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Hierarchical graph learning for protein–
protein interaction

Ziqi Gao 1,2, Chenran Jiang3, Jiawen Zhang1, Xiaosen Jiang4, Lanqing Li 5,
Peilin Zhao5, Huanming Yang 4, Yong Huang 6 & Jia Li 1,2

Protein-Protein Interactions (PPIs) are fundamental means of functions and
signalings in biological systems. The massive growth in demand and cost
associated with experimental PPI studies calls for computational tools for
automated prediction and understanding of PPIs. Despite recent progress, in
silico methods remain inadequate in modeling the natural PPI hierarchy. Here
we present a double-viewed hierarchical graph learning model, HIGH-PPI, to
predict PPIs and extrapolate the molecular details involved. In this model, we
create a hierarchical graph, in which a node in the PPI network (top outside-of-
protein view) is a protein graph (bottom inside-of-protein view). In the bottom
view, a group of chemically relevant descriptors, instead of the protein
sequences, are used to better capture the structure-function relationship of
the protein. HIGH-PPI examines both outside-of-protein and inside-of-protein
of the human interactome to establish a robust machine understanding of
PPIs. This model demonstrates high accuracy and robustness in predicting
PPIs. Moreover, HIGH-PPI can interpret the modes of action of PPIs by iden-
tifying important binding and catalytic sites precisely. Overall, “HIGH-PPI
[https://github.com/zqgao22/HIGH-PPI]” is a domain-knowledge-driven and
interpretable framework for PPI prediction studies.

Biological functions are accomplished by interactions and chemical
reactions among biomolecules. Among them, protein–protein inter-
actions (PPIs) are arguably oneof themost importantmolecular events
in the human body and are an important source of therapeutic inter-
ventions against diseases. A comprehensive dictionary of PPIs can help
connect the dots in complicated biological pathways and expedite the
development of therapeutic1,2. In biology, hierarchy information has
been widely exploited to gain in-depth information about phenotypes
of interest, for example, in disease biology3–5, proteomics6–8, and
neurobiology9–11. Naturally, PPIs encapsulate a two-view hierarchy: on
the top view, proteins interact with each other; on the bottom view,
key amino acids or residues assemble to form important local
domains. Following this logic, biologists often take hierarchical

approaches to understand PPIs12,13. Experimentally, scientists often
employ high-throughput mapping14–16 to pre-build the PPI network at
scale, and use bioinformatics clusteringmethods to identify functional
modules of the network (top view). On the individual protein level,
isolationmethods, such as co-immunoprecipitation17, pull-down18, and
crosslinking19 are used to establish the structures of individual pro-
teins, so that surficial ‘hotspots’ can be located and analyzed. In short,
hierarchy knowledge of structure information is important to under-
stand the molecular details of PPIs.

More recently, the massive growth in the demand and the cost of
experimentally validating PPIsmake it impossible to characterizemost
unknown PPIs in wet laboratories. Tomap out the human interactome
efficiently and inexpensively, computational methods are increasingly

Received: 18 October 2022

Accepted: 14 February 2023

Check for updates

1Data Science and Analytics, The Hong Kong University of Science and Technology, Guangzhou 511400, China. 2Division of Emerging Interdisciplinary Areas,
TheHongKongUniversity of Science and Technology, Hong KongSAR, China. 3Pingshan TranslationalMedicineCenter, Shenzhen Bay Laboratory, Shenzhen
518118, China. 4The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou
310022, China. 5AI Lab, Tencent, Shenzhen 518000, China. 6Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong
SAR, China. e-mail: yonghuang@ust.hk; jialee@ust.hk

Nature Communications |         (2023) 14:1093 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-7417-3620
http://orcid.org/0000-0002-7417-3620
http://orcid.org/0000-0002-7417-3620
http://orcid.org/0000-0002-7417-3620
http://orcid.org/0000-0002-7417-3620
http://orcid.org/0000-0003-1998-4022
http://orcid.org/0000-0003-1998-4022
http://orcid.org/0000-0003-1998-4022
http://orcid.org/0000-0003-1998-4022
http://orcid.org/0000-0003-1998-4022
http://orcid.org/0000-0002-0858-3410
http://orcid.org/0000-0002-0858-3410
http://orcid.org/0000-0002-0858-3410
http://orcid.org/0000-0002-0858-3410
http://orcid.org/0000-0002-0858-3410
http://orcid.org/0000-0001-8377-8923
http://orcid.org/0000-0001-8377-8923
http://orcid.org/0000-0001-8377-8923
http://orcid.org/0000-0001-8377-8923
http://orcid.org/0000-0001-8377-8923
http://orcid.org/0000-0002-6362-4385
http://orcid.org/0000-0002-6362-4385
http://orcid.org/0000-0002-6362-4385
http://orcid.org/0000-0002-6362-4385
http://orcid.org/0000-0002-6362-4385
https://github.com/zqgao22/HIGH-PPI
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-36736-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-36736-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-36736-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-36736-1&domain=pdf
mailto:yonghuang@ust.hk
mailto:jialee@ust.hk


being used to predict PPIs automatically. Over the past decade, as one
of the most revolutionary tools in computation, Deep Learning (DL)
methods, have been applied to study PPIs. Development in this field
has been mostly focused on two aspects, learning appropriate protein
representations20,21 and inferring potential PPIs by link predictions22,23.
The former focuses on extracting structural information using protein
sequences. In particular, Convolutional Neural Networks (CNNs)24,25

and Recurrent Neural Networks (RNNs)26–28 have demonstrated high
generalization and fast inference speed to capture key sequence
fragments for PPIs29. 3D CNNs21,30,31 have shown to be better at
extracting 3D structural features of proteins and thus capturing the
spatial-biological arrangements of residues32 that are important to PPI
predictions. However, 3D CNN suffers from high computational bur-
dens and limited resolution that is prone to quantization errors29. The
latter aspect of DL in PPI predictions focuses on the PPI network
structures, which involves developing link prediction methods to
identify missing interactions within the known network topology. Link
prediction methods based on common neighbor (CN)33 assign high
probabilities of PPI to protein pairs that are known to share common
PPI partners. CN can be generalized to consider neighbors from a
greater path length (L3)22, which captures the structural and evolu-
tionary forces that govern biological networks such as the inter-
actome. Additionally, distance-based methods measure the possible
distances between protein pairs, such as Euclidean commute time
(ECT)34 and random walk with restart (RWR)35. Most methods of tra-
ditional link prediction focus on known interactions but tend to
overlook important network properties such as node degrees and
community partitions.

