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Toward incompatible quantum limits on
multiparameter estimation

Binke Xia 1, Jingzheng Huang 1,2,3 , Hongjing Li1,2,3, Han Wang1 &
Guihua Zeng 1,2,3

Achieving the ultimate precisions formultiple parameters simultaneously is an
outstanding challenge in quantum physics, because the optimal measure-
ments for incompatible parameters cannot be performed jointly due to the
Heisenberg uncertainty principle. In this work, a criterion proposed for mul-
tiparameter estimation provides a possible way to beat this curse. According
to this criterion, it is possible to mitigate the influence of incompatibility
meanwhile improve the ultimate precisions by increasing the variances of the
parameter generators simultaneously. For demonstration, a scheme involving
high-order Hermite-Gaussian states as probes is proposed for estimating the
spatial displacement and angular tilt of light at the same time, and precisions
up to 1.45 nm and 4.08 nrad are achieved in experiment simultaneously.
Consequently, our findings provide a deeper insight into the role of Heisen-
berg uncertainty principle in multiparameter estimation, and contribute in
several ways to the applications of quantum metrology.

Quantum parameter estimation plays a vital role in a wide range of
physics and engineering, including interferometry1–4,
superresolution5–8, optical sensing9–11 and so on. Generally, the ulti-
mate precision of estimating unknown parameter is characterized by
the quantum Cramér-Rao (QCR) bound12–14, which can be explicitly
calculated by the quantum Fisher information matrix (QFIM)15,16. For
single-parameter estimation, the QCR bound is always attainable by
assigning an optimal measurement17–19. In multiparameter estimation,
there is a quantum limit (QL) point that the estimatingprecisions for all
parameters achieve their QCR bounds simultaneously. This QL point
can be saturated only if the optimal measurements for all parameters
are compatible, such as the estimation of multiple phases20,21 and
parameters in SU(2) operators with ancillary qubits22,23. Unfortunately,
the optimal measurements for incompatible parameters can not be
jointly performed due to the Heisenberg uncertainty principle (HUP),
thus the QL point is unachievable24–26. To determine the attainable
precisions of incompatible parameters, a trade-off relation between
the estimation inaccuracies for different parameters27 was recently
revealed by incorporating the HUP and Ozawa’s uncertainty
relation28,29.

Although the QL point of incompatible parameters is unac-
hievable, we find that their trade-off precision bound can be dramati-
cally improved by devising an appropriate measurement probe. By
revealing the connection between variances of estimation errors and
generators30 corresponding to different parameters, a criterion is
proposed to guide the design of probe. It significantly indicates that,
increasing the variances of generators simultaneously may not only
improves the quantum limits, but also mitigates the incompatibility of
corresponding parameters, and then the estimating precisions can
approach to the QL point asymptotically.

In this work, we study a scheme thatmeasuring the parameters of
momentum and position simultaneously in a quantum system. By
employing the Hermite-Gaussian (HG) state as the measurement
probe, of which the momentum and position variances increase
simultaneously along with the mode number, the QL point of this pair
of incompatible parameters can be approached asymptotically
according to our criterion. To suppress the technical noise31–33, we also
introduce the post-selected weak measurement technique in our sys-
tem. For demonstration, our scheme is performed in an optical
experiment by employing HG beams, where the incompatible
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parameters are produced by the weak transverse displacement and
angular tilt of light. When the number of HG mode increases, the
estimation errors of different parameters decrease and approach to
their incompatible quantum limits simultaneously, which agrees well
with our theoretical prediction. Especially, precisions up to 1.45 nm
and 4.08 nrad for estimating spatial displacement and angular tilt of
light are achieved at the same time in our experiment. As the theore-
tical and experimental results all indicate that our method not only
mitigates the incompatibility to approach the simultaneous quantum
limits, but also improves the quantum limits to achieve the smaller
estimation errors, our findings will be of interest to many application
scenarios in quantummetrology, e.g., polarizationmicroscopy34, qubit
tomography35, estimation of a multidimensional field36, metrology of
correlatedphase and loss37, and jointmeasurement of phaseandphase
diffusion38.

Results and discussion
Quantum criterion of multiparameter estimation
Let us start with the quantum multiparameter estimation process
illustrated in Fig. 1. An evolution operator ÛðgÞ with n unknown para-
meters g = ðg1,g2, . . . ,gnÞ 2 Rn transfers a probe state ∣ψi to a para-
meterized stateof ∣ψg i. Afterwards, the values ofg canbe estimated via
performing measurements on ∣ψg i. By devising the optimal measure-
ments for all parameters, the QCR bound gives the quantum limit on
the precision of every parameter via the QFIM.

Generally, the quantum Fisher information (QFI) of parameter gi
can be derived as Qii =4hΔĤ

2
i i (Qii is the i-th diagonal element of the

corresponding QFIM Q), where hΔĤ2
i i � ψ

�
∣Ĥ

2
i ∣ψ
�� ψ

�
∣Ĥi∣ψ

�2 is the
variance of Ĥi, with Ĥi = i½ ∂

∂gi
Û

yðgÞ�ÛðgÞ being the generator of gi,
which leads to the quantum limit of parameter gi given by30:

δgi

� �2hΔĤ2
i i≥

1
4ν

ð1Þ

where ν is the measured samples number. This limit can be saturated
via an optimal measurement connected to generator Ĥi

17,39 in the
single-parameter estimation. Moreover, this limit also implies that the
precision of a single parameter can be improved by maximizing the
variance of Ĥi, which requires to optimize the probe state.

However, achieving the quantum limits for all parameters simul-
taneously requires their corresponding optimal measurements being
compatible, which is granted by checking the weak commutative
condition17:

Im
∂ ψg

D
∣

∂gi

∂∣ψg

E
∂gj

0
@

1
A= h½Ĥi, Ĥj�i =0 ð2Þ

where ½Ĥi,Ĥj� � ĤiĤj � ĤjĤi, 〈⋅〉 denotes for ψ
�

∣ � ∣ψ�. For two incom-
patible parameters gi and gj who do not satisfy the weak commutative
condition, their optimal measurements can not be performed simul-
taneously, so their quantum limits are incompatible to be achieved. To
deeply investigate the incompatibility from the physical insight, we
relate the generators Ĥi and Ĥj of the incompatible parameters by

Heisenberg’s uncertainty relation:

hΔĤ2
i ihΔĤ

2
j i≥

1
4
∣h½Ĥi, Ĥj �i∣

2 ð3Þ

We will show that in follows, the incompatibility between measure-
ments can be dramatically mitigated by using appropriate probe state,
so that theQL point can be approached asymptotically. To achieve this
goal, the probe state should be chosenmaximizing the variances of Ĥi

and Ĥj . According to Eq. (1), this method can also improve the quan-
tum limits to achieve smaller estimation errors regarding to para-
meters gi and gj.

To illustrate our result, we first define the quantum multi-
parameter estimation criterion (QMEC) as follow:

Sij =
4hΔĤ2

i ihΔĤ
2
j i

∣h½Ĥi,Ĥj�i∣
2

ð4Þ

According to Eq. (3), we have Sij ≥ 1. The value of Sij corresponds to the
uncertainties of Ĥi and Ĥj . They are minimized simultaneously when
Sij = 1 and become larger when Sij increases.

