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Non-covalent ligand-oxide interaction
promotes oxygen evolution

Qianbao Wu 1,9, Junwu Liang2,9, Mengjun Xiao 1,9, Chang Long 1, Lei Li 1,
Zhenhua Zeng 3 , AndražMavrič 4, Xia Zheng1, Jing Zhu5, Hai-Wei Liang 6,
Hongfei Liu1, Matjaz Valant 4, Wei Wang 7, Zhengxing Lv8, Jiong Li 8 &
Chunhua Cui 1

Strategies to generate high-valence metal species capable of oxidizing water
often employ composition and coordination tuning of oxide-based catalysts,
where strong covalent interactions with metal sites are crucial. However, it
remains unexplored whether a relatively weak “non-bonding” interaction
between ligands and oxides can mediate the electronic states of metal sites in
oxides. Here we present an unusual non-covalent phenanthroline-CoO2

interaction that substantially elevates the population of Co4+ sites for
improved water oxidation. We find that phenanthroline only coordinates with
Co2+ forming soluble Co(phenanthroline)2(OH)2 complex in alkaline electro-
lytes, which can be deposited as amorphous CoOxHy film containing non-
bonding phenanthroline upon oxidation of Co2+ to Co3+/4+. This in situ depos-
ited catalyst demonstrates a low overpotential of 216mV at 10mA cm−2 and
sustainable activity over 1600 h with Faradaic efficiency above 97%. Density
functional theory calculations reveal that the presence of phenanthroline can
stabilize CoO2 through the non-covalent interaction and generate polaron-like
electronic states at the Co-Co center.

The oxygen evolution reaction (OER) at the anode plays a key role in
supplying electron sources for the electrochemical reduction of H2O,
CO2, and N2 to fuels and value-added chemicals at the cathode1. Cur-
rent efforts have been devoted to searching for low-cost, highly active,
and stable OER catalysts aswell as revealing their reaction centers2–4. It
has been demonstrated that the formation of high-valance metal
centers such as CoIV, FeIV, and NiIV under bias is the prerequisite for
oxygen evoution5–9. Indeed, the polarization-activated 3d transition-
metal oxides and (oxy)hydroxides containing concentrated high-
valencemetal sites are among themost active OER electrocatalysts9–12.

While the critical role of high-valence metal centers is unraveled, it
remains a challenge to deliberately design and construct catalysts that
enable the facile generation of these high-valence metal sites under
OER conditioning.

To favor the formation of high-valence metal sites, heteroatom
Fe13,14, Cu15, Co16, Ni17, Au18,19, or Ag20 have been incorporated into the
host metal oxides to lower the thermodynamic barrier3,8,21–23. For
instance, Fe doping into the NiOx matrix promotes the formation of
Ni4+, bringing in improved OER activity24. Besides, the combination of
Co, Fe, and non-metal P with Ni in the NiCoFeP catalyst leads to
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abundant Ni4+ sites11, thereby improving OER performance as well.
Despite major progress in valence-relevant enhancements of OER
activity, the structural and compositional complexity of multi-metal
oxides has obstructed the exactmechanism studies, as a consequence,
the precise active metal centers are not identified9,25. This is because
some species in the electrochemically amorphized surface layers may
be gradually converted into soluble oxygenatedmetal anions26–29, such
as Fe anions (FeO4

2-)30,31. As a result, the concomitant surface recon-
struction can change the local composition, coordination environ-
ment, and electronic structure.

Catalysts containing single-metal components generally do not
have the above issues faced by multi-metal oxides, and thus can serve
as well-defined candidates for mechanism study. For instance, the
high-oxidation state Co4+ sites in CoPi32, Co4O4 cubane33,34, and non-
heme Co4+-O complex35 have been revealed as the key intermediates
for the formation of O-O bond5,36–38. To stabilize Co4+ under the OER
process, the Co sites were usually immobilized in a matrix or ligand
network, such as substrate-supported single-atom catalysts with
strong covalent interactions39–41. It is evidenced that those covalent
supports play an important role in facilitating the formation of Co4+.
Whereas, these structurally well-defined catalysts tend to decompose
along with a decreased concentration of Co4+ under harsh electro-
chemical conditions42–45. Thus, clarifying their delicate valence-activity
relationships and further increasing OER activity remains a challenge.

In this study, we report the discovery of a non-covalent ligand-
metal oxide interaction that allows the formation of abundant Co4+

sites to enhance OER performance. In contrast to the strong bonding
interaction in the compounds, this non-covalent interaction reported
here features a relatively weak yet crucial interaction between metal
sites and chelating ligands. Both in situ and ex situ measurements
together with DFT calculations suggest that the non-covalent interac-
tion enables the facile transition from Co3+ to Co4+. The computational
free energy diagrams and experimental evidence jointly reveal the
valence-dependent coordination “switch” between soluble covalent
Co(phenanthroline)2(OH)2 complex, abbreviated as Co(phen)2(OH)2,
in solution and non-covalent ligand-modified CoOxHy on electrodes
(labeled asCo-PHwith high content of Co4+). This feature suggests that
the active Co4+ sites can regenerate, with Co(phen)2(OH)2 complex in
the electrolytes. Consequently, a self-optimized low overpotential of
216mV was reached at 10mAcm−2 for over 1600 h on the Co-PH
catalyst.