More importantly, these methods perceive only one of the two
views of outside-of-protein and inside-of-protein. Few can model the
natural PPI hierarchy by connecting both views. To address this issue,
we present a hierarchical graph that applies two Graph Neural Net-
works (GNNs)36,37 to represent protein and network structures,
respectively. In this way, the limitations of 3D CNN and link prediction
methodsmentioned above can be circumvented. First, GNNs can learn
the protein 3D structures on more efficient graph representations,
even when facing high-resolution requirements for structure proces-
sing. Second, due to the propagationmechanism, GNNs are capable of
recovering network properties such as node degrees and community
partitions. In short, this hierarchical graph approach aims at modeling
the natural PPI hierarchy with more effective and efficient structure
perceptions.

Here we describe a generic DL platform tailored for predicting
PPIs, Hierarchical Graph Neural Networks for Protein–Protein Inter-
actions (HIGH-PPI). HIGH-PPI models the structural protein repre-
sentations with the bottom inside-of-protein view GNNs (BGNN) and
the PPI network with the top outside-of-protein view GNNs (TGNN). In
the bottom view, HIGH-PPI constructs protein graphs by treating
amino acid residues as nodes and physical adjacencies as edges. Thus,
BGNN integrates the information of protein 3D structures and residue-
level properties in a synergistic fashion. In the top view, HIGH-PPI
constructs the PPI graph by taking protein graphs (the bottomview) as
nodes and interactions as edges and learns protein–protein relation-
ships with TGNN. In an end-to-end training paradigm, HIGH-PPI gains
mutual benefits from both views. On the one hand, the bottom view
feeds protein representations to the top view to learn accurate protein
relationships. On the other hand, protein relationships learned by the
top view provide insights to further optimize the bottom view to
establish better protein representations. HIGH-PPI outputs the prob-
abilities of interactions for given protein pairs and predicts key “con-
tact” sites for such interactions by calculating residue importance. We
show the effectiveness of HIGH-PPI on the human interactome from
the STRING database38 and compare it with leading DL methods. We
demonstrate the superiority of HIGH-PPI with higher prediction
accuracy and better interpretability. We also show examples that

HIGH-PPI can identify binding and catalytic sites with high precision
automatically.

Results
HIGH-PPI introduces a hierarchical graph for learning structures
of proteins and the PPI network
Although deep learning (DL) models for Protein–Protein Interaction
(PPI) prediction have been studied extensively, it has not yet been
developed for simulating the natural PPI hierarchy. Here, we suggest
HIGH-PPI, a hierarchical graph neural network, for accurate and
interpretable PPI prediction. HIGH-PPI works like biologists in a hier-
archical manner as it contains the bottom inside-of-protein view and
top outside-of-protein view (schematic view in Fig. 1c and detailed
architecture in Supplementary Fig. 1a). On one hand, HIGH-PPI applies
the bottom view when dealing with a protein, where a protein is
represented by a protein graph with residue as nodes and their phy-
sical adjacencies as edges. On the other hand, from the top view,
protein graphs and their interactions are considered nodes and edges
of the PPI graph, respectively. Correspondingly, two GNNs are
respectively employed to learn fromprotein graphs in thebottomview
(BGNN) and learn from a PPI graph in the top view (TGNN). Conse-
quently, a set of graphs are interconnected by edges in a hierarchical
graph, to present a potent data representation.

In the proposed end-to-end model, the initial stage is to create
protein graphs for learning appropriate protein representation. An
adjacency matrix of a protein graph is derived from a contact map
connecting physically close residues (See Section 4.1 in “Methods” for
details). Node attributes are defined with residue-level features for
expressing the physicochemical properties of proteins (See Section 4.1
in “Methods” for details). To produce a protein graph representation,
GraphConvolutionalNetwork (GCN)36 is used in BGNN to optimize the
protein graphs. As shown in Fig. 1c, BGNN contains two GCN blocks,
and we construct three components for each GCN block to obtain a
fixed-length embedding vector for a protein graph. Both the adjacency
matrix and the residue-level featuresmatrix are inputs for a GCN layer.
To respectively improvemodel expressiveness and accelerate training
convergence, the nonlinear activation function of ReLU and Batch
Normalization (BN) are used. Readout operation including a self-
attention graph (SAG) pooling39 and the average aggregation is used to
ensure a fixed-length embedding vector output. Regardless of the
number and permutation of residues, a 1D embedding vector is
obtained after two GCN blocks. By the end of those operations, the
final protein representations are assembled, which are employed as
initial features of the PPI graph. In TGNN, features are propagated
along interactions in the PPI network for learning network community
and degree properties. In the top view, we specifically design a GIN
block that contains a Graph Isomorphism Network (GIN)37 layer, ReLU
activation function and a BN layer. Node features of the PPI graph are
updated with recursive neighborhood aggregations of three GIN
blocks. Two arbitrary protein embeddings are combined by con-
catenation operations, and a Multi-Layer Perceptron (MLP) is then
applied as a classifier for prediction. Moreover, we also consider graph
attention (GAT) and arbitrarily deploy two of the threeGNN layers (i.e.,
GCN,GINandGAT) onBGNNandTGNN. TheperformanceofHIGH-PPI
with various GNN layers is shown in Supplementary Fig. 2.

We train and evaluate HIGH-PPI on multi-type human PPIs from
the STRING database38, which contains a critical assessment and inte-
gration of PPIs. SHS27k26, a homo sapiens subset from STRING38 that
comprises 1,690 proteins and 7,624 PPIs, is used to train and evaluate
the HIGH-PPI unless otherwise noted. However, a small fraction of
proteins (∼ 8%) sometimes need to be removed because of the lack of
their native structures in the PDB database. While evaluating the pre-
diction performance for multi-type PPIs, we consider the prediction
for each PPI type as a one-vs-all binary classificationproblem, forwhich
twometrics, F1 score and area under the precision-recall curve (AUPR)
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are used for predicting the presence or absence of the corresponding
PPI class. The overall performance of micro-F1 and AUPR scores for
multi-type PPI prediction is averaged across all PPI types.

HIGH-PPI shows the best performance, robustness and
generalization
To validate the predictive power of our model, we compare HIGH-PPI
with leading methods from four perspectives, including (1) the overall
performance under a randomdata split, (2) the robustness ofHIGH-PPI
against random interaction perturbation, (3) model generalization for
predicting PPI pairs containing unknown proteins, (4) evaluations in
terms of AUPR on five separate PPI types. For each method, all the
proposed modules and strategies are involved to get the best
performance.

