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Robust total X-ray scattering workflow to
study correlated motion of proteins in
crystals

Steve P. Meisburger 1, David A. Case2 & Nozomi Ando 1

The breathing motions of proteins are thought to play a critical role in func-
tion. However, current techniques to study key collective motions are limited
to spectroscopy and computation. We present a high-resolution experimental
approach based on the total scattering from protein crystals at room tem-
perature (TS/RT-MX) that captures both structure and collective motions. To
reveal the scattering signal from protein motions, we present a general
workflow that enables robust subtraction of lattice disorder. The workflow
introduces twomethods: GOODVIBES, a detailed and refinable lattice disorder
model based on the rigid-body vibrations of a crystalline elastic network; and
DISCOBALL, an independent method of validation that estimates the dis-
placement covariance between proteins in the lattice in real space. Here, we
demonstrate the robustness of this workflow and further demonstrate how it
can be interfaced with MD simulations towards obtaining high-resolution
insight into functionally important protein motions.

Structural biology has seen remarkable advances in recent years with
cryo-electron microscopy1 and structure prediction2,3. However, pro-
tein crystallography remains the go-to method for obtaining struc-
tures at atomic resolution4. The technique is widely accessible and is
still the dominant source of depositions in the Protein Data Bank.
Crystallography also provides sub-angstrom coordinate precision and
is therefore essential for benchmarking computationalmethods5, such
as simulations and structure prediction. Moreover, crystallography
produces diffuse scattering6, an untapped source of information on
subtle protein motions that underlie processes such as allostery, cat-
alysis, and signaling7,8.

Crystal structures are often thought to represent static snapshots,
but in fact, protein motions occur within the watery environment of
crystals9. Diffuse scattering is a direct consequence of this motion,
appearing as a structured, continuous signal in the background of
diffraction images10. By studying the total scattering of a protein
crystal (combining Bragg diffraction with diffuse scattering), crystal-
lography has the potential to simultaneously provide a high-resolution
average structure and information on correlated atomic
displacements5. Until recently, diffuse scattering analysis was largely

considered intractable, but with advances in room-temperature data
collection11, the widespread availability of direct X-ray detectors12, and
new data processing software13, it has now become feasible to routi-
nely measure highly accurate diffuse scattering maps. However,
although extensive efforts have been made in understanding protein
diffuse scattering7, a generalworkflow for utilizing this information has
not yet been realized. In order to fulfill the promise of diffuse scat-
tering in structural biology, it is essential to establish robust workflows
for data processing, set standards for model-data agreement, and
provide benchmark examples in the form of simulations and high-
quality experimental data.

Our recent study of lysozyme in the triclinic (P1) space group
showed that it is possible to account for the total scattering from a
crystal entirely and self-consistently using physically-motivated ato-
mistic models13, and thus it can serve as a potential roadmap for
establishing a standard workflow. A key advance from this study was
the characterization of intense halo-like scattering around the Bragg
peaks, which arise from correlated displacements of protein chains in
different unit cells. Supercell simulations demonstrated that these
correlations are long-ranged and consistent with phonon-like lattice
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vibrations, where proteins fluctuate about their average positions. To
isolate internalmotions of proteins from these externalmotions, itwas
first necessary to explain the halo features in the diffuse scattering
map, which we achieved by fitting halos with a crystalline elastic net-
work model treating the protein chain as a rigid body. Once the con-
tribution of lattice disorder was accounted for, we were able to show
that the remaining diffuse scattering signal and the B-factors from
Bragg refinement were consistent with internal protein motions. In
developing a workflow, the next step is to establish the accuracy and
generality of lattice disorder models and develop tools for model
validation. Ultimately, diffuse scattering analysis must provide new
insight into biochemically relevant questions, and thus, it is also
important that theworkflowoutputs data in a form that can be directly
comparedwith atomisticmodeling such asmolecular dynamics (MD)5.

Here, we introduce computational tools and demonstrate a
robust workflow to isolate the internal motion signal from total scat-
tering data (Fig. 1). To model lattice disorder, we present GOODVIBES,
a general crystalline elastic network model and optimization routine.
This method allows for multiple rigid bodies per unit cell, as found in
high-symmetry space groups, and accounts for symmetry in its para-
meterization of the elastic network. To validate the lattice disorder
model, we present an independent method called DISCOBALL, which
estimates rigid-body displacement covariances for pairs of protein
chains in the crystal by deconvolution of the 3D pair distribution
function or 3D-ΔPDF (the Fourier transform of the diffuse scattering
intensities). Using simulated data and experimental datasets from
three lysozyme polymorphs, we show that GOODVIBES and DISCO-
BALL in combination can be used to accurately model lattice disorder
scattering. Finally, we show that the signal from internal protein
motion can be recovered and compared quantitatively with crystalline
MD simulations. The demonstration of a general workflow for diffuse
scattering analysis lays the groundwork towards obtaining atomistic
insight into correlated protein motions from experimental data.

Results
A robust workflow to isolate internal motion signal from total
scattering data
An overview of a general workflow for the analysis of total scattering
from protein crystals is shown in Fig. 1. The first step begins with data
collection and reduction, the procedures for which we previously

demonstrated13. Briefly, diffraction images are acquired from protein
crystals at room temperature as well as from the background scatter-
ing using a room-temperature macromolecular X-ray crystallography
(RT-MX) setup. Data reduction can then be performed with the mdx
software library, which we introduced previously13. Measurement of
the background scattering and a careful scaling procedure (such as
that implemented inmdx-lib) allow for a high-quality reconstruction of
the total scattering (TS) on an absolute scale (electron units), which
includes Bragg peak intensities and a three-dimensional diffuse scat-
tering map. The time-averaged electron density of the unit cell is then
determined by conventional structure refinement of the Bragg data,
along with the mean atomic coordinates and atomic displacement
parameters (ADPs) or B-factors. The ADPs represent the motion of
each atom, while the diffuse scattering map contains information on
how these motions are correlated.

In our previous work13, we showed that correlated motions arise
from two sources in protein crystals: the motion of atoms within a
protein (internalmotion) anddeviations from the ideal arrangementof
proteins in the crystal (external motion or lattice disorder). Lattice
disorder tends to be long-ranged, and therefore it produces char-
acteristic halos around the Bragg peaks, while correlations from
internal motion are mostly short-ranged and produce smoothly vary-
ing, cloudy patterns. Although the two types of signals have distinct
appearances, they cannot be simply separated in reciprocal space
because the halo features are remarkably broad and overlap sig-
nificantly with the much weaker and more nuanced cloudy pattern.
Therefore, we aimed to develop additional tools based on a physical
model of lattice disorder to subtract its contribution from the diffuse
scattering map and the ADPs.

First, it was necessary to derive a general physicalmodel of lattice
disorder that can be refined to fit the diffuse halos (Fig. 1, green box).
Based on the success of parameterized crystalline elastic network
models in the case of triclinic lysozyme13, we chose to extend those
techniques to arbitrary space groups with multiple rigid bodies per
unit cell. We call the parameterization and refinement method
GOODVIBES for General Optimization Of Diffuse halos from VIBra-
tional Elastic network Simulations. The GOODVIBES model for lattice
disorder represents proteins as rigid bodies arranged in a supercell
with periodic boundary conditions (Fig. 2a). The size of the supercell is
chosen to be large enough to account for the long-ranged correlations

non-
Bragg

Bragg
peaks

Di use map

A
bs

ol
ut

e 
In

te
ns

ity

Total Scattering (TS)RT-MX

X-ray di raction

T ~ 300 K

Lattice 
disorder
model 

(GOODVIBES)

Displacement 
covariance 
estimation 

(DISCOBALL)

V-Cov

Di use map

Lattice 
contribution

3D- PDF ADPs

Internal motion

Halos

Model validation

Target di use map

Subtract

Crystalline MD simulations

Fit

B
-f

ac
to

r

Structure

Fig. 1 | Workflow to measure and interpret protein correlated motion using
X-ray crystallography. First, X-ray diffraction images are acquired from protein
crystals at room temperature (RT-MX). The Bragg peaks and continuous scattering
are processed separately to obtain the protein structure and a three-dimensional
map of diffuse scattering on an absolute intensity scale (electron units). The
structure includes mean atomic positions and atomic displacement parameters
(ADPs or B-factors) that quantify motion, and the pattern of diffuse scattering
depends on how motions are correlated. To separate the internal and external
(rigid-body) protein motions, a physical model of lattice disorder is refined to the
intense diffuse halo features (GOODVIBES), and the lattice contribution to the

diffuse map and variance-covariance matrix of rigid-body motion (V-Cov) are
simulated. In parallel, a model-free analysis is performed to estimate displacement
covariances (DISCOBALL) and validate the off-diagonal elements of the simulated
lattice V-Cov (yellow shading). The lattice contribution to the diffuse map is sub-
tracted and the residual diffuse scattering is sorted by inter-atomic vector using a
Fourier transform (3D-ΔPDF). Similarly, the internal ADPs are found by subtracting
the lattice contribution (diagonal blocks of V-Cov, blue shading). The internal
motion signal canbe interpreted by variousmodels. Tomatchcrystal simulations, a
target diffuse map can be created using GOODVIBES to add back external motions
that are consistent with the specific supercell used by the simulations.
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implied by halo features in the experimental map. Rigid-body motion
is enforced by adopting a generalized coordinate system for small
displacements, which is a reasonable assumption for the subtle
structural fluctuations we expect. The coordinate system, which is
identical to that used in translation, libration, screw-axis (TLS) refine-
ment, assigns each rigid body six degrees of freedom representing
small translations and rotations. The close contacts between proteins
in the lattice are modeled using a network of inter-molecular springs,
whose functional formand strength canbe tuned. The dynamics of the
systemare computed usingNewtonianmechanics and equipartition of
thermal energy (see Methods).

