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The crucial role of adhesion in the transmi-
gration of active droplets through interstitial
orifices

A. Tiribocchi 1 , M. Durve 2, M. Lauricella 1, A. Montessori3,
D. Marenduzzo 4 & S. Succi1,2,5

Active fluid droplets are a class of soft materials exhibiting autonomous
motion sustained by an energy supply. Such systems have been shown to
capture motility regimes typical of biological cells and are ideal candidates as
building-block for the fabrication of soft biomimetic materials of interest in
pharmacology, tissue engineering and lab on chip devices. While their beha-
vior is well established in unconstrained environments, much less is known
about their dynamics under strong confinement. Here, we numerically study
the physics of a droplet of active polar fluid migrating within a microchannel
hosting a constriction with adhesive properties, and report evidence of a
striking variety of dynamic regimes and morphological features, whose
properties crucially depend upon droplet speed and elasticity, degree of
confinement within the constriction and adhesiveness to the pore. Our results
suggest that non-uniform adhesion forces are instrumental in enabling the
crossing through narrow orifices, in contrast to larger gaps where a careful
balance between speed and elasticity is sufficient to guarantee the transition.
These observations may be useful for improving the design of artificial micro-
swimmers, of interest in material science and pharmaceutics, and potentially
for cell sorting in microfluidic devices.

Over the last decades,much researchhasbeen addressed on the active
matter, an area of physics concerning systems whose internal con-
stituents are capable of converting energy, adsorbed from the sur-
rounding environment, into work or systematic movement1,2. A
particular class of such systems is represented by active gels, densely
packed soft materials in which the internal constituents have the ten-
dency to assemble and align, producing structures with polar or
nematic order3–7. Examples abound in biology, ranging from bacterial
colonies8–10 to actin filaments and microtubule bundles powered by
motor proteins11–14. Such materials can be further divided into two
broad classes, depending upon the structure of the fluid flow gener-
ated in their surroundings. In contractile materials, the fluid is pulled

inward axially and emitted equatorially, while in extensile ones the
opposite holds1. Their inherent non-equilibrium nature fosters a
wealth of sought-after phenomena with spectacular mesoscale col-
lective behaviors, including spontaneous flows12,15,16, turbulent-like
motion in fluids with low Reynolds numbers17, and unexpected rheo-
logical properties18,19, to name but a few.

Of particular relevance to us are active fluid droplets, bio-inspired
self-propelled emulsions whose autonomous motion is driven by a
hierarchically-assembled active gel located within (either
uniformly20–22 or confined in a shell23,24) or adsorbed onto the
interface12. Although distant from living cells, thesedroplets have been
shown capable of capturing a number of features typical of cell
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dynamics, such as swimming20, crawling25, and spontaneous division21,
and have also served as a model tool for studying collective cell
migration26 and extrusion process in epithelial tissues27. Alongside
their ability in describing the functioning of such complex biological
processes, they could also offer a powerful platform for the design of
programmable biomimetic soft materials12,28 with enhanced mechan-
ical properties, such as a higher control over the direction of motion
and persistent motility, if compared to their passive analogs. These
materials may be useful in a number of technological applications
ranging from a pharmaceutics, as microscopic cargoes for the trans-
port and release of drugs toward a diseased tissue29, and food science,
as carriers for the targeted delivery of the nutrients encapsulated
within30, to material science for the design of engineered tissues27.

In such circumstances, as well as under many physiologically
relevant conditions (such as within capillary vessels31), a droplet often
migrates through pore-sized constrictions, whose diameter is typically
much narrower than that of the drop itself (of the order of tens of
micrometers). From a fluid dynamics perspective, the crossing
through interstices poses additional challenges with respect to a
motionoccurring in an unconstrained environment. In a purely passive
system, the scenario is well established32,33. A Newtonian fluid droplet
placed in an external flow would undergo deformations governed by
the interplay between hydrodynamic interactions, favoring shape
changes, and capillary forces, which oppose morphological modifica-
tions and tend to hold a spherical geometry. Their balance is con-
trolled by the capillary number Ca = ηv/σ, where v is the droplet speed,
σ its surface tension η the shear viscosity. An intense driving flow, for
example, may favor the crossing through the pore if properly coun-
terbalanced by a sufficiently high surface tension, which would guar-
antee the stability of the drop and avoid its rupture.

The inclusion of an active gel could substantially change this
picture. A non-homogeneous distribution of such material onto the
fluid interface, for example, besides fostering the formation of
coherent spontaneous flows12, may concurrently alter the surface
tension of the drop, thus considerably impacting morphology and
mechanics whenmoving in a confined environment. If the active gel is
encapsulated within, the drop is expected to harden, thus further
opposing deformations. In addition, assembly and arrangement of the
activematerial could decisively affect the elasticity of the drop and the
structure of the fluid flow20,25, hence imposing further constraints on
the ability to migrate across a constriction.

Understanding their dynamics as well as their fluid–structure
interactions, especially under controlled experimental conditions
mimicking realistic environments, is thus essential for the optimal
manufacturing of these materials. To make progress in this direction,
the building of reliable computational models is often mandatory due
to the complicated structure of the equations governing their
physics1,4,34. Well-established numerical approaches (such as phase-
field methods35–37 and lattice Boltzmann algorithms20,25,38,39) combined
with continuum theories have provided robust machinery to model
the dynamics of active gel droplets in pore-free geometries20,26,40–43.
However, their motion through narrow interstices has not been suffi-
ciently investigated so far.

In this paper,we numerically study the transmigration of a droplet
of active polar fluid across a constriction, following a design inspired
by a typical lab-on-chipmicrofluidic device44–46. This one ismodeled as
a long thin channel hosting a pore-like interstice made of two solid
pillars glued to opposite flat walls. The theoretical framework to
investigate the physics of the transmigration is based on a phase-field-
like approach, whose details are illustrated in the section Methods. It
basically consists of a set of phasefieldsϕi(r, t) (i = 1, 2, 3), whereϕ1(r, t)
accounts for the density of the activematerial encapsulated within our
active droplet, while ϕ2(r) and ϕ3(r) are two static fluid-free fields
modeling the pillars of the constriction42. The active material is a
contractile gel whose mesoscopic orientational order is captured by a

liquid crystal vector field P(r, t), while the global fluid velocity is
represented by a further vector field v(r, t). The dynamics of ϕ1 and
P(r, t) are governedbyadvection-relaxation equationswhile that of the
fluid velocity v(r, t) obeys the Navier–Stokes equation47. The equili-
brium properties of this system are described by a Landau–de Gennes
free-energy functional48, augmented with a repulsive term between
droplet and pillars plus a contribution favoring adhesion between the
fluid interface and the pore.