First, we compare the overall performance of HIGH-PPI with
leading baselines in Fig. 2a. To ensure native PDB structures for all
proteins, we filter from SHS27k and construct the dataset containing
∼1600 proteins (see Supplementary Data File 1) and ∼6600 PPIs. We
randomly select 20% PPIs for testing and compare PPI to one state-of-
the-art DL method (i.e., GNN-PPI24), one sequence-based method (i.e.,
PIPR26), one 2D CNN-basedmethod (i.e., DrugVQA40) and onemachine
learning (ML) method based on random forest (i.e., RF-PPI41). GNN-PPI

applies a GNN module to learn the PPI network topology and 1D CNN
to learn protein representations by taking pre-trained residue
embeddings as inputs. PIPR, an end-to-end framework based on
recurrent neural networks (RNN), represents proteins with only pre-
trained residue embeddings. DrugVQA applies a visual question-
answering mode to learn from protein contact maps with a 2D CNN
model and extract semantic features with a sequential model. Sup-
plementaryData File 2 contains predictions ofHIGH-PPI for all test PPIs
fromSHS27k.Weprovide theprecision-recall curves in Fig. 2a. In terms
of best micro-F1 scores (best-F1), HIGH-PPI obtains the best perfor-
mance. Pre-trained residue embedding method GNN-PPI takes the
second place by effectively generalizing to unknownproteins.Without
using any pre-training techniques, HIGH-PPI surpasses GNN-PPI by an
average of ∼4%, showing the superiority of the hierarchical modeling
approach. DrugVQA gets relatively poor performance (best-F1 ≈0.7),
which could be attributed to the neglect of residue property infor-
mation and structures of the PPI network.

Second, to evaluate the robustness of HIGH-PPI, we analyze the
model tolerance against interaction data perturbation including ran-
dom addition or removal of known interactions. This simulates sce-
narios where PPI datasets always omit undiscovered interactions and
may introducemislabeledones. Basedon theperturbatedPPI network,

Fig. 1 | Schematic view of the HIGH-PPI architecture. Both the protein structure
(biology structure) and network structure (interactome structure) are essential for
predictions of PPIs. aThePPIswith protein structure information. Althoughprotein
sequence usually provides details among PPIs, it can also lead to low predictability
for PPI prediction. Left: As an example, SERPINA1 and SERPINA3, protein members
of a shared superfamily, bind to almost the same binding surface (TM-score is 0.74)
of ELANE, whereas they share low sequence consistency (identity is 0.13) locally in
the binding surface. Right: From a global perspective, gaps in the sequence and
structure of proteins also exist. SERPINA1 and SERPINA3 highly align in structure
(TM-Score is 0.89), but share a low sequence consistency (identity is 0.43). b The
PPIs with network structure information. PPI networks tend to yield community
structures that divide proteins into groups with dense connections internally

(internal edges) and sparse connections externally (external edges).cTheHIGH-PPI
is a hierarchicalmodel for learning both protein structure information and network
structure information. The HIGH-PPI contains two views, the top view and the
bottom view. In bottom view, residues serve as nodes, residue-level physico-
chemical properties as node features and edges connect physically adjacent resi-
dues. Two trainable graph convolutional blocks are applied for learning complex
protein representations. In top view, proteins serve as nodes, interactions as edges
and representations from the bottom view as node features. Three trainable graph
isomorphism blocks are applied to update protein representations and after con-
catenating a pair of query proteins, the resulting embedding is passed through the
linear classifier to learn protein correlations.
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we split the training and test sets at an 8:2 ratio. We observe in Fig. 2b
that ourmethod exhibits stable performance in terms of best-F1 with a
random perturbation of 40%. When compared to the second-best
baseline (i.e., GNN-PPI), HIGH-PPI offers a significant performance gain
of up to 19%, which demonstrates the strongest model robustness
among all methods. It is crucial to notice that although RF-PPI and
DrugVQA perform consistently in the overall evaluation (see Fig. 2a),
DrugVQA performs significantly more robustly than RF-PPI, demon-
strating the undisputed superiority of DL methods over ML ones.
Furthermore, we perform false discovery on our method, which
investigates the effect of the training data unreliability (i.e., false
negative (FN) and false positive (FP)) on ourmodel and a solid baseline
(GNN-PPI). Specifically, we consider the original dataset to be reliable
and artificially add perturbations to represent data unreliability. Sup-
plementary Table 1 shows the created 9 datasets with different FP rates
(FPRtrain) and FN rates (FNRtrain). We respectively train the model on
the reliable training set and created 9 unreliable ones and present the
FP rates (FPRpre), FN rates (FNRpre) and false discovery rates (FDRpre)
metrics on the test sets (see Supplementary Table 2 and 3). Without
unreliability, our model achieves best performance with insignificant
superiority (*P =3:8× 10�2) in the FPRpre metric, and considerable
superiority in the FNRpre (***P = 1:2 × 10�4) and FDRpre

(***P = 1:5 × 10�4) metrics. When introducing data unreliability, we are
surprised to find that ourmodel substantially improves the superiority
significance in the FPRpre metric (****P =4:0× 10�5) while retaining the
original significance in FNRpre and FDRpre. In addition to showing the
excellent robustness of our model, we also provide more in-depth
insights in Section 3.2.

Generalization ability is investigated by testing HIGH-PPI in var-
ious out-of-distribution (OOD) scenarios where unknown proteins
arrive in the test sets with different probabilities (see Fig. 2c). For
example, BFS-0.3 denotes that the test set involves 30% known pro-
teins via Breath-First Search approach24. For PIPR, DrugVQA and RF-
PPI, we visualize their best performances among all OOD cases using
dotted lines, to demonstrate the absolute dominance of HIGH-PPI and
GNN-PPI. Furthermore, we observe that HIGH-PPI consistently out-
performs GNN-PPI, the second-best method, with large margins in all
five scenarios. BFS typically produces worse performance than DFS,
because BFS creates a more challenging and realistic mode where
unknown proteins exist in cluster forms. ML method (RF-PPI) exhibits
poor generalization. Furthermore, we follow Park and Marcotte42 to
explore the differences in model performance on 3 kinds of PPI pairs
with different degrees of OOD. Specifically, C1 stands for the percen-
tage of PPIs of which both proteins were present in a training set (Class
1), C2 stands for the percentage of PPIs of which one of (but not both)
proteins was present in the training set (Class 2), C3 stands for the
percentage of PPIs of which neither protein was present in the training
set (Class 3). The detailed experimental protocol hasbeenpresented in
the SupplementaryMethod 3.We come to the same conclusion as Park
and Marcotte did42. There is a noticeable difference in model test
performance across the 3 distinct classes of test pairs. Particularly, on
Class 1 test pairs, both models (HIGH-PPI and GNN-PPI) perform the
best, on Class 2 test pairs they are the second best, and on Class 3 test
pairs they are the poorest. Furthermore, we find that for each model,
the class proportion (i.e., C1=C2=C3) had an impact on the overall
performance of the model despite having little effect on performance

