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Batch alignment of single-cell tran-
scriptomics data using deep metric learning

Xiaokang Yu1,4, Xinyi Xu 2,4, Jingxiao Zhang 1 & Xiangjie Li 3

scRNA-seq has uncovered previously unappreciated levels of heterogeneity.
With the increasing scale of scRNA-seq studies, the major challenge is cor-
recting batch effect and accurately detecting the number of cell types, which is
inevitable in human studies. The majority of scRNA-seq algorithms have been
specifically designed to remove batch effect firstly and then conduct cluster-
ing, which may miss some rare cell types. Here we develop scDML, a deep
metric learning model to remove batch effect in scRNA-seq data, guided by
the initial clusters and the nearest neighbor information intra and inter bat-
ches. Comprehensive evaluations spanning different species and tissues
demonstrated that scDML can remove batch effect, improve clustering per-
formance, accurately recover true cell types and consistently outperform
popular methods such as Seurat 3, scVI, Scanorama, BBKNN, Harmony et al.
Most importantly, scDML preserves subtle cell types in raw data and enables
discovery of new cell subtypes that are hard to extract by analyzing each batch
individually. We also show that scDML is scalable to large datasets with lower
peakmemory usage, and we believe that scDML offers a valuable tool to study
complex cellular heterogeneity.

Single-cell RNA sequencing (scRNA-seq) technology has been devel-
oped to characterize gene expression profiles at single-cell resolution,
which improves the detection of known and novel cell types, as well as
the understanding of cell-specific molecular processes and disease
dysregulation within heterogeneous tissues. However, the widespread
application of scRNA-seq has generated many large and complex
datasets, which presents new computational challenge for integrating
datasets from different batches and platforms1–4.

A fundamental task in scRNA-seq data analysis is to cluster cells
into different groups as candidate cell types or cell states. This task
may be simple for the dataset from a single source, but is very difficult
for the multi-source data due to the challenging characteristics of
batch effect, especially for detecting some small clusters. Although
several methods have been developed to remove batch effect in
scRNA-seq analysis, most of them aim to remove batch effect in the
embedding space but without considering the clustering structure or
the local structure in the dataset. Popular methods such as Seurat5–7

and MNN8 rely on the mutual nearest neighbor approach to remove
the batch effect, butMNN canonly analyze two batches at a time, so its
performance is affected by the batch correction order, and it quickly
becomes computationally infeasible when the number of batches
increases. As such, the researchers introduced fastMNN9, resulting in
significant improvements in both computational speed and accuracy.
Two other methods, Scanorama10 and BBKNN11, also search for MNNs
in the dimensionally reduced space and use them in a similarity-
weighted manner to guide batch integration. Moreover, two super-
vised MNN methods (SMNN12, iSMNN13) were developed for batch
effect correction of scRNA-seq, but these twomethods require exactly
the same cell type between different batches. Zou et al. presented
DeepMNN14 basedon residual neural network thatminimizes the batch
loss, i.e., the sum of the Euclidean distance between MNN pairs in the
PCA subspace. Based on the benchmark studies15,16, due to its sig-
nificantly shorter runtime, Harmony is recommended as the first
method to try, with the other methods as viable alternatives.
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Benchmark study from Luecken et al.17 also suggests using scANVI18,
scVI19 and scanorama10 on complex integration tasks, but the semi-
supervised mode of scANVI and the time-consuming issue of scVI
hinder the application. Although INSCT20 is scaled to the large atlas
and can conduct semi-supervised analysis that enables users to classify
unlabeled cells by projecting them into a reference with annotated
labels, it has poor robustness and reproducibility. The performance of
BERMUDA21 depends on MetaNeighbor22, which limits its scalability
and accuracy. Liger23 aims to remove technical variation using inte-
grative non-negative matrix factorization, but its procedure needs
chosen reference dataset (typically the set with the largest number of
cells). scVI19 and CarDEC24 are also designed for both removing batch
effect and denoising gene expression simultaneously, but a recent
study shows that the corrected counts output by the decoder layer of
these two methods are usually over-denoised25, which turn almost all
zero expression values into non-zero.

Most existingmethods first remove batch effects and then cluster
cells. However, this procedure has the disadvantage that removing
batch effect may lead to loss of the original rare cell type information.
Therefore, in this article, we begin with the prior clustering informa-
tion of the original data, and then take advantage of the nearest
neighbor (NN) information intra and inter batches in the framework of
deep metric learning with triplet loss, to properly recover true cell
types and remove batch effects by learning a low-dimensional repre-
sentationof data.Most importantly, scDML is not affectedby the batch
integration order. In the initial clustering, we first cluster cells at a high
resolution to guarantee the initial clusters include all subtle and
potential novel cell types, and then proposed a merging criterion to
optimize the final number of clusters. This algorithm combines the
advantages of graph-based clustering and hierarchical clustering
methods, and simultaneously removes batch effect by pulling points
with the same label close together while pushing away points with
different labels.