With the QMEC in hand, the achievable precision limit in multi-
parameter estimating is given by a trade-off relation27 (see the Sup-
plementary Note 1 for derivation):

2 � 1
ν δ~gið Þ2 �

1
ν δ~gjð Þ2 + 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

Sij

q

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

ν δ~gið Þ2
� �

1� 1
ν δ~gjð Þ2

� �s
≥ 1

Sij

ð5Þ

where δ~gi =
ffiffiffiffiffiffiffi
Qii

p
δgi =2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔĤ2

i i
q

δgi and δ~gj =
ffiffiffiffiffiffiffi
Qjj

p
δgj =2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔĤ2

j i
q

δgj

are the normalized estimation errors for the normalized parameters
~gi =

ffiffiffiffiffiffiffi
Qii

p
gi and ~gj =

ffiffiffiffiffiffiffi
Qjj

p
gj, which are dimensionless and reflect the

discrepancies between the practical attainable precisions and the
corresponding quantum limits. This trade-off relation not only reveals
the achievable precision limit of multiparameter estimation, but also
indicates a possible way to achieve simultaneous ultimate precisions
via the criterion Sij .

Fig. 1 | Schematic of the quantumparameter estimation.A generalized quantum
parameter estimation process consists of four steps: probe state preparation,
parameterization, measurement and classical estimation.
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Fig. 2 | Precision limits of estimating parameters gi and gj simultaneously.The x
axis and y axis are separately the normalized estimation errors of parameters gi and
gj. The gray dashed lines are separately the QCR bounds for parameters gi and gj,
which are directly obtained from their corresponding QFI. The cross point (red
triangle in figure) of gray dashed lines is the quantum limit point where both
parameters achieve the theoretical ultimate precision. The green solid curve stands
for the trade-off boundofparametersgi and gjwithSij = 1,which corresponds to the
minimum-uncertainty probe state. The blue and purple solid curves are separately
the trade-off bounds with Sij = 2 and Sij =4.
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Based on Eq. (4) and Eq. (5), the trade-off precision bounds are
comparedwith the single parameter limits in Fig. 2. Here, the quantum
limit (QL) point represents the simultaneous ultimate precisions for
the parameters gi and gj. It clearly shows that the trade-off precision
bound approaches the QL point when Sij increases, and the worst
trade-off bound appears when Sij = 1. In other words, the larger the
uncertainties of Ĥi and Ĥj are, the easier to achieve the ultimate pre-
cisions simultaneously.

The QMEC together with Eq. (5) provide us a guidance for opti-
mizing the probe state for multiparameter estimation. As an example,
we consider the simultaneous estimations on parameters with gen-
erators ofmomentumoperator P̂ and position operator X̂ . In this case,
the unitary parameterization is ÛðgÞ= expð�ig1P̂ � ig2X̂ Þ, where g1
and g2 representing position displacement and momentum kick are
the parameters of interest, and the corresponding QMEC can be easily
calculated as S12 =S21 = 4hΔP̂

2ihΔX̂2i. (Without loss of generality, we
adopt units making ℏ = 1 in this article.) Let us take Gaussian state,
which is usually used as probe [42,43] for example. Gaussian state
satisfying hΔP̂2ihΔX̂2i= 1=4 yields S12 = 1, whichmeans it gets the worst
trade-off precision bound. In this sense, the high-order Hermite-
Gaussian (HG) state40 with larger uncertainties on P̂ and X̂ could be a
better choice for probe.

Simultaneous measurement of incompatible parameters
To practical verify our theory, we investigate a post-selected weak
measurement scheme where a pair of incompatible parameters is
loaded simultaneously during the weak interaction procedure. As is
illustrated in Fig. 3, a two-level system and a pointer with continuous
degree of freedom are prepared in states of ∣ii and ∣ψi

�
respectively.

During the weak interaction procedure, the position displacement
parameter g1 and momentum kick parameter g2 are coupled simulta-
neously to pointer with a impulse Hamiltonian
ĤI = g1P̂ � Â+ g2X̂ � Â

	 

δðt � t0Þ, where Â is an Hermitian operator

on the two-level system. Thus, the theoretical unitary parameterization
in weak measurement scheme is ÛðgÞ= Ûw = expð�i

R
ĤIdtÞ. By

adopting the weak interaction assumption g1σp << 1 and g2σx << 1, the
unitary parameterization can be approximately calculated as

ÛðgÞ= Ûw≈1� ig1Â� P̂ � ig2Â� X̂ ð6Þ

To individually read out the measurement parameters from the
pointer, we post-select the system by state ∣f

�
, and turn the final state

in whole to be a product state ∣ψf i∣f i, where

∣ψf i≈ 1� ig1AwP̂ � ig2AwX̂
	 


∣ψi

� ð7Þ

is the final state of pointer, and Aw = f
�

∣Â∣ii=hf ∣ii is weak value. Then
the corresponding QFIM can be obtained as:

Q≈4∣Aw∣
2 hΔP̂2ii 1

2 hfP̂,X̂gii
1
2 hfX̂ ,P̂gii hΔX̂2ii

0
@

1
A ð8Þ

where 〈⋅〉i denotes for ψi

�
∣ � ∣ψi

�
. Thus, the QMEC in our measurement

scheme for incompatible parameters g1 and g2 can be calculated as

S12 =S21 = 4hΔP̂
2iihΔX̂

2ii ð9Þ

which has the same expression of the post-selection-free scheme, and
is only dependent on themomentumandpositionuncertainty of initial
pointer state. (See Supplementary Note 1 for calculation details.)

In the conventional weak measurement scheme, the pointer is
usually chosen to have Gaussian distribution, which leads to the worst
QMEC S12 = 1. According to the trade-off relation of parameters’ pre-
cisions in Eq. (5), the corresponding trade-off bound of Gaussian
pointer is given by:

1

ν δ~g1

� �2 +
1

ν δ~g2

� �2 ≤ 1 ð10Þ

where

δ~g1 =
ffiffiffiffiffiffiffi
Q11

p
δg1 = 2∣Aw∣

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔP̂2ii

q
δg1

δ~g2 =
ffiffiffiffiffiffiffiffi
Q22

p
δg2 = 2∣Aw∣

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔX̂2ii

q
δg1

ð11Þ

are respectively the normalized estimation errors of parameters g1 and
g2. For simplicity, we can also define the normalized parameter vector

~g = ð~g1,~g2Þ=2Aw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔP̂2ii

q
g1,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔX̂2ii

q
g2

� �
ð12Þ

Here, we illustrated the the normalized estimation errors δ~g1 and
δ~g2 withGaussian pointer in Fig. 4a,where the cross point (red triangle
in figure) of the QCR bounds (gray dashed lines in figure) is the QL
pointPQ =

ffiffiffi
ν

p ðδ~gmin
1Q ,δ~gmin

2Q Þ= ð1,1Þ. However, according to the trade-off
relation in Eq. (5), the achievable boundary of simultaneous estimation
errors is dependent on the probe’s uncertainty. For Gaussian pointer,
the trade-off bound given by Eq. (10) is illustrated by the blue solid
curve in Fig. 4a, where improving the estimating precision of one
parameter toward the quantum limit will make the estimation error of
the other parameter turn to infinite. Itmeans that the QL point can not
be achieved for incompatible parameters via Gaussian pointer.