A key advantage of the GOODVIBES model is that both the dis-
placement covariance matrix and the predicted diffuse scattering can
be calculated analytically with minimal computational cost (see
Methods for details). This allows for a closed refinement loop, where
the parameters in the model are optimized to improve the fit between
simulated andmeasured diffuse scattering (Fig. 2b). We demonstrated
this approach previously with triclinic lysozyme13. Here, we extend the
modeling to unit cells with more than one protein chain with a para-
meterization method that accounts for space group symmetry by
forcing springs related to a symmetry operator to have the same
parameters.

Second,we required an independentmethod to test whether the
model for lattice disorder is sufficiently accurate (Fig. 1, magenta
box). We developed a model-free approach, DISCOBALL, for DIS-
placement COVariance Between ALl Lattice neighbors. DISCOBALL
was inspired by features observed in the 3D-ΔPDF of triclinic
lysozyme13. While the short-range contributions of internal protein
motions are focused near the origin of the 3D-ΔPDF, sharp peaks are
present at the lattice nodes as a direct consequence of halo features
centered at reciprocal lattice nodes in the diffuse map (the Fourier
transform of a lattice is another lattice). These sharp 3D-ΔPDF peaks
have a simple physical interpretation: they arise from correlated
displacements of atoms separated by a lattice translation. The posi-
tion of the peak corresponds to a vector between unit cells in the

crystal, and all atoms offset by that vector contribute to the peak if
their motions are correlated.

Themathematical formof the 3D-ΔPDF peaks can then be derived
by considering the diffuse scattering arising from correlated motions
of rigid bodies that are separated by unit-cell vectors and then taking
the Fourier transform (see Methods). For simplicity, we may assume
that translational motions of unit cells are the dominant contribution
as rotational motions are only likely to be correlated between nearest
neighbors. This can then be generalized to the case where there are
multiple rigid bodies in a unit cell that are related by space group
symmetry (see Methods). The mathematical form of the 3D-ΔPDF
peaks can be interpreted as a filtered version of the origin peak in the
Pattersonmap (the autocorrelation of the electron density), where the
filtering function depends on the displacement covariance, or joint-
ADP, of pairs of proteins (seeMethods). Froma signal processing point
of view, the 3D-ΔPDF peaks are exactly a convolution of the Patterson
origin peak with the filtering function. Using the known Patterson
function (e.g., from Fourier transform of the Bragg intensities), the
joint-ADPs can be recovered by deconvolution (Fig. 2c).

To test the DISCOBALL method on a realistic dataset, we simu-
lated the diffuse scattering from a GOODVIBES model for triclinic
lysozyme, added Gaussian random noise comparable to the experi-
mental map, and computed the 3D-ΔPDF. We found that DISCOBALL
was able to recover both the magnitude and shape of the joint-ADPs
(Supplementary Fig. 1). For a more quantitative test, we derived two
statistical metrics for the similarity between joint-ADPs: the total cov-
ariance (trace of the joint-ADPs, Eq. (22) in Methods) and the aniso-
tropic covariances (elements of the joint-ADP with isotropic part
subtracted, Eq. (23) in Methods). By comparing these metrics with
corresponding ground truth values, we find that DISCOBALL is also
able to recover joint-ADP magnitudes and shapes with high fidelity
(Pearson correlation of 0.999 and 0.988, for isotropic and anisotropic
metrics respectively).

After lattice dynamics are adequately modeled, the final step in
the workflow is to subtract its contribution and obtain only the signal
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Fig. 2 | Lattice disorder modeling with GOODVIBES and DISCOBALL.
a Preparation of a rigid-body elastic network model (ENM) for GOODVIBES
refinement illustrated using lysozyme in the P212121 space group. Rigid bodies
(white surfaces) are joined by springs with refineable energy functions. The para-
meterization step enforces space group symmetry and groups springs to avoid
overfitting. In this example, springs are grouped according to unique protein-
protein interface (sticks colored orange, teal, and purple). b GOODVIBES refine-
ment of the ENM to fit diffuse halos. At each iteration, the variance-covariance
matrix of rigid body motion (V-Cov) is computed from the ENM by simulating the
thermally-excitedvibrationsof a large supercell withperiodic boundaryconditions.
The halo scattering profiles are simulated from V-Cov and the electron density of

the asymmetric unit, and ENM parameters are refined to improve the fit.
c, DISCOBALL algorithm to estimate correlated rigid-body motion of proteins.
Peaks are extracted from the 3D-ΔPDF, the Fourier transform (F.T.) of the diffuse
map. Each peak, Pn, is assumed to be the convolution (*) of the Patterson origin
peak, PðrÞ, and a function that depends on the average joint-ADP Vn of proteins
related by a lattice translation operator (integer multiples of lattice vectors). The
joint-ADPs are estimated by deconvolution. Joint-ADPs are visualized as iso-
probability ellipsoids in real space (blue mesh) to illustrate the anisotropy of each
ADP and the overall decay of correlations with protein-protein distance in the
crystal (vector from the origin).
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from internal protein motion. Previously, a major obstacle to this
approachwas the potential for errors in the refined structuremodel to
manifest in the diffuse scattering simulation, which would then pro-
duce even more significant errors in the subtracted signal13. Here, we
have addressed this concern by using experimental structure factor
amplitudes in the GOODVIBES simulation. This approach succeeds
because measurement precision is usually much better than model-
data agreement in protein crystallography14 (for examples studied
here, Rpim ~1% vs. Rwork ~10%). When investigating the accuracy of our
Braggdata,we unexpectedly found that intensitieswere systematically
suppressed in an intensity- and resolution-dependent manner. Inter-
estingly, this behavior is reminiscent of dynamical scattering (extinc-
tion), and we corrected for it using a method developed for small-
molecule crystallography (Supplementary Fig. 2). We also subtract the
ADPs according to GOODVIBES for each of the atoms in the refined
structure. These residual ADPs more accurately represent the internal
motions of the protein.

Our workflow provides the opportunity to compare experimental
data with atomistic simulations. For greatest accuracy, all-atom MD is
needed to reproduce both the correlations internal to the protein as
well as its surrounding solvent7. All-atom MD can also account for
effects of crystal packing by using a supercell with periodic boundary
conditions15. Previously, such simulations in the crystalline state have
been found to reproduce diffuse scattering data with reasonable
accuracy16 including halos if increasingly large supercells are used13.
Here, we asked whether small-scale simulations, of one or a few unit
cells, might be compared with the subtracted maps in order to max-
imize the proportion of the scattering signal from internal motion. A
potential issue with such comparisons is that small-scale simulations
still include external proteinmotion to someextent. SinceGOODVIBES
also involves a periodic supercell, we reasoned it could estimate the
amount of external motion that ought to occur in anMD simulation of
arbitrary size. This allowed us to create a target diffuse map for direct
comparison with any particular crystalline MD simulation.

The procedure for creating target diffuse maps is described in
Methods. Briefly, we first fit a GOODVIBES model and subtract its
scattering contribution from the experimental data, as described
above. The subtracted map is on the same Miller index grid as the
experimental data. To create the target map, it is first necessary to
interpolate the subtracted map onto the Miller index grid of the MD
simulation (e.g. for a single unit cell, points with integerMiller indices).
The subtracted maps are noisy, both from photon counting statistics
as well as errors in the simulated intensities, and they also contain gaps
at Bragg peak locations. To account for these errors and gaps during
interpolation, we take advantage of the expected smoothness of dif-
fuse scattering from internal motions. This smoothness comes about
because inter-atomic correlations are restricted to a maximum dis-
tance defined by the protein envelope, i.e. the diffuse scattering is a
band-limited function. For a smoothing interpolant we chose an error-
weighted Savitzky-Golay filter17 with a kernel corresponding to the
reciprocal dimensions of the protein. The effect is similar to a low-pass
filter, but it also handles outliers, missing data, and error propagation
(see Methods for details). Finally, to produce the target map, the dif-
fuse scattering from external motions is simulated using GOODVIBES
with the MD supercell and added to the subtracted, interpolatedmap.
The targetmap can then be compared directly with theMD simulation
on an absolute scale.