Based on DFT calculations, we demonstrate that the CoO2/phen
hybrid outperforms bulk CoO2, ascribing to the increase of density of

states near the Fermi level and electron charge transfer between the
components. The non-covalent interaction leads to polarons in
the Co4+-enriched structure, which facilitates the deprotonation of the
surface bridge OH* species and subsequently the formation of
O-bridged dual Co-Co moieties. Moreover, the calculated charge
density differences and magnetic moments show how CoOxHy and
phen work in synergy with the phen-induced polarons to reduce the
thermodynamic overpotential from 0.75 to 0.4 V. This non-covalent
interactionprovides a novel pathway to tune the catalytic properties of
heterogeneous catalysts.

Results
Discovery of ligand-facilitated Co4+ formation
The chronoamperometry (CA) was performed on pristine CoOOH
model catalysts in both phen-free and phen-containing 1.0M NaOH
electrolytes at 1.7 V versus a reversible hydrogen electrode (VRHE). As
shown in Supplementary Fig. 1, the presence of phen in the electrolyte
leads to a continuous increase in OER current density from 6.4 to
11.7mAcm−2 during the 10 h chronoamperometry test. In sharp con-
trast, the current density decreases from 6.4 to 4.0mAcm−2 in the
absence of phen. We further recorded the OER polarization curves
after CA tests (Fig. 1a). The overpotential at 10mA cm−2 reduces by
80mV for the CoOOH treated in the phen-containing electrolyte
(abbreviated as pc-CoOOH) compared to the pristine CoOOH, while
that is increased by about 20mV for phen-free electrolyte treated
CoOOH (pf-CoOOH). Both the CA and polarization tests illustrate that
the introduction of phen into the alkaline electrolyte can improve the
OER activity of CoOOH. It is worth noting that the electrochemical
active surface area (ECSA) of CoOOH after 10 h treatment in phen-
containing NaOH remains almost unchanged (Supplementary Fig. 2).
This excludes the activity enhancement from the variation of surface
area. We further quantified the Co ions concentration in electrolytes
after the chronoamperometry test. The leached Co in the phen-free
NaOH reached up to 660μg L−1, which is sixfold higher than that in the
phen-containing NaOH (Fig. 1b and Supplementary Fig. 3), indicating
that phen ligand relieves Co dissolution during OER.

To understand the enhanced OER activity as well as the reduced
dissolution of Co in the presence of phen in the electrolyte, we
investigated the Co chemical state and coordination environment of
as-prepared pc-CoOOH and pf-CoOOH by X-ray absorption fine
structure spectroscopy (XAFS). The Co K-edge X-ray absorption near
edge structure spectra (XANES) of pc-CoOOH shifts toward higher
energy relative to that of pf-CoOOH, indicating a higher Co oxidation
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Fig. 1 | Ligand-promoted oxygen evolution activity. a The j-V curves of pf-
CoOOH and pc-CoOOH. “pc” and “pf” represent that the pristine CoOOH pre-
catalysts were treated at 1.7 VRHE for 10 h in phen-containing and phen-free 1.0M

NaOH electrolytes, respectively. b The concentration of Co leached into electro-
lytes (measured by ICP-MS after 10 h chronoamperometry at 1.7 VRHE).
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state in pc-CoOOH (Supplementary Fig. 4a)38,41. The k3-weighted
Fourier-transformed Co K-edge extended X-ray absorption fine struc-
ture (EXAFS) reveals a Co-O distance of 1.93 Å and a Co-Co distance of
2.89 Å46,47. While the Co-O and Co-Co distances of pc-CoOOH and pf-
CoOOH keep the same, pc-CoOOH exhibited a relatively lower Co-Co
coordinationnumber (Supplementary Fig. 4b–d). This suggests amore
pronounced fragmentation of theCo-O-Conetwork for pc-CoOOH48,49,
in line with the aggravated amorphization (cf. the selected area elec-
tron diffraction (SAED) and SEM images in Supplementary Figs. 5–7).
The amorphization together with a low concentration of Co ions in the
electrolyte for pc-CoOOH suggests the presence of phen ligand
accelerates the Co redeposition.

We performed in situ XAFS measurements to understand the
variations of catalysts during the OER. As is confirmed by a shift
(1.22 eV) of XANES to higher absorption energy upon the potential
switching from open circuit potential (OCP) to 1.7 VRHE for pc-CoOOH
than that of pf-CoOOH (Fig. 2a and Supplementary Figs. 8, 9; the
images of the in situ XAFS equipment and the electrochemical cell
were shown in Supplementary Fig. 8e, f), a higher Co valence state
about +3.9 at 1.7 VRHE in pc-CoOOH was concomitantly generated
during the OER process. In addition, relative to pf-CoOOH, the Co-O
coordination number of pc-CoOOH increased from 5.11 at OCP to 6.05
at 1.7 VRHE

50 (Fig. 2b, Supplementary Figs. 10, 11, and Supplementary
Table 1), and the increased Co-Co coordination number for pc-CoOOH
is likely due to the more favorable formation of di-μ-oxo or μ-hydroxo
bridged Co species46.