Extensive lattice Boltzmann simulations show a rich variety of
dynamic regimes whose physics is controlled by (i) the ratio between
the size of the constriction and droplet diameter, (ii) speed and elas-
ticity (including interfacial tension and polar field deformations) of the
droplet, and (iii) adhesiveness between pillars of the pore and droplet
itself. Central to these results is that such adhesion forces are decisive
to enable the transmigration, especially for narrow interstices. Indeed
our findings support the view that, while for wide pores the crossing is
guaranteed by a careful balance between droplet speed and elasticity,
for smaller ones it is generally forbidden unless adhesion forces come
into play, provided that at the pore entry, they are higher than at the
exit. Within the orifice, the droplet is found to display a series of shape
deformations (from ampule-like to hourglass geometries) whose sta-
bility is controlled by the interplay between fluid velocity, exhibiting
short-lived rectilinear flow, and elasticity of fluid interface and con-
tractile gel, hosting splay and bend liquid crystal distortions. The
minimal design of our computational model might suggest that the
functioning of biomimetic droplet-based materials could rely exclu-
sively upon mesoscale physics-based machinery rather than on com-
plex microscopic multi-body interactions governing the physics at
lower length scales.

Results
Motile droplet within a microfludic channel
Themechanism leading to the self-propulsion of a droplet comprising
a contractilematerial, such as a network of actin filaments cross-linked
with myosin proteins, has been theoretically investigated in previous
works20,21,25,35,36,40,43,49. Following refs. 20,25, we consider a 2D mixture in
which the activematerial is described in termsof a liquid crystal whose
mean orientation is captured by a polar field while the contractile
effect ismodeled, at amesoscale level, via a stress term (see the section
“Methods” for further details). This one takes the form
σactive
αβ ∼ � ζϕ1PαPβ, which is invariant under global polarity inversion

and whose strength is gauged by the activity ζ, negative for contractile
mixtures. If ζ exceeds a threshold value, the active stress causes a
spontaneous flow which breaks the inversion symmetry and sets the
droplet intomotion, along a direction controlled by an emerging splay
deformation.

The essential steps of such dynamics are shown in Fig. 1. The
droplet is placed within a microfluidic channel and is initialized as a
circular region where ϕ1 =ϕ0 inside and ϕ1 = 0 outside (Fig. 1a). The
polar field is initially uniform and aligned along the y direction within
the droplet (no anchoring of the polarization is set at the droplet
interface), while it is zero outside. Thismeans that the contractile gel is
confinedwithin the active drop and is polarized, while the surrounding
region represents an isotropic Newtonian fluid. The activity ζ is then
turned on and is set at a value allowing for the motion of the droplet.
Before attaining a motile state, the drop temporarily elongates per-
pendicularly to the polarization P remaining motionless, an effect
caused by the competition between interfacial tension, opposing
shape deformations, and contractile stress, favoring hydrodynamic
instability (see Fig. 1b). In this condition, the fluid flow surrounding the
droplet acquires a four-roll structure (it is pulled inward equatorially
and emitted axially, see Fig. 1f), thus preventing any net motion. Such
an arrangement essentially results from the sum of the dipolar
hydrodynamic flows formed around each contractile unit (such as the
actomyosin complex, Fig. 1d). Indeed, at the microscopic level, the
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motor protein would pull two protein filaments together (Fig. 1e),
causing an inward force pair thatproduces a contractile stress (see also
the section “Methods”). This process alsomodifies the direction of the
polarization, which remains basically uniform in the bulk but slightly
deforms near the droplet interface, where a preferential perpendicular
orientation emerges almost everywhere except at the ends of the
elongated drop. The active anchoring, genuinely induced by the con-
tractile stress50, will persist in the following motile state, although its
orientation will be considerably affected by the confinement condi-
tions (especially when the drop migrates through narrow interstices,
see the next sections).

Afterward, the non-motile configuration becomes unstable with
respect to splay distortions, since the contractile stress is high enough
to overcome the resistance to deformation mediated by the elastic
constant κ. A suitable dimensionless quantity controlling the balance
between activity and elasticity is the Ericksen number Er = ζR2/κ (R is
the droplet radius) which ranges approximately from 5 to 50 in our
simulations (see Supplementary Notes 1 and 2 for details on parameter
values), thus high enough to destabilize the droplet and lead to its
motion. The vectors of P then fan outwards arranging into a typical
liquid crystal splay deformation (where∇ ⋅P >0), while the droplet
starts tomove along the direction set byP(see Fig. 1c) sustained by two
symmetric counter-rotating vortices (see Fig. 1g)20. This motion would
last over long periods of time andwould proceed unidirectionally with
a steady velocity, typical of an active droplet swimming in a Newtonian
fluid in the absence of external perturbations or constraints. We note
that such spontaneous motion has been found to partially model the
dynamics of tumor cells moving inside an elastic gel20,51, where self-
motility is solely triggered by myosin contractility rather than other
mechanisms such as actin polymerization, usually essential in crawling
cells52.

The picture described so far dramatically changes when a droplet
migrates in a complex environment flowing, for example, across a

constrictionof sizemuchnarrower than thatof thedroplet itself. In the
next section, we precisely investigate this process providing an accu-
rate description of the fluid-structure interaction along with aminimal
set of key physical ingredients controlling the transmigration.

Motile droplet across a wide constriction
We start off by considering themigration across a constriction of size
h comparable with the diameter D of the active droplet. In Fig. 2a–f
(and Supplementary Movie 1) we show a time sequence of such a
process for λ = h/D≃0.8, where λ is the confinement parameter. The
droplet is initialized as in the pore-free case, i.e. a circular region
where the polarization is initially parallel to the y-direction. Once the
activity is turned on (ζ = −8 × 10−4), the droplet elongates in the
direction perpendicular to P and then acquires a unidirectional
motion at constant velocity (Figs. 2a and 3a, d, where theposition and
speed of the center of mass are plotted), a process akin to that
described in the previous paragraph. In the vicinity of the pore
(modeled placing two solid pillars at distance h, see the section
“Methods”), it slightly squeezes and stretches forward (Fig. 2b), while
its speed gradually diminishes up to a minimum value, attained
approximately once the leading edge enters the gap (Fig. 3g, h).
However, this slowdown does not arrest the motion, which proceeds
favored by a series of weakmorphological deformations sufficient to
boost the droplet and guarantee the transmigration. Within the ori-
fice, the droplet undergoes a light longitudinal stretching and com-
pression (Fig. 2c) fostering an increase of speed of approximately
three times higher than the value at the entrance of the pore (Fig. 3i),
followed by a mild decompression (Fig. 2d) where the speed goes
back to its steady unconstrained value (Fig. 3j). Afterwards, the
droplet expands (Fig. 2e) restoring the typical crescent-like shape
(Fig. 2f) observed out of the pore. During the process, the polariza-
tion remains basically unaltered, preserving its splay arrangement
kept for the entire course of the migration.