In this work, we apply scDML to several simulated datasets and a
wide range of real scRNA-seq datasets from different species and

tissues to demonstrate its effectiveness. We also compare scDML with
existing state-of-the-art integration methods. The results show that
scDML can recover the biological hierarchy underlying the data,
achieve high clustering accuracy under a fixed number of clusters, and
also scale well to large datasets. Additionally, scDML is developed
based on the framework PyTorch and preprocesses using the popular
scRNA-seq analysis framework Scanpy26, which is freely available via
https://github.com/eleozzr/scDML.

Results
Overview of scDML and evaluation
scDML is designed to align multiple batches of single-cell tran-
scriptomic data, which enables the discovery of rare cell types that
might be hard to extract by analyzing each batch individually. The
workflow of scDML is exhibited in Fig. 1. After preprocessing the
scRNA-seq data (including normalization, log1p transformation,
finding highly variables genes, scaling data, PCA embedding), we first
used a graph-based clustering algorithm at a high resolution. Then,
we used k-nearest neighbor (KNN) and mutual nearest neighbor
(MNN) information within and between batches to evaluate the
similarity between cell clusters and built a symmetric similarity
matrix with a hierarchical structure. Cutting the tree at a given height
(a given number of clusters) usually yields a partitioned clustering at
a selected precision. scDML applies a merging rule, which is different
from BERMUDA21, and can generate a more stable result. Moreover,
scDML utilizes the idea of hierarchical clustering to merge clusters
one by one. For the detailed merging procedure please refer to
Algorithm 1 in Supplementary Note. In this article, we used the
number of true cell types as the cut-off for all datasets analyzed, to
evaluate the performance of all compared methods. To successfully
remove batch effects, we adopted deep triplet learning by con-
sidering the hard triplets, which helps to learn a low-dimensional
embedding that properly accounts for the original high-dimensional
gene expression and removes batch effects simultaneously (Algo-
rithm 2 in Supplementary Note).

Find MNN and KNN Create Hard triplets

Aligned embedding Training Triplet Network

Calculate Cluster Similarity Matrix

Batch1
Batch2
Batch3

Batch3
Batch2
Batch1

Anchor

Anchor

Negative

Negative

Positive
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Fig. 1 | Overview of scDML for merging clusters and removing batch effects in
scRNA-seq data.MNNmeans mutual nearest neighbors and KNNmeans k-nearest
neighbors. The procedure of constructing cluster similarity matrix and the devel-
oped merge rule aim to preserve the original cluster information, including some

subtle biological clusters. The goal of triplet network is to minimize the distance
between the anchor-positive pair (from same cluster) while maximizing the dis-
tance between the anchor-negative pair (from different clusters).
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The commonly used UMAP27 method was utilized to visualize the
results of scDML and all comparedmethods. In addition, threemetrics
(ARI28, NMI29, ASW_celltype15) were adopted to evaluate the clustering
performance and three metrics (iLISI30, BatchKL31, ASW_batch15) were
used to evaluate the ability to remove batch effect (for full names and
definitions of the metrics, see Methods). To demonstrate the strength
and scalability of scDML, we analyzed multiple scRNA-seq datasets
from different species and tissues generated with different scRNA-seq
protocols (Supplementary Data 1). The performance of scDML was
compared with 10methods aimed at batch effect correction including
Seurat 37, Harmony30, Liger23, Scanorama10, scVI32, BERMUDA21,
fastMNN9, BBKNN11, INSCT20, CarDEC24 (Supplementary Table 1), as
well as the raw data before batch integration. The parameters used for
scDML are listed in SupplementaryTables 2, 3. Our results showed that
scDML consistently performs better than these existing methods,
especially for the ability to preserve rare cell types.

scDML removes batch effect and preserves true structure in
simulated data
To demonstrate the effectiveness of scDML, we applied our method
and 10 state-of-the-art competitors to two simulations. In simulation 1,
the data is generated by Luecken et al.17, consisting of 4 cell types
across 4 batches. The UMAP plots show that there is severe batch
effect in the raw data, while only scDML thoroughly mixed cells from
different batches and removed the batch effect (Fig. 2a). All other
methods separated cells both by cell type and by batch, whereas
scDML splits cells just by cell type (Fig. 2b) and preserved true cell
types in the clustering result (Fig. S2a). Moreover, scDML resulted in
the highest ASW_celltype (Fig. 2c), ARI (up to 1.0), and NMI (up to 1.0)
(Fig. 2e), indicating its ability to improve clustering accuracy. Although
scDML ranked third in the comprehensive evaluation of two batch
mixing metrics iLISI and BatchKL (Fig. 2d), the top two methods Liger
and INSCT failed to recover true cell types in their UMAP embeddings.