To further clarify the effect of phen on OER, we systematically
studied the redox behavior of pc-CoOOH and pf-CoOOH. As shown in
Fig. 2c, the Co2+/Co3+ oxidation peak of pc-CoOOH negatively shifts by

~40mV relative to that of pf-CoOOH. Further, compared to pf-CoOOH,
the onset potential for the oxidation of Co3+ to Co4+ on pc-CoOOH
negatively shifts from 1.31 to 1.26 VRHE. We also applied in situ UV-Vis46

to track the Co4+ formation kinetics as a function of applied bias
(Supplementary Fig. 12). The much steeper differential absorbance
between 1.3 and 1.5 VRHE for pc-CoOOH illustrates the faster generation
of Co4+ in the presence of phen (Fig. 2d)51,52. Importantly, pc-CoOOH
presents ~1.8 times higher absorbance intensity for Co4+ (at 730nm)
relative to pf-CoOOH at 1.75 VRHE (Fig. 2e), indicating an easier charge
accumulation on Co sites22, thus a much higher population of Co4+.
Besides, we studied the chemical states of both pf-CoOOH and pc-
CoOOH catalysts by ex situ X-ray photoelectron spectroscopy (XPS)
and electron paramagnetic resonance (EPR). Co 2p XPS spectra were
fitted according to the reported binding energies of Co2+, Co3+, and
Co4+53–55, which suggested an increased Co3+/Co2+ ratio from 1.12 to 1.32
as well as the appearance of Co4+ after introducing phen ligand (Sup-
plementary Fig. 13 and Supplementary Table 2). Since Co4+ is an EPR-
active species (with g-values ranging from 2.1 to 2.4 depending on the
coordination environments)56–59, we used EPR spectroscopy to further
quantify it. The spectrum of pc-CoOOH displays a relatively strong
signal centered at g ≈ 2.20 which can be attributed to a low-spin (S = 1/
2) Co4+. In contrast, there is only a veryweak signal shown at the sameg
value for the pf-CoOOH catalyst. This again indicates the presence of
phen benefits Co4+ formation (Fig. 2f).

Modeling the interplay between Co4+ and phen
To reveal the crucial role of phen ligand in the Co valence transitions
under anodic polarization, we studied the phen-embedded layered
CoOOH (represents the chemical state with 100% Co3+) and CoO2
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(100% Co4+) by density functional theory (DFT) calculations (Supple-
mentary Figs. 14–17). As shown in Fig. 3a and Supplementary Table 4,
the intercalation of phen into CoOOH is endothermic, with the exact
magnitude depending on the content of phen, which indicates that the
interaction between phen and CoOOH is thermodynamically unfa-
vorable. Conversely, the intercalation of phen intoCoO2 is exothermic.
As a consequence, the presence of phen leads to a thermodynamically
more favorable transition from CoOOH to phen-intercalated CoO2.
Additionally, the transition potential decreases with the increase of
phen content, i.e., from 1.72 VRHE for the bulk phase to 1.37 VRHE, 1.23
VRHE, and 1.01 VRHE for 1/3ML (ML: monolayer), 2/3ML, and 1ML of
phen covered CoOOH, respectively (Fig. 3b). The intercalation of phen
results in the exfoliation of CoO2 sheets from bulk CoOOH, which
explains phen-induced amorphization of CoOOH at 1.7 VRHE (Supple-
mentary Fig. 5).

Notably, bulkCoO2 is a semiconductorwith high resistance,which
is unfavorable for charge transfer, thus greatly restricting its OER
activity. However, phen intercalation increases the density of states
near the Fermi level (Fig. 3c and Supplementary Fig. 18) and thereby
improves the charge transfer kinetics. This is because of the formation
of a polaron-like Co3+ site within the enhanced content of Co4+ (Sup-
plementary Fig. 19)60–64. This unique structureplays a central role in the
improved OER activity, as discussed further below.