Fig. 1 | Shapes and velocity field of a motile contractile droplet. a Initial con-
figuration of an active droplet. The red arrows indicate the direction of the polar-
ization field P. The droplet is placed within a microfluidic channel of size Ly = 500
and Lz = 170. Here only a portion of the lattice is shown. b Intermediate pre-motile
state of the contractile suspension with ζ = −8 × 10−4. The droplet elongates per-
pendicularly to the direction of the polarization which remains essentially parallel
to the y direction. c However, this value of ζ is sufficiently high to destabilize the
polarization, which gives rise to a large splay deformation. Once this occurs, the
drop acquires a unidirectional motion along the direction indicated by the green
arrow. d Schematic view of the hydrodynamic flow produced by a contractile
material, such as actomyosin. The myosin protein pulls two actin filaments along

opposite directions (indicated by tick gray arrows), yielding a four-roll flow in their
surroundings. Panel (d) is adapted from20. e A minimal model of the force dipole
produced by a contractile material. The thick black arrows indicate the direction of
the force dipolewhile the circles represent the emerging four vortices offluid. f and
g Velocity field of the pre-motile (b) andmotile (c) states. In the former, the fluid is
pulled inward along the equator (parallel to the direction of P) and emitted axially
(perpendicularly to P), giving rise to a macroscopic four-vortex structure. In the
latter, a splay distortion fosters the formation of two counter-rotating vortices
pushing the drop forward. The droplet radius at equilibrium is R = 45 lattice sites
and the colormap represents the value of the order parameterϕ1, ranging between
0 (black) and 2 (yellow).
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Motile droplet across a medium size constriction
Decreasing λ enough can permanently hinder the crossing through the
pore. This is shown in Supplementary Movie 2 where we simulate the
dynamics of an active droplet swimming within a microchannel with
λ≃0.5. The droplet initially self-propels forward following the
mechanism previously described and, once near the pore, hits the
pillars, which halt its motions impeding the transmigration. Note that,
despite the stop, the droplet partially preserves a crescent-like shape,
due to the permanent splay distortion of the liquid crystal caused by
the contractile activity.

These results do not automatically rule out the possibility to
observe a crossing, an event thatmayoccur, for example, if the activity
∣ζ∣ is higher and the surface tension is lower than the values considered
so far. The former would increase the droplet speed and ensure a
stronger impact against the pore, thus likely providing the necessary
force to squeeze in, while the latter would diminish the resistance to
undergo considerable shape deformations favoring the crossing. In
Supplementary Movie 3, we show, for example, the dynamic behavior
of a contractile droplet where ζ = −10−3 and λ≃0.6. Despite raising ∣ζ∣,
the force is not high enough to guarantee the crossing. Indeed, once
near the pore, the droplet moves upwards, stretches longitudinally,
and turns back along the direction imposed by the splay deformation,
only temporarily lost during the previous elongation in which P
becomes approximately uniform. Further increasing ∣ζ∣ would require
the adjustment of other thermodynamic parameters to ensure a cor-
rect balance between splay distortions (controlled by κ, see Eq.(1)) and
interfacial tension (controlled by a and k) in order to observe a uni-
directional motion.

An alternative route potentially favoring the transmigration is
through adhesion forces enhancing the connectivity between the
active droplet and the pillars of the constriction. Following micro-
fluidic experiments on the transmigration of real cells44,46, an adhesive
effect could be promoted by functionalizing the pillars with various
proteins, such as fibronectin or collagen, while the surrounding area
(i.e. the flat walls) would be passivated using chemical repellents. This
mechanism could (i) minimize the bounce back of the droplet, (ii)
provide the additional interfacial stress necessary tomove the droplet

forward as in contact with solid surfaces and iii) facilitate substantial
morphological deformations under strong confinement. Such a strat-
egy draws partial inspiration from that of eukaryotic cells crawling on a
solid substrate53, a process in which the anchoring of the actin cytos-
keleton to the surface is controlled by the focal adhesions, clusters of
membrane proteins continuously assembled at the cell front and dis-
assembled at the rear during the gliding52. Although our active droplet
remains distant from a living cell in many aspects, nonetheless it may
provide a model for lamellar cell fragments54,55 (deprived of the
nucleus) or for biomimetic artificial cells with a propensity to self-
propel12 and capable of crossing micropores with chemically functio-
nalized adhesive surfaces56.

In Fig. 2g–n (and Supplementary Movie 4) we show the dynamics
of a motile droplet (ζ = −7 × 10−4) crossing a constriction where λ≃0.5
and in the presence of adhesive forces between the interface of the
drop and the surface of the pillars. In our model the strength of the
adhesion is controlled by the positive constant γ (see Eq.(1)), which we
set equal between the drop and eachpillar and patterned following the
sketch reported in Fig. 2g.We essentially define two values of γ, namely
γL and γR gauging the adhesion of the left and right sides of the pore,
with the general constraint that γL > γR and such that γ = γL for 0 < y ≤ l/
2 and γ = γR for l/2 < y < l, being y the horizontal coordinate and l the
diameter of the pillars. In addition γmin ,L ≤ γL ≤ γmax ,L and
γmin ,R ≤ γR ≤ γmax ,R, where γmin ,L, γmax ,L, γmin ,R, γmax ,R represent critical
values depending on the details of the simulations (such as speed of
the drop, elasticity, and size of the pore) beyond which the crossing is
generally inhibited. In Fig. 2g–n we have γL = 3 × 10−2 (with
γmin ,L ’ 2 × 10�2, γmax ,L ’ 5 × 10�2) and γR = 7.5 × 10−3 (with
γmin ,R ’ 5 × 10�3, γmax ,R ’ 2 × 10�2, see also Supplementary Note 3 for
further results). Such a design essentially allows for higher adhesion
forces at the entrance of the constriction and weaker ones at the exit,
thus potentially enabling transmigration. In Supplementary Note 4 we
show that the physics remains qualitatively similar if a smoother var-
iation of γ between the entry and exit of the constriction is considered.

Once the droplet approaches the pore, small portions of its
interface hit opposite pillars and adhere to their surfaces (Fig. 2g, h),
thus causing a progressive slowdown and a light deviation from the

Fig. 2 | Transmigration of an active drop across a constriction. a–f If the size of
the constriction is comparable with that of the droplet (λ≃0.8, h = 72, Rp = 49,
D = 90), the latter moves unidirectionally (the green arrow indicates the direction
of motion) undergoing weak shape deformations, such as a slight longitudinal
stretching (b) andmild compression (c and d). Out of the constriction, the circular
shape is restored (e and f). The splay distortion (highlighted by large red arrows) of
the polarization remains essentially unaltered. g–n If λ≃0.5 (h = 46, R0

p = 62,
D = 90), the incipient unidirectional motion slows down as the droplet approaches
the constriction, where large portions of the fluid interface stick to (g and h)
because of adhesion forces, larger at the entry and weaker at the exit (here
γL = 3 × 10−2, γR = 7.5 × 10−3). Afterwards, the droplet undergoes an intense folding (i)
followed by a significant elongation (j–l) and decompression (m). Within the con-
striction, the polarization aligns essentially perpendicularly to the direction of

motion, exhibiting a temporary bend deformation (highlighted with blue arrows),
initially at the front (j and k) and then shifted towards the back (m). At the exit of
the pore, the droplet detaches from the pillars and proceeds along the direction
imposed by the splay deformation (n). o and v If the size of the constriction is very
narrow (λ≃0.2, h = 20, R00

