD
d = 1θid = 1. Dimensions underlying these latent

vectorsnaturally recover scientificfields; see Supplementary Fig. 1. The
complementarity between nodes in a combination h is modeled as the
probability that those nodes belong to the same dimension,∑d∏i∈hθid .
This hypergraph embeddingmodel can be understood as an extension
of the mixed-membership stochastic block model32, which was
designed for networks with only pairwise interactions.

We also account for each node’s cognitive availability because
most empirical networks display great heterogeneity in node con-
nectivity, with a fewpopular contents and contexts attracting themost
attention—intensively drawn upon by many papers and patents. Pre-
vious work has shown that by integrating heterogeneity of node con-
nectivity, the performance of community detection in real-world
networks improves80. Accordingly, we associate each node i with a
latent scalar ri to account for its salience, presumably tied with its
overall connectivity in the network.
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Assembling these components, we model the propensity (λh) of
combination h—our expectation of its appearance in actual papers and
patents—as the product of proximity between nodes in h and their
salience or visibility:

λh =
X
d

Y
i2h

θid ×
Y
i2h

ri:

Then the number of publications or patents that realize combination h
ismodeled as a Poisson randomvariable with λh, the propensity of that
combination, as its mean:

Xh ∼Poisson λh
� �

Accordingly, the probability of observing a hypergraph G is the pro-
duct of probabilities for observing all possible combinations:

P G∣Θ,Rð Þ=
Y
h2H

P xh∣Θ,R
� �

,

where xh is the number of observed papers or patents that realize
combination h and H is the set of all possible combinations. (Θ,R)
denotes all unknown parameters:

Θ= θ1,:::,θn

� �
andR = r1,:::,rn

� �
:

Finally, we model a time sequence of hypergraphs G1,:::,GT
� �

as the
output of a Hidden Markov Process on latent parameters Θ,R:

P G1,:::,GT ∣Θ1,::,ΘT ,R1,:::,RT
� �

=P G1∣Θ1,R1
� �

YT

t = 2

P Θt ,Rt ∣Θt�1,Rt�1
� �

P Gt ∣Θt ,Rt� �
,

where time is indexed by the superscript t, and the transition density
P Θt ,Rt ∣Θt�1,Rt�1
� �

is a Gaussian density.
Given articles published by a certain year T, we estimate para-

meters Θ1,:::,ΘT ,R1,:::,RT
� �

by maximizing the likelihood function
above via stochastic gradient descent. Then the model enables us to
predict combinations in year T + 1. However, even with stochastic
gradient descent, model estimation is still computationally challen-
ging due to the vast spaceof possible combinations.We address issues
in the estimation process as follows.

First, the space of possible combinations is exponentially large
(on the order of 2n), and it is computationally prohibitive to go over all
possible combinations even with stochastic gradient descent. How-
ever, it is rare for large combinations to turn into hyperedges, and
hence, we restrict the set of possible combinations to include only
combinations no larger than the largest hyperedge observed.

Second, because the real hypergraphs are sparse, the sets of
hyperedges and non-hyperedge combinations are exceedingly unba-
lanced with the number of hyperedges to be on the order of n but the
number of non-hyperedge combinations on the order of nD(whereD is
the size of the largest hyperedge). We employ a widely used approach
in machine learning, negative sampling, to address this imbalance
issue. Specifically, in each iteration of the training (optimization)
process, we randomly sample as many non-hyperedge combinations
as hyperedges to construct balanced hyperedge and non-hyperedge
sets. Negative sampling effectively changes the objective function we
optimize. The original objective function can be rewritten as
log P G∣θ,Rð Þ=Ph2E log P xh∣θ,R

� �
+
P

h2�E logP xh∣θ,R
� �

, where E is the
set of hyperedges and �E is the set of non-hyperedge combinations.
Negative sampling turns the second term in the objective function into
a random function X =

P
h∼P hð Þ logP xh∣θ,R

� �
where h is randomly

drawn from �E. This random function is a biased estimator of the

original objective. To illustrate the bias, assuming the simplest case
of stochastic gradient descent where we draw 1 negative sample
for each positive sample, the expectation of X then becomesP

h logP xh∣θ,R
� �

P hð Þ= 1
∣E∣

P
logP xh∣θ,R

� �
where ∣E∣ is the size of �E

and P hð Þ= 1=∣�E∣ because h is a draw from �E uniformly at random. The
result formore complex stochastic gradient descent algorithms canbe
derived similarly with more complicated factors in front of the second
term. In general, the effect from the second term is down-weighted
due to negative sampling. Despite this estimator’s statistical bias, it
works well in practice for word embeddings81, question answering82,
and many other applications, outperforming the comparable but
unbiased contrastive learning approach by co-minimizing bias and
variance81. We also found this approach worked best in our model as
seen in high predictive power despite bias. Nonetheless, we acknowl-
edge that estimation could be further improved by considering more
advanced sampling schemes83, which we defer to future work.