Valence-dependent interactions between Co and phen
The theoretical study suggests that the inclusion of phen into
the interlayer of CoOOH is thermodynamically unfavorable

(Supplementary Table 4). Thus, the concentration of phen in pc-
CoOOH should be very low. To further clarify the interplay between
phen and Co in different oxidation states, we prepared Co(OH)2 and
CoOOH model catalysts and studied their coordination ability with
phen. Interestingly, after introducing phen into 1.0M NaOH, the
Co(OH)2 film rapidly dissolved into the electrolyte within 10min at
OCP. However, CoOOH remained unchanged on electrodes under the
same conditions (Supplementary Fig. 21). Hence, we reasoned that
phen tends to coordinate with paramagnetic Co2+ instead of diamag-
netic Co3+ to form a soluble complex. To further verify it, the CoOOH
electrode was held at 0.7 VRHE in phen-containing 1.0MNaOH to allow
the reduction of Co3+ to Co2+ (Supplementary Fig. 22). As expected, we
observed a complete dissolution of the catalyst film, which led to the
disappearance of OER activity (Supplementary Fig. 23). Combing all
the experimental and theoretical results together, we conclude that
phen has three types of interrelations with Co: (i) phen coordinates
with Co2+ to form a soluble complex in 1.0MNaOH; (ii) phen presents a
thermodynamically unfavorable interplaywithCo3+; iii) phen facilitates
the conversion of Co3+ to Co4+, which can be stabilized on electrodes
through non-covalent interaction under OER conditioning (Fig. 4a and
Supplementary discussion to Supplementary Figs. 20–23).

Regarding the phen-assisted Co valence state transition, we fur-
ther analyzed the chemical states and coordination environments of
Co according to theΔG–potential diagram. Co(phen)2(OH)2molecular
model (vide infra) was used as a representative soluble complex. We
found that, as expected, Co(phen)2(OH)2 converted to the phen-
attached monolayered CoO2 at 1.37 VRHE, rather than the soluble
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Co(phen)2O2 or Co(phen)O2 molecules whose transition potentials
were over 2.0 VRHE (Fig. 4b and Supplementary Figs. 24, 25). Thus,
electrochemical oxidation of soluble Co(phen)2(OH)2 leads to the
formation of phen-embedded high-valence state CoOxHy fragments
(Fig. 4c) instead of oxidized complexes with covalent bonds65–68.

In situ deposition of CoOxHy containing non-bonding phen
Based on the above findings, we employed electrodeposition to pre-
pare the amorphous CoOxHy film containing non-bonding phen (Co-
PH) directly from solubleCo-phen complex in 1.0MNaOH. The soluble
Co-phen electrolyte was prepared by mixing Co2+ salts with phen in
deionized water, whose pH was further adjusted to 13.9 by NaOH at
298K. The final concentration of NaOH is about 1.0M. UV-Vis
in combination with EPR56,69 suggest a hydroxyl-involved Co-N
coordination state (Supplementary discussion to Supplementary
Figs. 26–28). 18O-labeled andD-labeled Fourier transform ion cyclotron
resonance mass spectrometry (FT-ICR-MS) confirms that the mole-
cular formula is Co(phen)2(OH)2, which is consistent with the predic-
tion by DFT calculations (Supplementary discussion to Supplementary
Figs. 29, 30).

The Co-PH films were electrodeposited from soluble
Co(phen)2(OH)2 in 1.0M NaOH (Supplementary discussion to Sup-
plementary Figs. 31–38). In situ EPR was used to track the Co4+ in the
oxide film after electrodeposited at 1.7 VRHE for different time scales
(Fig. 5a). A paramagnetic Co4+ signal5 (S = 1/2) located at g ≈ 2.25 was
captured at room temperature (298 K). This Co4+ signal became more
pronouncedwhen the temperaturewascooleddown to 100K (Fig. 5b).
In situ UV-Vis spectra revealed the accumulation of Co-PH on the FTO

electrode, as was confirmed by the gradually enhanced absorbance
between 350 and 550 nm (Supplementary Fig. 39). Furthermore, the
mass of electrodeposited Co-PH catalysts was quantified by electro-
chemical quartz crystal microbalance (EQCM). It exhibited a linear
relationship with the OER current density, suggesting a close correla-
tion between the amount of Co sites and theOER activity. (Fig. 5c). The
intrinsic activity of freshly-prepared Co-PHwas evaluated based on the
mass activity and turnover frequency (TOF) (Fig. 6a and Supplemen-
tary Fig. 39). Themass activity of electrodepositedCo-PHdisplays ~100
times (1.67 Amg−1 at an overpotential of 350mV) enhancement in
comparison to that of pf-CoOOH. In addition, Co-PHwas found to have
a high TOF value of 0.35 O2 s−1 per total metal site under 350mV
overpotential, which is ~140 times higher than that of pf-CoOOH. This
even outperforms the typical Co-based layered double hydroxides and
(oxy) hydroxides (Supplementary Table 6).