p = 75, D = 90), the droplet initially adheres to the pillars
and then shifts downwards to protrude its leading edge within the pore (o–q).
Afterwards, it dramatically stretches along the direction of motion acquiring an
initial ampule-like shape (r), subsequently replaced by an intermediate hourglass
structure (s). Finally, the droplet retracts its rear, pushes its front forward (t), and
leaves the pore (u and v), a process facilitated by the lower adhesion forces at the
exit (here γL = 2.5 × 10−2, γR = 10−2). Within the pore, the polar field shows long-
lasting bend distortions, either along with splay deformations (r–t) or alone and
spread to the whole drop (s).
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rectilinear trajectory (see Fig. 3b and k). Afterward, the drop moves
upward due to an internal fluid vortex (see the section on the
fluid–structure for a detailed description), an effect not sufficient to
determine its detachment from the pillars but crucial to drive mor-
phological changes necessary to squeeze into the gap (Fig. 2i–l).
Indeed, the droplet initially stretches pushing its front within the
constriction and then elongates longitudinally dragging the rear, thus
causing an increase in its perimeter (see the next paragraph about the
energetic balance). On the contrary, the droplet area (i.e. ϕ1) is con-
served, since its evolution is governed by model B-like dynamics (see
the section “Methods”). During such process, the speed undergoes a
sharp increase (Fig. 3l, m) followed by a steep reduction (Fig. 3n),
yielding a temporary freezing of the droplet shape into a peanutlike
structure, where opposite sides of its interface remain firmly anchored
at the surface of the pillars. However, adhesion forces at its front are
weaker than those at the rear (γR < γL), an effect that can facilitate
crossing and detachment of the droplet if a sufficient propulsion force
operates. This is precisely the dynamics observed in the final stage of
the process, where the droplet slowly decompresses while leaving the
pore (Fig. 2m, n) and its center of mass speed raises once again
(Fig. 3o). Finally note that, along with splay distortions (generally the
dominant contribution far from the constriction), the confined envir-
onment of the pore triggers the formation of regions where the polar
field exhibits temporary bend deformations (Fig. 3m, n, blue arrows),
an arrangement generally emerging as an elastic instability in extensile
material1, here easier to accommodate in such a highly stretched
geometry. Interestingly, even though the interface anchoring remains
largely perpendicular, a tangential orientation arises where droplet
elongation increases, an effectmainly observed at the entry and exit of
the pore.

The results discussed so far suggest that higher values of adhesion
force at the entrance and lower ones at the exit of the gap can favor
transmigration. If alternatively, the adhesion between the droplet
interface and the surface of the pillars is uniform everywhere
the crossing can be inhibited, as shown in Supplementary Movie 5
where λ≃0.5, ζ = −8 × 10−4, and γL = γR = 0.03. Once again, a series of
shape modifications, driven by a combination of contractility, elastic
deformations of polarization, and fluid interface plus adhesion forces,
allows the active droplet to squeeze into the pore. However, higher
values of γR at the exit of the constriction prevent the migration,
permanently sequestering the droplet in the middle of the gap. Note
that this outcome is in agreement with the constraint on γR, since
here γR>γmax ,R.

Motile droplet across a narrow interstice
Further diminishing λ leads to a higher complex behavior where
adhesion forces, once more, are found to play a decisive role. In
Fig. 2o–v (and Supplementary Movie 6) we show the time evolution
of an active droplet crossing a constriction with λ≃ 0.2, ζ = −7 × 10−4,
γL = 2.5 × 10−2 and γR = 10−2. Here, γmin ,L ’ 2 × 10�2 and
γmax ,L ’ 4× 10�2, while γmin ,R ’ 5 × 10�3 and γmax ,R ’ 1:5 × 10�2. Note
that the narrowing of the pore shrinks the range of values of γ
enabling the crossing. The initial stage of the process follows
dynamics akin to that observed for a mild constriction (λ≃0.5).
Once portions of interfaces adhere to the surface of the pillars
(Fig. 2o), the droplet slows down (Fig. 3p) and shifts downwards
(Fig. 2p) essentially preserving the arrangement of the internal
polarization. Afterward, the speed increases (Fig. 3q–s) and the front
squeezes into the interstice (Fig. 2q) but, unlike the pore of larger
size, here the droplet undergoes a dramatic stretching. Indeed, it

Fig. 3 | Center of mass position and speed of the active drop for different pore
sizes. Top row: Time evolution of the y (red, pluses) and z (green, crosses) com-
ponents of the center of mass of the active droplet for λ≃0.8 (a), λ≃0.5 (b), and
λ≃0.2 (c). Bottom row: Time evolution of y (red, pluses) and z (green, crosses)
components of the speed of the center of mass for λ≃0.8 (d), λ≃0.5 (e), and
λ≃0.2 (f). Black dots indicate the position of the insets representing instantaneous
configurations observed during the crossing. Red arrows show the direction of the
splay deformations while blue ones that of the bending. Also, “s.p.” stands for solid
pillars. If λ≃0.8, the droplet proceeds almost unaltered along its unidirectional
trajectory, progressively decreasing the speed at the entrance of the pore (g,h) and
rapidly augmenting it in the middle (i, j), where shape deformations are larger. If
λ≃0.5, the speeddiminishes at the entranceof the constriction (k) and then rapidly

augments (l,m), as the droplet front squeezes into the pore. Afterward, the speed
undergoes a second sharp decrease (n), considerably slowing down the droplet but
only temporarily arresting its motion. It gradually starts over (o) due to internal
fluid flows caused by the contractile material. Note that, alongside the usual splay
deformation, temporary bend distortions emerge (blue arrows), initially located at
the front and progressively shifted backward. If λ≃0.2, once again the decrease of
the droplet speed at the entrance of the pore (p) is followed by its quick rise once
the tip of the drop squeezes in (q, r) and moves forward (s). Here, bend defor-
mations persist longer than before and spread over the entire drop in themiddle of
the pore. Then, the speed undergoes a second quick reduction freezing the drop
into an ampule-like shape (t) for a long period of time, after which the transmi-
gration is completed (u).
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provisionally acquires an ampule-like shape (Fig. 2r) subsequently
replaced by an hourglass structure made of two rounded blobs of
approximately similar size located near the entrance and the exit of
the pore (Fig. 2s). Then, its rear retracts within the orifice while the
front protrudes out of the pore and broadens, leading to a long-
lasting ampule shape moving at very low speed. At this stage, the
velocity sharply diminishes (Fig. 3t) basically because of a lack of
sufficient propulsion fostered by large splay distortions. Note in
particular that, during the course of the crossing, a relevant bend
deformation emerges, initially solely at the front (Fig. 2r), then
spread to the whole droplet (Fig. 2s), and finally confined at the back
(Fig. 2t) together with splay distortions. At the fluid interface, espe-
cially nearby the two bulges, the polar field displays a preferential
tangential orientation, an effect sharper than that observed in wider
constrictions due to the narrowing of the gap. At the exit, the lower
adhesion forces between the surface of the pillars and the interface
allow the droplet to gain a high enough speed (Fig. 3u) and leave the
constriction (Fig. 2u, v), while the shape progressively turns to cir-
cular and the splay distortion becomes dominant. It is worth high-
lighting that the speed reduction in the gap and the raise at the exit
are generic features observed regardless of the size of the constric-
tion, a result in agreement with experiments of transmigration of 3d
cells44.