Application of GOODVIBES and DISCOBALL to experimental
datasets from lysozyme polymorphs
To test the workflow on experimental data, we applied it to TS/RT-MX
datasets from three lysozyme polymorphs: triclinic lysozyme reported
previously13,18,19 and new datasets from orthorhombic (P212121) and
tetragonal (P43212) crystals (Fig. 3a, top row). Because protein crystals
are highly susceptible to radiation damage at room temperature, the

total dose was distributed by collecting narrow wedges from multiple
locations on each crystal and frommultiple crystals when necessary to
obtain a complete dataset (Fig. 3a, middle row and Supplementary
Table 1). The maximum tolerable dose of ~65 kGy13 was set con-
servatively by monitoring the decay of the Wilson B-factor as well as
evidence for disulfide bond reduction in the electron density maps
(Supplementary Fig. 3). Crystals from each polymorph diffracted to
atomic resolution allowing anisotropic ADPs to be refined for each
atom, and stereochemically high-quality structures with low R-factors
were obtained (Supplementary Table 2).

Next, the maps of diffuse scattering from orthorhombic and tet-
ragonal lysozyme were reconstructed from the diffraction images
(Fig. 3a, bottom row, andSupplementaryTable 3). Lowcrystalmosaicity
and fine phi slicing of 0.1 degree allowed for sampling on a fine grid,
comparable to the triclinic map reported previously13,19. All three data-
sets contain strong halo features at the Bragg peak locations (Fig. 3b,
bottom row). To model these halo features, a subset of 400 halos was
selected for each dataset (blue rectangles in Fig. 3b), and GOODVIBES
was used to parameterize and optimize the spring constants of a crys-
talline elastic network model (Fig. 3b, top row). After refinement, the
diffusemapwas simulated throughout reciprocal space. For each of the
three polymorphs, GOODVIBES simulations show remarkable agree-
ment with the observed diffuse patterns (Fig. 3b, middle row). The
simulations reproduce the standard deviation of intensity in all reso-
lution bins (Fig. 3c, upper axes), and the correlation coefficient in each
resolution shell is close to the theoretical limit allowed by signal-to-
noise of the data (CC vs. CC*, Fig. 3c, lower axes).

To quantify how well the GOODVIBES models explain lattice dis-
order in each lysozyme polymorph, we performed a complementary
DISCOBALL analysis. The diffuse maps were pre-processed to remove
the isotropic scattering and fill inmissing voxels (such as at Bragg peak
locations), and the 3D-ΔPDFs were computed using a Fourier trans-
form as described inMethods. The 3D-ΔPDFs displayed sharp peaks at
each lattice point that become weaker with distance from the origin
peak (Supplementary Fig. 4). The joint-ADPs between neighboring
chains were obtained by deconvolution of the Patterson origin peak as
described in Methods. The number of unique joint-ADPs that can be
determined by DISCOBALL analysis depends on the number of peaks
in the ASU of the 3D-ΔPDF, which is a function of space group sym-
metry, unit cell size, and reciprocal space sampling (Supplementary
Table 3). The GOODVIBES model, in contrast, predicts displacement
covariances for each pair of proteins in the crystal (the number is
comparable for the three polymorphs). Thus, for the triclinic case,
DISCOBALL can cross-check all of the joint-ADPs predicted by
GOODVIBES model, while for orthorhombic and tetragonal only a
subset can be compared.

Joint-ADPs from DISCOBALL and GOODVIBES analyses are com-
pared in Fig. 4a. Overall, the total displacement covariance shows a
similar decay profile for all GOODVIBES models (Fig. 4a, green sym-
bols). A similar overall behavior is expected since the models have the
same essential physics (lattice vibrations). The total covariances are
negative at large distances. This can be understood as a consequence
of the finite supercell size. Since the supercell’s center of mass is fixed
in space, correlatedmotion at short distancemust be canceled by anti-
correlatedmotion at large distance. The covariances fromDISCOBALL
analysis show a similar overall decay (Fig. 4a, blue symbols), however
the decay approaches closer to zero than the GOODVIBES predictions.
In DISCOBALL analysis, the extra long distance information comes
from the interpolation of the diffuse map at the Bragg peak locations.
For a quantitative comparison, the different asymptotic behaviors at
large distances were taken into account by fitting a straight line to the
scatter plot of DISCOBALL vs. GOODVIBES total covariances (Fig. 4b).
As expected, the line does not pass through the origin (it falls below
y= x). The agreement between the two methods was quantified using
the Pearson correlation coefficient (r) corresponding to the linear fit.
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Based on this quantitative analysis, the GOODVIBES models do an
excellent job describing the total covariance, with r values in excess of
0.995 (Fig. 4b).

We also tested the ability of GOODVIBES models to account for
the anisotropic components of the joint-ADPs. In all three polymorphs,
the GOODVIBES models and DISCOBALL analysis show a strong cor-
relation (Fig. 4c). Interestingly, orthorhombic and tetragonal lysozyme
have similar magnitudes of the total correlation (Fig. 4b, middle vs.
bottom panels), but the spread of anisotropic components for
orthorhombic is approximately double that for tetragonal (Fig. 4c,
middle vs. bottom panels).

To better understand how crystal mechanics give rise to such
strong anisotropy in the case of the orthorhombic crystal, we overlaid

a diagram of the crystal lattice with the joint-ADPs shown as isosurface
ellipsoids (Fig. 4d). The strength and directionality of the mechanical
couplings between proteins can be visualized by the size and shape of
the ellipsoids (which represent the magnitude and anisotropy of their
joint-ADPs). The couplings relative to the asymmetric unit (Fig. 4d,
yellow protein) are strong in the ±a, ±b, and +c directions (Fig. 4d,
double arrows). In comparison, couplings are weak in the −c direction
across the continuous solvent channels running parallel to the a axis
(Fig. 4d, purple regions). In addition, the joint-ADPs are elongated
relative to the protein-protein vector in the ±b directions, where the
sequence of direct interactions is unbroken by solvent channels. Thus,
the anisotropy of joint-ADPs can be understood as a consequence of
the topology of solvent channels and crystal contacts.
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Fig. 3 | Application of GOODVIBES to experimental datasets from lysozyme
polymorphs. a TS/RT-MX datasets from lysozyme crystallalized in triclinic,
orthorhombic, and tetragonal space groups. The unit cells contain one, four, and
eight symmetry-related chains, respectively (top row). X-ray diffraction data were
acquired at room temperature frommultiple large crystals to achieve high signal-
to-noise for diffuse mapping (photographs of mounted crystals, middle row).
Data were processed to produce three-dimensional maps of diffuse scattering. In
the bottom row, the variational component of intensity (total minus isotropic) in
electron units (Ie) per asymmetric unit (ASU) is shownon a spherical surface at 2 Å
resolution, with the positive octant removed to show three central sections. The
axes [h,0,0], [0,k,0], and [0,0,l], are colored red, green, and blue, respectively.
b GOODVIBES was used to fit a lattice disorder model to each diffuse scattering

dataset using supercells shown in the top row. After refinement to a subset of
intense halos, the diffuse scattering from lattice disorder was simulated
throughout reciprocal space. For all three datasets, GOODVIBES reproduces
essential features of the diffuse scattering, as seen for example in central sections
(middle vs. bottom row). Blue boxes surround halos included in the fit. The black
line is at 2 Å resolution, and axes are drawn as in (a). c For all three datasets, lattice
disorder accounts for most of the standard deviation of the intensity in each
resolution bin (top row of plots), as well as the precise pattern of intensities as
judged by the Pearson correlation coefficient in each resolution shell (bottom
row of plots). The correlation approaches the theoretical limit given signal-to-
noise of themeasurement13,57 (CC*, black vs. gray lines in the bottom row of plots).
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After validating the model of lattice disorder, the next step is to
subtract the lattice disorder component and examine the remainder.
First, we examined the lattice contributions to the total ADPs.
Although GOODVIBES models are refined to diffuse scattering data,
they directly predict TLS matrices (Supplementary Table 3), which in
turn can be converted into anisotropic ADPs for each atom (see
Methods).We compared thesemodel ADPs directly with the individual
anisotropic ADPs obtained from structure refinement. For visual
clarity, we grouped backbone atoms by residue and averaged their
equivalent isotropic B-factors (Eq. (6) in Methods). These per-residue
B-factors are plotted for each lysozymepolymorph in Fig. 5a. A distinct
pattern of variation is observed in each polymorph (Fig. 5a, black line
and points). The median backbone B-factor for triclinic lysozyme is
8.24 Å2, approximately half of the median backbone B-factors of
orthorhombic and tetragonal (17.66 and 17.74 Å2 respectively).