Activity and stability of in situ deposited Co-PH catalyst films
According to the Co-PH mass-OER activity relationship (Fig. 5c), a
continuous deposition at 1.7 VRHE would further increase the OER
activity to the optimal state. The deposited Co-PH catalyst film is
visually homogeneous and transparent with a nanostructured texture
(Supplementary Figs. 40–42). Interestingly, the in situ deposited Co-
PH after 10min exhibited aCo/N ratio of 1.96 (Supplementary Table 7),
which is much lower than that of pc-CoOOH (~8.49, cf. Supplementary
Table 2) after 10 h at 1.7 VRHE, suggesting much higher density of phen
in the in situ electrodeposited Co-PH film. In addition, the deposited
Co-PH catalysts after 10min and 10 h show almost the same Co/N ratio
of ~2.0 in the films (Supplementary Fig. 43 and Supplementary
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Table 7), exhibiting a comparable amount of phen during the film
deposition. Compositional characterizations of the catalyst films fur-
ther verified the presence of phen after 40 and 500h electrocatalysis
at 10mAcm−2 (Supplementary Figs. 44–46). Moreover, ex situ UV-Vis
and attenuated total reflection-Fourier transform infrared (ATR-FTIR)
also revealed the existence of phen in the deposited Co-PH (Supple-
mentary Figs. 47, 48). Importantly, the phenwas observed intact in Co-
PH films after OER operation (Supplementary Figs. 49, 50). Deliberate
decomposition of phen inCo-PH film by irradiationwith 254 nm laser36

led to the decay of OER performance, again highlighting the critical
role of phen ligand in enhancing the OER activity (Supplementary
Fig. 51 and Supplementary Table 8).

We further evaluated the long-term stability of the Co-PH cata-
lyst at 10mA cm−2. To better understand the whole process and
activity variation trend of Co-PH, we present both the catalyst
deposition process and the subsequent OER stability test in one
curve in Fig. 6b. The overpotential decreases continuously with the
extended operation. The catalyst deposition and the subsequent self-
optimizing process at 10mA cm−2 are relatively slow and gradually
tend to the best state, and this process could be accelerated by
increasing the current densities (Supplementary Fig. 52). As shown in
Fig. 6b, this catalyst achieved a lifetime of more than 1600h
(~68 days) at 10mA cm−2

geo. In addition, online gas chromatography
(GC) analysis further indicated a Faradic efficiency of >97% for O2 at
10mA cm−2 (Supplementary Fig. 53). Remarkably, regardless of
whether the current density was normalized to the geometric area or
electrochemically active surface area (ECSA), Co-PH features a low
overpotential of 216mV at 10mA cm−2, about 330mV lower than that

of CoOOH catalysts measured in the current work and the literature
(Fig. 6b and Supplementary Figs. 54, 55). Notably, the phen is stable in
the catalyst even after ~1600 h operation (Fig. 6b, inset). Benefiting
from the phen-endowed self-healing ability, the lifespan of Co-PH
could be much larger than that. These performances place unary Co-
PH among the most active and durable OER catalysts (Fig. 6c, d and
Supplementary Table 9).

Understanding improved activity through modeling
To better understand the role of phen, we further studied OER activity
through DFT calculations. We first evaluated the steady-state config-
urations of CoO2 (10-10) and Co-PH (10-10) surfaces (Fig. 7a). The
calculated surface free energy diagrams of CoO2 and Co-PH indicate
that, under OER conditions, coordinatively unsaturated surfaceO sites
are saturated with Had by forming bridge OH* species, and coordina-
tively unsaturated Co sites are saturated with OHad by forming atop
OH* (Fig. 7b and Supplementary Fig. 56). Thus, OER starts from the
deprotonation of the surface OH*, as has been proposed in the pre-
vious reports16,23,70. Also, we found that OH* deprotonation to O* is the
potential-determining step (PDS) for both bridge OH* and atop OH*

(Fig. 7d and Supplementary Fig. 57). For the deprotonation of bridge
OH*, the theoretical overpotential is about 0.2~0.6 V lower than that of
atop OH* (Supplementary Fig. 58). Thus, OH bridged dual Co-Co sites
are reaction centers.

For CoO2, the theoretical overpotential is 0.75 V (Fig. 7d). The
presence of polaron-like Co3+ induced by phen, however, can reduce
the thermodynamic overpotential to 0.4~0.5 V, which is dependent on
the relative distance of the reaction center to the location of Co3+ site
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(Fig. 7c, d and Supplementary Figs. 59–69). The reaction center with
the lowest thermodynamic overpotential of 0.4 V is the one with Co3+

forming the Co3+-Co4+ reaction center. This type of reaction center
facilitates the potential-determining deprotonation of OH* to O* which
is accompanied by the oxidation of Co3+ to Co4+, as observed by the
change of Co magnetic moment from 0 to 1μB (Supplementary
Figs. 62–65). However, even if the Co3+ site is not part of the reaction
center, i.e., forming Co4+-Co4+ type reaction centers, the thermo-
dynamic overpotential only increases slightly (Supplementary
Figs. 66–69). For example, for the cases of Co3+ with one atom away
from the reaction center, the thermodynamic overpotential only
increases 0.02–0.05 V due to the effect of polaron, i.e., Co3+ is still
oxidized to Co4+ during the deprotonation of OH* to O* (Supplemen-
tary Figs. 62–65). The feature of polaron is more clearly illustrated in
the cases where Co3+ is far away from the reaction center, e.g., on the
opposite side of the slab model. For these cases, the thermodynamic
overpotential is only up to 0.1 V higher (Supplementary Figs. 66–69).
These results highlight the importance of non-covalent ligand-oxide
interactions in reducing the OER overpotential by generating abun-
dant Co4+, active polarons, and dynamic reaction centers.