Fluid–structure interaction
A deeper understanding of the dynamics of the transmigration can be
gained by the evaluation of the fluid–structure interaction, especially
for mild and narrow constrictions where morphological deformations
are considerably higher than those observed in larger pores. In Figs. 4
and 5 we show the fluid velocity v (top row) and its magnitude ∣v∣
(bottom row) for λ≃0.5 and λ≃0.2, respectively, within the droplet
and in the surrounding environment. Clearly, the structure of the fluid
flow in these cases considerably departs from that of a droplet swim-
ming in an unconstrained system (see Fig. 1g), where a couple of
counter-rotating vortices sustain the motion. If, for example, λ≃0.5,
only a single counterclockwise vortex survives as the drop approaches
the pore (Fig. 4a). During the transmigration, a unidirectional flow
emerges at the front (Fig. 4b, c) pushing the vortex backward, until
they merge producing a homogeneous oscillating pattern (Fig. 4d).
Interestingly, a similar structure has been also observed in experi-
ments of tumor cells in which the displacement within a micro-
environment is driven by an osmotic pressure difference across the
membrane, causing a net flow from the leading edge of the cell to the
rear57. Note that themagnitude of the velocity is particularly high at the
interfaces in contact with pillars (Fig. 4f–i), an effect indicating that the
adhesion is crucial to provide the excess kinetic energy necessary to
push the droplet within the constriction and enable its transmigration.

Fig. 4 | Velocity field in a medium size constriction. The top row a–e shows the
structure of the velocity field v within and in the surrounding of an active droplet
crossing a constrictionwhere λ≃0.5, while the bottomone shows itsmagnitude ∣v∣.
The double vortex pattern observed in the unconstrained motile droplet (see
Fig. 1g) turns into a single one rotating counterclockwise (a), withmagnitude larger
near the pillars (f). Once the droplet enters the pore, such vortex shifts towards the

center of the drop, while a net unidirectional flow emerges at the front (b, c) and
becomes dominant near the exit (d), where it acquires an oscillating structure.
During the crossing, the magnitude ∣v∣ remains higher near the pillars (g–i),
whereas it considerably decreases at the exit (j), once the double vortex structure is
restored (e).

Fig. 5 | Velocityfield in a narrowconstriction.The top row a–e shows the velocity
field v during the transmigration with λ≃0.2, while the bottom one shows its
magnitude ∣v∣. Here, the double vortex pattern (a) moves progressively backward
(b) until it is temporarily replaced, in the middle of the pore, by a squeezed four-
fold symmetric structure, in which a unidirectional flow pushing the drop forward

still prevails (c). Once the droplet leaves the pore, the double vortex gradually
recovers, initially confined at the front (d) and afterward spreadwithin the bulk (e).
Once again, the magnitude of v remains high especially near the surfaces of the
pillars (f–i),while substantially diminishing as thedroplet leaves the constriction (j).
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Once at the exit of the pore, the double vortex structure is restored
(Fig. 4e) and ∣v∣ decreases about one order of magnitude within the
drop (Fig. 4j).

If λ≃0.2, once again the typical double vortex observed at the
entrance of the gap shifts towards the rear as the drop sneaks into the
pore (Fig. 5a, b). However, since the high confinement prevents the
formation of fluid structures larger than the gap size, the vortices turn
into a rectilinear flow exhibiting a four-fold symmetric structure
(Fig. 5c). Such flow progressively weakens as the drop moves forward
(a condition favored by the lower adhesion forces at the exit of the
pore), and is gradually replaced by the double vortex, fully reestab-
lished at the exit (Fig. 5d, e). As in the medium-size constriction, the
highest values of the velocity field are found along the interfaces in
contact with the pillars, where adhesion forces operate (Fig. 5f–j). Note
finally that the velocity field, besides critically affecting the shape of
the active droplet, profoundly depends on the structure of the
underlying polar field, essentially regardless of the size of the con-
striction. In fact, while the double vortex pattern emerges in the pre-
sence of splay distortions, a rectilinear (often unidirectional) flow is
produced when bend deformations are dominant.

The effects due to shape changes,modifications of the orientation
of the active material as well as adhesion forces can be quantitatively
gauged by computing the associated free energy contributions
reported in Eq. (1). This is discussed in the next section.

Energetic balance
In Fig. 6 we show the time evolution of Fbf

el =
R
k=2ð∇ϕ1Þ2 assessing

the interfacial energy of the droplet, F lc
el =

R
κ=2ð∇PÞ2 accounting for

the deformations of the polarization and Fad = ∫ ∑i,j,i<jγ∇ϕi∇ϕj

quantifying the adhesion contribution. We start from λ ≃ 0.5 (left
panel). As discussed in Fig. 1, once the activity ζ is turned on, the
drop initially elongates axially attaining a motionless elliptical
shape, and then acquires motion due to a spontaneous flow causing
a symmetry breaking of the polar field. In the former regime both
Fbf
el (Fig. 6m) and F lc

el (Fig. 6o) increase and stabilize (for t ≤ 2 × 105),
whereas in the latter (i.e. as the droplet starts to move) Fbf

el lowers,
since the drop turns to an approximately circular shape, and F lc

el

augments due to the presence of splay deformations. Then they
both attain a value kept constant until the drop approaches the pore
(at t ≃ 4.5 × 105). Note that in these regimes Fad (Fig. 6q) remains

Fig. 6 | Free energy. The plots show the time evolution of the elastic free energy
Fbf
el =

R
k=2ð∇ϕ1Þ2 of the binary fluid (top line, red pluses), the elastic free energy

F lc
el =

R
κ=2ð∇PÞ2 of the polar liquid crystal (green, crosses), and the adhesion con-

tribution Fad = ∫ ∑i,j,i<jγ∇ϕi∇ϕj (blue, asterisks). Black dots indicate the instanta-
neous configurations of the activedropletduring the transmigration for λ≃0.5 (left
side) and λ≃0.2 (right side). If λ≃0.5, the droplet adheres to pillars and deforms
(a–c), thus causing an increase of Fbf

el (m) with respect to the values attained during
the unconstrainedmotile state (for t ≤ 4.5 × 105). On the contrary, F lc

el (o) displays an
initial descent due to a slight drop of splay followed by a quick growth, since bend
distortions start to appear. Once the drop snakes into the pore (d), such con-
tributions further augment since a higher stretching entails larger bend distortions,

whereas near the exit theydiminish (e, f), as the bend essentially disappears and the
droplet reacquires a crescent-like shape with mild deformations. Fad (q) is zero
when the drop is far from the pore, while it turns negative as its interface comes in
contact with the pillars. In particular, Fad attains lower values during the squeezing
and the subsequent crossing (a–d), whereas it gets progressively smaller once the
drop approaches the exit and leaves the pore (e, f). If λ≃0.2, Fbf

el (n) out of the pore
(g–i, l), F lc

el (p) and Fad (r) exhibit a behavior akin to that observed for a larger
constriction while, during the crossing (j, k), their (absolute) values are generally
higher, ultimately because shape deformations and liquid crystal distortions
(including splay and bend contributions) are considerably heavier and persist over
a longer period of time.
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essentially zero since drops and pillars are sufficiently far away from
each other.