In simulation 2, the data is also generated by Luecken et al.17,
which has 7 cell types across 6 batches. All methods well mixed dif-
ferent batches except for BBKNN (Fig. S1a), but only scDML, CarDEC,
Harmony, fastMNN, Scanorama, and scVI presented true cell types and
clean clusters (Figs. S1b, S2b), with the highest ARI and NMI (Fig. S1e).
scDML also led to the second highest ASW_cellytpe, only slightly
inferior to INSCT (Fig. S1c), however, according to the UMAP plots,
INSCT obviously corrupted the original data structure. It is demon-
strated in the simulations that scDML outperforms other competing
methods in batch effect removal, cell type preservation and clustering
accuracy.

scDML removes batch effect and preserves true structure in real
datasets
We next evaluated the performance of scDML on several real datasets.
The first is the mammary epithelial cell dataset from three indepen-
dent studies33–35, consisting of 3 batches and3 cell typeswith 9288 cells
in total. It is shown that scDML made cells separated by cell type and
mixed by batch (Fig. S3a, b), provided clean clusters (Fig. S3c), and
realized accurate clusteringwith top-ranking ARI, NMI, and the second
highest ASW_celltype (Fig. S3e, f). Although Liger and BERMUDA dis-
played high batch mixing metrics (Fig. S3d), they wrongly split cell
types basal and luminal_progenitor in their UMAP embeddings.
Although CarDEC had the highest ASW_celltype, it had the worst batch
mixing metrics BatchKL and iLISI, where its UMAP embeddings pulled
together but failed to mix different batches. The merge order in each
step of scDML suggests that true cell types were recovered when the
number of clusters was set to 3 (Fig. S4).

To verify the flexibility of scDML in the extreme case where a cell
type exists only in a single batch, we artificially removed cell type basal
from two batches. scDML presented similar desirable performance as
in the real mammary epithelial dataset (Fig. S3g–l). Despite that

Harmony, Seurat 3, fastMNN, and Scanorama had high ARI and NMI,
and Liger had high iLISI and BatchKL, they all incorrectly split basal
into two pieces in the UMAP plots (Fig. S3h). scDML was superior in
UMAP visualization and ASW_celltype (Fig. S3f, l), and also achieved
the best trading-off between batch mixing and clustering accuracy
metrics (Fig. S3d, e, j, k).

Then we compared scDML with other methods on a combined
humanpancreasdataset generated using 5 protocols36–41, and there are
14,890 cells consisting of 8 batches and 13 cell types, which poses a
great challenge due to the strong batch effect. In the UMAP plots of
scDML, cells from different batches were well mixed and cells from
different cell types were completely separated (Figs. 3a, S5a). scDML
also resulted in the cleanest clusters (Fig. S5c), and the highest
ASW_celltype, ARI and NMI (Fig. 3b, d), suggesting its ability to
improve clustering performance. Even though the batch mixing
metrics of Liger and Seurat 3 were higher than scDML (Fig. 3c), they
failed to detach some rare cell types in their UMAP embeddings
(Fig. S5b). We also displayed some iterations for scDML, and it is clear
that scDML converged very quickly during training (Fig. S6).

scDML identifies subtle cell types
Taking a closer look at the pancreas dataset, both the Sankey plots
(Fig. 3e) and clustering plots (Fig. S5b) indicated that clusters detected
by scDMLagreedwell with the pre-annotated labels. Clusters identified
by scDML were most consistent with the true cell types, especially for
some tiny cell types, while other methods failed to distinguish the tiny
clusters. When we highlighted the rare cell types (activated_stellate,
endothelial, epsilon, macrophage, mast, quiescent_stellate, schwann) in
Figs. 3f and S5d, only scDML successfully divided these cell types into
isolated clusters.

Similar conclusions can be drawn from the macaque retina data-
set, which has multi-level batches with 30,302 cells obtained from 2
different regions, 4 different macaques, and 30 different samples42.
scDML once again yielded the ideal UMAP visualization (Fig. S7a),
superior clustering result (Fig. S7b) and top-ranking metrics (Figs. 3h,
S7e, f). Meanwhile, in Figs. 3g and S7c, only scDML succeeded to
identify the subtle cell type OFFx. It is proved that scDML not only
preserved true biological variation, but also especially recovered
subtle cell types.

scDML discovers new clusters when integrating datasets across
species
We next set out to test whether scDML can be used to integrate
datasets across species. The hypothesis was that the joint analysis can
at least preserve all biological information obtained from separated
analysis and has the potential to detect new clusters. We downloaded
two scRNA-seq datasets from human and mouse lung tissues43. Stan-
dard preprocessing and dimension reduction show that the two
datasets have little overlap (Fig. S8c), indicating serious batch effect.
After integration and merging clusters by scDML, a substantial
overlap between the two datasets for common cell types was
observed (Fig. 4a).