Fig. 2 | Performance of HIGH-PPI in predicting PPIs. a Precision-recall curves of
PPI prediction on SHS27k (sub-dataset from STRING) containing ∼6600 PPIs and
∼1500 human proteins with native PDB structures showing the performance of
HIGH-PPI compared to baselines containing GNN-PPI, PIPR, DrugVQA and RF-PPI.
b Robustness evaluation showing the best micro-F1 scores (Best-F1) of baseline
predictions against link perturbations of various cases where links are randomly
added or removed with different ratios. Error bands of a and b represent the
standard deviation of the mean under 9 independent runs. c Generalization eva-
luation showing Best-F1s of baselines tested on a regular and 4 Out-of-Distribution
(OOD) cases, in which datasets are constructed with random split (R), Breath-First
Search (BFS) and Depth-First Search (DFS) and three ratios represent probabilities
of overlap of proteins between the training and test datasets. Distributions of Best-
F1s under 9 independent runs of HIGH-PPI and the second-best baseline (GNN-PPI)

are represented as boxplots (center line, the median; upper and lower edges, the
interquartile range; whiskers, 0:5 × interquartile range) andmoreover, dotted lines
show the mean results of 9 independent runs of PIPR, DrugVQA and RF-PPI under
DFS-0.4, the easiest OOD pattern. The significance of HIGH-PPI versus GNN-PPI is
shown in each case (Two-sided t-test results: ****P = 1:1 × 10�5 for BFS-0.3,
***P = 4:5 × 10�3 for DFS-0.3, *P = 1:0× 10�7 for BFS-0.4, ***P = 2:0× 10�2 for DFS-0.4
and **P = 3:0× 10�6 for R-0.65). d Distributions of AUPR scores of 5 independent
runs computed on 5 PPI types and corresponding proportions. Each figure shows
the performance significance of HIGH-PPI versus the second-best baseline (GNN-
PPI) (Two-sided t-test results: ****P = 2:0× 10�5 for binding, ***P = 1:7 × 10�4for
reaction, *P = 4:4× 10�2 for ptmod, ***P = 3:2 × 10�4 for catalysis and
**P =6:0× 10�3 for inhibition). Error bars represent standarddeviation of themean.
Source data are provided as a Source Data file.
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on the respective classes. Thus, it seems that the proportion of the
three test pair classes (Supplementary Table 6) as well as the percen-
tage of unknown proteins (Fig. 2c) in the test sets may both have a
significant role in determining the degree of OOD in the dataset.

Finally, for each of the five PPI types, we offer a separate perfor-
mance analysis in terms of AUPR. In all five types, HIGH-PPI con-
sistently beats other baselines with high significance as shown in
Fig. 2d. As anticipated, PPI types with high proportions (such as
binding, reaction, and catalysis) can be predictedmore easily since the
model could learn enough relevant information. In addition, we find
that when predicting binding PPIs, HIGH-PPI outperforms GNN-PPI
most significantly (****P =2:0× 10�5). This is reasonable as HIHG-PPI is
designed to recognize spatial-biological patterns of proteins, which is
highly related to binding type PPIs. Similar trends are also found in the
performance of HIGH-PPI andGNN-PPI in various PPI types under OOD
cases (Supplementary Fig. 5).

Bottom inside-of-protein view improves the performance
We investigate the role of the bottom inside-of-protein view from four
perspectives, including (1) the effectiveness of graph representations
and backbones with native protein structures, (2) the model tolerance
with low-quality protein structures, (3) the capability to predict motifs
(i.e., functional sites) in a protein, (4) the overall and type-specific
feature importance.

First, we explore the effectiveness of backbones including RF,
RNN, CNN and GNN in Fig. 3a. For fairness, we feed the same features
of residue sequence to RF, RNN and CNN, whose results are displayed
by bar charts with ‘Seq’. We directly use RF-PPI as the RF backbone. For
RNN and CNN backbones, we respectively employ the RNNmodule of
PIPR and theCNNmoduleofGNN-PPI to extract sequence embeddings
for representing proteins and apply the same fully connected layer as
classifiers. We test the predictive power of each model with 3D infor-
mation. For RF and RNN, we employ the concatenations of sequence
data and Cartesian 3D coordinates of each Cα . For CNN, we apply the
3D CNN module suggested in DeepRank21, a deep learning framework
for identifying interfaces of PPIs. For GNN, we learn from protein
graphs in which the adjacency matrix is determined by Cα � Cα con-
tact map. With the aid of 3D information, we discover all the model
performance can be improved, indicating that 3D information is an
important complement to sequence-alone information. Importantly,
GNN performs the best when compared to RF ( + 3D), RNN ( + 3D) and
CNN ( + 3D), which shows that GNN is the best approach for capturing
spatial-biological arrangements of residues within a protein. More-
over, GNN performs significantly better than 3D CNN in memory and
time efficiency (Supplementary Fig. 3).

Second, we examine the model tolerance when testing with low-
quality structure data (see Fig. 3b). This meets the realistic scenarios,
where native structure information is not always available for

Fig. 3 | Performance of bottomviewGNNofHIGH-PPI to represent a protein for
PPI prediction. a Effectiveness in demonstration w or w/o protein 3D information
(3D coordinates of Cα atoms in all residues). The protein is represented with back-
bones including Random Forest (RF from RF-PPI, gray), Recurrent Neural Networks
(RNN from PIPR, purple), Convolutional Neural Networks (CNN (Seq) fromGNN-PPI,
CNN ( + 3D) from DeepRank blue), respectively. Converting 3D information into
protein contact maps (CM), a backbone with graph structured data outperforms all
other methods with high performance significances (Two-sided t-test results: graph
versus RF ( + 3D) ****P = 1:1 × 10�8, graph versus RNN ( + 3D) ****P =6:1 × 10�12, graph
versus CNN ( + 3D) ****P = 2:3 × 10�7). Error bars represent standard deviation of the
meanunder9 independent runs.bHIGH-PPI canoutperformother baselineswithout
absolutely precise structures of query proteins. Blue dotted line (mean value of 9
independent runs) representing the Best-F1 score of second-best baseline (GNN-PPI)