At the entry of the constriction, the droplet deforms (Fig. 6a–c)
and elongates to squeeze in (Fig. 6d), thus causing a further increase of
Fbf
el (capturing the growth of interfacial area), which attains its max-

imum value approximately in the middle of the pore. On the contrary,
F lc
el initially decreases since the splay distortion slightly weakens, and

then it rapidly augments, especiallywhenbenddeformations appear at
the front. Once at the exit of the pore, the droplet decompresses and
the liquid crystal deformations turn milder (Fig. 6e, f), thus both free
energy contributions gradually reduce to values comparable with
those held before the crossing. During such a process Fad turns nega-
tive when the drop interface starts to adhere to the pillars, attaining its
higher (absolute) values at the entry (Fig. 6a) and within the pore
(Fig. 6c, d), basically because larger portions of interfaces are in close
contact with the pillars.

If the size of the constriction decreases (λ ≃ 0.2, Fig. 6n, q, p),
Fbf
el , F lc

el and Fad shows a time evolution akin to that discussed
previously, albeit larger values are observed when the drop
crosses the pore. Indeed, Fbf

el and F lc
el rise, once again, at the

entrance of the gap (Fig. 6g), slightly decrease later since elastic
deformations get globally milder (Fig. 6h), and then considerably
augment up to a maximum (almost doubling the values observed
for a drop migrating freely in the microchannel), when the drop
front squeezes in (Fig. 6i, j) and attains an hourglass shape.
Afterward, Fbf

el and F lc
el continuously diminish (Fig. 6k, l) until the

drop has left the pore. As in the previous case, Fad turns negative
once the interface adheres to the pillars, and its larger values are
obtained basically when the drop displays the ampule and the
hourglass shape.

Dimensionless numbers
Further insights into transmigration can be gained by analyzing the
physics in terms of a suitable set of dimensionless quantities.
Common numbers used in droplet microfluidics are the Reynolds
and capillary ones, defined as Re=ρvD=η and Ca = vη/σ, where ρ is
the fluid density, v is the droplet speed, η is the fluid viscosity and σ
is the surface tension (see also Supplementary Notes 1 and 2 for
further details on specific values). The former represents the ratio
of inertial forces to viscous ones and, in our simulations, it is gen-
erally equal or below 0.1, thus well within the laminar regime. The
latter measures the effect of viscous force (favoring shape defor-
mations) versus surface tension ones (which oppose shape chan-
ges), and is approximately equal to 0.1 (or lower). This value ensures
that a droplet breakup is an unlikely event.

In addition, we consider the following three quantities: the
Ericksen number Er = ζR2/κ, the adhesion number A = γL/γR, and the
inertia over adhesion number IAL,R

=ρv2R2=γL,R. The former controls
the dynamics at the onset of the spontaneous motion far from the
constriction. More specifically, if Er > 1 the active forces are sufficiently
large to overcome the elasticity of the liquid crystal (mediated elastic
constant κ) and destabilize the droplet, finally inducing spontaneous
motion. In our simulations, Er is generally larger than 5, thus high
enough to trigger self-locomotion. The adhesion number A represents
the balance between adhesion forces at the entry and the exit of the
pore and, for successful transmigration, it must be strictly larger than 1
(since γL > γR). For λ≃0.5, we get 2≲A≲ 10, while for λ≃0.2 we have
2≲A≲ 3, a narrower range of values due to the reduction of the size of
the pore. Finally, the number IAL,R

gauges the importance of inertial
forces over adhesive ones. For λ≃0.5 and γR = 5 × 10−3 (a value for
which the crossing occurs), one has IAR

’ 0:25 and 0:025≲IAL
≲0:06

(assuming a droplet speed v≃ 5 × 10−4). This means that, at the entry,
inertial forces are much weaker than adhesive ones, a necessary con-
dition to keep the droplet attached to the pillars and enable the
crossing. The opposite is true at the exit, where lower adhesion forces

allow a droplet with sufficiently high speed to escape from the pore.
For λ≃0.2, similar considerations hold. Here, if γR = 10−2, one has IAR

’
0:1 and 0:04≲IAL

≲0:06.

Transmigration order parameter
Inspired by the Lubensky–Nelson model of polymer translocation
through nanopores58, before concludingweprovide a characterization
of the droplet transmigration in terms of a single order parameter-like
quantity χ(t) =AC(t)/AT(t), defined as the ratio between the area frac-
tion ACðtÞ=

R l
l=2 ϕ1ðr,tÞdr of droplet that has transmigrated the cen-

terline of a pore of length l and the total area ATðtÞ=
R l
0 ϕ1ðr,tÞdr of the

dropletwithin the pore. It varies between0 (the droplet hasnotpassed
the midline) and 1 (the whole droplet has overcome the midline). In
Fig. 7 we show the time evolution of χ(t) for different values of λ, in
simulations where ζ≃ −7 × 10−4, 2.5 × 10−2 ≤ γL ≤3 × 10−2 and
7.5 × 10−3 ≤ γR ≤ 10−2. If the constriction is wide enough (λ≃0.8), χ(t)
exhibits a ballistic-like behavior rapidly growing towards 1 essentially
with a single slope. On the contrary, if the size of the constriction
diminishes, the crossing occurs over longer periods of time, which
augments for decreasing values of λ. In these systems χ(t) displays
basically three regimes, (i) a fast-growing approximately linear one at
the entry of the pore, (ii) a transient stationary one roughly in the
middle of the constriction, and (iii) a final slower monotonic regrowth
at the exit.While in the first regime the transmigrationproceeds rather
quickly (more than half of the droplet has over overcome the midline,
χ ≥0.5) basically becauseof a combination of droplet propulsion, splay
deformations of the liquid crystal, and adhesionwith thepore, later on,
the process dramatically slows down and the droplet attains an almost
non-motile state (see also Fig. 2). Here, the slope of χ(t) turns slightly
negative (for λ≃0.5 and λ≃0.2) due to a temporary retraction of the
droplet and then exhibits short-lived plateaus, lasting longer for
smaller λ. In the last regime, the transmigration restarts and, as
expected, occurs faster for larger λ although at a speed much smaller
than the one at the entry (in agreement with the results of Figs. 4
and 5).

Finally, computing χ(t) may provide insights into the time
employed by an active droplet to cross a constriction. Indeed,
assuming that one simulation timestep corresponds to T = 10ms in
real units (further details about the mapping to real values are in
Supplementary Note 2), the crossing time Tc ranges approximately
between 1.5 h for λ≃0.5 and 3 h for λ≃0.2, numbers in qualitative
agreement with the ones found, for example, in fibroblasts crossing
narrow interstices44.