For the integration task, Harmony, Seurat and scDMLwere better
than other methods in terms of ASW_celltype (0.6242, 0.6240 and
0.6239, respectively) (Fig. 4b). Although INSCT achieved the best
BatchKL and iLISI index (Fig. 4c), biological differences between the
cell types were completely lost given its lowest ARI and NMI (Fig. 4d).
The method Liger still performed well on batch mixing (Fig. 4c), but
was still inferior to scDML, Seurat 3, Harmony, BERMUDA, scVI, and
Scanorama in clustering accuracy (Fig. 4d).

Most importantly, after integration analysis, scDML can discover
some rare and tiny subtypes possibly missed by other competing
methods.As shown in Figs. 4e, f and S9a,we clearly see that someB cell
marker genes (CD79B, JCHAIN, IGHA2, IGHG2, IGHG3, IGHG4)
expressed in different clusters for scDML. Some marker genes of

Article https://doi.org/10.1038/s41467-023-36635-5

Nature Communications |          (2023) 14:960 3



fibroblast (COL3A1, DCN) and endothelial cells (PRX, MMRN1) also
expressed distinctly for scDML. The expression patterns of all
these marker genes for scDML are consistent with the cell subtypes
annotated in Fig. S8a. However, the most popular methods Seurat 3,
Harmony, and scVI failed to detect cell subtypes for B cells
(Figs. S9b, S10d), which further proves that scDML can integrate
respective characteristics of different species to obtain more refined
discoveries.

scDML is scalable to large-scale dataset
As the scale of scRNA-seq continues to grow, it becomes increas-
ingly important for a method to be scalable to large datasets. To
evaluate the scalability of scDML, we analyzed a dataset of 833,206
mouse brain cells, which consists of two batches of murine brain
data, acquired using two protocols Drop-seq44 and SPLiT-seq45

respectively. This dataset is heavily dominated by the cell type
neuron (with 560,672 cells), and other cell types are rare. Still,
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Fig. 2 | scDML removes batch effects and keeps the biological difference in the
complex simulated scRNA-seq data. a UMAP embedding computed from com-
pared methods, in which the points are colored by batch. b UMAP embedding
computed from compared methods, in which the points are colored by cell type.
c Bar plot shows the value of ASW_celltype and ASW_batch, in which the bar height
denotes the value of ASW_celltype and the point height denotes the value of

ASW_batch. Higher ASW_celltype and lower ASW_batchmeans better performance.
d Scatter plot shows the value of BatchKL (x-axis) and iLISI (y-axis). Point closer to
the upper right means better performance. The error band means confidence
interval of 0.95 level around smoothusingB-spline smoothing functionwith degree
equal to 3. e Bar plot shows the value of ARI and NMI for differentmethods. Higher
bar means better performance. Source data are provided as a Source Data file.
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scDML was the best method that separated neurons from
other cell types (Fig. 5a, b) and generated the most isolated clus-
ters (Fig. S11a) with the overwhelming highest ARI and NMI
(Figs. 5c, S11d). The metrics BatchKL and iLISI of scDML were only
inferior to Liger (Fig. S11c), but Liger sacrificed clustering accuracy
(Fig. 5c). Other compared methods failed to maintain relatively
good cell type separation or batch mixing (Fig. S11b, c). We

excluded Seurat 3, CarDEC and BERMUDA as the compared
methods for this dataset because of the huge memory usage and
long running time. In most cases, the clustering result of Louvain
on learned embeddings is consistent with the reassigned label
of scDML, but Louvain is likely to separate a big cluster into
several small clusters. For this dataset, compared with Louvain’s
results, ARI and NMI from the reassigned label of scDML were
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Fig. 3 | scDML accurately preserves rare cell types from original dataset and
removes batch effect. a–f for the human pancreas dataset: (a) UMAP embedding
computed fromcomparedmethods, inwhich thepoints are coloredbybatch.bBar
plot shows the value of ASW_celltype and ASW_batch, in which the bar height
denotes the value of ASW_celltype and the point height denotes the value of
ASW_batch. Higher ASW_celltype and lower ASW_batchmeans better performance.
c Scatter plot shows the value of BatchKL (x-axis) and iLISI (y-axis). Point closer to
the upper right means better performance. The error band means confidence
interval of 0.95 level around smoothusingB-spline smoothing functionwith degree
equal to 3. d Bar plot shows the value of ARI and NMI for differentmethods. Higher