This work presents a ligand strategy to promote the formation of
OER-required high-oxidation state Co4+ species along its synergy with
polaron-like Co3+ species through a non-covalent interaction between

homogeneous phenanthroline ligand and heterogeneous oxide. Mul-
tiple in situ, ex situ characterizations and theoretical computation
indicate phenanthroline ligands can be favorably embedded into
CoOxHy through dissolution/redeposition-induced reconstruction.
This process facilitates the formation of highly oxidized CoO2 frag-
ments under anodic polarization. Moreover, we further demonstrate
in situ deposition of amorphous CoOxHy film containing non-bonding
phenanthroline with a high content of Co4+ directly from soluble
Co2+(phen)2(OH)2 complex inalkaline electrolytes. This unusual ligand-
oxide interaction not only substantially elevates the content of active
Co4+ sites but also leads to the formation of polaron-like Co3+ sites
within abundant Co4+ species, which improves OER performance
through either local or non-local Co3+-Co4+ synergy, resulting in an
overpotential of 216mV at 10mAcm−2 over 2 months. This work
highlights the non-covalent interaction between heterogeneous cata-
lysts and chelating ligands as a new pathway to optimize electro-
catalytic activity and durability.

Methods
Chemicals
High-purity CoCl2·6H2O, CoCl2, CoSO4·7H2O, and 1,10-phenanthroline
were purchased from Adamas without further purification. The high-
purity sodium hydroxide was purchased from Sigma-Aldrich and was
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further purified to remove the iron impurities. Fluorine-doped tin
oxide glass (FTO) with resistance <15 ohm/sq was purchased from
Kaivo FTO-P003. H2

18O (18O abundance 97.4%) and D2O (D abundance
99.9%) were purchased from Meryer. The Li18OH was prepared by
directly dissolving the lithium tablets (>99.99%) in H2

18O in an ice bath
condition, and the obtained Li18OH solution was evaporated in a
vacuum oven at 45 °C to obtain the dry Li18OH powder. All isotope
chemicals were usedwithout further dilution. All the solutions without
isotopes were prepared using ultrapure deionized water (measured
resistivity 18.2MΩ cm−1 at 25 °C, Milli‐Q).

In situ deposition of Co-PH
The Co-phen solutions were prepared by adding 4mM CoCl2·6H2O,
14mM phenanthroline into 40mL deionized H2O, and thereafter
mixed with 2.0M NaOH (v/v = 1:1) to form Co(phen)2(OH)2 containing
electrolyte. Typically, the Co-PH catalyst film was in situ deposited on
FTO at a constant potential of 1.7 VRHE in the Co(phen)2(OH)2 con-
taining 1.0M NaOH electrolyte at room temperature (298 K). Besides,
the counter Pt electrodewas separated by aNafionmembrane andwas
immersed in a 1.0M NaOH electrolyte as well.

Synthesis of Co(OH)2 and CoOOH
Typically, the Co(OH)2 on FTOwas prepared by referring to a previous
report71. Specifically, 0.233 g Co(NO3)2· 6H2O, 0.07 g of NH4F, and
0.240 g of CO(NH2)2 were dissolved in 100mL deionized water under

stirring for 30min. Then, the obtained solution was transferred to a
50mL Teflon-lined autoclave with an FTO immersed in the solution as
the growth substrate. The reaction was maintained at 120 °C for 10 h.

The CoOOH was electrodeposited on FTO according to a report
method20. The FTO with an efficient exposure area (0.283 cm2) was
used as a substrate. A constant current of 0.283mA for 100 s and
subsequent 2.83mA for 60 s was applied on FTO in a 1.0M CoSO4

aqueous solution. The as-deposited film was then activated at 1.4 VRHE

for 100 s in 1.0M NaOH to trigger the phase transformation from
Co(OH)2 to CoOOH. The final catalyst film was cleaned with deionized
water for further experiments.

Electrochemical measurements
All electrochemical experiments were performed on a Bio-Logic SP-
200 potentiostat in a standard three-electrode system using FTO glass
(contact area as0.283 cm2) as aworking electrode, platinumgauze as a
counter electrode, and Hg/HgO as reference electrode, respectively.

