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Multitrait genome-wide analyses identify
new susceptibility loci and candidate drugs
to primary sclerosing cholangitis

Younghun Han 1,2,27, Jinyoung Byun 1,2,3,27, Catherine Zhu 1, Ryan Sun4,
Julia Y. Roh5, Heather J. Cordell 6, Hyun-Sung Lee 7, Vikram R. Shaw1,
Sung Wook Kang7, Javad Razjouyan8,9,10,11, Matthew A. Cooley12,
Manal M. Hassan13, Katherine A. Siminovitch14,15, Trine Folseraas16,
David Ellinghaus 17, Annika Bergquist18, Simon M. Rushbrook19,20,
Andre Franke17, Tom H. Karlsen 21, Konstantinos N. Lazaridis 22, The Interna-
tional PSC Study Group*, Katherine A. McGlynn23, Lewis R. Roberts 21 &
Christopher I. Amos 1,2,3

Primary sclerosing cholangitis (PSC) is a rare autoimmune bile duct disease
that is strongly associated with immune-mediated disorders. In this study, we
implemented multitrait joint analyses to genome-wide association summary
statistics of PSC and numerous clinical and epidemiological traits to estimate
the genetic contribution of each trait and genetic correlations between traits
and to identify new lead PSC risk-associated loci. We identified seven new loci
that have not been previously reported and one new independent lead variant
in the previously reported locus. Functional annotation and fine-mapping
nominated several potential susceptibility genes such as MANBA and IRF5.
Network-based in silico drug efficacy screening provided candidate agents for
further study of pharmacological effect in PSC.

Primary sclerosing cholangitis (PSC) is a chronic, progressive auto-
immune disorder of the bile duct1–3. Individuals with PSC are at risk of
severe liver problems including a lifetime risk of cholangiocarcinoma
of between 5 and 20%4. PSC is often associated with inflammatory
bowel disease (IBD). Approximately 75% of individuals with PSC have
IBD2, most commonly ulcerative colitis (UC). Individuals with PSC are
also more likely than those without PSC to have other autoimmune
diseases, including type 1 diabetes, celiac disease, and thyroid disease.
The shared etiology and underlying characteristics of these immune-
mediated disorders remain incompletely understood.

Recent genome-wide association studies (GWAS) have identified
~19 loci associatedwith PSC among individuals of European ancestry2,5.
Association analysis using the Immunochip genotype array data that
specifically targeted known autoimmune-related disease regions
identified three additional loci influencing PSC risk6. The development
of PSC can be attributed to a combination of genetic and

environmental factors7. Individuals with a family history of PSChave an
increased risk of developing PSC suggesting that genetic influences
play a critical role in susceptibility, which may act in concert with
exposure to specific environmental factors. However, the genetic and
environmental risk factors are not fully elucidated. As PSC is strongly
associatedwith IBD2, examining two traits togethermay provide better
genetic insight into a common genetic etiology8–11. Few studies have
been conducted to understand the shared genetic underpinning
between PSC and other associated medical conditions.

Leveraging publicly available GWAS summary-level data12–14

(Supplementary Data 1, “Methods”), we conducted cross-trait linkage
disequilibrium (LD) score regression (LDSR) analysis15,16 to determine
whether there was a shared genetic contribution between polygenic
phenotypes for multiple diseases and traits. We explored the direc-
tionality and degree of these relationships, and whether the genetic
architecture between two traits is correlatedor inversely correlated17.
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We took advantage of the genetic overlap between traits to identify
additional independent genetic variants for PSC alongside five
immune-mediated disorders (Supplementary Data 2), highly corre-
lated with PSC: Crohn’s disease18 (CD), UC18, IBD18, lupus19, and pri-
mary biliary cirrhosis20 (PBC) using multitrait analysis of GWAS21

(MTAG). Although IBD is the umbrella term that includes CD and UC,
we also surveyed the pairwise genetic correlation of PSC for CD and
UC, respectively. We then performed functional fine-mapping ana-
lyses on the newly identified loci to elucidate potential functional
characterization and biological mechanisms affecting PSC suscept-
ibility. Since there is no medication proven to be effective for PSC
treatment, we conducted network-based drug–disease proximity
analysis to identify potential agents suitable for repurposing to PSC
from the previously reported13 and newly identified candidate genes
in this study.

Results
PSC shows the shared genetic contributions among numerous
clinical and epidemiological traits
We investigated the proportion of phenotypic variance explained by
all common single-nucleotide polymorphisms (SNPs) for 134 clinical
and epidemiological traits to identify potential comorbid conditions
and to uncover traits that are causally involved in clinical course and
epidemiologic associations using LDSR (“Methods”). We identified
numerous traits showing moderate SNP-heritability in the observed
scale (h2). The study workflow shown in Fig. 1 summarizes the steps
fromdata preparation to subsequent analyses in the present study.We
estimated the SNP-heritability of PSC to be 0.23. Among serologic
biomarkers, an increased alkaline phosphatase (ALP) level and condi-
tions such as a blocked bile duct had an estimated SNP-heritability of
0.25.We also examined themagnitude and direction of shared genetic