bar means better performance. e Sankey plot shows the correspondence between
the cluster label and the true cell type label. f UMAP embedding computed from
scDML, and thehighlighted cell types are rare cell types.g,h for themacaque retina
dataset: (g) UMAPembedding computed fromscDML, and thehighlightedcell type
OFFx is the cell type with the fewest cells. h Bar plot shows the value of ASW_cell-
type andASW_batch, inwhich the bar height denotes the value of ASW_celltype and
the point height denotes the value of ASW_batch. Higher ASW_celltype and lower
ASW_batch means better performance. Source data are provided as a Source
Data file.
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Fig. 4 | scDMLenables cross-species integration for the humanandmouse lung
datasets. a UMAP embedding computed from different methods, in which the
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height denotes the value of ASW_batch. Higher ASW_celltype and lower ASW_batch
means better performance. c Scatter plot shows the value of BatchKL (x-axis) and
iLISI (y-axis). Point closer to the upper right means better performance. The error

band means confidence interval of 0.95 level around smooth using B-spline
smoothing function with degree equal to 3. d Bar plot shows the value of ARI and
NMI for different methods. Higher bar means better performance. e UMAP
embedding computed from scDML, inwhich the points are colored by cluster label
obtained from scDML. f Feature plots show some fibroblast markers (COL3A1,
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(PRX, MMRN1). Source data are provided as a Source Data file.
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Source data are provided as a Source Data file.
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substantially improved (ARI from 0.277 to 0.847, NMI from
0.580 to 0.773), implying that the learned embedding of scDML is
biologically meaningful.

Figure 5d, e display the running time and peakmemory usage of
different methods when processing varying numbers of cells. For a
fair comparison. All evaluations were done on Ubuntu 16.04.7 LTS
with Intel® Core (TM) E5-2620 v4 CPU @2.10 GHz and 128GB
memory and exclude the preprocessing. Although INSCT was the
fastest, it sacrificed the clustering accuracy.BBKNN, Scanorama,
Harmony, fastMNN, and scVI finished the analysis in less than
15 mins at 20,0000 cells. The running time of scDML was tested on
the CPU and the time would be reduced if the GPU is utilized. As for
memory usage, scDML ranked third (6.5GB) behind BBKNN and
Scanorama, for 3.72 GB and 5.05 GB respectively at 200,000 cells
(Fig. 5e). By contrast, BERMUD, CarDEC and Seurat 3 had serious
scalability issues. BERMUDA was interrupted early due to the long
running time and huge memory requirement when the number of
cells was large than 50,000, and Seurat 3 could not integrate large
datasets with the limitation of memory when the number of cells
was large than 200,000. scDML was computationally fast and
memory efficient, making it a desirable tool for the analysis of large-
scale single-cell transcriptomics data.

scDML is able to integrate large numbers of batches
To evaluate the performance of scDML on large samples/batches, we
firstly utilized a normal humanheart atlas with 485,193 nuclei from 140
batches46 after quality control. We excluded Seurat 3, CarDEC and
BERMUDA as the compared methods for this dataset because of the
hugememory usage and long running time. As shown in Figs. 6a, S12a,
the raw data has very strong batch effect. Compared with other com-
petingmethods, scDML reached the highest ASW_celltype, the highest
ARI and the second NMI (Figs. 6b, d and S12). Although Liger and
INSCT had the best batch mixing metrics BatchKL and iLISI, they
sacrificed clustering accuracywith theworst ARI andNMI (Fig. 6d). The
UMAP plot also indicates that scDML is able to detect the tiny clusters,
such as Mesothelial, which is almost missed by other competing
methods (Fig. 6a).

To further demonstrate the ability of integrating multi-level bat-
ches, we also analyzed a failing human heart data including 269794
nuclei/cells (220752 nuclei and 49042 cells) with 45 samples from 27
healthy donors and 18 individuals with dilated cardiomyopathy47.
scDML is able to remove batch effects not only between samples but
also between sequencing techniques (Fig. S13a, b, d).Moreover, scDML
had the best performance for clustering, reaching the highest ARI and
NMI, followed by Harmony (Fig. S13c, f).
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Merge rule of scDML preserves the hierarchical structure of
original data
To demonstrate the superiority of the proposedmerge rule of scDML,
we utilized the mouse retina dataset to explore the detailed merging
process. This dataset has 14 cell types across 6 replicates with 23,494
cells48. As shown in Figs. 7b, f, S14b, c, compared to other methods,
scDML produced 14 clusters that precisely matched true cell type
labels, reaching ARI = 0.966, which is slightly inferior to fastMNN
(ARI = 0.973) and Scanorama (ARI = 0.972), and the highest NMI =
0.934, followed by fastMNN (ARI = 0.922) and Scanorama (NMI =
0.919). In addition, scDML also achieved desirable batch mixing
(Figs. 7d, e and S14a)