The lattice disorder ADPs obtained from GOODVIBES include
both overall translational motion, which is the same for all atoms
(Fig. 5a, light blue region), and rotational motion, which causes the
ADP to vary depending on atomic position (Fig. 5a, dark blue region).
The translational lattice motion varies between polymorphs, with
equivalent B-factors of 3.06, 8.08, and 8.84 Å2 for triclinic, orthor-
hombic, and tetragonal, respectively (Fig. 5a, light blue region). As
noted above, the orthorhombic and tetragonal forms have median
B-factors that are approximately twice that of triclinic. The same trend
is observed in the lattice components, suggesting that lattice disorder
is largely responsible for the B-factors of the most ordered atoms in a
protein crystal.

The contribution of internal protein motion to diffuse scat-
tering can be visualized readily in the 3D-ΔPDF, since the signal
from short-ranged correlations is concentrated near the origin.
We computed the 3D-ΔPDF for the experimental diffuse maps and
GOODVIBES simulations (Fig. 5b). In all polymorphs, variations in
the measured 3D-ΔPDFs agree with the GOODVIBES simulations

for d>10 Å, but the variations are stronger in the region d<10 Å
where internal motions are expected to contribute13. The residual
3D-ΔPDF (total minus simulation) decays rapidly with distance
from the origin in a similar manner for each polymorph (Fig. 5c).
These features are consistent with the hypothesis that the resi-
dual signal derives from internal protein motion.

Application of GOODVIBES to match experimental data to MD
simulations
To demonstrate the final step in our workflow, a single unit-cell MD
simulation of tetragonal lysozyme was performed (Supplementary
Fig. 5), and the diffuse scattering was calculated from the snapshots.
Because the simulation had periodic boundary conditions, the diffuse
scattering is defined only at the points in reciprocal space with integer
Miller indices. For comparison, we re-processed the tetragonal dataset
to produce a target map, which includes external motion of the pro-
teins that are compatible with the MD supercell (Supplementary
Fig. 6a) using themethod described earlier. Overall, theMD simulation
and the target maps have a remarkably similar appearance (Fig. 6a).
They also showquantitative agreement (Fig. 6b). Both include a strong
isotropic ring of scattering at ~3 Å resolution (Fig. 6b, top panel). The
MD simulation also reproduces the magnitude of scattering variations
in each resolution shell, including a distinctive shoulder at ~2 Å reso-
lution (Fig. 6b, middle panel). A comparison of MD and the target
map’s internal and external components provides compelling evi-
dence that external protein motions alone cannot explain diffuse
scattering (Supplementary Fig. 6b) and furthermore, that the atomic
fluctuations are captured well by MD.

Previous comparisons between MD and experiment have relied
on correlation coefficients computed within resolution shells13,16,20. We
applied a similar approach using the target diffuse map (Fig. 6b, bot-
tom panel). MD agrees best at low resolution (CC ~0.8 at 10Å), and the
agreement is somewhat reduced at higher resolution (CC ~0.5 at 2 Å).

Fig. 4 | DISCOBALL analysis and validation of lysozyme polymorph datasets
and insight into crystal mechanics. Displacement covariances matrices (joint-
ADPs) were estimated for triclinic, orthorhombic, and tetragonal polymorphs (top
to bottom in a–c) and split into total and anisotropic components for further
analysis (defined inMethods).aThe total covariance fromDISCOBALL (bluepoints)
andGOODVIBES (greenpoints) decayswithdistancebetweenproteinmolecules, as
expected for an elastic crystal. bThe GOODVIBES fit shows improved agreement to
the total covariances for all polymorphs (Pearson correlations, r, inset). cValidation

of GOODVIBES according to the anisotropic components. Anisotropy is especially
significant in the orthorhombic crystal (middle panel). d Sections through the
orthorhombic crystal are overlaid with isosurface representations of the joint-ADPs
from the GOODVIBES model (green mesh) for each protein relative to the asym-
metric unit (yellow shading). Correlated motion between nearest neighbors is
strong (black arrows) except across the continuous solvent channel running par-
allel to the a axis (purple shading).

Article https://doi.org/10.1038/s41467-023-36734-3

Nature Communications |         (2023) 14:1228 6



Although far from perfect, these are some of the best correlations
reported to date for a single unit-cell simulation7. Despite only being a
single unit-cell simulation, MD is able to describe all aspects of the
target map (mean, standard deviation, and precise pattern) remark-
ably well (Fig. 6b). Most importantly, we demonstrate a workflow for
direct comparison between experimental diffuse scattering and a
small-scale MD simulation. With this development, we can envision a
way to experimentally validate atomistic simulations of protein
motions.

Discussion
Protein motions involved in key functions, such as catalysis, are
thought to occur at the sub-angstrom to angstrom scale21–25. However,
few experimental techniques are sensitive to the subtle intrinsic
motions of proteins. Diffuse scattering from protein crystals has long
been proposed as a promising approach as it contains information on
the correlation of atomic displacements, i.e., how atoms move with
respect to eachother. Although the idea of using diffuse scatteringwas
conceptualized decades ago7,26, major bottlenecks stood in the way of
realizing this as a general technique. With the recent introduction of
direct X-ray detectors12 and data collection and processing strategies13,
diffuse scattering data can now be measured with high accuracy.
Before we can interpret the diffuse scattering signal from proteins,
however, the more dominant signal arising from lattice disorder must
be accounted for.

In this work, we developed a robust workflow for total scattering
(TS) analysis that enables the complete characterization of correlated
protein motion from RT-MX experiments. We demonstrated two
applications with an immediate impact on X-ray crystallography. First,
we are able to partition the ADPs into parts arising from internal and
externalmotion (i.e. proteinmotion vs. latticedisorder). This enables a

more nuanced and unambiguous interpretation of structural hetero-
geneity, which is needed for making well-supported inferences about
the role of dynamics in protein function. Likewise, we are able to
partition the diffuse scattering into internal and external contribu-
tions. Consequently, correlated motion can now be compared
between different crystalline environments, as we demonstrated with
three lysozyme polymorphs, or between experiments and MD simu-
lations of a single unit cell (Fig. 1).

It is remarkable how well the GOODVIBES lattice vibration model
is able to reproduce experimental diffuse scattering features. Before
this study, few examples of protein diffuse scattering of sufficient
quality were available to test models of lattice disorder. Although the
elastic vibrations model performed well in our previous work on tri-
clinic lysozyme13, the triclinic crystals have unusual properties,
including a small unit cell, low solvent content, and low B-factors.
However, tetragonal and orthorhombic lysozyme are more repre-
sentative of a typical protein crystal according to statistics from the
Protein Data Bank (PDB)27. Thus, the fact that elastic vibrations
describe diffuse scattering from all three lysozyme polymorphs gives
confidence that it can be applied generally. We note that there is
nothing in our procedure that requires high-resolution Bragg data,
however, the insights that can be derived from X-ray data depend on
having high confidence in the average structure (e.g. as judged by R-
factors). High resolution is already a precondition for detailed studies
of biochemical mechanisms, and therefore we expect those experi-
mental systems to be ideal candidates for TS/RT-MX.