without 3D information and boxplot (9 runs with independent seeds) showing the
relationship between Best-F1 scores of HIGH-PPI and the Root-Mean-Square Devia-
tion (RMSD) of the tested structures relative to the native structures. For boxplots,
the center line represents the median, upper and lower edges represent the inter-
quartile range, and the whiskers represent 0:5 × interquartile range. As an example,
c HIGH-PPI can easily identify the binding site containing four physically adjacent
residues via conventional graphmotif researchmethod (PDB id: 1BJP). CNNandRNN
based backbones may miss (missed) or mis-identify (non-essential) residues with
Grad-CAM and RNNVis. d The feature importance in residue-level for overall (left-
most column) and type-specific (right six columns) PPI prediction calculated as the
average z-score resulting fromdropping each individual feature dimension fromour
model and calculating changes of AUPR before and after. Source data are provided
as a Source Data file.
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predicting PPIs. We prefer the model whose performance is not ser-
iously limited by the structure quality, which is robust to inputs
directly from computational models (e.g., AlphaFold43). We evaluate
the quality of the input protein structure by calculating the root-mean-
square deviation (RMSD) of the native one and the input. Native pro-
tein structures (RMSD=0) are retrieved from the PDB database at the
highest resolutions. We compute the best-F1 scores (box plots) of our
method on a set of AlphaFold structures with various RMSDs (0.80,
1.59, 2.39, 3.19, 5.36, 7.98), and show the average result of second-best
method (GNN-PPI) in a blue dotted line. As can be seen, our model
performance is always better than GNN-PPI, even with RMSD up to 8.
The comparison with 3D CNN model21 further proves the denoising
ability of the hierarchical graph for protein structure errors (Supple-
mentary Fig. 4a). In short, our model performance is not significantly
affected by structure errors where powerful pre-trained features are
not available.

Further, to interpret decisions made by RNN, CNN and GNN, an
experiment is conducted to explore the ability to capture protein
functional sites. We apply the 3D-grad-CAM approach44 on the trained
3D CNN model named DeepRank21, and apply the RNNVis approach45

on the trained PIPR26 model with 3D information. All three methods
have identified more than one motif, in which we only show the most
crucial site. Figure 3c displays the binding site for an isomerase pro-
tein’s chain A (PDB id: 1BJP). The binding site is made up of four resi-
dues with the sequence numbers 6, 42, 43, and 44. As can be seen,
whereas neither CNN nor RNN can identify the His-6 residue, our
method can precisely identify the binding site by using graph motif
search. It seems to be a challenge for the sequence model (i.e., RNN,
CNN) to connect His-6 to the other residues, probably because of their
weak connections in a sequence mode. Moreover, 3D CNN performs
even worse than RNN as it incorrectly classifies the non-essential Ile-41
residue.

For node features in protein graphs, we select seven important
features from twelve residue-level feature options (see Supplementary
Table 4) that are easily available. The feature selection process (see
Supplementary Method 1 for details) produces the optimal set con-
sisting of seven features to ensure that our model peaks at both AUPR
and best-F1 scores. Here, we list the selected seven residue-level phy-
sicochemical properties in Fig. 3d and discuss their importance for
different types of PPIs to both better interpret ourmodel and discover
enlightening biomarkers for PPI interface. The average z-score, which
results fromdeleting each feature dimension and analyzing changes in
AUPR before and after, is calculated to determine the importance of a
feature. We choose a representative type (i.e., binding) to explain
because it is the most prevalent in the STRING database. As a con-
sequence, HIGH-PPI regards topological polar surface area (TPSA) and
octanol-water partition coefficient (KOW) as dominant features. This
finding supports the conventional wisdom that TPSA and KOW play a
key role in drug transport process46, protein interface recognition47,48,
and PPI prediction49.

Top outside-of-protein view improves the performance
We investigate the role of top outside-of-protein view TGNN from
three perspectives, including (1) the importance of degree and com-
munity recovery for predicting network structures, (2) comparison
results of TGNN and other leading link prediction methods, (3) a real-
life example to show the shortcomings of the leading link prediction
methods.

Recently, various works have demonstrated the usefulness of
structure properties (e.g., degree, community) of networks for pre-
dicting missing links. HIGH-PPI is inspired to efficiently recover the
degree and community partitions of the PPI network by utilizing the
network topology. We show an empirical study in Fig. 4a to illustrate
the impact of degree and community recovery for link prediction. We
randomly select the test results from the model trained in different

epochs and calculate the negative Mean Absolute Error (-MAE) of the
predicted degrees and real degrees to represent degree recovery.
Similarly, for community recovery, we quantify the community
recovery using the normalized mutual information (NMI). As can be
seen, we observe a significant correlation (R= � 0:66) betweendegree
recovery and model performance (i.e., best-F1) as well as a high cor-
relation (R=0:68) between community recovery and model perfor-
mance, which means better recovery of the degree and community of
PPI network implies better PPI prediction performance.

Second, we evaluate the performance of TGNN and leading link
predictionmethods using PPI network structure as input. Our method
(TGNN) takes interactions as edges and node degrees as node features.
We compare HIGH-PPI with six heuristic methods and one DL-based
method. Heuristic methods, the simple yet effective ones utilizing the
heuristic node similarities as the link likelihoods, include common
neighbors (CN)33, Katz index (Katz)50, Adamic-Adar (AA)51, preferential
attachment (PA)52, SimRank (SR)53 and paths of length three (L3)22.
MLP_IP, a DL approach, learns node representations using a multilayer
perceptron (MLP) and identifies the node similarity via inner product
(IP) operation. We calculate the MAE and NMI values of recovered
networks and highlight those with a high capacity for recovery
(NMI≥0.7 andMAE ≤0.35) inorange. Results show that link prediction
methods that are more adept at recovering network properties typi-
cally perform better. This gain validates our findings in Fig. 4a and
highlights theneed for TGNN in the top view. In addition, a comparison
of MIL_IP and L3 elucidates that pairwise learning is insufficient to well
capture the network information. Although L3 can capture the evolu-
tionary principles of PPIs to some extent, our method beats L3 by
better recovering the structure of the PPI network.

We provide an example on an SHS27k sub-network. As can be
seen, there exist two distinct communities connected by two inter-
community edges. We use the original sub-network as inputs and find
that non-TGNN linkpredictionmethods (i.e., CN, Katz, SR,AA, PA) tend
to give high scores for intercommunity interactions. As an interesting
observation, when we apply the Louvain community detection
algorithm54 to the recovered structure, it cannot produce an accurate
community partition as the abundant inter-community interactions
disrupt the original community structure. To examine degree recovery
ability, we randomly select 50%of interactions as inputs and showeach
method’s degree recovery result for nodeKIF22 in Fig. 4c.We findnon-
TGNN approaches cannot well recover the links connecting the node
KIF22 while TGNN approach can. In short, these experiments demon-
strate that the structure properties of the PPI network are not always
reflected in traditional link prediction methods, and moreover, cap-
turing and learning the network structures in our top view improves
the prediction performance.