Fig. 1 | Flow chart of the analytical workflow in this study. h2 represents SNP-
based heritability in the observed scale. |r_g| represents the absolute value of the
pairwise genetic correlation between PSC and the traits studied. MAF stands for a
minor allele frequency. MHC region stands for the major histocompatibility

complex region. The asterisk “*” indicates the genetic correlation between PSC and
each tested trait. The imputed summary statistics for PBC were used for sub-
sequent analyses.
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contribution between PSC and 134 polygenic traits of clinical and
epidemiological parameters based on the cross-trait genetic correla-
tion (r_g). We identified several polygenic traits showing moderate to
strong genetic correlation with PSC at a Bonferroni-corrected sig-
nificance level of P = 0.05/134 = 3.73 × 10−4. Since this is hypothesis-
based research, we also considered P < 0.05 to identify nominally sig-
nificant associations that could be examined in future studies. We
considered P-values less than the Bonferroni-corrected significance
level to be robustly associated in this study and the highlighted traits
are displayed in Fig. 2. Our findings reported in Supplementary Data 3
demonstrated that the genetic architecture of PSC susceptibility was
positively correlated with that of several immune-related diseases
including IBD (r_g = 0.46; P = 4.41 × 10−13), UC (r_g = 0.62;
P = 5.18 × 10−15), CD (r_g = 0.24; P = 4.16 × 10−4), lupus (r_g = 0.21;
P =0.04), and PBC (r_g = 0.31; P = 3.95 × 10−4). Overall shared genetic
contribution between PSC and a behavior parameter, general risk
tolerance defined as thewillingness to take risks22, showed a significant
negative correlation (r_g = −0.20; P = 1.41 × 10−4). Increased body mass
index (BMI) had a significant negative genetic correlation with PSC
susceptibility (r_g = −0.13; P = 1.16 × 10−4). In epidemiological
studies7,23,24, the association between PSC and cigarette smoking has
been inconsistent. Among traits related to smoking behaviors in this
study, smoking status25 modeled in previous smokers versus current
smokers showed a strong negative genetic correlation with PSC sus-
ceptibility (r_g = −0.27; P = 9.17 × 10−10) while smoking initiation26,
which is a binary phenotype indicating whether an individual had ever
smoked regularly (i.e., never-smokers versus ever-smokers), reported a

significant negative genetic correlation with PSC (r_g = −0.20;
P = 2.05 × 10−6).

MTAG with immune-mediated diseases identifies new PSC-
associated loci with evidence of replication
Based on findings from the genome-wide SNP-heritability and pairwise
genetic correlation, we restricted our MTAG to the traits for which
LDSR has suggested strong associations with PSC susceptibility,
showing h2 >0.20 and |r_g| > 0.20 (“Methods”, Supplementary Infor-
mation). Five autoimmune-related disorders, CD (r_g = 0.24), UC
(0.62), IBD (0.46), lupus (0.20), and PBC (0.31) were selected to
identify new PSC risk loci using MTAG (Table 1). Compared to the
conventional univariate GWAS, we detected more significant and
stronger PSC-specific association signals when implementing MTAG.
From MTAG combining PSC with five immune-related diseases; CD,
UC, IBD, lupus, and PBC, we discovered seven loci (2p16.1, 4q24,
6q21.2, 6q23.3, 7q32.1, 10q24.2, and 16q22.1) that have not been pre-
viously reported or failed to reach the genome-wide significance level
and one new independent significant variant of the reported locus
(3p21.31) at the genome-wide significance level of 5.0 × 10−8 (Table 2
and Fig. 3). In addition, our MTAG-identified PSC-specific results con-
firmed 11 PSC-specific risk-associated variants that have been pre-
viously reported in a single-disease GWAS of PSC susceptibility. These
include genetic variants from well-established risk loci at 1p36.32,
2q33.2, and 6p21.33-p21.32 that are strongly associated with
autoimmune-related diseases2,20,27,28. We displayed a Manhattan plot
for theMTAG-identified PSC-specific GWAS (MTAG_PSC, Fig. 3b) along

Fig. 2 | The shared heritability and genetic correlation of PSC among clinical
and epidemiological traits. The dotted lines in blue and red indicate nominally
and Bonferroni-corrected significant levels of �log10 0:05ð Þ= 1:30 and
�log10 3:73× 10�4

� �
= 3:43, respectively. The error bar represents 95% confidence

interval for the estimate of SNP-based heritability and pairwise genetic correlation

of PSC in each trait, respectively. Sample sizes used to derive the estimates of SNP-
based heritability and pairwise genetic correlation of PSC in each trait are shown in
Supplementary Data 1. The dashboard for visualizing the results from LDSR was
created using Tableau Desktop software (version 2022.2).
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with that from the previously published single-disease GWAS of PSC2

(GWAS_PSC, Fig. 3a). There was no substantial evidence for inflation of
both GWAS test statistics (λGWAS_PSC = 1.06; λMTAG_PSC = 1.08) shown in
Fig. 3c, d, respectively. MTAG-identified genomic risk variants asso-
ciated with PSC susceptibility with a P < 5.0 × 10−8 are reported in
Supplementary Data 4.

A newly identified association of an intronic variant, rs228614, was
detected in MANBA on 4q24 (PMTAG_PSC = 1.71 × 10−9). Associations at
MANBA havebeen previously reported formultiple sclerosis29, primary
biliary cirrhosis30, psoriasis31, numerous hematologic traits32–35,
asthma36,37, and major depressive disorders38. Another association at
rs17780429 between TNFAIP3 and LINC02528 on 6q23.3 showed a
strong genetic signal (PMTAG_PSC = 2.24 × 10−10) and many associations
at TNFAIP3 have been observed in autoimmune-related diseases39–42

and multiple blood-cell traits34,43. We found a new intergenic variant,
rs3757387 between KCP and IRF5 on 7q32.1 (PMTAG_PSC = 2.19 × 10−14).
rs3757387 has been previously reported for significant associations
with systematic lupus erythematosus amongdiversepopulations44 and
in a single population19,45, rheumatoid arthritis in multiple
populations46,47, and Sjögren’s syndrome48. An NKX2-3 intronic variant,
rs791168 on 10q24.2, was associated with PSC susceptibility and has
been reported in many autoimmune-related and blood-cell traits13

(PMTAG_PSC = 1.33 × 10−8). LocusZoom regional plots of genome-wide
associations for these newly identified loci are provided in Supple-
mentary Fig. 1.

To assesswhether ourMTAGresultswere robust to stronggenetic
correlation and clinical relevance among IBD, UC, andCD, we repeated
our MTAG analysis only including PSC, CD, UC, lupus, and PBC
(MTAG_PSC⊥IBD) as a sensitivity analysis. The results from the MTAG-
identified PSC-specific model excluding IBD were very similar to those
from the inclusion model (MTAG_PSC) (Table 2 and Supplemen-
tary Fig. 2).