When lattice disorder is adequately modeled, as judged using
DISCOBALL, we have shown that its scattering contribution can be
subtracted directly. The remaining signal from internal motion can
then be interpreted using a model. Several parsimonious models have
been proposed including elastic networks, normal modes, discrete

a b cTotal GOODVIBES Residual

b

3D- PDF per ASU 
(electron2 -3)

a

10 

b

a

a

b

Triclinic

Orthorhombic

Tetragonal

Fig. 5 | Contribution of internal proteinmotion to ADPs and diffuse scattering.
a ADPs of backbone atoms for each lysozyme polymorph (top to bottom: triclinic,
orthorhombic, and tetragonal). For clear visualization, the full set of ADPs was
reduced to a mean equivalent isotropic B-factor for each residue. Using GOOD-
VIBES, the total B-factor (black line and symbols) is decomposed into rigid-body
motion due to lattice disorder (light and dark blue shading) and the residual
attributed to internal proteinmotion (green shading). As described inMethods, the
B-factors from rigid-bodymotion were further decomposed into translations (light
blue shading) and rotations (dark blue shading), which vary among residues
depending on their distance from the rotation center. The contribution of lattice
disorder to B-factors is significant in all three polymorphs, and the residual
B-factors have a similar overall magnitude (note that the y-axis scale is different for

the triclinic polymorph). b 3D-ΔPDFs computed from the experimental and simu-
lated diffuse maps for each polymorph (arranged top to bottom, as in (a)). Central
sections are shown in the a–b plane for the experimental map (left panels),
GOODVIBES simulation (middle panels), and the residual after subtraction (right
panels), on the same intensity scale normalized per asymmetric unit (ASU). The
region near the origin is shown (dashed circle has a radius of 10 Å). c The standard
deviation of the full 3D-ΔPDF in shells of constant distance for each map slice
shown in (b). Although GOODVIBES and experiment agree at large distances
(beyond ~10 Å), a significant residual remains at shorter distances in all three
datasets. The rapid decay of the residual component with inter-atomic distance is
consistent among the three polymorphs.
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ensembles, and empirical correlation functions7,8. Until now, it has
been difficult to evaluate these models experimentally because the
signal from lattice disorder was present in the data28,29. Our TS/RT-MX
workflow presents the possibility of directly refining a parsimonious
model to the residual diffuse scattering. However, here we have cho-
sen to highlightMD simulation as themethod of choice going forward.
It is the only method currently available that is able to simulate the
entire diffuse signal; it excels at modeling hydration water30 and dis-
ordered solvent31 and it has the potential to explain biochemically
relevant protein motions in detail7. MD also adds the time dimension,
which is missing from our experiments but can be corroborated by
spectroscopic probes such as solid-state NMR32. Here, we have laid the
groundwork for greater synergy between MD simulation and total
scattering by developing a procedure to produce target diffuse maps
that can becompareddirectlywithMDsimulations of one ormore unit
cells with periodic boundary conditions.

Our application of MD simulation to the tetragonal lysozyme
dataset demonstrates the potential for this approach. We found
remarkable agreement on an absolute intensity scale for both the
isotropic scattering component and the magnitude of scattering
fluctuations, and reasonable agreement in the detailed fluctuation
pattern (correlation coefficients vs. resolution of 0.5–0.8), including
for features at 2 Å resolution attributed to internal motion. However,
the discrepancies for diffuse maps between MD and experiment
remainmuch larger than the experimental error. Thus, the accuracy of
MD can potentially be improved using TS/RT-MX data as a target5. For
instance, target diffusemaps could beused toderive external forces or

to bias the sampling by Monte-Carlo approaches. Our benchmark
experimental datasets from lysozymepolymorphswill be instrumental
in developing such methods.

Finally, by developing a robust TS/RT-MX workflow, we have laid
the groundwork to study the role of correlated motion in enzyme
function. In the context of protein allostery, correlated motions are
implicated in propagating a signal from one site of a protein to
another. Additionally, subtle motions in the active site of enzymes are
thought to affect the rates of the reactions they catalyze. To examine
these and other biochemical properties of proteins, high-resolution
insight is needed. With the development of a general TS/RT-MX
workflow, we can envision that this ultimate goal is within reach.

Methods
Crystallization, X-ray data collection, and structure refinement
Lyophilized hen egg white lysozyme from Gallus gallus (Sigma) was
dissolved in 20mMsodium acetate (NaOAc) pH 4.6 at a concentration
of 100mg/mL, passed through a0.2 µm filter and subsequently diluted
using the samebuffer to theworking concentrations (specified below).
The tetragonal form was grown by hanging drop vapor diffusion (24-
well VDX plate, Hampton Research). Drops containing 2 µL each of
40mg/mL protein and reservoir solution were equilibrated over a
reservoir of 1.2mL at ambient temperature. Crystals were harvested
from a well containing 1.1M NaCl and 0.1M NaOAc pH 4.8. The
orthorhombic form was grown by sitting drop vapor diffusion (Cry-
schem plate, Hampton Research). Drops consisted of 10 µL of
90–100mg/mL protein and 20 µL reservoir solution. The sealed trays

a b

MD simulation

Intensity per unit cell 
(Ie x 104)

Target

Fig. 6 | Direct comparison between target diffuse map and crystalline MD.MD
simulations of tetragonal lysozyme were performed on a single unit cell with per-
iodic boundary conditions (PBC) and a 3D diffuse map was simulated. a Slices
through 3D maps of total diffuse intensity in the k = 0 plane from MD (bottom
panel) and target map derived from experimental data and GOODVIBES fit (top
panel) in electronunits (Ie) per unit cell. SeeMethods and Supplementary Fig. 6a for
details. bDirect comparison of MD and target diffusemaps in each resolution shell
(1=d is the scattering vector magnitude, d is the resolution). The average diffuse

intensity (top panel) agrees well between the target (black symbols) and MD (blue
symbols). After subtracting the average (see Methods), the standard deviation of
intensity is closelymatchedbyMD (middlepanel, black vs. blue symbols), including
a distinctive shoulder at d ~ 2 Å. The Pearson correlation coefficient (CC, bottom
panel) between MD simulation and target diffuse map is best at low resolution
(CC∼0.8) and decays slightly at high resolution. Source data are provided as a
Source Data file.
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were incubated at 45 °C until crystals appeared, and then returned to
ambient temperature. Crystals were harvested from drops equili-
brated against a reservoir of 1.0–1.1M NaCl and 0.1M NaOAc pH 4.6.

Diffraction data were collected at the CHESS F1 beamline at
ambient temperature13. Crystals were held in Kapton loops (MiTeGen
Micro-RT) and surrounded by a PET capillary containing 10 µL of well
solution in the tip to maintain hydration. The X-ray beam incident on
the sample had a circular cross-section of 100 µm diameter, wave-
length of 0.9768Å, bandwidth ΔE=E ∼ 5 × 10�4, and flux of ∼ 2 × 1011

photons per second. Diffraction images were recorded continuously
using a pixel array detector (Pilatus3 6M, Dectris) at 10 frames
per second while rotating the crystal about the phi axis at 1 degree
per second (0.1 degree per frame). To avoid excessive radiation
damage, the total exposure for each spotwas limited to 50 seconds (50
degrees of oscillation over 500 frames). The tetragonal dataset con-
sisted of 4000 frames acquired from 8 separate locations on a single
large crystal. The orthorhombic dataset consisted of 4000 frames
from8 separate locations from two large crystals (4 locations on each).
Background images were also collected for each crystal by translating
the crystal out of the X-ray beam along the spindle axis, and acquiring
images through the capillary at 1 frame per second while rotating at 1
degree per second (1 degree per frame).

Bragg peaks were indexed and integrated using XDS33 and
imported into ccp4i234 for further processing and structure refinement
using the ccp4 suite of programs35. Scaling and merging were per-
formed using Aimless36, and amplitudes were estimated using ctrun-
cate. Initial phases were obtained by Phaser37 using molecular
replacement with search models from PDB IDs 193L (tetragonal) and
1WTM, and the structures were iteratively built and refined in Coot38

and refmac39. Water, ions, and alternative conformers were added
where supported by the electron density. Anisotropic ADPs were
added in final rounds of refinement. Stereochemical quality was
assessed using MolProbity40 (Supplementary Table 2).

Reconstruction of diffuse scattering maps from diffraction
images
The data reduction procedure was described previously for the tri-
clinic lysozyme dataset13. Here we briefly describe the procedure and
modifications for the tetragonal and orthorhombic datasets. Data
reduction was performed in MATLAB using the macromolecular dif-
fuse scattering library mdx-lib13,41. Each pixel on the detector was
mapped to a fractional Miller index in reciprocal space using refined
geometric parameters from XDS (INTEGRATE.LP). Photon counts were
accumulated on a three-dimensional reciprocal space voxel grid. The
datasets were processed in two passes as described below: first to
generate a series of coarse maps for scaling, and second, to generate
the fine, merged and scaled map of elastic scattering on an absolute
scale (electron units per unit cell).

In the first pass, a coarse reciprocal space grid was used for
computational efficiency. The grids were centered at the reciprocal
lattice points (RLPs) and subdivided by an odd number of times along
each reciprocal lattice direction. Odd numbered subdivisions were
chosen so that each voxel is associated with an RLP (even subdivisions
result in voxelsmid-waybetween RLPs). The number of subdivisions in
each direction was chosen to make the voxels approximately cubic
(reciprocal cell dimensions are given in Supplementary Table 3). For
tetragonal, a voxel size of (a*/3, b*/3, c*/5) was used for the coarsemap.
For orthorhombic, a voxel of (a*/5, b*/3, c*/3) was chosen. A count
histogramwas generated for each voxel, and a sensitive filter based on
Poisson statistics was applied to detect and mask out non-smooth
features, such as Bragg peaks. Aftermasking, the grid was re-binned to
one sample per RLP. The photon count rate was converted to intensity
by applying geometric corrections for polarization, solid angle,
detector quantum efficiency, and air absorption. Additionally, the
voxels containing Bragg peaks were integrated, background

subtracted, and corrected for the geometric effects above plus the
Lorentz effect.