HIGH-PPI accurately identifies key residues constituting func-
tional sites
Typically, functional sites are spatially clustered sets of residues. They
control protein functions and are thus important for PPI prediction. As
our proposed model has the capacity to capture spatial-biological
arrangements of residues in the bottomview, this characteristic can be
used to explain the model’s decision. It is meaningful to notice that
HIGH-PPI can automatically learn the residue importance without any
residue-level annotations. In this section, weprovide (1) a case study of
predicting residue importance for the binding surface, (2) two cases of
estimating residue importance for catalytic sites, and (3) an explain-
able ability comparison of precision in predicting binding sites.

First, a binding example between the query protein (PDB id: 2B6H-
A) and its partner (PDB id: 2REY-A) is investigated. The ground truth
binding surface is retrieved from the PDBePISA database55, which is
colored in red in Fig. 5a. Subsequently, we apply the GNN explanation
approach (see Section 4.5 in “Methods” for details) on the HIGH-PPI
model. As can be seen from Fig. 5a, HIGH-PPI can accurately and
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automatically identify the residues belonging to the binding surface.
Another observation is shown in Fig. 5c which indicates our learned
residue importance is quite close to the real profiles.We show another
six cases of HIGH-PPI for identifying binding surfaces correctly in
Supplementary Fig. 7.

Second, in order to evaluate the prediction of catalytic sites for
PPIs, we utilize the same GNN explanation approach in ourmodel. The
ground truth catalytic site is retrieved from the Catalytic Site Atlas56

(CSA), a database for catalytic residue annotation for enzymes. We
calculate the residue importance of catalytic sites for query proteins
(PDB id: 1S9I-A, 1I0O-A). As seen in Fig. 5b, our proposed HIGH-PPI can
correctly predict both residues for 1S9I-A and two out of three for
1I0O-A. We show another nine cases of HIGH-PPI for identifying cata-
lytic sites in Supplementary Fig. 6, where a total of 25 out of 34 catalytic
sites are correctly identified.

Additionally, we compare the model interpretability of the CNN,
3DCNN andHIGI-PPImodels.We employ the CNNmodule in GNN-PPI24

and 3D CNNmodule in DeepRank21, respectively. We apply grad-CAM57

and 3Dgrad-CAM44 approaches to determine residue importance for
CNN and 3D CNN models, correspondingly. We use the binding type
PPIs fromthe STRINGdataset as the training set, and randomly select 20
binding type PPIs as the test set. We use the ground truth from

PDBePISA for each query protein and treat its residues with importance
>0 as surface compositions. To gauge the precision of the surface
prediction, intersection over union (IoU) is used, and the box plots of
the IoU score distributions are shown in Fig. 5d. The results elucidate
that HIGH-PPI significantly outperforms other models in terms of
interpretability with a minimum variance. In addition, 3D CNN outper-
forms CNN with a smaller variance, showing that 3D information sup-
ports the learning of reliable and generalized protein representations.

Protein functional site prediction sheds light on the model deci-
sions and how to carry out additional experimental validations for PPI
investigation. Excellent model interpretability also shows that our
approach can accurately describe biological evidence for proteins.

Discussion
Hierarchical graph learning
In this paper, we study the PPI problem from a hierarchical graph
perspective and develop a hierarchical graph learning model named
HIGH-PPI to predict PPIs. Empirically, HIGH-PPI for PPI prediction
outperforms leadingmethods by a significantmargin. The hierarchical
graph exhibits high generalization for recognizing unknown proteins
and robustness against protein structure errors and PPI network
perturbations.

Fig. 4 | Performance of top view GNN of HIGH-PPI to learn relational informa-
tion in PPI network. a Pearson Correlations (R) between the prediction perfor-
mance (Best-F1) and degree recovery (left) and community recovery (right). It can
be observed that high recovery for the degree and community of PPI network
indicates better performance for PPI prediction. Degree recovery is quantified with
the Mean Absolute Error (MAE) between the true and predicted degree distribu-
tions. Community recovery is quantified with the normalized mutual information
(NMI) of true and predicted communities. The shaded area (error band) represents
the 95% confidence interval. b Boxplots (center line, the median; upper and lower
edges, the interquartile range; whiskers, 0:5 × interquartile range) showing the

Best-F1 distributions (5 runs with independent seeds) using various link prediction
methods. Methods (green) predicting PPI networks of which the NMI < 0.7 and
MAE>0.35 significantly underperform the others (orange). c Left: An example
showing a PPI network with an area of each node representing its degree value and
only two external edges connecting the two communities detected. Middle: Real
calculating results showing howother link predictionmethods generatemislinks as
external edges, which may disrupt the community partitions. Right: Real calculat-
ing results showing the disability of other link prediction methods to recover
degrees. Source data are provided as a Source Data file.
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Even without explicit supervision from binding site information,
HIGH-PPI demonstrates its ability to capture residue importance for
PPI with the aid of a hierarchical graph, which is a good indicator of
excellent interpretability. SupposeHIGH-PPI predicts the presenceof a
catalytic interaction for a protein pair but identifies important sites
unrelated to catalysis, we will hardly trust the model’s decision.
Moreover, interpretability provides trusted guides for subsequent wet
experimental validations. For example, if HIGH-PPI thinks a catalytic
site is important, experiments may be designed by targeting the spe-
cific site for validation.

In conclusion, interpretable, end-to-end learning with a hier-
archical graph revealing the PPI nature can pave the way to map out
human interactome and deepen our understanding of PPI
mechanisms.

Limitations and future work
We describe our intuitions in the hierarchical graph learning for PPIs.
The world is hierarchical. Humans tend to solve problems or learn
knowledge by conceptualizing the world from a hierarchical view58.
Due to huge semantic gaps between hierarchical views, humans always
use a multi-view learning strategy to deepen the understanding of one
view from the other one. Given rich hierarchical information, recent
machine intelligence methods can effectively learn knowledge in each
separate view but are not experts in gainingmutual benefits fromboth
views. This is the challenge that our hierarchical world presents to

machine intelligence. Here we connect both views by employing the
forward and backward propagation of DL models. The forward pro-
pagation benefits the learning for the PPI network in the top view. In
turn, the backward propagation optimizes the PPI-appropriate protein
representations in the bottom view.