To replicate the new MTAG-identified PSC-specific associations,
we downloaded GWAS summary statistics from FinnGen14 and GWAS
Catalog13, which are independent GWAS from the discovery phase
(Supplementary Data 2). Since we were interested in replicating eight
new associations (seven newly identified loci and one independent
significant variant in the reported locus), we did not apply multiple
testing corrections. We replicated four PSC-specific associations
(MTAG_PSC_R), rs6787808 in QRICH1 (PMTAG_PSC_R = 1.79 × 10−2),
rs228614 inMANBA (PMTAG_PSC_R = 2.05 × 10−2), rs3757387 between KCP
and IRF5 (PMTAG_PSC_R = 1.39 × 10−8), and rs791168 in NKX2-3
(PMTAG_PSC_R = 1.20 × 10−3) at the nominal significance level of 0.05
(Table 2 and Supplementary Fig. 2).

Fine-mapping and functional annotation nominates candidate
variants within MTAG-identified loci
To pinpoint genomic risk loci and prioritize susceptibility variants
underlying the MTAG-identified PSC-specific GWAS associations by
functional annotation, positional, expression quantitative trait loci
(eQTL), and chromatin interaction mappings, we exploited Functional
Mapping and Annotation of GWAS (FUMA GWAS)49 using LD structure

based on European ancestry of 1000 Genome Project phase 3
(“Methods”). We prioritized 406 unique genes from 20 PSC suscept-
ibility loci reported in Supplementary Data 5 that functionally mapped
and annotated using MTAG-identified GWAS, of which 109 genes were
identified by position mapping of deleterious coding variants with the
combined annotation-dependent depletion (CADD) score
(posMapMaxCADD ≥ 12.37)50 (Supplementary Data 6). Out of 406
prioritized genes, 48 genes (12%) were detected by eQTL associated
with the expression of 14 immune cell types51. In the chromatin inter-
actionmapping, 278 genes (69%) aremapped to the regions interacting
with the promoter of the listed gene and of which 90 genes (32%) were
found in the liver tissue in which the chromatin interaction is observed
(Supplementary Data 6). Either chromatin interactions or eQTLswithin
PSC risk loci (SupplementaryData 5)were shownonchromosomes 2, 3,
4, 6, 7, 11, 16, 19, and 21, respectively (Supplementary Figs. 3). Then, 158
genes were mapped by both eQTLs and chromatin interactions
including IRF5 and TNPO3 genes (in red in Supplementary Fig. 3e) on
the 7q32.1. In addition, we explored immune-related genes among 406
PSC-specific susceptibility genes prioritized by position, eQTL, or
chromatin interaction mapping using InnateDB52 (“Methods”). We
found five immune-related genes including IRF5 and SMO (7q32.1) and
HAS3, SNTB2, and VPS4A (16q22.1), within newly identified loci that
have not been previously reported (Supplementary Data 7).

To functionally characterize the 329 independent significant var-
iants within 20 genomic risk loci generated from FUMA, we performed
an integrated variant functional annotation approach using the Func-
tional Annotation of Variants Online Resource (FAVOR) platform53–55

and the multidimensional annotation class integrative estimator56,57

(MACIE). Out of 168 noncoding genes, we observed 14 more likely
deleterious genes (CADD PHRED ≥ 12.37) and 8 and 6 genes on pro-
moter and permissive enhancer sites, respectively. (Supplementary
Data 8 and9).Of the SNPs investigatedwithMACIE, wefind 80 variants
with a regulatory class prediction greater than 95%. That is, these
variants are highly likely to tangibly affect the behavior of certain gene
expressions, most often nearby genes. We find four variants with a
conserved class prediction greater than 95%, and three of these var-
iants also possess a regulatory prediction greater than 95%. That is, the
four variants are highly likely to belong to the class of evolutionarily
conserved variants that are found in many living beings. The full pre-
dictions for each SNP can be found in Supplementary Data 10.

To nominate the candidate causal variants from each locus for
further functional analysis, we implemented fine-mapping of MTAG-
identified loci using FINEMAP58 and surveyed credible sets of plausible
causal variants based on posterior inclusion probability (PIP). We then
applied Conditional and Joint Analysis (COJO) using GCTA59 to refine
independent associationswithprioritized risk loci. Basedon the single-
SNP PIP with each locus, we identified 32 variants falling into the 95%
credible set across eight MTAG-identified GWAS loci (Supplementary
Data 11). We found that eight MTAG-identified PSC risk loci explained
at least two independent association signals; 2p16.1 locus harboring
PUS10, with five independent variants, 3p21.31 (QRICH1) and 4q24
(MANBA) with five variants, 6p21.2 (KCNK17) with two variants, 6q23.3

Table 1 | Estimate of genetic correlation among autoimmune-related diseases

PSC CD UC IBD Lupus PBC*

Primary sclerosing cholangitis (PSC) 1 0.24 (se = 0.07) 0.62 (0.08) 0.46 (0.06) 0.20 (0.10) 0.31 (0.09)

Crohn’s disease (CD) 1 0.62 (0.03) 0.92 (0.02) 0.13 (0.055) 0.18 (0.05)

Ulcerative colitis (UC) 1 0.90 (0.01) 0.22 (0.07) 0.23 (0.05)

Inflammatory bowel disease (IBD) 1 0.19 (0.05) 0.23 (0.04)

Lupus 1 0.49 (0.06)

Primary biliary cirrhosis (PBC)* 1

The asterisk “*” indicates that imputed summary statistics were used to estimate the SNP-heritability and pairwise genetic correlation using the SSimp package. “se” stands for the standard error of
the pairwise genetic correlation between PSC and each trait.
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(TNFAIP3) and 7q32.1 (IRF5) with five variants, 10q24.2 (NKX2-3) with
three variants and 16q22.1 (TANGO6) with two variants, respectively.
There is no additional genome-wide significant association from
GCTA-COJO analysis at the genome-wide significant level of 5 × 10−8.