To improve the trade-off bound of the incompatible parameters,
we employ the n-order Hermite-Gaussian (HG) state as our initial
pointer, whose spatial wave function is:

ψnðxÞ=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nn!
ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

0

qr Hn
xffiffiffi
2

p
σ0

 !
exp � x2

4σ2
0

 !
ð13Þ

where σ2
0 is the variance of spatial distribution of fundamental Gaus-

sian state. From the view of quantummechanics, n-order HG state can
be denoted by the n-order eigenket of harmonic oscillators ∣ni. Then
the momentum and position uncertainty can be calculated as
hΔP̂2ii = ð2n+ 1Þ=4σ2

0, hΔX̂
2ii = ð2n+ 1Þσ2

0, which lead to the QMEC with
n-order HG pointer being improved as:

SðnÞ
12 = ð2n + 1Þ2 ð14Þ

Fig. 3 | Post-selected weak measurement scheme for the incompatible para-
meters. Here we investigate the parameters generated by momentum operator P̂
and position operator X̂ during the weak interaction procedure.
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Therefore, the corresponding trade-off bound of HG pointer can be
calculated as:

2� 1

ν δ~g1

� �2 � 1

ν δ~g2

� �2 +
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn+ 1Þ

p
2n+ 1

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

ν δ~g1

� �2
" #

1� 1

ν δ~g2

� �2
" #vuut ≥

1

ð2n+ 1Þ2

ð15Þ

where δ~g1 = ∣Aw∣
ffiffiffiffiffiffiffiffiffiffiffiffi
2n+ 1

p
δg1=σ0 and δ~g2 = 2∣Aw∣σ0

ffiffiffiffiffiffiffiffiffiffiffiffi
2n+ 1

p
δg2. Accord-

ing to Eq. (12), the corresponding normalized parameter vector can be
calculated as

~g = ~g1,~g2

� �
=Aw

ffiffiffiffiffiffiffiffiffiffiffiffi
2n+ 1

p
g1=σ0,2σ0g2

� � ð16Þ

According to Eq. (15), the trade-off bound of n-order HGpointer is
improved to a finite length curve with two endpoints:

PðnÞ
L =

ffiffiffi
ν

p
δ~gmin

1Q , δ~gmin
2L

	 

= 1,

2n + 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn+ 1Þ

p
 !

PðnÞ
R =

ffiffiffi
ν

p
δ~gmin

1R , δ~gmin
2Q

	 

=

2n + 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn+ 1Þ

p ,1

 ! ð17Þ

Though the QL point PQ = ð1, 1Þ of the incompatible parameters is
practically unachievable with any classical measurement methods.
However, we find that the trade-off bound of HG pointer is gradually
closing to the QL point as the increasing of mode number n, because

lim
n!1

2n + 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn+ 1Þ

p = lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

1
4nðn+ 1Þ

s
= 1 ð18Þ

From this relation, we can conclude that: when n→∞, the endpoints of
trade-off bound PðnÞ

L ! PQ, P
ðnÞ
R ! PQ, which means that by employ-

ing high-order HG pointer, we can approach the quantum limits of the
incompatible parameters simultaneously with some classicalmeasure-
ment methods in a practical system.

Here,we illustrated the trade-off boundsofHGnpointer andHGn−1

pointer (n > 1) in Fig. 4b, where the blue solid curve is the trade-off
boundof HGnpointer and the purple solid curve is the trade-off bound
of HGn−1 pointer. Moreover, the gray shadowed region between these

two curve is allowed for HGn pointer but forbidden for HGn−1 pointer,
which is named as HGn region.

The results illustrated in Fig. 4b show that the incompatible
quantum limits for parameters g1 and g2 can be approached simulta-
neously by increasing the mode number of HG pointer. Moreover, it
can be proved that this improvement depends on the uncertainty
properties of the high-order HG state rather than its higher energy
level. (See the Supplementary Note 2 for details.)

To implement the practical measurement of the incompatible
parameters, we would like to investigate two widely used practical
measurement strategies: direct imaging and non-orthogonal projec-
tion. Given a set of positive-operator-valued measure (POVM)
Π̂= fΠ̂λ ∣ Π̂λ ≥0,

P
λΠ̂λ = Îg, the estimation covariance matrix of para-

meters g satisfies the classical Cramér-Rao (CCR) inequality:
Covðg,Π̂Þ≥ 1

ν
F�1, where F is the classical Fisher information matrix

(CFIM) with entry be calculated by41:

F ij =
X
λ

1

hΠ̂λig
∂hΠ̂λig
∂gi

∂hΠ̂λig
∂gj

ð19Þ

where hΠ̂λig = hψg ∣Π̂λ∣ψg i is the measurement probability of state ∣ψg i
under operator Π̂λ. Substituting ∣ψii= ∣ni into ∣ψf i, the final pointer
state after the incompatible-parameters interaction can be calculated
as:

∣ψf i≈∣ni �
1
2

~g1∣ψP̂

�
+ i~g2∣ψX̂

�� � ð20Þ

where ∣ψP̂

�
and ∣ψX̂

�
are the generated states by operators P̂ and X̂ :

∣ψP̂

�
=

1ffiffiffiffiffiffiffiffiffiffiffiffi
2n + 1

p ffiffiffi
n

p
∣n� 1i �

ffiffiffiffiffiffiffiffiffiffi
n+ 1

p
∣n+ 1i

	 


∣ψX̂

�
=

1ffiffiffiffiffiffiffiffiffiffiffiffi
2n+ 1

p ffiffiffi
n

p
∣n� 1i+

ffiffiffiffiffiffiffiffiffiffi
n+ 1

p
∣n+ 1i

	 
 ð21Þ

For direct imaging method, the measurement operators can be
denoted as Π̂

DI
= ∣xi xh ∣ ∣ x 2 Rf g. Substituting Π̂DI into Eq. (19), the

CFIM of direct imaging method can be obtained as:

F ðnÞ
DI ≈

ð2n+ 1Þσ�2
0 Re2Aw 2ReAwImAw

2ReAwImAw 4ð2n + 1Þσ2
0Im

2Aw

 !
ð22Þ
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Fig. 4 | Precision limits of the incompatible parameters.The x-axis and y-axis are
separately the normalized estimation errors of parameters g1 and g2. The gray
dashed lines are separately the QCR bounds of ~g1 and ~g2. The cross point (red
triangle in figure) of gray dashed lines is the QL point where both parameters
achieve the ultimate precision. a Trade-off bound of Gaussian pointer, which is
expressed by the blue solid curve, the region below this curve is forbidden by the
inequality in Eq. (5). b Trade-off bound of HG pointer. The blue solid curve is the
trade-off boundofHGnpointer, the purple solid curve is the trade-off boundofHGn

−1 pointer. The gray shadow region between these two curves is named as HGn

region,which is allowed forHGnpointer but forbidden forHGn−1 pointer. cPractical
precision limits of HG pointer when employing direct imaging and non-orthogonal
projection measurements. The blue solid curve is the trade-off bound of HGn

pointer. The green solid curve is the joint CCR bound under direct imaging mea-
surement. The black dashed lines are the CCR bounds under with non-orthogonal
projection measurement, where the cross point (yellow X mark) is the corre-
sponding precision limit point.
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Combining with the CCR inequalities, the normalized estimation errors
of the incompatible parameters can be proved satisfying the inequality:

1

ν δ~g1

� �2 +
1

ν δ~g2

� �2 ≤
4nðn+ 1Þ
ð2n+ 1Þ2 ð23Þ

We illustrate this joint precision-limit bound in Fig. 4c with green solid
curve, where the separate ultimate precisions of parameters are δ~gmin

1R

and δ~gmin
2L . Though δ~gmin

1R and δ~gmin
2L separately approach the quantum

limits δ~gmin
1Q and δ~gmin

2Q as the increasing of mode number n, these two
parameters can not approach their ultimate precision limits simulta-
neously based on the inequality in Eq. (23), whichmeans that the direct
imagingmethod is incapable to approach theQLpoint of incompatible
parameters.