The Sankey plots in Fig. 7a showeach step in themerge procedure
of scDML, as the number of clusters decreased from 16 to 9. The
original literature of this dataset provides a hierarchical structure
obtained from the true cell type labels48, which is taken as the gold
standard and compared with the hierarchical structure from the out-
put of scDML. Specifically, cell types BC5C and BC5B were partitioned
to two clusterswhen thenumber of clusterswas 14 (see the 3rd column
in Fig. 7a). As the number of clusters decreased, they finally merged
into one cluster, remained stable since then, and were no longer
merged with other clusters (see the 4th to the last column). Likewise,
similar cell types BC5A and BC5D were traced to merge into cluster 7,
and BC1A and BC1B were traced to merge into cluster 8 in the last
column.However, distinct cell types suchasBC8/9 andBC2 (see cluster
1 and 2 in the last column) were never lost or mixed with other cell
types in the merge process, even if they are subtle cell types. The
hierarchical structure obtained from scDML is consistent with that
from the true labels. Therefore, we conclude that the merge rule of
scDML ensures that the hierarchical structure of original data is pre-
served to the greatest extent (Fig. 7c), and meantime the rarer sub-
populations keeps identifiable.

scDML is robust to varying parameters
Here, we discussed the influence of varying hyper-parameters on the
performance of scDML (Supplementary Table 2), including resolution
in initial clustering, n_cluster (number of clusters defined finally), K_in
(number of neighbors within each batch), K_bw (number of neighbors
between batches), HVGs (number of highly variable genes).

Firstly, taking the macaque dataset as example, we chose three
different resolutions for Louvain algorithm (3.0, 6.0, 9.0), two differ-
ent numbers of highly variable genes (1000 and 2000), three numbers
of clusters after merging (11, 12 and 13), and 21 different combinations
for (K_bw, K_in). We used both ARI and NMI to measure the perfor-
mance of scDML. It is apparent in Fig. 8a, b that scDML is very robust to
these hyper-parameters, where both ARI and NMI are greater than 0.9
in all cases.

Taking the pancreas dataset as example, we respectively selected
Louvain49 and Leiden50 as the initial clustering method, successively
increased the resolution from 2.0 to 9.0 (the number of cluster ranges
from 30 to 100 accordingly), and computed both ARI and NMI. It is
apparent in Fig. 8c, d that the number of clusters increased with
resolutions, but the classification accuracy metrics hardly fluctuated,
and was also not affected by the initial clustering method. scDML
alwaysmaintainedhighARI andNMIclose to 1. Consequently, scDML is
robust enough to the varying hyper-parameters.

Discussion
Many techniques, tools, and platforms for scRNA-seq are already
applicable for comparisons across different tissues, disease status,
or different species. These diverse datasets necessitatemethodologies
that can reconcile the technical and biological batch effects
inherent in single-cell sequencing technologies. So, in this article, we
developed scDML, a method that integrates multiple scRNA-seq
datasets to detect potential novel clusters and remove batch effect

simultaneously. scDML has been extensively tested using simulated
and real datasets fromdifferent species (human,macaque,mouse) and
tissues (pancreas, retina, brain, lung) generatedbydifferent scRNA-seq
protocols. We note that scDML achieved competitive clustering
accuracy and batch effect removal compared to current state-of-the-
art integration methods for scRNA-seq, such as Seurat 3, fastMNN,
Harmony, scVI, BERMUDA, Liger, Scanorama, BBKNN, and INSCT.
Moreover, as for scalability and memory usage, scDML outperformed
most competing methods. Because scDML is developed based on the
framework of PyTorch, it can take advantage of GPU to speed up
computation when available.

We proposed a strategy to merge initial clusters successively that
takes batch effect into consideration, by computing the number of
KNN pairs intra batch and MNN pairs inter batches, then calculating
the similarity of clusters, and finally constructing a hierarchical tree, in
which the root of the tree is theunique cluster obtained after gathering
all clusters, and the leaves are the clusters to bemerged. Thereafter, we
used the above MNNs to guide information for building better low-
dimensional embeddings. In this way, this procedure guarantees that
scDML outperforms existing methods in terms of merging the same
cell types, separating different cell types and preserving cell types
unique to some batches. As for how many clusters should be finally
defined, we provided a strategy to automatically infer the number of
clusters with eigenvalues of the similarity matrix inspired by spectral
clustering (Algorithm 3 in Supplementary Note) or manually set the
number of clusters based on the heatmap of similarity matrix. Sup-
plementary Table 4 lists the suggested number of clusters based on
above algorithm. Figure S15a, b indicates that the number of clusters
for bct and bct_del datasets should be set to 3, which is the same as the
recommendation of Algorithm 3. As for lung dataset and macaque
retina dataset, Algorithm 3 suggested the numbers of clusters to be
[5,10,13,16,18] and [8,12,18], respectively. In practice, we can also
manually merge the similar clusters based on marker genes.