eQTL-based colocalization prioritizes PSC susceptibility genes
from the MTAG-identified new loci
We carried out eQTL-based colocalization analysis to identify allelic-
specific effects on gene expression and to examine colocalization of
association signals from new MTAG-identified PSC risk-associated
findings using eQTL summary statistics of 49 tissue types fromGTEx
v8. Among sevenMTAG-identified new risk loci (2p16.1, 4q24, 6p21.2,
6q23.3, 7q32.1, 10q24.2, 16q22.1), colocalization nominated three
candidate genes, MANBA at 4q24, IRF5 at 7q32.1, and NKX2-3 at
10q24.2, contributing to PSC risk (Supplementary Data 12). Notably,
a newly MTAG-identified locus, IRF5, displayed the highest posterior
probability scores indicating that both PSC and eachof the 30 tissues
are associated and share a single functional variant (PP4 > 0.80)
using coloc60 package (Fig. 4, Supplementary Fig. 4, Supplementary
Data 12).

We selected 406 prioritized genes to detect relevant groups of
related genes involved in the regulation of specific biological path-
ways. Using STRING Protein–Protein Interaction (PPI) networks61,
these candidate genes are highly enriched for protein–protein inter-
actions (P < 1.00 × 10−16), with enrichment at false discovery rate
(FDR) < 0.05 of the following pathways: immune receptor activity
(FDR = 3.84 × 10−2), beta-2-microglobulin binding (1.10 × 10−2),
cytokine-mediated signaling pathway (1.58 × 10−13), interferon-gamma-
mediated signaling pathway (1.13 × 10−11), T-cell receptor signaling
pathway(2.21 × 10−11), immune response-activating cell surface recep-
tor signaling pathway (2.65 × 10−9), interleukin-7-mediated signaling
pathway (9.21 × 10−9), TNFR2 noncanonical NF-kB pathway
(7.90 × 10−3), Th17 cell differentiation (2.63 × 10−6), and Th1 andTh2 cell
differentiation (1.94 × 10−5) (Supplementary Data 13, Supplementary
Fig. 5). For comparison,we implemented enrichment analysisusing the
Database for Annotation, Visualization, and Integrated Discovery
(DAVID) Bioinformatics Resources62,63 on the same candidate 406
genes. We observed T-cell receptor signaling pathway
(FDR = 5.82 × 10−7), antigen processing and presentation (8.18 × 10−15),
immunoglobulin production involved in immunoglobulin mediated
immune response (6.30 × 10−14), cytokine Signaling in Immune system
(3.48 ×0−5), interferon Signaling (2.62 × 10−9), and interferon alpha/
beta signaling (6.60 × 10−4) (Supplementary Data 14).

In addition, we scrutinized the PPI network associated with each
gene prioritized from newly MTAG-identified loci and found three
genes (MANBA, IRF5, and NKX2-3) to be highly enriched for PPI at
FDR <0.05. Eachprioritized geneofMANBA, IRF5, andNKX2-3 reported
a PPI P-value of 5.16 × 10−14, 1.00 × 10−16, and 1.13 × 10−9, respectively. We
observed B and T-cell receptors, chemokine, C-type lectin receptor,
cytosolic DNA-sensing, HIF-1, IL-17, JAK-STAT, MAPK, metabolic, NF-
kappa B, NOD-like receptor, PD-L1 expression and PD-1 checkpoint in
cancer, RIG-I-like receptor, th1-th2 cell differentiation, th17 cell differ-
entiation, thyroid hormone, TNF, and toll-like receptor signaling
pathways in the KEGG pathways at FDR<0.05 using STRING PPI net-
works (Supplementary Data 15, Supplementary Fig. 6).

Network-based proximity predicts drug-PSC associations for
drug repurposing
Although there is nomedication proven to treat PSC, ursodeoxycholic
acid (UDCA) is a recommended treatment increasing the bile flow as
well as preventing damage to liver cells. While UDCA is used to treat
PBC and radiolucent gallstones with a functioning gall bladder, it does
not appear to improve survival or reduce the need for liver transplant
in PSC patients. From in silico network-based proximity analysis64, we
estimated the shortest distance (d) between drug targets and PSCTa
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candidate genes (Supplementary Data 16, “Methods”) and the relative
proximity measure(z) capturing the statistical significance of distance
between drug and disease protein derived from a permutation test
(Table 3, Supplementary Data 17, Supplementary information). The
more negative the relative proximity between drug and disease, the
closer the genetic relationship between them64. We identified many
agents at the relative proximity threshold of −0.15, implying potential
therapeutic effects on PSC. The top-ranked drugs suggestive for PSC
included denileukin diftitox, interleukin-2-alpha binder used for cuta-
neous T-cell lymphoma (z = −5.443); vitamin E (z = −1.918); MLN0415, a

small molecule IKK2 inhibitor downregulating the expression of a
number of inflammatory proteins (z = −1.648). The proximity of UDCA
showed 0.170 on PSC indicating that it may not be a genetically pro-
mising candidate drug for PSC. The FUMA platform facilitates gene
mapping to the DrugBank database via GENE2FUNC reported in Sup-
plementary Data 18. While network-based proximity predicts drug
association based on the distance between drug targets and candidate
genes, FUMA provides the gene table mapped to the drug database
based on the prioritized genes by different mapping methods such as
position, eQTL, and chromatin interaction.