All potentials reported in this work have been converted to the
reversible hydrogen electrode (RHE). All electrochemical experiments
were carried out at room temperature (~298 K) in 1.0MNaOH (pH 13.9,
measured by an Ohaus Starter 2100 pH meter with temperature cali-
bration). The cyclic voltammetry (CV) was recorded from 0.5 to 1.75
VRHE at a scan rate of 10mV s−1 unless specified. The overpotentials (η)
were obtained using η = E (vs RHE) – 1.23 V at 10mAcm−2 unless spe-
cially indicated. Electrochemical impedance spectroscopy (EIS) was
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measured with a frequency scan range from 100 kHz to 100MHz, and
the amplitude of the sinusoidal wave was 10mV. The overpotential (η)
of CoOOH and Co-PH were obtained after iR correction. The electro-
chemically active surface area (ECSA) of Co-PH was estimated from
the electrochemical double-layer capacitance (Cdl) according to
ECSA =Cdl/Cs. The Cdl was determined by measuring a series of CVs in
the non-Faradic region at a scan rate of 0.1, 0.2, 0.3, 0.4, and 0.5 V s−1.
The Cs of 0.04mF cm−2 was taken to estimate ECSA according to a
previous report72. The mass activity (Im) was calculated according to
the equation: Im = I / mCo, where the mCo was obtained by ICP-MS.
Turnover frequency (TOF) was calculated according to the equation:
TOF = (j ×A) / (4 × F × nCo), where the nCo is the Co atom number
derived from the ICP-MS results.

In situ UV-Vis
In situ UV-Vis spectra were recorded on a QE Pro UV-Visible spectro-
meter (Ocean Optics) equipped with an HL-2000 light source (360 to
1100nm). The light source was connected to the spectrometer via a
fiber-optic cable (200μm fiber core diameter). The FTO with a fixed
area (0.283 cm2) was used as the working electrode, and Ag/AgCl and
Pt electrodes were used as the reference electrode and the counter
electrode, respectively. The UV-Vis spectra of the deposited catalysts
were subtracted by the background spectrum of cleaned FTO
immersed in the same electrolyte. The potential-dependent UV-Vis
spectra were subtracted by the absorption spectra of catalysts film at
0.5 VRHE. According to the previous reports51,52, the differential absor-
bance (dAbs./dV) of pc-CoOOH and pf-CoOOH were obtained at
730 nm. The dAbs. represents the differences in the absorbance at two
consecutive potentials separated by 0.05 V, and the dV is 0.05 V.

In situ electron paramagnetic resonance (EPR)
In situ EPR measurements were conducted at 9.73 GHz, 2mW, and
room temperature (298 K) on an X-band EPR (Bruker EMXmicro-6/1)
equipped with a customized three-electrode system: Au (working
electrode), Pt (counter electrode), and silver wire as a pseudo refer-
ence electrode (the potential was converted to RHE). 1 mL
CoII(phen)2(OH)2-containing 1.0M NaOH was used as the electrolyte
and a constant potential of 1.7 VRHE was applied to the working elec-
trode. The in situ EPR data were acquired without subtraction of the
background.

Electrochemical quartz crystal microbalance (EQCM)
In situ EQCM experiments were implemented on an SRS QCM 200
instrument with an Au/Ti crystal (SRS QCM Crystal, 0100Rx3, p/n 6-
00615, 5MHz) as the working electrode. The deposition was con-
ducted at 1.7 VRHE in CoII(phen)2(OH)2-containing 1.0M NaOH at room
temperature. The deposited induced frequency change (Δf) was con-
verted into the corresponding mass difference (Δm) according to the
following formula73,74.

Δf = � Cf*Δm ð1Þ

where Δf is the frequency (Hz) change, Δm is the deposited catalyst
mass per unit area (g cm−2), Cf is the sensitivity factor of the crystal
(56.6Hzμg−1 cm2 for 5MHz Au/Ti quartz crystal at room temperature).

In situ X-ray absorption fine structure (XAFS) measurements
All the XAFSdata were collected at the BL11B beamline of the Shanghai
SynchrotronRadiation Facility (SSRF). The beamcurrent of the storage
ring was 220mA in a top-up mode and the incident photons were
monochromatizedby a Si (111) double-crystalmonochromator,with an
energy resolution ΔE/E ~2 × 10−4. The spot size at the sample was
~200μm×250μm (H×V). The position of the absorption edge (E0)
was calibrated by using Co foil. The images of the in situ XAFS
equipment and the electrochemical cell were shown in Supplementary

Fig. 8e, f. To preclude the influence of the FTO and obtain the in situ
XAFSdata, carbonpaperwas used as a substrate. All XAFS spectrawere
collected in fluorescence mode. To track the changes in the catalysts
during the OER process, different anodic potentials were applied to
the catalysts in 1.0M NaOH in a typical three-electrode system. After
the corresponding current density reaches a steady state, the XAFS
data can be collected at the indicated potentials. All XAFS data were
analyzed by the ATHENA and ARTEMIS modules implemented in the
IFEFFIT software package75.