We describe two main limitations of HIGH-PPI and outline
potential solutions in future work. (1)We did not explore in depth how
to use protein-level annotations. Annotations for protein functions are
becomingmore available due to the recent growth of protein function
databases (e.g., the UniProt Knowledge-base59) and computational
methods29 for protein function prediction. Some annotations may
speed up learning PPIs. For example, two proteins with low scores of
the “protein binding” function term hardly interact with each other.
We suggest that future work may consider leveraging function anno-
tations to enhance the expressiveness of protein representations.
Inspired by the contrastive learning principle, a potentially feasible
solution is to enhance the consistency in protein representations and
functions. (2) Protein domain information may be beneficial for hier-
archical models. We clarify the core ideas here and provide a detailed
description in Supplementary Method 2. Domains are distinct func-
tional or structural units in proteins and are responsible for PPIs and
specific protein functions. Both in terms of structures and functions,
the protein domain can represent a crucial middle scale for the PPI
hierarchy. However, to our knowledge, true (native) domain annota-
tions are not easily available and predicted ones are usually retrieved

Fig. 5 | Automatic explanation for residue importance without supervision.
a Top: Depiction of a complex protein (left, query protein, PDB id: 2B6H-A; right,
interacted protein, PDB id: 2REY-A)modeled in surface representation. Residueson
the binding surface of query protein are highlighted in red (important) and others
in blue (non-important). Bottom: Residue importance of the query protein learned
from HIGH-PPI with coloring ranging from low (blue) to high (red). Important
regions are magnified to show the cartoon representation. b Depiction of two
proteins (left, PDB id: 1S9I-A; right, PDB id: 1I0O-A) modeled in cartoon repre-
sentations. Residues are colored to match the importance scores, with more
important residues highlighted in red and unimportant ones in blue. Residues with
catalytic functions that are correctly or incorrectly identified are highlighted in red

and black, respectively. c Polylines showing the consistency of highest peaks that
represent the learned (gray) and real (red) functional regions for the binding
interaction case shown in a. d Boxplots (center line, the median; upper and lower
edges, the interquartile range; whiskers, 0:5 × interquartile range) showing the
explainable ability for binding PPIs by calculating the overlap of real and learned
functional regions (IoU, Intersection over Union) with 20 PPI pairs and their real
interfaces retrieved from STRING and PDBePISA database, respectively. HIGH-PPI
shows greater explainable ability significantly (Two-sided t-test results: HIGH-PPI
versus CNN ****P =4:4× 10�6, HIGH-PPI versus CNN ( + 3D) ****P =4:4× 10�8). No
information about residue importancewas used to trainourmodel. Source data are
provided as a Source Data file.
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from computational tools, which inevitably leads to data unreliability.
If we employ the domain scale as a separate view, data unreliability
may spread toother views and impair the entirehierarchicalmodel.On
this basis, we prefer to recommend domain annotations as supervised
information at the residue level. Precisely, a well-designed regulariza-
tion is required to guarantee that all functional sites, discovered by
HIGH-PPI, belong in the prepared domain database. The domain reg-
ularization and the PPI prediction loss form a flexible trade-off of
learning objectives, which can appropriately tolerate the domain
annotation unreliability. (3) Memory requirement grows with the view
number of a hierarchical graph. HIGH-PPI employs two views to form
the hierarchical graph and treat amino acid residues as microscopic
components of proteins. However, we did not further consider one
more microscopic view where atoms, the components of residues,
provide information for representing residues. Itmight bebeneficial to
introduce an atom-level view and develop a memory-efficient way for
storing andprocessing explicit 3D atom-level information. (4) In future
work,model robustness can be further improved. Although ourmodel
outperforms in the robustness evaluation (see Supplementary
Table 3), we observe that FDRpre is most impacted by unreliable data,
which ismostly because the number of FP significantly increases (up to
6 times) from Data 1 to Data 9. A possible explanation for the sig-
nificant rise in FP is that the model’s “low demand” for a positive
sample permits certain controversial samples to be projected as true.
To address this issue, we recommend the future work consider a
straightforward method—the voting strategy which uses the voting
outcomes of various independent classifiers to identify true PPIs.
Independence makes it unlikely for voting classifiers to commit the
sameerrors. A testpair canonlybepredicted as true if it is approvedby
most voting classifiers, which makes the model more demanding for
the PPI presence.

Methods
Construction of a hierarchical graph
We denote a set of amino acid residues in a protein as
Prot = fr1,r2, . . . ,rng. Each residue is described with θ kinds of physi-
cochemical properties. For the bottom inside-of-protein view, a pro-
tein graph gb = ðVb,Ab,XbÞ is constructed to model the relationship
between residues in Prot, where Vb � Prot is the set of nodes, Ab is an
n×n adjacency matrix representing the connectivity in gb, and Xb 2
Rn×θ is a feature matrix containing the properties of all residues.

For the top outside-of-protein view, a set of protein graphs can be
interconnected within a PPI graph gt , which is denoted as gb 2 Vt . The
connectivity (i.e., interactions)betweenprotein graphs canbedenoted
as anm×m adjacency matrix At . In addition, Xt 2 Rm×+ represents a
feature matrix containing the representations of all proteins. We
model the protein graphs and their connections as a hierarchical
graph, in which four key variables (i.e., Ab, Xb, At , Xt) need to be
clarified.

(1) The adjacency matrix Ab 2 f0,1gn ×n in the protein graph and
protein contactmapare exactly equivalent. Contactmaps are obtained
with atomic level 3D coordinates of proteins. First, we retrieve the
native protein structures from the Protein Data Bank60 and protein
structures of various RMSD scores by AlphaFold43. Then we represent
the location of each residue by the 3D coordinate of its Cα atom. The
presence or the absence of contact between a pair of residues is
decided by their Cα � Cα physical distance. We perform a sensitivity
analysis (see Supplementary Fig. 8) and find that our model produces
similar results when trained on contact maps with cutoff distances
ranging between 9 Å to 12 Å. Finally, we choose the optimal cutoff
distance of 10 Å, which allows our model to peak its performance. (2)
For a featurematrix Xb, each row represents a set of properties for one
amino acid residue. In this work, seven residue-level properties are
considered (i.e., θ= 7): isoelectric point, polarity, acidity and alkalinity,
hydrogen bond acceptor, hydrogen bond donor, octanol-water

partition coefficient, and topological polar surface area. Supplemen-
tary Data File 3 contains quantitative values of seven types of prop-
erties for each amino acid. All properties can be easily retrieved from
the RDKit repository61. (3) The PPI network structure determines the
adjacency matrix At 2 f0,1gm×m, in which the i-th row and j-th column
element is 1 if the i-th and j-th proteins interact. (4) The i-th row of the
feature matrix Xt represents the representation vector for the i-th
protein graph gb.

BGNN for learning protein representations
We use the bottom view graph neural networks (BGNN) to learn pro-
tein representations. Graph convolutional networks (GCNs) have
shown great effectiveness for relational data and are suitable for
learning graph-structured protein representations. Thus, we propose
BGNN based on GCNs.