Fig. 3 | Manhattan plots and quantile-quantile plots for the single-trait GWAS
and the multitrait GWAS of PSC. a, c PSC single-trait GWAS (Ji et al., 2017,
PMID:27992413; GWAS_PSC). b, d MTAG-identified PSC-specific GWAS against five
immune-mediated disorders, CD, UC, IBD, lupus, and PBC (MTAG_PSC). The x-axis
represents chromosomal location, and the y-axis represents the −log10(P-value).
The cytoband annotations for the newly and previously identified loci are in purple

(b) and gray (a), respectively. The solid lines in red and the dotted lines in blue
indicate the genome-wide significant two-sided unadjusted P-value of
�log10ð5 × 10�8Þ and the suggestive significant two-sided unadjusted P-value of
�log10ð1 × 10�5Þ, respectively. P-values are derived using multitrait analysis of
GWAS in the discovery study.
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Discussion
We leveraged publicly available GWAS summary statistics to investi-
gate the shared genetic architecture of PSC with a variety of clinical
and epidemiological traits and to identify additional PSC-risk loci. We
first scrutinized the patterns of genomic overlap between PSC and
numerous phenotypes using LDSR. Cross-trait LDSR estimated the
genetic correlation between traits to gain insights into common
etiologies15,16. We identified significant phenotypic associations
between different polygenic traits and PSC. The findings of this study
enabled us to confirm previously well-established comorbid condi-
tions and to identify polygenic traits for further study. Complementary

approaches such as MTAG, which is a joint association analysis of
genetically correlated traits, helped us to discover new susceptibility
variants influencing PSC. In addition, LDSR-identified polygenic traits
indicating a high correlation with PSC can be applied in Mendelian
randomization analysis to unveil further causal relationships between
PSC and the traits of interest.

We observed a significant positive correlation between the
genomic architecture of each autoimmune-related disease and that of
PSC using LDSR. In several genetic studies, PSC is driven by shared and
distinct genetic determinants compared to immune-mediated
diseases7,19,27,65,66. The shared structure of the genetic susceptibility to

Fig. 4 | Functional validation of the MTAG-identified PSC-specific candidate
genes. a, c, e eQTL signals in GTEx v8 small intestine terminal ileum (n = 174) for
MANBA (a), liver (n = 208) for IRF5 (c), and thyroid (n = 574) forNKX2-3 (e) colocalize
with those of the MTAG-identified PSC-specific GWAS by coloc (posterior prob-
ability for the same causal variant shared between MTAG-identified GWAS and a
tissue-specific eQTL (PP4) =0.918 for rs228614, PP4 = 1.00 for rs3757387, and

PP4=0.995 for rs7911680), respectively. Pearson correlation (r) is shown between
the Z-score of eQTL (y-axis) andMTAG_PSC (x-axis). Variants are color-coded based
on the LD r2 (1000Genomes phase 3, EUR) with the candidate variants (red dot in a
diamond shape). Variants with imputation quality scores >0.6 were plotted in this
region. b, d, f Regional association plots of eQTL and MTAG_PSC within ±100kb of
rs228614 (b), rs3757387 (d), and rs7911680 (f) are displayed.
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PSC is notably overlapped with immune-mediated disorders such as
CD, IBD, lupus, PBC, andUC27, whichhavewell-established associations
with PSC67. In addition, these immune-mediated disorders showed
large proportions of phenotypic variance explained by all common
SNPs in this study.

Several epidemiological studies have reported inverse associa-
tions between smoking and PSC risk7,23,24,68,69. Our study found a
strongly protective genetic correlation between the genomic archi-
tecture of smoking status modeled in former smokers versus current
smokers and that of PSC, suggesting that the genetic contribution of
current smoking is associated with a decreased risk of PSC compared
to that of former smoking. Although it failed to meet the Bonferroni-
corrected significance level of 3.73 × 10−4, the smoking cessation trait
modeled in former smokers versus current smokers26 showed a con-
sistent association with PSC implying that the genetic contribution of
current smoking is associated with a decreased risk of PSC compared
to that of former smoking23. The smoking initiation trait modeled in
never-smokers versus ever-smokers26 showed a significant negative
association with PSC suggesting that PSC risk among current and
former smokers is significantly lower than that among never-
smokers23. Smoking promotes chronic epithelial and tissue injury
through chronic airway inflammation70,71 and themost commoncauses
of chronic inflammation include immune-mediated disorders which
could potentially contribute to PSC development. Therefore, the
shared association of PSC with smoking behaviors makes disen-
tangling such effects challenging.

Applying an orthogonal genomics-driven method complement-
ing clinical epidemiologic research of PSC, we confirmed a link
between PSC risk and elevated BMI and diabetes7,72–75. However, clin-
ical studies have shown inconsistent associations between cardiovas-
cular disease and PSC75,76. Pairwise genetic correlation between PSC
and cardiovascular risk demonstrated a negative association at the
nominal significance level of 0.05.Wealso identified several suggestive
polygenic traits for which the pairwise genetic correlations were
nominally significant at P <0.05. We observed a nominally significant

inverse genetic correlation between PSC and several serologic bio-
markers including C-reactive protein, glucose, HbA1c, red blood cell
distribution width, reticulocyte count, and triglycerides while alkaline
phosphatase and sex hormone binding globulin were positively cor-
related with PSC risk. These findings through LDSR show good con-
cordancewith previous clinical and genetic epidemiologic studies7,75,77.

ImplementingMTAG, we discovered seven new susceptibility loci
that have not been previously reported in GWAS_PSC and, of these, we
replicated three lead associations in other GWAS independent from
the discovery phase. Two of the new MTAG PSC loci,MANBA on 4q24
and IRF5on 7q32.1werepreviously shown to be associatedwith several
hematology-related traits and immune-mediated disorders20,44–48. The
previously identified phenotypes have also been reported in PSC. In
addition,weprioritized candidate genes for PSC susceptibility through
MTAG and inferred biological pathways identified through eQTL-
colocalization analyses. PPI networks showed that candidate genes
were often part of biological pathways involving metabolic processes
and immune response.