Drawing on the method of unambiguous quantum state
discrimination42,43, we devise a set of non-orthogonal projection
operators Π̂6? = fΠ̂1 = ∣ψ

?
X̂
ihψ?

X̂
∣, Π̂2 = ∣ψ

?
P̂
ihψ?

P̂
∣, Î� Π̂1 � Π̂2g, where the

states:

∣ψ?
X̂
i = 1ffiffiffiffiffiffiffiffiffi

2n+ 1
p

ffiffiffiffiffiffiffiffiffiffi
n + 1

p
∣n� 1i � ffiffiffi

n
p

∣n + 1i
	 


∣ψ?
P̂
i = 1ffiffiffiffiffiffiffiffiffi

2n + 1
p

ffiffiffiffiffiffiffiffiffiffi
n+ 1

p
∣n� 1i+ ffiffiffi

n
p

∣n+ 1i
	 
 ð24Þ

which are orthogonal to the parameters generated states ∣ψP̂

�
and

∣ψX̂

�
. Therefore, it is easy to determine that the parameters g1 and g2

canbe separately detected by the projectionmeasurements Π̂1 and Π̂2.
Substituting the POVM Π̂6? into Eq. (24), the CFIM of non-

orthogonal projection method can be obtained as:

F ðnÞ
6? ≈ ∣Aw∣

2

4nðn+ 1Þ
ð2n+ 1Þσ2

0
0

0
16nðn+ 1Þσ2

0
2n+ 1

0
@

1
A ð25Þ

which leads to the precision limits

δ~g1 ≥ 2n + 1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn+ 1Þν

p

δ~g2 ≥ 2n + 1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn+ 1Þν

p

8<
: ð26Þ

Combining with Eq. (18), it reveals that the QL point of the incompa-
tible parameters can be approached asymptotically by employing

non-orthogonal projection measurement, and the corresponding
practical precision limit in Eq. (26) is a point at:

PðnÞ
6? =

ffiffiffi
ν

p
δ~gmin

1 6? ,δ~gmin
2 6?

	 

=

2n+ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn + 1Þ

p PQ ð27Þ

Obviously, we can calculate that: when n→∞, the precision limit point
PðnÞ

6? ! PQ, which means that non-orthogonal projection measure-
ment canapproach thequantum limits of the incompatible parameters
simultaneously.

Experimental set-up and results
To experimentally verify that using HG pointer can approach the
quantum limits of incompatible parameters simultaneously, we
employ Hermite-Gaussian beam in an optical experiment, whose
transverse spatial state can be expressed as ∣unðzÞ

�
= ÛðzÞ∣ni, where

ÛðzÞ= exp i 1
2k P̂

2
z

	 

is the z-dependent propagation operator. Here

k = 2π/λ is the wave number of light beam and z is the propagation
distance begin from the beam waist. Therefore, the generators of the
incompatible parameters g1 and g2 should evolve as P̂ðzÞ= ÛðzÞP̂ÛyðzÞ
and X̂ ðzÞ= ÛðzÞX̂ ÛyðzÞ.

In this experiment, we generate the n-order HG beam via a
spatial light modulator (SLM) and a spatial filter system44, as is
shown in Fig. 5. The light beam from the laser working at 780nm is
expanded for generating HG beams. Here, we choose the beam’s
polarization kets ∣Hi and ∣V i as the basis of measured two-level
system. The pre-selection state ∣ii= 1ffiffi

2
p ∣Hi+ ∣V ið Þ is implemented by

a Glan-Taylor polarizer (GTP) and a half wave plate (HWP). The pre-
selected beam is injected to a polarized Mach-Zehnder inter-
ferometer (MZI), and a mirror driven by two piezoelectric trans-
ducer (PZT) chips is used to generate the tiny transverse spatial
displacement d and tiny angular tilt φ (which leads to a tiny trans-
versemomentum kick of kφ) simultaneously for the ∣Hi component
of light beam. Thus, the unitary evolution of this weak interaction
procedure can be denoted as:

Û
exp
w = expð�idP̂ � Â� ikφX̂ � ÂÞ ð28Þ

where Â= 1
2 Î+ σ̂z

	 

, and σ̂z = ∣Hi Hh ∣� ∣V i Vh ∣ is the Pauli operator.

After the weak interaction procedure in the polarized MZI, the
light beam ispost-selectedby state ∣f

�
= cos π

4 � ε
2

� �
∣Hi � sin π

4 � ε
2

� �
∣V i,

where ε << 1 (in our experiment, the post-selection angle is set as ε = 5∘).
Thus, the weak value can be calculated as

Aw =
f
�

∣Â∣ii
hf ∣ii =

1
2

cot
ε
2
+ 1

	 

≈
1
ε

ð29Þ

After the post-selection, another SLM is employed to implement the
non-orthogonal projection measurement with a Fourier transfer lens
and a spatialfiltering froma singlemodefiber (SMF) couplingdetected
photons to an avalanche photodiode (APD).

The optical length from the waist of HG beam to the signal mirror
is denoted as z1, the length from the signalmirror to the second SLM is
denoted as z2, and z1 + z2 = z0. Thus, the unitary parameterization with
incompatible parameters g1 and g2 is ÛðgÞ= Ûðz2ÞÛ

exp
w Û

yðz2Þ in this
experiment (see the Methods part), where g1 and g2 can be separately
expressed as

g1 =d + z1φ, g2 = kφ ð30Þ

and the final beam state is then derived as (see the Methods part):

∣uf ðz0Þi≈∣unðz0Þ
�� 1

2
~g1∣uP̂

�
+ i~g2∣uX̂

�� � ð31Þ

Fig. 5 | Diagram of experimental setup. The n-order HG beam is converted from
an expanded Gaussian beam working at 780nm by an SLM and a spatial filter
system. The pre-selection is implemented by a Glan-Taylor Polarizer and a HWP.
And a polarized MZI is employed to implement the weak interaction procedure,
where the incompatible parameters (position displacement and momentum kick)
are introduced by a PZT-driven mirror. Then a quarter wave plate (QWP), a HWP,
and anotherGlan-TaylorPolarizer areused to implement thepost-selection. Finally,
another SLM with a Fourier transfer lens is used to implement the non-orthogonal
projection measurement, where the successfully projected photons are collected
by an APD with an SMF.
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where ∣uP̂

�
= Ûðz0Þ∣ψP̂

�
and ∣uX̂

�
= Ûðz0Þ∣ψX̂

�
are the generated states

by operators P̂ðzÞ and X̂ ðzÞ, ~g1 =Aw

ffiffiffiffiffiffiffiffiffiffiffiffi
2n+ 1

p
g1=σ0 and

~g2 = 2Aw

ffiffiffiffiffiffiffiffiffiffiffiffi
2n+ 1

p
σ0g2 are still the normalized parameters regarding the

parameters g1 and g2. Thus the non-orthogonal projection operators
for HG beams are Π̂1 = ∣u?