Lastly, to facilitate the stochastic gradient descent, we take amini-
batch of hyperedges and non-hyperedges to compute the gradient of
the objective function at each step of the training process.

Model evaluation
As a brief summary, we investigate three datasets: MEDLINE, APS, and
US Patent; each dataset contains hypergraph data over several dec-
ades; and we model content and context hypergraphs separately.
Consequently, for each dataset, for each year t covered by the dataset,
we fit the model to the hypergraph of contents and separately to the
hypergraph of contexts up to year t. In total, we estimate
2 × TMEDLINE +TAPS +TPatents

� �
models where T is the number of years

covered by our study from the corresponding dataset. Then, we
evaluate the fitness of each model by its predictive performance of
(out-of-sample) future combinations.

For example, given hypergraphs of MeSH terms up to and
including year 2008, we estimate the hypergraph embedding model,
and use the estimated model to predict hyperedges in 2009. Specifi-
cally, using the estimates of the parameters θ,rð Þ, we can compute the
propensity λh of any combination h of MeSH terms in year 2009, fol-
lowing Equation (1) λh =

P
d

Q
i2hθid ×

Q
i2hri. Then we assess the mod-

el’s predictive performance in terms of its AUC (Area Under the
Operator-Receiver Curve). Statistically, AUC is the probability that a
random combination which turned into a hyperedge (positive com-
bination) in 2009 would have a larger propensity than a random
combination that did not turn into a hyperedge (negative combina-
tion) in 2009. To estimate this quantity, we randomly sample a positive
combination and a negative combination of the same size from 2009,
and check whether the positive combination has a larger propensity
than the negative. The simulation is repeated for 10000 times and we
calculate the fraction of times where the positive has larger propensity
than the negative, which is the estimation of the AUC score in pre-
dicting hyperedges in 2009. It is easy to see that a perfect predictor
would achieve an AUC score of 1 and random guesses would have an
AUC of around 0.5. The larger the number, the better the predictive
performance.

Probability of hit papers and patents
A hit paper (or patent) is defined as one among the top 10%most cited
papers (or patents) published in the same year. For example, for all the
papers published in 1990, we count all the citations they received in
the time period covered by our dataset, and the top 10% most cited
papers are hit papers.

To study the effect of novelty on the probability of being a hit
paper, for all the papers published in each year, we first transform the
rawnovelty scores of the papers into percentiles, and thendivide them
into 30 equally sized bins in ascending order of the novelty scores.
Thenwe assess the probability of hit papers for each bin as the fraction
of hit papers in that bin. Finally, the probability of hit papers for each
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bin is plotted against the center percentile value in that bin in Figs. 2, 4,
Supplementary Figs. 4, 5, 6, 8 and 9.

Similarly, to study the joint correlation of different novelties with
the probability of being a hit paper, we divide the papers intomultiple
bins according to content and context novelty simultaneously. For the
joint effect of content and context novelty, we divide the paper into
30-by-30 bins in terms of both novelties, then calculate the fraction of
hit papers in each bin. Next we regress the probability of being a hit to
content and context novelties. Fitted values of hit probability are then
visualized asa 2Dheatmapacross the full rangeof content and context
novelty scores.

For the joint effect of career, team, and expedition novelty, we
divide the papers into 20-by-20-by-20 bins in terms of their source
novelty scores, and then calculate the fraction of hit papers in eachbin.
Again, we fit a polynomial function between hit probability and the
three novelties to obtain the average relationship:

P hitð Þ∼
X1

i,j,k =0

careernoveltyi × teamnovelty j × expeditionnoveltyk

The resulting 3D heat cube comprises 6 2D heatmaps where color
denotes the fitted probability of hit for any given values of (career
novelty, team novelty, expedition novelty).

A detailed comparison with other models in predicting hit papers
or patents is presented in the Supplementary Information.