A scaling model was refined to account for sample variations and
artifacts13. The scaling model contained four terms: absorption, which
dependsondetector positionand rotation angle; scale, whichdepends
on rotation angle; detector chip gain, which applies globally to each of
the 960 CMOS ASIC chips; and offset, which is a positive (excess)
isotropic scattering correction that depends on rotation angle and
scattering vector magnitude (or scattering angle). The continuous
parameters were represented by linear interpolation of a regular grid
of control points. Regularization was used to enforce smoothness and
to minimize the contribution of the offset term, which would other-
wise be underdetermined. The model parameters were refined to the
diffuse scattering data tominimize the least-squares error between the
observed and merged intensities of symmetry-related voxels, plus
regularization terms weighted by Lagrange multipliers. The Lagrange
multipliers were adjusted manually to obtain a physically reasonable
and well-converged solution. The scaling models for orthorhombic
and tetragonal lysozyme are shown in Supplementary Figs. 7 and 8.
The scaling model was applied to both the Bragg and diffuse inten-
sities, and each were merged separately. The Bragg intensities inte-
grated using mdx-lib were then replaced by the more accurate values
reported by XDS/Aimless after applying an appropriate scale factor.

The merged diffuse map includes Compton (inelastic) scattering
in addition to the coherent (elastic) signal of interest. Toplace the data
on an absolute intensity scale and subtract the Compton scattering,
the integrated total scattering was compared with a theoretical value
calculated from the unit cell’s molecular inventory, which includes the
disordered solvent. The number of waters and ions were estimated by
equilibrating anMDsimulation of a single unit cell, as described below,
to achieve ~1 atm of pressure and to neutralize the charge. This resul-
ted in 1890watermolecules and 32Cl ions for orthorhombic, and3304
watermolecules and 56Cl ions for tetragonal. For tetragonal lysozyme,
the number of waters and ions differs slightly from the production
simulation described below because of different assumptions about
the lysozyme charge (the effect on scaling is negligible). The theore-
tically integrated intensity was computed for the model and data out
to a maximum scattering vector of 0.7 Å-1. The theoretical intensity
included elastic scattering factors, incoherent scattering factors, and
intramolecular interference terms due to covalent bonds as described
previously13. A scale factor was found to bring the data into agreement
with the model, and the Compton scattering was subtracted from the
diffuse map.

Finally, in the second phase of data processing, we reconstructed
maps of diffuse scattering on a fine grid by re-integrating the diffrac-
tion images and applying the scaling model determined from the first
stage. The gridswere subdivided anoddnumber of timesperRLP,with
subdivisions chosen to make the voxels approximately cubic, as
described above for the coarsemap, and the voxel volumecomparable
to the fine map reported previously for triclinic lysozyme (Supple-
mentaryTable 3). The diffraction imageswere re-integrated on the fine
voxel grid, photon counts were corrected and then merged to the
reciprocal space asymmetric unit according to the Laue group sym-
metry (Supplementary Table 3) using the geometric corrections and
scalingmodel as described above. Voxels containing Bragg peaks were
excluded. Finally, the data were placed on an absolute scale and the
Compton scattering was subtracted. For visualization, the diffuse
scattering was separated into isotropic and variational components as
described previously13. Missing voxels in the variational scatteringmap
(such as at Bragg peak locations) were filled using the mean value of
the six nearest-neighbor voxels.

GOODVIBES model
Lattice disorder was modeled as thermally-excited vibrations of an
elastic network, where each protein was described by a rigid body and
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the inter-protein forces were modeled as harmonic springs. For each
space group of lysozyme, a network of springs was generated from the
atomic coordinates excluding hydrogen and solvent. A list of external
contacts between each atom in the asymmetric unit and those of
symmetry-related neighbors was computed using a KD tree-based
search, where contact was defined using a hard distance cutoff of 4 Å.
Symmetry operators were applied in order to expand this list to the
entire unit cell. The contacts weremodeled as generalized springswith
a harmonic restoring force that depends on the relative displacement
of the endpoints (seeModel Parameterization andRefinement, below).

The motion of each rigid group (indexed by κ) in a particular unit
cell (indexedby l)was describedby a set of six generalized coordinates
wκl that describe rotational and translational degrees of freedom.
Rotations are definedwith respect to a fixed origin for each rigid group
oκ (here, the center of mass of the rigid group). Let rjκl be the position
of an atom j in group κ and unit cell l relative to the unit cell’s originRl .
The atom’s instantaneous displacement is defined as ujκl = rjκl � �rjκ ,
where �r is the unperturbed position. The mapping from generalized
coordinates to Cartesian displacements u can be approximated as a
linear operator for small rotations (as inTLS refinement)42 such thatujκl

= Ajκ wκl where

Ajκ � Að�rjκ � oκÞ ð1Þ

and

AðxÞ=
1 0 0 0 x3 �x2
0 1 0 �x3 0 x1
0 0 1 x2 �x1 0

0
B@

1
CA ð2Þ

The thermally-excited vibrational motions of the crystalline elastic
network were solved using the Born/Von-Karman (B/V-K) method43,44

for a periodic supercell as described previously13. For notational con-
venience, the displacements of all K groups in a particular unit cell are
described by a 6K-dimensional vectorwl formed by placingwκl end-to-
end. The B/V-K method transforms the equations of motion into the
form of an eigenvalue problem; the so-called dynamical matrix DðkÞ is
computed for each wavevector k and diagonalized to give 6K eigen-
vectors (normal modes) and corresponding eigenvalues (squared
vibrational frequencies). The modes are then populated according to
the classical (high temperature) equipartition theorem, resulting in a
simple expression for the covariance of generalized coordinates:

wlwl0
!T� �

=N�1kBT
X
k

exp ik � Rl � Rl0
� �� �

L�TD +
ðkÞL

�1
ð3Þ

where N is the number of unit cells in the supercell, k runs over the
allowed wavevectors in the first Brillouin zone, kB is the Boltzmann
factor,T is the temperature, L is a lower triangularmatrix that depends
on the masses and rotational moments of each group (defined
previously13) and D+

ðkÞ is the pseudo-inverse of the dynamical matrix.
The pseudo-inverse is identical to the inverse except when k=0:D0 is
not invertible because it includes three modes with zero frequency
corresponding to rigid translations of the entire supercell. In the
pseudo-inverse, these three modes are removed by setting their
reciprocal eigenvalues to zero.

The covariance matrix (Eq. 3) includes 6 ×6 diagonal blocks
(where l = l0 and κ = κ0) composed of the 3 ×3 matrices T, L, and S (as
defined in TLS refinement):42

wκw
T
κ

� �
=

Tκ ST
κ

Sκ Lκ

" #
ð4Þ

where the l index has been dropped because of translational sym-
metry. The atomic displacement parameters (ADPs) are found by

projection onto Cartesian coordinates:

Ujκ =Ajκhwκw
T
κ iAT

jκ ð5Þ

Equivalent isotropic B-factors were computed from the ADPs as
follows:

Biso: =8π
2traceðUÞ=3 ð6Þ

GOODVIBES diffuse scattering simulation
Diffuse scattering from rigid-body motion was computed using the
one-phonon approximation. In this approximation, which is valid for
small displacements, lattice vibrational modes with wavevector k
scatter independently and therefore contribute only at discrete points
in reciprocal space (essentially, as satellite reflections at points gh ±k,
where gh points to an RLP with integer Miller indices h= ðh,k,lÞ). This
enables rapid calculation of the diffuse halos when the Born/Von-
Karman formalism is used to decompose the lattice dynamics in terms
of vibrational modes, as described above. The one-phonon diffuse
scattering, Ið1ÞðqÞ, where q=gh � k, is computed as follows:

Ið1Þðq=gh � kÞ= kBT GðqÞ L�TD +
ðkÞL

�1
� �

GyðqÞ ð7Þ

where GðqÞ is a vector-valued one-phonon structure factor with 6
components per rigid group. The components associated with a
particular group κ can be computed as follows:

GκðqÞ=
qF�1 �ρκðrÞ

� 	ðqÞ
�q×F�1 ðr� oκÞ �ρκðrÞ

� 	ðqÞ
" #

ð8Þ

where �ρκðrÞ is the average electron density of group κ, r is the position
relative to the unit cell origin, andF�1 is the inverse Fourier transform.