X̂
ihu?

X̂
∣ and Π̂2 = ∣u?

P̂
ihu?

P̂
∣.

By displaying the non-orthogonal projection Π̂1 on the SLM, the
parameter g1 can be individually detected with projection probability

P1 = huf ðz0Þ∣Π̂1∣uf ðz0Þi =
nðn+ 1Þ
ð2n+ 1Þ2

~g2
1 ð32Þ

Then displaying the non-orthogonal projection Π̂2 on the SLM, the
parameter g2 can be also individually detected with projection
probability

P2 = huf ðz0Þ∣Π̂2∣uf ðz0Þi =
nðn+ 1Þ
ð2n+ 1Þ2

~g2
2 ð33Þ

In this experiment, we generate the position displacement and
angular tilt signals simultaneously for light beam via a PZT driven
mirror, where two asynchronous cosine driving signals with frequency
f = 2 kHz and relative phase θ = 4∘ are exerted on the two PZT chips
separately. Besides the 2 kHz driving signals, the initial displacement
and tilt bias errors of themirror can not be negligible in practice, which
leads to the initial biases gΔ

1 and gΔ
2 for the parameters g1 and g2. Thus,

the total signals of the incompatible parameters is denoted as

gtot
1 = gΔ

1 + g1 cosð2πf tÞ and gtot
2 = gΔ

2 + g2 cosð2πf tÞ separately. It is easy
to determine that g1 ≪ gΔ

1 ≪ 1 and g1 ≪ gΔ
1 ≪ 1 (see the Methods part).

In practice, before exerting the driving signals, we projected the
final beam state on ∣unðz0Þ

�
to fix the effective sample number ν for

different HG modes, which is obtained by the detected optical power I0
(experimental values of I0 and ν are given in theMethodpart). Then exert
the driving signals on PZT chips and project the final beam on state ∣u?

X̂
i

and ∣u?
P̂
i separately, whose corresponding detected optical powers are

denoted as I1 and I2. Finally, the detected power signals were inputted
into the spectrumanalyzer, wherewe can independently demodulate the
parameters g1 and g2 from the corresponding peak powers at f=2kHz:

Ið2kHzÞ1 =
2nðn + 1Þ

ð2n+ 1Þσ2
0ε

2
gΔ
1 g1I0

Ið2kHzÞ2 =
8nðn+ 1Þσ2

0

ð2n+ 1Þε2 gΔ
2g2I0

ð34Þ

Here we only concern with the shot noise in experiment, then the
theoretical detected peak signal-to-noise ratios (SNR) with two non-
orthogonal projections can be obtained as:

SNR1 =
Ið2 kHzÞ1

δI1
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn+ 1Þν
ð2n + 1Þε2

s
2g1

σ0

SNR2 =
Ið2 kHzÞ2

δI2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn+ 1Þν
ð2n + 1Þε2

s
4σ0g2

ð35Þ

Fig. 6 | Experimental results ofminimum detectable parameters g1 and g2. The
experimental results are illustrated by the yellow points with error bar. The trade-
off bounds of parameters g1 and g2 with different HGmodes are represented by the
blue solid curves. a Experimental results of HG1 to HG5 modes. The different HG
regions are distinguished by the gray levels. The gray dashed lines are the QCR
bounds of parameters g1 and g2 with different HGmodes, and the cross points (red

triangles) are the corresponding QL points. b-f Specific experimental results of HG1

to HG5 modes. The gray dashed lines are the QCR bounds of parameters g1 and g2,
where the cross points (red triangles) are the theoretical QL points. The dark
dashed lines are the experimental precision limits of parameters g1 and g2, where
the cross points (purple cross marks) are the theoretical predictions of experi-
mental results given by Eq. (36) and Eq. (37).
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When SNR1 = 1, the minimum detectable parameter g1 is:

δgmin
1det =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2n+ 1Þε2
nðn+ 1Þν

s
σ0

2
ð36Þ

Similarly, when SNR2 = 1, the minimum detectable parameter g2 is:

δgmin
2det =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2n+ 1Þε2
nðn+ 1Þν

s
1

4σ0

ð37Þ

Experimentally, the spatial displacement d and angular tilt φ of
light beamcan be estimated from the detected parameters g1 and g2 as
d = g1 � z1

k g2 andφ = g2/k, which leads to the corresponding estimating
errors be calculated as

δd =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δg1

� �2 + z21
k2 δg2

� �2s
, δφ=

δg2

k
ð38Þ

Thus, the theoretical minimum detectable spatial displacement and
angular tilt of light beam in our experiment can be obtained as:

δdmin
det =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

z21
b2

� � ð2n + 1Þε2
nðn+ 1Þν

s
σ0

2

δφmin
det =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2n + 1Þε2
nðn+ 1Þν

s
σ0

2b

ð39Þ

where b= 2kσ2
0 is the Rayleigh range.

In our experimental scheme, parameters g1 and g2 are able to
directly detected by applying non-orthogonal projection measure-
ment. Thus we illustrate the experimental precisions of parameters g1
and g2 in Fig. 6. The experimental results of minimum detectable
parameters g1 and g2 are plotted without normalized, therefore the QL
point of each HGmode is difference, and the HG regions turn into the
’L’-type. As is shown in Fig. 6a, our experimental precision points of
different HG modes are exactly in the corresponding HG regions. In
Fig. 6b to Fig. 6f, we illustrate the experimental results of HG1 mode to
HG5 mode separately. In these sub-figures, we also plot the theoretical
prediction of experimental precision for every HG mode, which is
derived directly from Eq. (36) and Eq. (37) with the fixed experimental
photons number ν = 1.05 × 107, post-selection angle ε = 5∘ and beam
waist radius w0 = 2σ0 = 240μm.

To directly exhibit our experimental results, we also list the
driving voltages of PZT chips when SNR1 = 1 and SNR2 = 1, and the
practical minimum detected values of parameters g1, g2, and the cor-
responding spatial displacement d and angular tiltφwith different HG
modes inTable 1. As results, wefinally achieve the 1.45 nmprecision on
the light beam’s spatial displacement and the 4.08 nrad precision on
the light beam’s angular tilt whenmeasuring them simultaneouslywith
5-order HG beam.