Physical and chemical characterizations
All samples were cleaned with deionized water and dried with nitrogen
before the characterization. The ex situ UV-Vis spectra were recorded
on a QE Pro UV-Visible spectrometer (Ocean Optics) equipped with a
DH-2000-BAL light source (200 to 950nm). The ex situ EPR data were
acquired on an X-band Bruker EMXmicro-6/1 at 9.38GHz, 100K, 2mW
power. ICP-MS was performed on an Agilent 7800 spectrometer.
Fourier transform ion cyclotron resonance mass spectra (FT-ICR-MS)
were measured on a Bruker Solarix spectrometer equipped with a dual
electrospray ionization (ESI) source in the positive ion mode. The
chemical state and the Co/N ratio of the Co-PH catalyst film were ana-
lyzed by a Thermo Scientific K-alpha X-ray photoelectron spectroscopy
(XPS). XPS Fitting was carried out by the Avantage software, and the
binding energies were calibrated using the adventitious carbon by
shifting the C 1 s peak to 284.8 eV. The catalyst morphology was
examined by a ZEISS MERLIN Compact scanning electron microscope
(SEM) with the electron gun operated at 10.0 kV. A Bruker M4 Tornado
X-ray fluorescence (XRF)with a Ru target was used to determine the Co
content based on Co-Kα emission. Attenuated Total Reflection Fourier
Transform Infrared Spectroscopy (ATR-FTIR) analyses were performed
onaPerkin–Elmer SpectrumGXspectrometer in absorptionmodeover
a scanning range of 400–4000cm–1. FTIR spectrum of phenanthroline
power was measured on a PE Spectrum Two spectrometer in absorp-
tionmode. Themorphology and structure were further analyzed on an
FEI-Tecnai G2 high-resolution transmission electron microscopy
(HRTEM). Besides, element mapping and selected area electron dif-
fraction (SAED)was conducted on an FEI TECNALG2 F30 field emission
transmission electron microscope. The sample for taking the cross-
section STEM images of Co-PH deposited on FTOwas prepared by ion-
milling and polishing (PIPS II, GATAN) at grazing incidencemode (<5°).
The corresponding STEM and element mapping images were obtained
on a JEOL JEM2100F transmission electron microscope equipped with
an EDSdetector (Oxford Instruments). The real-timeFaradaic efficiency
of evolved O2 during the in situ deposition of Co-PH at 10mAcm−2 is
determined by monitoring the oxygen concentration in the headspace
of gas-tight H-cell electrolyzer with an online Agilent 8890 GC gas
chromatography (equipped with a GS-GASPP0 column).

Computational details
All DFT calculations were carried out within the projected augmented
wave method, as implemented in the Vienna Ab-initio Simulation
Package. To generate highly accurate electrochemical stability dia-
grams,weemploy a recentlydeveloped approach76, which includes the
use of aHubbardU term, a vanderWaals functional (optPBE)77, and the
use of spin polarization for the calculations. The U value applied to
d-orbitals of Co is taken as 3.50 eV. For cell shape and volume relaxa-
tions of (hydroxy)oxide compounds, a cutoff energy of 500 eV is used
for the plane wave expansion. Monkhorst–Pack k-point grids are used
for Brillouin zone integration. A (3 × 3 × 4) k-point grid is employed for
the phen insertion within layered Co-based (oxy)hydroxides com-
pounds with 1ML phen, and (3 × 3 × 2) k-point grid for 1/3ML and 2/
3ML phen, respectively. For the other bulk and surface calculations,
equivalent or denser k-point grids are utilized. An orthorhombic box
(30 × 30 × 30) Å3 and a single k-point (1 × 1 × 1) for the Brillouin zone
sampling are used for Co(phen)2OxHy species. The equilibrium
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geometries are obtainedwhen themaximumatomic forces are smaller
than 0.02 eV/Å and when a total energy convergence of 10−5 eV is
achieved for the electronic self-consistent field loop. The thermo-
dynamic correction and solvation energy used in the free energy dia-
grams calculations have shown in Supplementary Table 2.We consider
the following four electron reaction paths of OER with the potential
URHE as follows:

OH* +OH� ! O*+H2O+e� ð2Þ

O*+OH� ! OOH* + e� ð3Þ

OOH* +OH� ! O2 +V
* +H2O+e� ð4Þ

V* +OH� ! OH* + e� ð5Þ

Where the symbol * indicates the active sites. The corresponding
reaction-free energies are calculated as follows:

ΔG1 =ΔGO*�ΔGOH*�eU ð6Þ

ΔG2 =ΔGOOH*�ΔGO*�eU ð7Þ

ΔG3 =ΔGO2�ΔGOOH*�eU ð8Þ

ΔG4 =ΔGOH*�eU ð9Þ

The sumofΔG1 toΔG4 is fixed at 4.92 eV, and ΔGOH*,ΔGO*, and ΔGOOH*

are calculated through the following reactions.

H2O+ * ! OH* +0:5H2 ð10Þ

H2O+ * ! O* +H2 ð11Þ

2H2O+ * ! OOH* + 1:5H2 ð12Þ

The theoretical overpotential could be obtained by evaluating the
difference between the maximum gap of the four intermediate states
and the ideal 1.23 eV.

The chargedensity differences ofCo-PHare considered according
to the previous reports78,79, and calculated as follows:Δρ=ρ(pc-CoO2) –
ρ(CoO2) – ρ(phen).

Data availability
All relevant data are provided in this article and its Supplementary
Information.
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