In ref. 13 the electron densities appearing in the one-phonon
structure factor were computed from the refined atomic coordinates
and ADPs. A potential disadvantage of this approach is that errors in
the structural model propagate to errors in the simulated diffuse
intensities. Here, we take a different approach, and compute the
electron densities usingmodel phases and experimentally determined
amplitudes from the observed Bragg peak intensities. First, the unit
cell electron density was computed by Fourier synthesis using model
phases and experimental amplitudes. Then, themean electron density
in the bulk solvent region was subtracted from the map (by Babinet’s
principle, subtracting a constant does not alter the intensity except at
q=0). Next, the unit cell was partitioned into regions associated with
each rigid group, creating a series of hard masks equal to 1 inside the
rigid group and 0 outside. The hard masks were then blurred by
convolving with a Gaussian function (B-factor of 50 Å2) creating soft
masks. The electron density of each rigid group was defined as the
product of its soft mask and the unit cell electron density.

In order to compute the Fourier transforms efficiently for an
arbitrary set of q points, an oversampling and Fourier interpolation
scheme was used. The electron density of the rigid group (κ) was first
shifted to the unit cell origin, and the gridwas cropped or zero-padded
to four times the maximum dimension of the group in each direction.
Next, an inverse Fast Fourier Transform (IFFT) was performed to
generate an oversampled molecular transform, FκðqÞ. The real and
imaginary components of FκðqÞ were then interpolated at the desired
values of q, and a phase factor was applied to undo the origin shift. A
similar calculation was performed for the coordinate-weighted elec-
tron densities (one for each Cartesian coordinate). Finally, the com-
ponents of Gκ were computed by taking the appropriate products
between structure factors and Cartesian components of q.
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GOODVIBES model parameterization and refinement
Elastic network models were optimized to fit the three-dimensional
diffuse halos by allowing each of the spring constants to vary.
Symmetry-equivalent springs were forced to have identical spring
constants, and additional restraints were applied during refinement to
prevent over-fitting. The functional form of the harmonic potential
allows for different restoring forces for displacements perpendicular
or parallel to the inter-atomic vector. Two special cases are defined:
Gaussian, or equal restoring forces for any direction; and parallel, in
which components of displacement perpendicular to the inter-atomic
vector have zero restoring force. The general spring constant is para-
meterized using a linear combination of Gaussian and parallel forces
(called hybrid springs).

A set of 400 halos was chosen from each experimental dataset
corresponding to the most intense Bragg peaks in the 2.0 to 2.5 Å
resolution range. The measured intensities on an absolute scale were
extracted from the fine diffuse maps, along with experimental uncer-
tainties propagated from photon-counting statistics. Spring constants
were refined in four stages with progressively fewer restraints: (1) a
single Gaussian spring constant was fit globally; (2) a Gaussian spring
constant was fit for each unique protein-protein interface; (3) a hybrid
spring constant was fit for each unique protein-protein interface; and
(4) a hybrid spring constant was fit for each unique residue-residue
interaction. The refinement program minimized the least-squares
error between measured and simulated intensity using inverse-sigma
weights derived from the experimental uncertainty. Since the one
phonon intensity does not include the isotropic scattering, an addi-
tional linear background term was fit simultaneously for each halo (4
parameters per halo are added for the background term).

Derivation of the 3D-ΔPDF peak function used by DISCOBALL
Here we derive an approximate function for the 3D-ΔPDF lattice peaks
in the case of a crystal with space group symmetry. First we assume
that the peaks arise mainly from correlated translational motions of
rigid groups. We also assume that the displacement covariances are
small so that the harmonic and one-phonon scattering approximations
are valid. With these approximations, the diffuse scattering per unit
cell is:

IDðqÞ=
X
n

eiq�Rn
X
κ,κ 0

eiq� rκ�rκ0ð ÞFκðqÞF *
κ0 ðqÞ q � Vnκκ0q

� �
, ð9Þ

where the summation runs over unit cells in the crystal (labeled by n)
and pairs of rigid groups (labeled by κ and κ0),Rn is the unit cell origin,
FκðqÞ is the mean stucture factor of a group with local origin at rκ , and
Vnκκ0 is the (symmetrized) 3 × 3 covariancematrix for displacements of
groups κ and κ0 in unit cells separated by Rn (or joint-ADP). The 3D-
ΔPDF is the Fourier transform of IDðqÞ, as follows:

F IDðqÞ
� 	ðrÞ= X

n

X
κ

Pnκκðr� RnÞ+
X
n

X
κ,κ 0≠κ

Pnκκ0 ðr� Rn � rκ + r
0
κÞ

ð10Þ

where

Pnκκ0 ðrÞ � Pκκ0 ðrÞ *F q � Vnκκ0q
� 	ðrÞ ð11Þ

and

Pκκ0 ðrÞ �F FκðqÞF *
κ0 ðqÞ

n o
ðrÞ: ð12Þ

The function Pκκ0 ðrÞ is the cross-correlation of mean electron
density for pairs of groups in theunit cell, andPκκðrÞ (when κ = κ0) is the
autocorrelation. The autocorrelation has a strong peak at r=0, how-
ever the cross-correlations do not have strong peaks in general

because the groups are oriented differently in space (except in special
cases such as translational non-crystallographic symmetry). Mathe-
matically, the peaks at Rn are:

PnðrÞ=
X
κ

PκκðrÞ *F q � Vnκκq
� 	ðrÞ ð13Þ

When there is only one rigid body in the unit cell (P1 space group),
PκκðrÞ is approximately equal to the Patterson function PðrÞ for small r,
and thus we can write:

PnðrÞ≈PðrÞ *F q � Vnq
� 	ðrÞ ð14Þ

Thus, in the case of P1, each peak is simply a convolution of the
Patterson function with another function that depends on the joint-
ADP. Since the Patterson function is known from the Bragg data,
deconvolution can be applied to recover the joint-ADPs without
additional modeling.

In a symmetric space group, the deconvolution is more difficult
because the contributions of each rigid group to the peak are mixed.
We note that the 3D-ΔPDF likely contains sufficient information to
perform this deconvolution if a sufficiently large region around each
peak is modeled. However if too large a region is chosen, the con-
tributions from the κ≠κ0 terms also become significant. Thus, here we
restrict our fits to a limited region around the peak (small r).

ThePκκðrÞ are identical except for a rotationoperator, and at small
r, they contain a strong peak that is dominated by individual atom
contributions (Supplementary Fig. 9a, left panel). This peak region is
expected to have approximate rotational symmetry except in special
cases (such as when the resolution is highly anisotropic). Thus, in the
general case, the peak does not contain enough information to
deconvolve the contributions of each rigid group individually. Instead,
we assume that the peak can be approximated by its symmetry aver-
age, or equivalently the Patterson peak for the unit cell (Supplemen-
tary Fig. 9a, middle and right panels). Then, the peak shape is
described by Eq. (14) with an effective joint-ADP that is equal to the
average over groups, as follows:

V
effective
� �
n =

1
K

XK
κ = 1

Vnκκ : ð15Þ

Modeling the symmetric crystal as though it were P1 involves
assumptions that are not obviously valid. However, lattice dynamics
simulations show that the error incurred is small enough to be
neglected in the cases studied here (Supplementary Fig. 9b).

Finally, we note that the DISCOBALL formula (Eq. 14) resembles
the liquid-like model (LLM) for diffuse scattering7,26,45. The LLM is
derived by assuming that joint ADPs depend only on the inter-atomic
vector. We do not make that assumption explicitly when deriving
DISCOBALL, however doing so has certain advantages; it would ensure
that Eq. (14) applies regardless of space group symmetry, and that
Eq. (14) remains valid for the entire 3D-ΔPDF, not just the peak regions.
Our derivation, though more complex, uses a more limited set of
assumptions so that joint ADPs are directly comparable with those
derived from atomistic models such as GOODVIBES.

DISCOBALL deconvolution method
Given a 3D-ΔPDF and Patterson function, we can fit the effective joint-
ADPs as follows. First, crop out a spherical region (radius d) of the 3D-
ΔPDF centered on Rn and identify this region with PnðrÞ:

1∣r∣<dPnðrÞ= 1∣r∣<dPðrÞ *F q � Vnq
� 	ðrÞ ð16Þ

where 1∣r∣<d is an indicator function representing a sphericalmask with
radiusd. By applying the inverse Fourier transform to both sides of this
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equation, we can transform the deconvolution problem into ordinary
least squares. Let

Yn =F�1 1∣r∣<dPnðrÞ
� 	ðqÞ ð17Þ

and

X =F�1 1∣r∣<dPðrÞ
� 	ðqÞ ð18Þ

be the inverse Fourier transforms of the masked peaks and density
autocorrelation, respectively. The six unique components of the joint-
ADP can then be found by least squares minimization:

V̂n = argmin
Vn

Z
D
dq∣YnðqÞ � X ðqÞ � q � Vnq


 �
∣2 ð19Þ

The domain of integration D depends on the resolution of the
data. In our implementation, PðrÞ and PnðrÞ are represented on a dis-
crete real-space grid, and thus the integral becomes a sumover a set of
samples in reciprocal space.