Geometrical properties of QMEC
In the quantum metrological process, the parameterization evolution
ÛðgÞ projects the probe state ∣ψ� inHilbert space to the parameterized
state ∣ψg i in parameter space. Theoretically, the matrix elements ofQ
are identical to the Fubini-Study metric45 for pure state, which is a
second-order tensor in the projective Hilbert space (parameter space).
Thus, the QFIM can be naturally extended to the quantum geometric
tensor (QGT)46,47, whose entry is obtained by:

T ij =
∂hψg ∣
∂gi

1� ∣ψg ihψg ∣
	 
∂∣ψg i

∂gj
ð40Þ

Obviously, QGT is a complex metric in the projective Hilbert space
with properties:

ReT =
Q
4
, ImT = � C

2
ð41Þ

where C is the Berry curvature (BC) defined on the parameter space.
For quantum estimation theory, the non-diagonal elements of
BC indicate the non-commutativity of different parameters, which
means the larger the BC is, the harder to estimate two different
parameters simultaneously. In Lu and Wang’s work27, they related
the trade-off bound to the quantum geometric tensor. Then the
QMEC can be calculated as (see the Supplementary Note 1 for
derivation):

Sij =
QiiQjj

4C2ij
ð42Þ

where the geometric properties on parameter space are involved.
Especially, the QMEC indicates a normalized curvature on the para-
meter space:

~Cij =
2Cijffiffiffiffiffiffiffiffiffiffiffiffiffi
QiiQjj

p ð43Þ

where ~C2ij = 1=Sij . Traditionally, the Berry curvature Cij , i.e., the weak
commutative condition is concerned alone in evaluating the incom-
patibility of different parameters on multiparameter estimation in
Eq. (2). However, the geometrical properties of the QMEC in our work
reveals that the Berry curvature alone is insufficient in evaluating the
incompatibility, the metric property on the parameter space, i.e., the
QFIM influences the attainability of simultaneous quantum limits on
multiparameter estimation. Thus, the normalized curvature ~Cij is
more appropriate to describe the curvature property on the
parameter space.

Comparison of trade-off bound and Holevo bound
The Holevo CR bound is another wide studied lower bound of esti-
mating variances on multiparameter quantum estimation, which

Table 1 | Experimental results

Driving Voltagesa Parametersb

HG modes SNR1 = 1c SNR2 = 1d δgmin
1 det δgmin

2det δdmin
det δφmin

det

HG1 73.10mV 107.03mV 1.90nm 6.62 × 10−2 m−1 2.94nm 8.22 nrad

HG2 54.53mV 79.67mV 1.42nm 4.93 × 10−2 m−1 2.19 nm 6.12 nrad

HG3 45.59mV 66.56mV 1.19 nm 4.12 × 10−2 m−1 1.83 nm 5.11 nrad

HG4 40.01mV 58.39mV 1.04nm 3.62 × 10−2m−1 1.60 nm 4.48 nrad

HG5 36.12mV 53.14mV 0.94nm 3.29 × 10−2m−1 1.45 nm 4.08 nrad
aDriving voltages (peak-to-peak value) of PZT chips when SNR1 = 1 and SNR2 = 1 with different HG modes.
bThese columns are the experimental results of minimum detected values of parameters g1, g2, and g1.
cSNR1 corresponds to the Π̂1 projection measurement, where parameter g1 can be directly demodulated.
dSNR2 corresponds to the Π̂2 projection measurement, where parameter g2 can be directly demodulated.
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reveals the quantum limits on weighted mean errors and is proven
attainable within collective measurements48,49. However, the Holevo
CR bound is difficult to completely identify the trade-off curve
regarding the attainable precision limits on estimating different para-
meters. In this part, we would like to give the Holevo CR bound on
estimating two incompatible parameters of a parameterized pure
state, and compare it with our trade-off bound.

Theoretically, the analytic expression of Holevo bound is difficult
to be obtained for the generalized multiparameter estimation sce-
nario, and numerical algorithms are widely employed for solving it50,51.
In our work, we concern with the measurement scenario of two
incompatible parameters for a pure state model, where the corre-
sponding Holevo bound is given as:

ν δ~gi

� �2 + ν δ~gj

	 
2
2

≥
2

1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~C2ij

q ð44Þ

which is first derived by Matsumoto at52. δ~gi and δ~gj are the normal-
ized estimation errors for incompatible parameters gi and gj, ~Cij is the
normalized Berry curvature defined in Eq. (43). By comparing our
trade-off bound of Eq. (5) with the Holevo bound in Fig. 7, we can see
that the Holevo bound is exactly tangent to the trade-off bound at
δ~gi = δ~gj . From the results in Fig. 7, we can conclude that though the
Holevo bound gives a tight bound of weighted mean errors for two
incompatible parameters, it is less informative than the trade-off
bound employed in our work.

Furthermore, we concern with the Holevo bound in our post-
selected measurement scenario with HGn pointer, where the normal-
ized Berry curvature is given as ~C12 = 1

2n+ 1. Then the Holevo bound for
the incompatible parameters g1 and g2 generated by the momentum
operator P̂ and position operator X̂ can be calculated as

ν δ~g1

� �2 + ν δ~g2

� �2
2

≥
2ð2n+ 1Þ

2n+ 1 + 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn+ 1Þ

p ð45Þ

By comparing itwith the trade-off boundof Eq. (15) in Fig. 8, we can see
that the Holevo bound is tangent to the trade-off bound at

ffiffiffi
ν

p
δ~gi =

ffiffiffi
ν

p
δ~gj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2n+ 1Þ

2n+ 1 + 2
ffiffiffiffiffiffiffiffiffiffiffi
nðn+ 1Þ

p
r

, and the trade-off bound is more

informative than the Holevo bound.

In summary, this study has identified a practical way to approach
the QL point of incompatible parameters asymptotically, which was
considered unachievable. By connecting the estimation errors of
parameters with the variances of corresponding generators, we have
proposed a criterion to improve the trade-off precision bound from
the physical insight. This significant criterion indicates that the
incompatibility is able to be mitigated via increasing the correspond-
ing generators’ variances simultaneously, where devising an appro-
priate probe state is important. For demonstration, we have build up a
practical scheme for measuring the incompatible parameters of
momentum and position simultaneously in a quantum system, and a
corresponding optical experiment has also been implemented on the
simultaneous measurement of light beam’s transverse displacement
and angular tilt. By employing the HG states as the probe, the QL point
of the incompatible parameters has been approached asymptotically
in both theoretical frame and experimental results. Furthermore, our
method is able to improve the measurement precisions, because
increasing the generators’ variances also decreases the ultimate esti-
mation errors of unknown parameters. Experimentally, we have
achieved the precisions up to 1.45 nm and 4.08 nrad on the simulta-
neous measurement of spatial displacement and angular tilt of light.
Although only the spatial incompatible parameters are experimentally
exemplified, our theoretical analysis is perfectly applicable to the
homodyne detection of coherent light in the phase space53. Therefore,
the theoretical and experimental findings in this study not only con-
tribute to develop and refine the quantummultiparameter estimation
theory, but also have potential for other quantum optics applications,
such as quantum communications54,55 and superresolution8,56.