Recently, the identification of targets for drug repurposing
(repositioning) using genome-wide approaches has becomepopular20.
In this study, we implemented network-based in silico drug efficacy
screening to predict agents potentially suitable for repurposing to
PSC.Generally, UDCA is recommended for the treatment of cholestatic
liver diseases including PSC, but it does not show any effect on the
progression and survival of PSC patients78. Interestingly, the proximity
of UDCA shows that it may not be a genetically promising candidate
drug for PSC. In clinical trials in the U.S., UDCA did not improve the
management of PSC79 and its use has been discouraged in the U.S.
providers80, indicating a correct prediction of our drug screening
analysis. The identified candidate drugs are relevant to lymphoma
(Denileukin diftitox, Galiximab), various cancers (Keyhole limpet
hemocyanin, TG4010, Girentuximab, Amonafide), psoriasis and psor-
iatic disorders (Tapinarof), vitamin E, IBD (Declopramide), metabolic
disorders (Girentuximab), rheumatoid arthritis, liver cancer (Becate-
carin), chronic hepatitis C virus (HCV) (Sofosbuvir, ANA971,

Table 3 | Network-based in silico drug repurposing on PSC

DrugBank id Drug Name Description Indication z p

DB00004 Denileukin diftitox CD25-directed cytotoxin Cutaneous T-cell lymphoma −5.443 2.63 × 10−8

DB05299 Keyhole limpet hemocyanin* Immune modulator Bladder cancer, solid tumors −4.020 2.91 × 10−5

DB06584 TG4010* Cancer vaccine expressing
MUC1/IL2

Breast cancer, renal cell carcinoma, prostate cancer, non-
small cell lung cancer.

−3.561 1.85 × 10−4

DB05304 Girentuximab* Chimeric monoclonal antibody tar-
geting carbonic anhydrase IX

Renal cell carcinoma −3.526 2.11 × 10−4

DB06083 Tapinarof* Aryl hydrocarbon receptor-
modulating agent

Plaque psoriasis −3.013 1.29 × 10−3

DB04901 Galiximab* Anti-CD80 monoclonal antibody Non-Hodgkin’s lymphoma, psoriasis −2.740 3.07 × 10−3

DB00163 Vitamin E Vitamin Dietary supplement −1.918 0.0276

DB06421 Declopramide* DNA repair inhibitors Colorectal cancer, inflammatory bowel disease. −1.593 0.0556

DB06362 Becatecarin* DNA intercalating agent, topoi-
somerase I and II inhibitor

Gastric cancer, adenocarcinoma of unknown origin, gall
bladder or pancreatic tumors, breast cancer, renal cell
cancer, colorectal cancer

−1.542 0.0615

DB05022 Amonafide* DNA intercalating agent, topoi-
somerase II inhibitor

Breast cancer, ovarian cancer, prostate cancer, acute
myeloid leukemia

−1.542 0.0616

DB08934 Sofosbuvir N55B RNA polymerase inhibitor Chronic hepatitis C infection −1.342 0.0898

DB05127 ANA971* Toll-like receptor 7 Chronic hepatitis C infection −1.338 0.0904

DB04860 Isatoribine* Toll-like receptor 7 Chronic hepatitis C infection −1.338 0.0904

DB11094 Vitamin D Vitamin Osteoporosis prevention, Vitamin D insufficiency/defi-
ciency, hypoparathyroidism, refractory rickets, familial
hypophosphatemia

−0.515 0.3033

DB01586 Ursodeoxycholic acid Gallstone dissolution agent Gallstones, PBC 0.170 0.5673

DrugBank id, DrugBank database identifier; Drug Name, drug name; Indication, current drug-treatment; z, relative proximity between PSC candidate genes and relevant drug of genes; p, P-value of
the relative proximity. *Asterisk indicates not FDA-approved agent.
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Isatoribine). Poch et al. reported a single-cell atlas of intrahepatic T-cell
landscape in PSC81. The top-ranked drug, Denileukin diftitox, which is
involved in the regulation of immune tolerance by controlling reg-
ulatory T-cells activity, could be a candidate agent for further study of
pharmacological effect.

Integration, harmonization, and optimization of the existing
large-scale GWAS datasets have become a popular analytical strategy
to identify new genetic associations. However, access to individual-
level GWAS datasets remains limited due to data use restrictions.
Although LDSR can quantify the shared genetic architecture of traits
having undergone GWAS analysis without requiring GWAS individual-
level data, it assumes an absence of population stratification in the
underlying summary statistics of the tested traits and necessitates the
incorporation of GWAS data from populations expected to have
homogeneous genetic structure. Furthermore, GWAS summary sta-
tistics with small sample sizes or low SNP-heritability are not amenable
to LDSR. One caveat of implementing LDSR is that nonsignificant
associations could be due to limited statistical power, rather than a
lack of shared heritability, as cross-trait LDSR requires larger sample
sizes of GWAS summary-level data to achieve equivalent standard
error compared to methods that use individual-level data15. Another
limitation of LDSR is that the analysis includes only common genetic
variants with MAF >0.01 and therefore fails to capture shared herit-
ability due to underlying rare variants between PSC and multiple
polygenic traits.

MTAG21 can substantially improve statistical power for detecting
susceptibility loci relative to separate GWAS for the traits tested and
allows potential sample overlap in numerous trait-specific summary
statistics from large-scale cohort GWAS. However, replication or vali-
dation analysis is recommended to assess the credibility of each SNP
association when MTAG is applied to low-powered GWAS or to GWAS
that are considerably heterogeneous in statistical power. Since MTAG
uses overlapping SNPs across all GWAS summary statistics, combining
summary statistics with a smaller number of SNPs with those with a
larger number of SNPs can reduce statistical power.