Fig. 7 | Transmigration order parameter. We plot the time evolution of
χ(t) =AC(t)/AT(t), where AC represents the area fraction of droplet between the
centerline (located at l/2) and the exit of the pore (placed at l), and AT is the total
area of the droplet within the pore. If λ≃0.8, χ(t) grows rapidly towards 1 following
an approximately linear behavior. For decreasing values of χ one can distinguish
three regimes: a fast-growing approximately linear one at the entry of the pore, a
short stationary one (lasting longer for narrower interstices) with a temporary
negative slope in the middle, and a final slow-growing one at the exit. The inner
snapshot shows an instantaneous configuration of the transmigration with λ≃0.2.
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These results suggest that, despite the complex physics involved,
a single collective variable, measuring the progress of the crossing, is
capable of conveying remarkable insights about the process, such as
rapidity of the transmigration through different regions of the pore,
retraction of the droplet and stationary regimes occurring especially
within narrow interstices.

Discussion
In summary, we have numerically studied the physics of an active
gel droplet migrating through a constriction, mimicking condi-
tions potentially reproducible in microfluidic experiments. Key
ingredients of the model are the contractility of the polar liquid
crystal confined within the drop and the adhesiveness between
the fluid interface and the solid surfaces modeling the pore. In
addition, hydrodynamic interactions are properly incorporated
throughout the model.

We have shown that, if the height h of the constriction is
comparable with the diameter D of the droplet, careful control of
droplet speed and elasticity (i.e. interfacial tension and elastic
deformation of the active fluid) are sufficient to guarantee a
smooth crossing. On the contrary, if h becomes considerably
smaller than D (i.e. λ ≲ 0.5), adhesion forces between the interface
of the drop and the pillars of the pore are decisive to enable the
crossing. Our results suggest that a stronger adhesion at the entry
and a lower one at the exit of the constriction favors the transmi-
gration in conditions that would have been inhibited otherwise.
The process entails considerable morphological changes, ranging
from crescent to ampule and hourglass-like geometries (structures
akin to the ones observed, in similar conditions, in tumor breast
cells59,60), alongside substantial deformations of the contractile
material, including the concurrent presence of splay and bend
distortions, the latter generally higher for narrower orifices. The
formation of such striking variety of shapes as well as the ordering
properties of the contractile material are tightly linked to the
fluid–structure, which is found to exhibit two dominating patterns:
(i) long-lasting vortices out of the constriction, only temporary
surviving within the pore and (ii) short-lived rectilinear flows in the
orifice. Hence, the combined effect of confinement and adhesion is
to rectify the flow within the constriction, a condition that ulti-
mately enables transmigration. We highlight that the general pic-
ture emerging from these results qualitatively holds if a frictional
force is included (see Supplementary Note 5). This extra term
would mimic, in a phenomenological way, the momentum sink due
to the presence of walls placed at an infinitesimally small distance,
as in a thin film.

On an experimental side, these results canbe reproducedbyusing
microfluidic techniques already adopted to study the transmigration
of biological cells44,61. Our system could be mapped onto a micro-
channel of length 0.5–1mm equipped with PDMS solid pillars, whose
surfaces are placed at distances ranging from 10 to 70μm and func-
tionalized with proteins (such as collagen or fibronectin) favoring
droplet adhesion. Two different concentrations of such proteins could
model the change of adhesion strength at the entry and exit of the
constriction. A self-propelled micrometer droplet of D≃ 90μm mov-
ing at speed from 1 up to 10μm/s can be self-assembled by encapsu-
lating an active polar gel (with effective viscosity ηeff≃ 1.5kPa s and
elastic constant κ≃ 4 nN) within water-in-oil emulsions, following the
formulation of ref. 12. Further details can be found in the “Methods”
section and Supplementary Note 3.

Besides providing a deeper understanding of the physics of
active fluid droplets migrating in constrained environments, our
results may prove useful for the realization of bio-inspired artificial
swimmers capable of transporting cargo to specific locations, a
process of interest in drug delivery in which one needs to efficiently

load pharmaceutical molecules without compromising the struc-
tural integrity of the carrier, especially when moving through
microscale constrictions. In addition, since some aspects of this
active droplet resemble those of laminar cell fragments54,55, our
results could provide insights for ameliorating the design of
microfluidic cell sorting devices, which make use of surfaces pat-
terned with specific adhesive properties to detect and isolate
cells56. Yet, our model remains distant from a living cell in many
aspects, such as the lack of the nucleus and of the complex
underlying biochemical network governing, for example, the
mechanics of the focal adhesions53. Such drawback could be par-
tially overcome by considering a slightly more realistic description
of a cell, modeled as a double emulsion62 in which the inner droplet
provides a highly simplified representation of a nucleus and the
contractile material is confined within the layer, mimicking the tiny
cortex of eukaryotic cells containing the actin cytoskeleton. On a
biological side, this could be of interest, for example, for studying
the effect of physical confinement on tumor cells (such as meta-
static breast cancer), where the transmigration has been found to
occur even when actin polymerization or myosin contractility is
inhibited57. In spite of these limitations, our results may support the
view that some aspects of droplet migration through constrained
environments would strongly rely upon mesoscopic physical
ingredients, such as speed, elasticity, and adhesion forces rather
than on the microscopic details of the physics involved. We finally
mention that an alternative class of model systems, potentially
useful for designing artificial swimmers, is that of active vesicles,
which are built by encapsulating self-propelled particles within a
soft membrane63–65. Such objects have been found to reproduce
some features of motile cells, including membrane fluctuations
and highly branched sub-micrometer protrusions, phenomena
occurring at lengthscales usually inaccessible by exclusive mean-
field-like approaches but often crucial in driving pathological pro-
cesses (such as cancer metastasis) within highly confined-
environments.

Methods
Basic idea of the model
Here we shortly outline the hydrodynamic model used in this work.
We consider a self-propelled fluid droplet containing an active polar
liquid crystal (or an active gel) immersed in a passive fluid. The
active gel concentration is described in terms of a scalar field
ϕ1(r, t), positive within the drop and zero outside. The environment
surrounding the droplet is a further passive fluid modeling a wet
solvent. Such a mixture is embedded within a microfluidic channel
made of two flat parallel walls plus two semi-circular symmetric
pillars forming a narrow constriction (see Fig. 1). Unlike the flat walls
(implemented using no-slip conditions66, see Supplementary
Note 1), the solid structure of the pillars is modeled using two
auxiliary static phase fields ϕ2(r) and ϕ3(r), positive within each
pillar and zero outside. Although this approach provides an
approximate description of a constriction, it allows for the relatively
easy computational implementation of mesoscale physical effects
occurring between drops and pillars (such as the repulsion and the
adhesion of the fluid interface with a wall) by minimally modifying a
pore-free model already used in previous studies20,25. As mentioned
above, our active drop also hosts a contractile gel whose experi-
mental realization is, for example, an acto-myosin solution. Its
mesoscale order is captured by a polar liquid crystal field P(r, t)
representing a coarse-grained average of all orientations of the
internal constituents (e.g an actin filament). This vector field is
positive within the droplet and zero anywhere else. Finally, a further
vector field v(r, t) describes the global fluid velocity of both drop
and solvent.
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Free energy
The equilibriumproperties of a purely passive system are encoded in a
coarse-grained free energy density62
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where i = 1, 2, 3 and N is the total number of phases, i.e. the active drop
and the two pillars. Note that, since the polarization is confined within
the droplet, the sole nonzero term is P1, whereas P2 = 0 and P3 = 0.
Hereafter (and in the text as well) we set P1 =P.