Methods
Technical advantages of weak value
To practically demonstrate our theory, we employed the post-selected
weak measurement scheme with weak value amplification technique
to measure the incompatible parameters simultaneously. The weak
value Aw ≈ 1/ε takes no enhancement for the theoretical minimum
detectable parameters because the detected photons number

1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2

Fig. 7 | Comparison of the trade-off bound and the Holevo CR bound for two
incompatible parameters gi and gj. The gray dashed lines are the QCR bounds,
where the cross point (red triangle) is the corresponding QL point. The blue solid
curve stands for the trade-off bound with normalized Berry curvature ~Cij = 1, and
thebluedotted curve stands for theHolevoboundwithnormalizedBerry curvature
~Cij = 1. The purple solid curve stands for the trade-off bound with normalized Berry
curvature ~Cij =0:8, and the purple dotted curve stands for the Holevo bound with
normalized Berry curvature ~Cij =0:8.

Fig. 8 | Comparison of the trade-off bound and the Holevo CR bound for
parameters g1 and g2 in our post-selected measurement scenario with HGn

pointer. The gray dashed lines are the QCR bounds, where the cross point (red
triangle) is the corresponding QL point. The blue solid curve stands for the trade-
off bound given by Eq. (15), and the blue dotted curve is the corresponding Holevo
bound with HGn pointer.
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ν = ∣hf ∣ii∣2ν0 = sin2 ε
2 ν0 is attenuated by the post-selection, where ν0 is

the photons number before post-selection. However, the weak value
amplification technology has been proved efficient for suppressing
technical noises, such as reflection of optical elements2 and detector
saturation33,57,58. Especially, the detector saturation is non-negligible in
our experiment for the saturation power of our APD detector is only
1.54 nW. Considering the projection demodulation of SLM, only 10%
photons can be modulated on the 1st-order diffraction, so the max-
imum received power of our detector is ~154pW, which is easily
saturated without post-selection. For example, the efficient detected
light power in our experiment is I0 = 49.09 pW, and the post-selection
angle ε = 5∘. Therefore, for the post-selection-free scheme, a
I0=sin

2 ε
2 = 25.8 nW detected light power is needed to achieve the

same precision of the post-selected scheme, which is far lager than the
saturation power of the APD detector.

Experimental materials
The laser employed in this experiment is a Distributed Bragg Reflector
(DBR) Single-Frequency Laser of of Thorlabs Inc. (part number:
DBR780PN), which works at λ = 780nm with 1MHz typical linewidth.
To generate the high-order HG beams, we used a SLM of Hamamatsu
Photonics (part number: X13138-02), which has 1272 × 1024
pixels with 12.5μm pixel pitch. The focal length of the Fourier lens in
the 4-f system is 5 cm. A 200μm square pinhole is used as the spa-
tial filter.

In this work, we set up a polarized MZI to generate the position
displacement and momentum kick interaction simultaneously for the
weak measurement scheme. To improve th beam’s degree of polar-
ization, two additional polarizers were inserted into two optical arms
of the interferometer. Moreover, a lock-in amplifier was used to sta-
bilize the relative phase of two optical path in the MZI. In the experi-
ment, we pasted 2 PZTs on the back of the signal mirror (see the
Experimental materials part). Then we exerted two f = 2 kHz cosine
driving signals with a relative phase θ on the two PZTs separately. The
interval between these two PZTs is 20mm, and the part number of
these PZTs is NAC2013 of Core Tomorrow Company, which shifts
22nm with 1V driving voltage. Thus, when setting the relative phase
θ =0∘, there is only a 11 nm shift signal of mirror with 1 Vpp driving
Voltage, which leads to a d = 15.56nm transverse displacement signal
of light beam. In contrast, when setting the relative phase θ = 180∘,
there is only a 1.1μrad tilt signal of mirror (φ = 2.2μrad angular tilt of
light beam) with 1 Vpp driving Voltage, which leads to a kφ = 17.72m−1

momentum kick signal of light beam, where k = 2π/λ = 8.06 × 106m−1 is
the wave number of laser beam.

In this experiment, wemodulated the waist radius of fundamental
Gaussian beam as w0 = 2σ0 = 240μm and set the relative phase of
driving signal as θ = 4∘. Then the 1 Vpp driving signal of PZTs corre-
sponds to the unit spatial displacement amplitude du ≈ 15.55 nm/V and
the unit angular tilt amplitude φu ≈ 76.78 nrad/V. Besides, the mis-
alignedbias of PZTmirror caused an initial displacement bias dΔ, which
is on the 104 nm scale (scale ofw0/10), and an initial angular tilt biasφΔ,
which is on the mrad scale. Thus, the total displacement signal is
dtot =dΔ +d cosð2πf tÞ and the total tilt signal φtot =φΔ +φ sinð2πf tÞ. It
is easy to determine that d << dΔ << 1 and φ <<φΔ << 1. Moreover, the
optical lengths z1 = −27.2 cm, z2 = 64 cm in our experiment. Thus, the
total modulated signals of the incompatible parameters gtot

1 =
dtot + z1φ

tot = gΔ
1 + g1 cosð2πf tÞ and gtot

2 = kφtot = gΔ
2 + g2 cosð2πf tÞ.

Thus, the modulated signals’ amplitudes of the incompatible para-
meters at f = 2 kHz are g1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 + z21φ

2
q

and g2 = kφ, which lead to
gu
1 ≈ 26.03 nm/V and gu

2 ≈0:62m
�1=V.

In practice, by projecting the final beam state on ∣unðz0Þ
�
, we

determined the effective sample number ν =Nτ, whereN is the photon
number in unit time and τ is the detecting time length. In this experi-
ment, a Si Avalanche Photodetector (part number: APD440A of
Thorlabs Inc.)wasemployed to receive theprojection signal, whichhas

maximum conversion gain of 2.65 × 109 V/W and 100 kHz bandwidth.
The detected optical power of APD on state ∣unðz0Þ

�
was fixed as

I0 = 49.06 pW for different HG modes, which leads to N = 1.92 × 108 s−1.
Then the detected voltage signal was analyzed by the spectrum ana-
lyzer module of Moku:Lab, which is a reconfigurable hardware plat-
form produced by Liquid instruments. The resolution bandwidth
(RWB) of our spectrum analyzer was 18.34Hz, which leads to the
detecting time of τ = 54.53ms. Thus, the effective sample number in
our experiment is fixed as ν = 1.05 × 107.

Operator algebra for HG state
From the view of quantum mechanics, ψn(x) is the time-independent
solution for the Schr€odinger equation of harmonic oscillators:

i
∂ψ
∂t

= σ2
0P̂

2
+

1
4σ2

0

X̂
2

 !
ψ ð46Þ

For eigenvalue En = ðn+ 1
2Þ, the corresponding eigenket can be

obtained as:

∣ni=
Z

dx ψnðxÞ∣xi ð47Þ

Thus, we can employ the mode creation (annihilation) operators âðâyÞ
for HG state:

â∣ni= ffiffiffi
n

p
∣n� 1i

ây∣ni=
ffiffiffiffiffiffiffiffiffiffi
n+ 1

p
∣n+ 1i

(
ð48Þ

Then the higher-order HG state can be obtained from the fundamental
Gaussian state with the creation operator:

∣ni= 1ffiffiffiffiffi
n!

p ðâyÞn∣0i ð49Þ

Besides, the momentum operator P̂ and position operator X̂ can be
also represented by creation and annihilation operators:

P̂ =
1

i2σ0
ðâ� âyÞ

X̂ = σ0ðâ+ âyÞ
ð50Þ

Substituting Eq. (50) into Eq. (7), it is easy to calculate the final pointer
state with n-order HG state as:

∣ψf i≈ ∣ni � Aw

ffiffiffiffiffiffiffiffiffiffiffiffi
2n + 1

p g1

2σ0
∣ψP̂i+ iσ0g2∣ψX̂ i

� �
ð51Þ

where the generated states ∣ψP̂

�
and ∣ψX̂

�
have been given in Eq. (21).