In conclusion, our findings from LDSR confirm the associations
between immune-mediated disorders and PSC, and epidemiological
parameters associated with PSC susceptibility. We also identified and
replicated the newly MTAG-identified PSC risk loci and through eQTL-
colocalization analysis helped to prioritize candidate genes for PSC
susceptibility. This study emphasizes the strong evidence that exists
for the shared genetic underpinning among immune-mediated dis-
eases. While PSC GWAS have identified a few risk-associated variants,
the function and identity of the causal variants are not fully explored.
To address the impact of PSC risk-associated variants in the immune
system and within less-well-established noncoding regions, we high-
lighted several in silico functional approaches to map and prioritize
the variants identified. Furthermore, we exploited an immune-related
gene database for deciphering how PSC risk-associated variants may
alter immune networks. We also utilized the integrative functional
annotations platform to functionally characterize the prioritized genes
including both coding and noncoding genes, which provide numerous
information on variant and indel functional annotations. Since there is
no medication proven to treat PSC, we predicted many potential
agents at the relative proximity capturing the statistically significant
relationship between a potential drug and putative disease-associated
proteins. We further carried out gene mapping to the drug database
with the broad range of genes prioritized by position, eQTL, and
chromatin interaction mapping. These analytical pipelines, which uti-
lize activity maps of noncoding regions help us pinpoint their role in
specific cell types. These findings can provide better functional insight
into the genetic etiology of PSC susceptibility and improve our
understanding of how PSC risk-associated variants alter the immune
system. Finally, future studies using causal inference approaches such
asMendelian randomization or genetic instrumental variablemethods

may help to elucidate the causal relationship between the risk of PSC
and other potential candidate phenotypes to reveal surrogate bio-
markers that may improve the predictive power of polygenic risk
scores.

Methods
Ethics statement
All participants for each GWAS were recruited following protocols
approved by the local Ethics Committee/Institutional Review Boards.
Written informed consent was obtained from each participant inclu-
ded in the study. All methods were performed in accordance with the
ethical guidelines of the 1975 Declaration of Helsinki.

GWAS summary statistics and imputation
Weobtained theGWAS summary statistics for PSC2 and 134 clinical and
epidemiological traits from existing data resources12,13. More details
are shown in Supplementary Data 1 and Supplementary Information.
We restricted the study populations to individuals of European
ancestry to align with the homogeneous ancestry background of par-
ticipants in GWAS of the traits tested in our downstream analyses. To
enhance adequate statistical power in this study, GWAS summary
statistics were imputed using the SSimp software82 (v.0.5.6; https://
github.com/zkutalik/ssimp_software) when the number of SNPs in a
trait was considerably smaller compared to that in other traits, thus
becoming less informative. Detailed methods are provided in Supple-
mentary Information.

Analyses of multitrait GWAS
We estimated SNP-heritability (h2) on the observed scale and pairwise
genetic correlation (r_g) between multiple polygenic traits using
LDSR8–11,15,16 (v1.0.1; https://github.com/bulik/ldsc). We conservatively
set the test-wise significance level using Bonferroni correction to be
0.05/134, adjusting for the analysis of 134 polygenic traits in total
(Supplementary Information).

The commonly used conventional GWAS approach is to analyze
the univariate association test for a single trait/phenotype. This does
not permit leveraging of genetic information from other polygenic
traits. Integrating associations from other traits highly correlated with
PSC can improve the statistical power to identify new polygenic
variants21,83–85. We conducted MTAG (v1.0.8; https://github.com/
JonJala/mtag) combining PSC with immune-mediated disorders selec-
ted by h2 > 0.20 and |r_g| > 0.20. MTAG was modeled for PSC versus
five polygenic autoimmune-related traits: CD, UC, IBD, lupus, and PBC
(MTAG_PSC). Additionally, we performed a sensitivity analysis
excluding IBD (⊥IBD) from the MTAG analysis (MTAG_PSC⊥IBD) since
IBD is the umbrella term mainly comprising of medical conditions
under which both CD and UC fall86. The sensitivity analysis included
only five autoimmune-related diseases; PSC, CD, UC, lupus, and PBC.

To replicate MTAG-identified PSC risk-associated new loci, we
implemented MTAG (MTAG_PSC_R) using PSC (FinnGen phenoco-
de:K11_CHOLANGI), CD (K11_CD_NOUC), UC (K11_UC_NOCD), IBD
(K11_IBD), and lupus (M13_SLE) from FinnGen repository14, and PBC87

from GWAS catalog, which are independent of those in the discovery
phase. Details are reported in Supplementary Data 2.

Characterization of genomic risk loci using FUMA
We mapped the genomic regions of associations by the most sig-
nificant variants using FUMA GWAS49 (v1.4.1; https://fuma.ctglab.nl/)
platform computing LD structure, annotating functions to SNPs, and
prioritizing candidate genes from MTAG-derived summary statistics49.
To define genomic risk loci for MTAG-identified PSC susceptibility, we
used linkage disequilibrium structure based on the European ancestry
of the 1000Genome Project phase 3. Genomic risk loci and the subsets
of significant SNPs within each locus were identified using the
SNP2GENE function applying the default thresholds: (1) independent
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significant SNPs, defined as P < 5 × 10−8 and independent from each
other at r2 ≥0.6 (2) lead SNPs, defined as independently significant
SNPs and independent from each other at r2 ≥0.1; (3) genomic risk loci,
defined by merging lead SNPs within physically overlapped LD blocks
and all SNPs in linkage disequilibrium of r2 ≥0.6 with one of the inde-
pendent SNPs. Prioritized susceptibility variants from MTAG GWAS
were mapped by positional, eQTL, and chromatin interaction map-
pings using the FUMASNP2GENE functionwithdefault settings. Finally,
FUMA maps the prioritized genes given by the SNP2GENE function to
the drug database (DrugBank88) via the GENE2FUNC function in the
FUMA platform. The gene table mapped to the DrugBank database
provides gene information and the relevant DrugBank IDs that can be
found at https://go.drugbank.com/drugs with the details.