Given the adjacency matrix Ab 2 f0,1gn×n and the feature matrix
Xb 2 Rn×θ of an arbitrary protein graph gb, BGNNoutputs the residue-
level representations in the first GCN block, Hð1Þ 2 Rn×d1 :

Hð1Þ =GCN Ab,Xb

� � ð1Þ

where d1 is the embedding dimension for the first GCN layer.
Formally, we update residue representations with the neighbor

aggregations based on the work of Kipf and Welling36:

Hð1Þ =BN ReLU eD�1=2
Ab + In
� �eD�1=2

XbW
ð1Þ

� �� �
ð2Þ

where In 2 Rn×n is the identity matrix, eD 2 Rn×n is the diagonal
degree matrix with entries Dii =

P
j Ab + In
� �

ij , W
ð1Þ 2 Rθ×d1 is a learn-

able weight matrix for the GCN layer, ReLU, BN denotes the ReLU
activation function and batch normalization, respectively.

With the learnable weight matrixW ð2Þ 2 Rd1 ×d2 , the second GCN
block produces the output Hð2Þ 2 Rn ×d2 :

Hð2Þ =BN ReLU eD�1=2
Ab + In
� �eD�1=2

Hð1ÞW ð2Þ
� �� �

ð3Þ

Finally, we perform the readout operation with a self-attention
graph pooling layer39 and average aggregation to obtain the entire
graph representation of a fixed size, x 2 R1 ×d2 .To clarify, we use xi 2
R1 ×d2 to represent the final representation for the i-th protein graph.

TGNN for learning PPI network information
We use the top view graph neural networks (TGNN) to learn PPI net-
work information. We are inspired by graph isomorphism network
(GIN37), which has the superb expressive power to capture graph
structures. Formally, we are given the PPI graph gt = ðVt ,At ,XtÞ, where
Xt 2 Rm×d2 is defined as the feature matrix whose row vector is a final
protein representation from BGNN (i.e., X i,:½ �

t = xi,i= 1,2, . . . ,m). TGNN
updates the representation of protein v in the k-th GIN block:

xðkÞv =BN ReLU MLPðkÞ 1 + ϵð Þ � x k�1ð Þ
v +

X
u2NðvÞx

ðk�1Þ
u

� �� �� �
ð4Þ

where xðkÞ
v denotes the representation of protein v after the k-th GIN

block, NðvÞ is a set of proteins adjacent to v, and ϵ is a learnable
parameter. We denote the inputs of protein representations for the
first GIN block as xð0Þ

i = xi,i= 1,2, . . . ,m.
After three GIN blocks, TGNN produces representations for all

proteins. For an arbitrary query pair containing the i-th and j-th pro-
teins, we use the concatenation operation to combine the repre-
sentations of xð3Þi and xð3Þj . A fully connected layer (FC) is employed as
the classifier. The final vector ŷij 2 R1 × c for the presence probability of
PPI is denoted as ŷij =FC hð3Þ

i ∣∣hð3Þ
j

� �
where c denotes the total number

of PPI types involved and k denotes the concatenation operation.

Article https://doi.org/10.1038/s41467-023-36736-1

Nature Communications |         (2023) 14:1093 9



Model training details
Given a training set Xtrain and ground truth labels for multi-type PPIs
Ytrain, we train BGNN and TGNN in an end-to-end manner by mini-
mizing the loss function of multi-task binary cross-entropy:

L Θð Þ=
Xc

k =0

X
xij2Xtrain

�ykij log ŷ
k
ij � 1� ykij

� �
log 1� ŷkij

� �0
@

1
A ð5Þ

where Θ is the set of all learnable parameters, and ij denotes the
ground truth of the k-th type PPI of the i-th and j-th proteins.

We determine all the hyper-parameters through a grid search
based on a 5-fold cross-validation. For BGNN, we set the output
dimension d1, d2 of weight matrix to 128. For each GIN block in TGNN,
we use a two-layer MLP and set the output dimension of each layer to
64. As the STRING dataset contains seven types of PPIs, we set the
output dimension of the FC layer to c= 7. We use the Adam optimizer
with a learning rate lr =0:001, β1 = 0:99, β2 =0:99, a batch size of 128,
and the default epoch number of 500. We train all of the model
parameters until convergence in each cross-validation.

Residue importance computation
We employ the method called GNNExplainer62 to generate explana-
tions for HIGH-PPI. By taking the well-trained GNN model and its pre-
dictions as inputs, GNNExplainer returns themost important subgraph
by maximizing the mutual information MI between the model pre-
diction and possible subgraphs. Motivated by this, we directly for-
malize the notion of subgraph importance using MI and further
compute the importance of all nodes (i.e., residues).

Given protein graphs G1 and G2 that connect in the PPI network,
our goal is to identify the node importance of G1. According to
GNNExplainer, once sampling a random subgraph Gs � G1, we obtain
the entire importance of Gs as follow:

MIs Y ,Gs

� �
=H Yð Þ � H Y ∣G=Gs

� � ð6Þ

where MIs represents importance of Gs, Y is a variable indicating the
probability of PPI presence of G1 and G2, and H �ð Þ is the entropy term.

Assume that all nodes in the subgraphGs contribute equally to the
MI value, weobtain the batch importance for eachnode inGs. The final
importance score for a specific node is the average of all its batch
importance scores. For example, if a node v contributes 0.4 and0.6 for
two sampled subgraphs respectively, the final importance of node v is
0.5. To facilitate comparison, we compute the z-scores of final residue
importance for standardization:

zs =
zf � μ

σ
ð7Þ

where zf 2 R1 ×n is the finally computed importance vector for all
residues, μ is the average of zf , μ is the standard deviation of zf , and
zs 2 R1 ×n is the z-score importance after standardization.

Statistics and reproducibility
As indicated in figure legends, data in bar charts are represented as
mean ± standard deviation (SD). For all boxplots, the center line
represents the median, upper and lower edges represent the inter-
quartile range, and the whiskers represent 0.5× interquartile range.
The statistical significance between the two groups was obtained by a
two-sided t-test with P-value < 0.05 considered significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The PPI and protein data used in this study are available in the Zenodo
database under “AccessionCode 7213401”. They are obtained from the
following publicly available database. Datasets containing protein
sequences and their interaction annotations are obtained fromhttps://
github.com/muhaochen/seq_ppi. The native protein structures are
obtained from PDB: https://www.rcsb.org/. Protein structures with
errors are obtained from AlphaFold: https://alphafold.ebi.ac.uk/. The
catalytic site information of proteins can be found at CSA: https://
www.ebi.ac.uk/thornton-srv/m-csa/. The ground truth of binding site
information is obtained from PDBePISA: https://www.ebi.ac.uk/pdbe/
pisa/. All other relevant data supporting the key findings of this study
are available within the article and its Supplementary Information files
or from the corresponding author upon reasonable request. Source
data are provided with this paper.

Code availability
An open-source software implementation of HIGH-PPI is available at
https://github.com/zqgao22/HIGH-PPI. The source code can be cited
by using https://doi.org/10.5281/zenodo.7600622.
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