Propagation of HG beams
The z-dependent wave function of n-order HG beam is40

unðx, zÞ=
ffiffiffiffiffiffiffiffiffi
σ0

σðzÞ

r
ψn

σ0x
σðzÞ

� �
exp

ikx2

2qðzÞ � iðn +
1
2
ÞχðzÞ

� �
ð52Þ

where the three z-dependent parameters: spatial variance of funda-
mental Gaussian beam σ2, Gouy phase χ and curvature radius of the
wavefront q can be determined by equalities:

1
2σ2ðzÞ �

ik
qðzÞ =

k
b+ iz

, tan χðzÞ= z
b

ð53Þ

Here k = 2π/λ is the wave number of light beam and b=2kσ2
0 is

the Rayleigh range59. Then we denote ∣unðzÞ
�
=
R
dxunðx,zÞ∣xi,
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obviously, ∣unð0Þ
�
= ∣ni. The HG beams are solutions of the paraxial

wave equation

∂2

∂x2
unðx,zÞ= � i2k

∂
∂z

unðx,zÞ

which can be rewritten as

d
dz

∣unðzÞ
�
= � i

2k
P̂
2
∣unðzÞ

� ð54Þ

This equation has the formal solution ∣unðzÞ
�
= ÛðzÞ∣unð0Þ

�
with the

propagation operator

ÛðzÞ= exp � i
2k

P̂
2
z

� �
ð55Þ

Thus, the z-dependent creation (annihilation) operators are given by
âðzÞ= ÛðzÞâÛyðzÞ and âyðzÞ= ÛðzÞâyÛ

yðzÞ. Hence, the higher-order HG
beam state can also be obtained by the fundamental state according to

∣unðzÞ
�
=

1ffiffiffiffiffi
n!

p âyðzÞ
h in

∣u0ðzÞ
� ð56Þ

Moreover, the z-dependent momentum and position operators P̂ðzÞ
and X̂ ðzÞ for free propagation can be derived as:

P̂ðzÞ= ÛðzÞP̂ÛyðzÞ= P̂
X̂ ðzÞ= ÛðzÞX̂ ÛyðzÞ=X � z

k
P̂

ð57Þ

According to the experimental set-up, the final state of the whole
system can be calculated by:

∣Ψf i= ∣f
�

f
�

∣Ûðz2ÞÛ
exp
w Ûðz1Þ∣unð0Þ

�
∣ii

= ∣f
�

f
�

∣Ûðz2ÞÛ
exp
w Û

yðz2Þ∣unðz0Þ
�
∣ii

= ∣f
�

f
�

∣ÛðgÞ∣unðz0Þ
�
∣ii

ð58Þ

where ÛðgÞ= Ûðz2ÞÛ
exp
w Û

yðz2Þ is the unitary parameterization in the
experiment, and it can be expressed with P̂ðz0Þ and X̂ ðz0Þ by:

ÛðgÞ= Ûðz2ÞÛ
exp
w Û

yðz2Þ
= exp �idP̂ðz2Þ � Â� ikφX̂ ðz2Þ � Â

h i
= exp �ig1P̂ðz0Þ � Â� ig2X̂ ðz0Þ � Â

h i ð59Þ

where g1 = d + z1φ and g2 = kφ. This expression is derived from the
relations:

P̂ðz0Þ= P̂ðz2Þ= P̂
X̂ ðz0Þ � X̂ ðz2Þ= � z0 � z2

k
P̂ = � z1

k
P̂ðz0Þ

ð60Þ

Substituting Eq. (59) into Eq. (58), the final beam state ∣uf ðz0Þi in
Eq. (31) is finally calculated by

∣uf ðz0Þ
E
≈ 1� iAwg1P̂ðz0Þ � iAwg2X̂ ðz0Þ
h i

∣unðz0Þ
�

= Ûðz0Þ∣ψf i
ð61Þ

Thus, the projective states ∣uP̂

�
= Ûðz0Þ∣ψP̂

�
and ∣uX̂

�
= Ûðz0Þ∣ψX̂

�
in

the experiment. Moreover, the normalized parameters ~g1 and ~g2 in

the experiment are still given by ~g1 =Aw

ffiffiffiffiffiffiffiffiffiffiffiffi
2n+ 1

p
g1=σ0

and ~g2 = 2Awσ0

ffiffiffiffiffiffiffiffiffiffiffiffi
2n + 1

p
g1.

SNR calculation
In the experiment, the detected optical power of APD on state ∣unðz0Þ

�
is denoted as I0, which was fixed for different HG modes. Exerting the
driving signals on PZT chips and separately projecting the final beam
on states ∣u?

X̂
i and ∣u?

P̂
i, then the corresponding detected optical

powers are calculated as:

I1 =P1I0 =
nðn+ 1Þ
ð2n+ 1Þ2

ð~gtot
1 Þ2I0

≈
nðn+ 1Þ

ð2n+ 1Þσ2
0ε

2
ðgΔ

1 Þ
2
I0

+
2nðn + 1Þ

ð2n+ 1Þσ2
0ε

2
gΔ
1 g1 cosð2πf tÞI0

ð62Þ

I2 =P2I0 =
nðn + 1Þ
ð2n+ 1Þ2

ð~gtot
2 Þ2I0

≈
4nðn+ 1Þσ2

0

ð2n+ 1Þε2 ðgΔ
2 Þ

2
I0

+
8nðn + 1Þσ2

0

ð2n+ 1Þε2 gΔ
2g2 cosð2πf tÞI0

ð63Þ

Inputting the detected power signals of APD into the spectrum ana-
lyzer, where we can independently demodulate the parameters g1 and
g2 at f = 2 kHz from the corresponding peak powers Ið2 kHzÞ1 and Ið2 kHzÞ2 in
Eq. (34). Besides, the corresponding detected shot noises of APDwhen
displaying measurements Π̂1 = ∣u?

X̂
ihu?

X̂
∣ and Π̂2 = ∣u?

P̂
ihu?

P̂
∣ can be sepa-

rately calculated as:

δI1≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn + 1Þ
ð2n+ 1Þε2

s
gΔ
1

σ0
δI0

δI2≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn + 1Þ
ð2n+ 1Þε2

s
2σ0g

Δ
2δI0

ð64Þ

Theoretically, the effective optical power of final beamstate is I0 = γν/τ,
where γ is the single photon’s energy at λ = 780 nm. Then the corre-
sponding shot noise of final beam state is given by
δI0 = γδν=τ = γ

ffiffiffi
ν

p
=τ. Thus, the theoretical detected peak signal-to-

noise ratios SNR1 and SNR2 of our experimental scheme when
displaying measurements Π̂1 and Π̂2 can be obtained in Eq. (35).

Data availability
The data that support the findings of this study are available within the
paper and its Supplementary Information. Any additional information
is available from the corresponding authors upon request.
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