Functional annotation within immune-related genes using
InnateDB Innate Immunity Genes
We examined 406 prioritized genes to nominate innate immune genes
associated with PSC using 7476 genes involved in innate immune
responses from the InnateDB52 portal. InnateDBprovides themanually-
curated list of genes and signaling responses involved in human innate
immunity frompublicly available databases including the Immunology
Database and Analysis Portal (ImmPort) system, Immunogenetic
Related Information Source (IRIS), MAPK/NFKB Network, and Immu-
nome Database. The details can be found elsewhere at https://www.
innatedb.com/redirect.do?go=resourcesGeneLists.

Integrative multi-omic annotation analysis
We annotated the 406 prioritized genes using FAVOR platform53–55

(v2.0; https://favor.genohub.org/) which is an open-access variant
functional annotation portal for whole WGS/WES data. FAVOR pro-
vides functional annotation information of 8,812,917,339 SNVs across
the human genome and 79,997898 indels from the Trans-Omics for
Precision Medicine (TOPMed) BROVO variant set (Build GRCh38)
based on a collection of databases such as variant category, evidence
of chromatin, protein function, conservation, and Clinvar information.
The details have been described elsewhere55.

Annotation-informed function prediction
We utilized the multidimensional annotation class integrative
estimator56,57 (MACIE, https://github.com/ryanrsun/lungCancerMACIE/
tree/master/MACIE_pipeline) to analyze functional annotation data
and understand the possible mechanistic roles of individual SNPs. For
each variant, MACIE utilizes a generalized linear mixed model that
specifies annotation values as outcomes and unobserved latent func-
tional classes as predictors. The posterior probabilities of these
unobserved classes are then calculated for each SNP to estimate the
probabilities of possessing certain functions. The calculation proceeds
through an expectation-maximization (EM) algorithm until con-
vergence. The final posterior expected value of a class is taken as the
MACIE prediction. Specifically, we applied MACIE with two latent
classes, (1) regulatory class informed by 28 annotations such as
H3K27Ac levels and (2) conserved class informedbyeight phylogenetic
conservational algorithms. Predictions were only made for noncoding
variants.

Fine-mapping and gene-based enrichment analyses
We implemented FINEMAP58 (v1.4.1; http://www.christianbenner.com)
to survey credible sets of plausible causal variants based on the pos-
terior inclusion probability (PIP). We carried out the FINEMAP package
with the options “--sss” to specify the “fine-mapping with shotgun
stochastic search” and “--n-causal-snps 5” to set the maximum number
of causal variants allowed within a locus to 5. We performed Condi-
tional and Joint analysis using GCTA59 (v1.9.4; https://cnsgenomics.
com/software/gcta/) to select independent association signals within
the prioritized risk loci with the option “--cojo-cond”.

The Genotype-Tissue Expression (GTEx_v8)89 database consists of
data from 49 normal tissues from 838 donors (Supplementary Data 5,
Supplementary information). Colocalization between the seven
MTAG_PSC associations within the newly identified loci and eQTL
signals was calculated using the coloc package (v5.1.0; https://cran.r-
project.org/web/packages/coloc/)60. We focused on the colocaliza-
tions when coloc suggested a plausible posterior probability that both
PSC and a tissue from GTEx_v8 are associated and share a single
functional variant (PP4 >0.80).

We utilized the STRING Database61 (v11.5; https://string-db.org/
cgi/input?sessionId=bmwWOuutn8ZR) to explore the functional
enrichment of protein–protein interaction (PPI) networks and to
scrutinize the enrichment of various pathways among the prioritized
genes (proteins). In addition, we surveyed the DAVID Bioinformatics
Resources62,90 (v6.8; https://david.ncifcrf.gov/) to look for enrichment
of various functional annotations on the 416 prioritized genes after
excluding 9 overlapped genes from 19 newly MTAG-identified and
previously reported PSC risk-associated genes and 406 genesmapped
from position mapping, eQTL mapping, and chromatin interaction
mapping provided from FUMA.

Network-based proximity between drugs and disease-identified
proteins for drug repurposing
Drug–disease proximity measures, distance (d), and the correspond-
ing relative proximity (z), quantifying the network-based relationship
between drugs and proteins encoded by genes associated with the
disease while correcting for the known biases of the interactome64,
were estimated (Supplementary Information). To elucidate the effec-
tiveness of proximity as an unbiased measure of drug–disease relat-
edness, we defined a drug to be proximal to a disease when the closest
proximity, z ≤ −0.15, and not proximal otherwise64. We downloaded
detailed drug data with comprehensive drug target information from
the DrugBank database (v5.1.9, released 2022-01-04)88.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The summary statistics of PSC from MTAG are publicly available at
https://github.com/biomedicaldatascience/PSC_MTAG. The GWAS
summary-level data analyzed in this study are available in the NHGRI-
EBI GWAS Catalog [https://www.ebi.ac.uk/gwas/] and the MRC IEU
OpenGWAS database [https://gwas.mrcieu.ac.uk/] for previously pub-
lished GWAS summary statistics, Neale’s lab repository for UK Biobank
GWAS summary statistics [https://github.com/Nealelab/UK_Biobank_
GWAS], and FinnGen repository for Finnish Biobank GWAS summary
statistics r6 [https://finngen.gitbook.io/documentation/v/r6/data-
download]. The accessible links and reference information for the
GWAS summary-level data (mapped to Genome Assembly GRCh37)
used in this study can be found in Supplementary Data 1 and 2. Non-
commercial DrugBank datasets (v5.1.9) are available and access can be
obtained by the academic license [https://go.drugbank.com/releases/
latest]. The data including all variant-gene cis-eQTL associations tested
in each tissue (GTEx v8) are available in a requester pays bucket on
Google Cloud Platform (GCP) [https://gtexportal.org/home/datasets;
https://console.cloud.google.com/storage/browser/gtex-resources].
The immune-related genes can be obtained in the InnateDB portal
[https://www.innatedb.com/redirect.do?go=resourcesGeneLists].
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