Most importantly, a remarkable feature of scDML is that it not
only preserves the rare cell type information of the original dataset,
but also has the potential to discover rare clusters that might be hard
to extract by analyzing each batch individually as in other competing
methods. Additionally, scDML can recover the hierarchical structure
underlying the data that has been mostly ignored in the compared
methods. What’s more, scDML is scalable to large datasets, able to
handle multi-level-batch datasets and robust to varying hyper para-
meters. Therefore, we believe that scDML will be a valuable tool for
biomedical researchers to better disentangle complex cellular
heterogeneity.

Additionally, the merging rule we proposed is not only applicable
to datasets with multiple batches but also improves the performance
on datasets with only a single batch. We compared scDML with two
commonly used clustering methods, Kmeans and Louvain, on three
different datasets. Thenwe are surprised to find that both ARI andNMI
were improved by scDML relative to Kmeans and Louvain (Fig. S16),
which also proves the effectiveness and rationality of our proposed
method.

One limitation of our method is that scDML can be applied to
scRNA-seq datasets with categorial structures, but not those with dif-
ferentiated structures. Besides, like most batch effect removal meth-
ods, scDML only creates an integrated low-dimensional embedding
and does not provide corrected gene expression like CarDEC. In the
future, we plan to extend the application of scDML to remove batch
effect for scRNA-seq at the gene expression level directly, so as to
conduct downstream differential expression analysis.

In summary, extensive benchmarking of real datasets and simu-
lated datasets suggests that scDML not only better recovers biological
difference and removes batch effect, but also canpreserve the rare cell
type structure and identify novel cell types that might be ignored by
separate analysis. Therefore, we anticipate that scDML will be a
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valuable tool for the comprehensive analysis of multiple scRNA-seq
datasets. Finally, all analysis script described in this manuscript is
available via https://github.com/eleozzr/scDML_reproduce to repro-
duce the results and figures.

Methods
The scDML workflow (Fig. 1) mainly involves five steps, which are
preprocessing, initializing clusters based on PC embeddings, finding
NN pairs in the PCA embedding space, constructing the similarity
matrix between clusters, and deep metric learning.

Step1: preprocessing
There are five important tasks to be completed in preprocessing: fil-
tering low-quality cells and genes, cell normalization, log normal-
ization, detecting highly variable genes (HVGs), and z-score
normalization with truncated values. All the above steps are imple-
mented in the python module scanpy26 with version 1.7.2.

Let X be an n × p matrix of scRNA-seq data, with n cells, p genes
and M batches, and let xij be the expression value of gene j in cell i. In
the filtering step, we first remove low quality cells with nGene <10 and
remove genes with nCells <3. In cell normalization, we divide counts
for each cell by the total counts over all genes andmultiply a constant
10000 using sc.pp.normalize_total function, to obtain the normalized
expression yij. We then conduct log transformation for yij using
sc.pp.log1p function. After that, we select highly variable genes by
using sc.pp.highly_variable_genes and then scale data using sc.pp.scale
within each batch.

Step2: initializing clusters in PCA embedding space
Let YHVG be the n × pHVGmatrix of normalized expression from Step 1,
including only the pHVG highly variable genes. Let yi,HVG be the
expression value of HVGs in cell i, i.e., the ith row of YHVG. To get a
suitable initial clustering result for scDML, we firstly conduct PCA
(Principal Component Analysis) on YHVG to get a low-dimensional
embedding Xemb. Unless otherwise stated, we set the number of
principal components npca to be 100 without losing too much infor-
mation. It is easily implemented in scanpy package with the function
sc.tl.pca (n_components = 100). Then scDML applies the Louvain
method, a graph-based clustering method, on the reduced PCA
embedding space to get an initialized clustering result. This procedure
can be implemented by the function sc.tl.louvain in scanpy package,
higher resolution means finding more and smaller clusters. However,
the number of true cell types is usually unknown in real data, so how to
find the right resolution for the Louvain algorithm is a challenge.
scDML set a relatively large resolution (3.0 by default) in the Louvain
algorithm,whichmayhelp tofindmore subtle cell types in datasets. To
remove batch effect in the dataset, it is natural to merge similar clus-
ters intra and inter batches.