Equation (1) combines three principal contributions, the first two
terms stemming from a typical binary fluid formalism, the following
three terms borrowed from liquid crystal theory, and the remaining
part gauging the interaction between the active drop and the pore. In
particular, the first term of Eq. (1) multiplied by the positive constant a
ensures the existence of two coexisting minima, ϕi =ϕeq inside the ith
phase and ϕi =0 outside, while the second one determines the inter-
facial tension whose strength depends on the positive constant k and
reads σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ak=9

p
. The following contributions, comprising the terms

multiplied by the factor α, represent the bulk free energy associated
with the polar phase expanded up to the fourth order in the polar-
ization P. Here ϕcr =ϕ0/2 is the critical concentration at which the
transition from the isotropic (everywhere outside the active drop,
where ∣P∣ = 0) to the polar phase (only within the active drop where
∣P∣ > 0) occurs. The term in gradients of P captures the elastic penalty
associated with local distortions of the polar liquid crystal within the
standard approximation of the single elastic constant κ48. The penul-
timate contribution, whose strength is controlled by the coefficients
ϵij, mimics a repulsive effect essentially penalizing the overlap between
the active drop and the pillars while the last term, multiplied by the
coefficients γij and modeling adhesion, favors the contact
between them.

In summary, at equilibriumwehave the followingphases obtained
minimizing the free energy F = ∫V f dV: a passive isotropic fluid (where
ϕ1 = 0, ϕ2 = 0, ϕ3 = 0 and P =0) external to the active drop and to the
pillars; a polarized region (where P =Peq, ϕ1 =ϕeq, ϕ2 = 0, ϕ3 = 0)
located solely within the drop containing the contractile material; two
solid pillars (whereϕ1 = 0, P = 0, withϕ2 =ϕeq andϕ3 = 0 in the pillar at
the top while ϕ2 = 0 and ϕ3 =ϕeq in the one at the bottom). The values
ofϕeq and Peq are found byminimizing F in a state of uniformϕi and P.
Across the interface of the active droplet, the values of ϕ1 and P vary
smoothly from ϕ1 =ϕ0 and P =Peq to ϕ1 = 0 and P = 0. Finally, we
assume equal repulsion between all phase fields, thus ϵij= ϵ (with ϵ
fixed at 0.1), and nonzero equal adhesion only between the drop and
the two pillars, hence γ12 = γ13.

Equations of motion
On a general basis, the dynamics of the order parameters ϕi is gov-
erned by a set of Cahn–Hilliard equations

∂ϕi

∂t
+∇ � ðϕivÞ=M∇2μi, ð2Þ

whereM is themobility and μi = δF/δϕi is the chemical potential. This is
the canonical Model B67 describing the dynamics of a conserved scalar
order parameter ϕ. Note that in our model the evolving phase field is
ϕ1 which is associatedwith the active drop, while the other two,ϕ2 and
ϕ3modeling the pillars, are static. The presenceof further active drops

(not considered in this paper) would require the inclusion of an
equivalent number of dynamic phase fields.

The evolution equation for the polarization P(r, t) is given by1

∂P
∂t

+ ðv � ∇ÞP= �Ω � P+ ξD � P� 1
Γ

δF
δP

, ð3Þ

where D= ðW +WTÞ=2 and Ω= ðW �WTÞ=2 are the symmetric and
antisymmetric parts of the velocity gradient tensor Wαβ = ∂βvα. The
constant ξ depends on the geometry of the active particles, it is posi-
tive for the rod-like ones and negative for the oblate ones. In addition,
it controls the response of such entities under shear, whether they are
flow aligning (∣ξ∣ > 1) or flow tumbling (∣ξ∣ < 1). In the former case (the
one considered in this paper), they align along the flow direction at a
fixed angle, whereas in the latter they reorient chaotically. As in
previousworks20,25, wehave set ξ > 1. The last term is themolecularfield
h = δF/δP, a quantity governing the relaxation of the liquid crystal
towards equilibrium,multiplied by the rotational viscosity Γwhich sets
the time scale of the relaxation.

The fluid velocity v obeys the Navier–Stokes equations which, in
the incompressible limit, are

∇ � v=0, ð4Þ

ρ
∂
∂t

+v � ∇
� �

v= � ∇p+∇ � ðσactive + σpassiveÞ, ð5Þ

where ρ is the density of the fluid and p is the isotropic pressure. At the
right-hand side of Eq. (5), σactive + σpassive is the total stress tensor, given
by the sum of two contributions. The first one is

σactive
αβ = � ζϕ1 PαPβ �

1
d
∣P∣2δαβ

� �
, ð6Þ

where d is the dimension of the system and ζ is a phenomenological
parameter gauging the activity strength, positive for extensile particles
and negative for contractile ones1. TheGreek indexes denote Cartesian
components. In our model ζ is negative, signifying the tendency of the
active gel to contract along the direction of the inner units (e.g. the
actin filaments). The functional form of Eq. (6) can be derived by
summing the contribution of each force dipole (produced using
energy coming from, for example, ATP hydrolysis of the myosin) and
then coarse graining4.

Passive stress comprises three contributions, namely a viscous
term given by

σviscous
αβ =ηð∂αvβ + ∂βvαÞ ð7Þ

whereη is the shear viscosity, summedwith an elastic stressσelastic, due
to bulk distortions of the liquid crystal, and a surface tension term
σinterface. The elastic term is

σelastic
αβ =

1
2
ðPαhβ � PβhαÞ �

ξ
2
ðPαhβ + PβhαÞ � κ∂αPγ∂βPγ, ð8Þ

while the interfacial one is

σinterface
αβ =

X
i

f � ϕi
δF
δϕi

� �
δαβ �

∂f
∂ð∂βϕiÞ

∂αϕi

" #
: ð9Þ

Note that the sum in Eq. (9) is necessary since one has to include the
contributions due to the pillars, whereas Eq. (8) solely accounts for
those stemming from the liquid crystal confined within the motile
droplet.
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Equations (2–5) are numerically solved by using a hybrid lattice
Boltzmann (LB) approach66,68, in which a predictor-corrector integra-
tion scheme is used for Eqs. (2) and (3) while a standard LB method is
employed for Eqs. (4) and (5). This method has been successfully tes-
ted for a variety of soft matter systems, ranging from binary fluids69,
liquid crystals70, and active matter39,68. Further details about numerical
implementation and thermodynamic parameters can be found in
Supplementary Notes 1 and 2.

Data availability
Necessary information to reproduce the simulated data is provided in
the “Methods” section and in Supplementary Information. Data are
also available upon request from the authors.
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