Preferences on context in citations
To assess the intensity with which scientists and inventors cite con-
texts (e.g., journals and conferences) familiar to their audience, we
compute the similarity between every pair of context nodeswhere one
cites the other. For example, for a paper i published in journal X, we
calculate the similarity between the journal X and every journal cited
by paper i. Similarity is quantified by the cosine similarity between two
vectors representing the content of the two journals, conditioned on
the content of paper i. Specifically, each journal is represented by a
vector and each entry in the vector corresponds to a content node
(MeSH terms, PACS codes, or patent subclasses); the value of an entry
is the number of papers containing the corresponding content node
and ever published by the journal, appropriately normalized so that
the sum of the vector is 1. In other words, the vector consists of the
loadings of the journal on different contents. When calculating the
similarity between two journals, wedonot directly compute the cosine
similarity between their vectors, as those vectors contain substantial
information irrelevant to the paper currently under consideration.
Instead, we use only the entries corresponding to content nodes in
paper i to calculate the cosine similarity between the two journals.

As we sweep through all papers (or patents), we obtain a dis-
tribution of the similarity between citing-cited context pairs: the num-
ber of times for which context nodes at a given similarity with the
audience context (i.e., the citing context) are cited. To normalize this
distribution, we also compute the potential space of citation similarity—
the number of times at which context nodes at a given similarity would
becitedat random.Weachieve thisby the followingprocedure: for each
paper, sample as many context nodes uniformly at random from all
context nodes as thoseoriginally cited, treat the sampled context nodes
as if they were cited by the paper, and carry out the same similarity
calculations as above. Finally, we have two distributions of similarity
between citing-cited context pairs—one observed and one simulated by
random sampling—and we take the ratio of the two as the likelihood of
citing a context at a given similarity with the audience’s context.

Career, team and expedition novelty
Assuming θi is the embedding of context node i (e.g., a journal or
conference), wedefine career, team, and expedition novelty as follows.

Careernovelty. For any scientist, we collect all contexts (e.g., journals)
in which she has ever published papers into list C. Then we calculate
the surprisal across all contexts in her career using Eq.
(2):career novelty= � log

P
d

Q
i2Cθid . Next, given a paper, we use the

average career novelty across the authors of the paper to assess how
career novelty associates with paper impact.

Team novelty. For any paper, we first pool all the contexts (e.g.,
journals) where authors of the paper have published, without dupli-
cation.Wedenote this list of contexts byT. Next, weuse Eq. (2) again to
calculate the surprisal of this list: team novelty= � log

P
d

Q
i2Tθid .

Finally, we compare the paper’s team novelty to its impact to assess
their association.

Expedition novelty. For any paper, we again collect all contexts
where its authors have published into a list T. Denoting
the context where this paper is published by θv, we calculate the
expedition novelty of this paper (or the authors of the paper)
by expedition novelty=averagei2T 1� θi � θv

� �
.

Our career, teamandexpeditionnoveltymeasures alsocontribute
to the literature on interdisciplinarity measures84, which include pro-
minent measures that approach interdisciplinarity from the perspec-
tive of journal keyword combinations using the Web of Science75,85,86

and diversity or inequality indices (e.g., the Simpson Index, Shannon
Entropy, and the GINI coefficient) assessed over these keywords87,88.
Our measures differ from those above by being more granular and
embedding the keywords into a continuous, high-dimensional space.
Other work in the literature accounts for the similarity or difference
between research fields combined89,90. Our measure does this auto-
matically by accounting for the combinations of keywords required to
characterize current literature and predict future research. Still others
are built atop measures of centrality in networks of publication. By
measuring the inner product of term vectors, our measure also
approaches a continuous measure of centrality within the embedding
space of contents and contexts. In short, our measure captures desi-
derata from each of the major categories of novelty measurement—
diversity of combination, accounting for differences between com-
ponents, and which represents centrality in the continuous embedded
manifold.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw MEDLINE data are available at the PubMed database (https://
pubmed.ncbi.nlm.nih.gov/download/) and the processed MEDLINE
data used in this study are open-access at Harvard Dataverse (https://
doi.org/10.7910/DVN/NFSYYA). The APS data used in this study are
available at https://journals.aps.org/datasets. These data can be
obtained through APS by submitting a request. The US Patent data
used in this study are open-access in the patentsview database at
https://patentsview.org/download/data-download-tables. The “Nobel
Prize Papers” data used in this study are open-access at Harvard
Dataverse https://dataverse.harvard.edu/dataset.xhtml?persistentId=
doi:10.7910/DVN/6NJ5RN. The “General Award-Winning Papers” data
used in this study are open-access at Harvard Dataverse https://doi.
org/10.7910/DVN/NFSYYA). The “facultyopinions” data used in this
study are open-access at Harvard Dataverse (https://doi.org/10.7910/
DVN/NFSYYA). Source data are provided with this paper.

Code availability
Code that supports the main findings of this study are available on
GitHub:91 https://github.com/KnowledgeLab/hyper-novelty.
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