DISCOBALL analysis of experimental datasets
To calculate each 3D-ΔPDF, the variational component of the mea-
sured diffuse scattering was truncated to a resolution of 1.6 Å, missing
values were filled with zeros, and the 3D-ΔPDF was calculated using a
fast Fourier transform (FFT). Peaks regions were extracted from the
3D-ΔPDF and a spherical mask was applied to each with a maximum
radius of d = 4 Å. The regular Patterson map was computed by taking
the FFT of the Bragg intensities. The central peak was interpolated
onto the same real spacegrid as the 3D-ΔPDFpeaks and the samemask
was applied.

For each 3D-ΔPDF peak, the 6 unique values of Vn were found by
least squares fitting. We observed that the very low resolution points
deviated from the expected behavior, likely because the constant
offsets in the 3D-ΔPDF or Patterson map are not exactly known. Thus,
points with d-spacing greater than 5 Å were excluded from the fit.
Minimization was performed for each peak using the lsqnonlin func-
tion in MATLAB.

DISCOBALL validation of GOODVIBES models
For each GOODVIBES simulation, the center-of-mass covariances were
calculated for each pair of rigid bodies as follows:

Uκlκ0l0 =Aκð0Þ wκlw
T
κ0l0

� �
AT

κ0 ð0Þ ð20Þ

Aκð0Þ projects from the generalized coordinates onto the Carte-
sian displacement at the center of mass of rigid body κ (see Eq. 1). The
joint-ADP for a pair of rigid bodies is defined as the symmetrized
covariance matrix:

Vnκκ0 =
1
2

Uκlκ0l0 +Uκ0l0κl

� � ð21Þ

where the unit cell index n refers to the relative displacement of unit
cells l and l0, Rn =Rl � Rl .

For cross-validation using DISCOBALL, the effective joint-ADPs
were computed from the simulation using Eq. (15). To compare joint-
ADPs between DISCOBALL and model calculations, Pearson correla-
tion coefficients were calculated for isotropic and anisotropic com-
ponents of the joint-ADPs. The isotropic part (or total covariance) was
defined as

V total
n = traceðVnÞ ð22Þ

and the anisotropic (residual) components were

Vaniso
n =Vn � I3V

total
n =3 ð23Þ

where I3 is a 3 × 3 identity matrix.

MD simulations
A simulation of a single unit cell (8 protein chains) of tetragonal lyso-
zyme was performed, in a manner similar to the triclinic lysozyme
simulations described previously13,15. We usedAmber18, with the ff14SB
force field for the protein46,47 and the OPC model for water48. The
starting structure was taken from PDB entry 5L9J49, using the A alter-
nate conformer. We added 32 chloride ions to neutralize the charge,
and 2540 additional water molecules to fill in space. The number of
water molecules was manually adjusted in order to achieve ~1 atm
pressure at 295 K, resulting in 3288 total waters (411 per protein chain).
The resulting density was 1.23 g/cm3, which is the same as a measured
density for crystals grown from an NaCl soak density of 1.05 g/cm350.

The simulations were equilibrated under NVT conditions for 0.6
µs and continued for an additional 5 µs, saving coordinates every
0.4 ns. A time step of 4 fs was used, where non-water hydrogenmasses
are set to 3 amu, with a corresponding decrease in the mass of its
bonded atom51. Diffuse scattering was computed as described earlier13.

Since X-rays scatter from individual electrons, it is better to
account for conformational disorder and flexibilty by averaging the
electron density rather than the structures themselves. We took the
average structure factors from the simulation (truncated to 1.5 Å,
which is the experimental resolution limit for 5L9J), and reset the
symmetry to P43212. Using the deposited 5L9J pdb model as a starting
structure, we ran 15 cycles of phenix.refine with default parameters.
The backbone RMS deviation between this structure and the 5L9J
crystallographic model was 0.44 Å.

Procedure to create target diffuse maps for comparison
with MD
A targetmapmatching theoneunit cellMDof tetragonal lysozymewas
created from the experimental data in several processing steps (Sup-
plementary Fig. 6a). A map of scattering from internal motion was
found by subtracting the GOODVIBES supercell scattering simulation
from the experimental diffusemapand then applying afilter. Thisfilter
served two purposes: first to re-sample the map on an appropriate
reciprocal space grid for comparison with MD, and second to mitigate
the effect of noise and outliers.

We implemented a robust, error-weighted Savitsky-Golay filter17 as
follows. First, a target gridwas chosenwith sufficient sampling todescribe
themolecular transform. For tetragonal lysozyme, a target gridwith voxel
dimensions of (a*, b*, c*/2) was used. Then, for each voxel in the target
grid, a spherical neighborhood of voxels in the parent grid was defined
using a cutoff radius of ð3vt=ð4πÞÞ1=3 where vt is the volume of the target
voxel. For each neighborhood, a second-order polynomial was fit using
weighted least-squares17. Then, the valueof the polynomialwas computed
at the target grid location, and the corresponding uncertainty was pro-
pagated from the experimental errors. To render the method robust to
outliers, the fit was performed a second time with adjusted weights. The
re-weighting factors were chosen using the bisquare method52 which is
based on residuals from the first pass. To compute the residual at each
point in the parent grid, we first performed cubic interpolation of the
intensities fromthe targetgridback to theoriginalgrid.Then, thebisquare
re-weighting factor was computed for each parent voxel (i) as follows52:

wi =
1� ri

6m

� �2� �2
∣ri∣<6m

0 otherwise

8<
: ð24Þ
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where m is the median absolute deviation of the inverse sigma-
weighted residuals ri. Finally, the bisquare weights were applied and
fits were repeated, yielding the filtered internal map on a coarse grid.

After obtaining the internal motionmap, scattering from external
motion compatible with the MD supercell was simulated and added
back. To match the single unit cell MD simulation of tetragonal lyso-
zyme, the reciprocal lattice points with integer Miller indices were
selected from the internal map. Next, the scattering from GOODVIBES
simulation corresponding to the MD supercell was added. For a one
unit cell simulation, these are the k =0 modes (optical phonons in
which protein molecules move out of phase with each other such that
the center of mass is stationary). Note that a new GOODVIBES simu-
lation was not required in this case, because scattering from k =0
modes was included in the previous supercell simulation (at integer
Miller index points).

Finally, to compare MD simulation and target diffuse maps, the
mean intensity, standard deviation (SD), and correlation coefficient
(CC) were computed within resolution bins of width 0.02 Å-1. Since the
isotropic scattering changes significantly across certain bins, it
potentially contributes to the SD and CC if not subtracted first20.
Therefore, for each diffuse map, we fit a smooth one-dimensional
interpolant to the intensity vs. resolution, and subtracted this isotropic
signal before computing SD and CC.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The rawdiffractiondata generated in this study havebeendeposited in
the SBGrid Data Bank under accession codes 957 (tetragonal
lysozyme)53 and 958 (orthorhombic lysozyme)54. The atomic coordi-
nates and structure factors have been deposited in the Protein Data
Bank (PDB) with accession codes 8dyz (tetragonal lysozyme) and 8dz7
(orthorhombic lysozyme). For the previously published triclinic lyso-
zyme dataset13, raw diffraction images are available from the SBGrid
Data Bank under accession code 74718, processed maps are available
from the Coherent X-ray Imaging Data Bank (CXIDB) under accession
code 12819, and atomic coordinates and structure factors are available
from the PDB with accession codes 6o2h. The source data underlying
Fig. 6 are provided as a Source Data file. Starting coordinates for
molecular replacement and MD simulations were obtained from the
PDB entries and 193l, 1wtm, and 5l9j. Source data are provided with
this paper.

Code availability
Structure determination was performed using software curated by
SBGrid55. Subsequent data reduction, model fitting, and analysis was
performed using MATLAB with mdx-lib. The software is available on
GitHub at https://github.com/ando-lab/mdx-lib and version 1.2.0 used
in this study has been deposited in Zenodo41. Scripts required to
reproduce the analysis using MATLAB are available in a separate
GitHub repository https://github.com/ando-lab/mdx-examples, and
version 0.1.1 used in this study has been deposited in Zenodo56. The
script md2diffuse.sh used to compute diffuse scattering from MD
trajectories is distributed with AmberTools (http://ambermd.org).
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