Step3: finding NN pairs in PCA embedding space
To merge the initialized clusters obtained from the Louvain algorithm
in Step2, we need to compute the similarity between the clusters.
Similar to Conos algorithm51, scDML firstly builds a joint graph
between all clusters by finding NN (nearest neighbor) pairs intra batch
and inter batches.
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Fig. 8 | Robustness of scDML to varying hyper parameters. The ARI (a) and NMI
(b) for scDMLwith three different resolutions for Louvain algorithm (3.0, 6.0, 9.0),
two different numbers of highly variable genes (1000 and 2000), three numbers of
clusters aftermerging (11, 12 and 13), and 21 different combinations for (K_bw, K_in).
Each bar represents a combination of (K_bw, K_in). There are 18 cases with respect
to each bar, where the bar height is themean value and the error bar is the standard

deviation (Data are presented as mean values ± SEM). The ARI (c) and NMI (d),
respectively using Louvain and Leiden as the initial clustering method by fixing
(K_bw, K_in) = (10, 5). The resolution is increased from 2.0 to 9.0. the point size
means the number of initial clusters and the point height means the value of ARI
and NMI. The red dashed line is the 0.9 level line for reference. Source data are
provided as a Source Data file.
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Finding KNN pairs intra batch
Let Xemb = ðX1,:::,XMÞT be a n × npca matrix of scRNA-seq data in PCA
embedding space, where Xkðk = 1, 2, � � � ,MÞ is nk ×npca submatrix of
cells in the kth batch. Let xki be the vector of cell i of batch k in PCA
embedding space, that is, the ith row of Xk. Denote Sk as the set of all
KNN pairs in batch k, cell i and cell j form a KNN pair if and only if

i, jð Þ 2 Skandðj, iÞ 2 Sk()
i, j 2 Bk

i 2 KNN xkj
� �

or j 2 KNN xki
� �

(
ð1Þ

where the tuples (i, j) and (j, i) are both KNN pairs, Bk is the set of cells
belonging to the batch k. For the clarity of the following description,
we treat (i, j) and (j, i) asdifferentNNpairs.KNN xk

j

� �
represents the set

of k-nearest neighbors of cell i in batch k. To find KNNs intra batches,
we set the number of neighbors Kin = 5 by default and uses cosine
distance for scDML.

Finding MNN pairs inter batches
Many studies have proved that MNN (mutual nearest neighbor) based
methods can effectively remove batch effect in scRNA-seq data, such
as MNN8,9, BEER52, BBKNN11, Scanorama10 and INSCT20. So, here we also
use the MNN pairs to construct the similarity of clusters between dif-
ferent batches. To correspond with the definition of KNN pairs intra
batch, let Sa,b be the set of MNN pairs between batch a and batch b,
then cell i and cell j form an MNN pair if and only if

i, jð Þ 2 Sa,b and ðj, iÞ 2 Sa,b()
i 2 Ba, j 2 Bb

i 2 MNN xbj ,X
a

� �
and j 2 MNN xa

i ,X
b

� �
(

, ð2Þ

where the tuples (i, j) and (j, i) are both MNN pairs, MNN xai ,X
b

� �
represents the set of cells in batch bwhich are nearest to cell i in batch
a, and MNN xb

j ,X
a

� �
represents the set of cells in batch a which are

nearest to cell j in batch b. scDML sets the number of neighbors
Kbw = 10 by default and uses cosine distance to calculate MNN pairs.

Step4: calculate similarity of clusters and construct hierarchical
cluster tree
Let Sin represents all KNN pairs intra batches, Sbw represents all MNN
pair inter batches and S represents all NN pairs in the dataset.

Sin = S1 ∪ S2 ∪ � � � ∪ SM ð3Þ

Sbw =
[M
j = 1

[M
j = i+ 1

Sij ð4Þ

S= Sin ∪ Sbw ð5Þ

Let N = |S| denote the total number of NN pairs in set S. Based on
the clustering results in Step2 and all NN pairs obtained in Step 3, we
calculate the number of NNpairs between pairwise clusters, and define
a symmetric matrix A as

A=

a1,1 a1,2 � � � a1,C

a2,1 a2,2 � � � a2,C

..

. ..
. . .

. ..
.

aC,1 aC,2 � � � aC,C

2
666664

3
777775
, ð6Þ

where ai,j represents the number of NN pairs between cluster i and
cluster j. It isworthnoting that scDMLdeletes all theNNpairs (kNNand
MNNpairs) that belong to the same cluster, that is, we set the elements
on the diagonal of A to 0. Obviously, the smaller the cluster size is, the

less the number of NN pairs will be found. So, we should take the
cluster size (the number of cells in each cluster) into consideration
when using A to represent the similarity (or connectivity) between
clusters. To achieve the above goals, scDML adopts a simple but
intuitive method to calculate the similarity matrix between clusters,

S=

s1,1 s1,2 � � � s1,C
s2,1 s2,2 � � � s2,C

..

. ..
. . .

. ..
.

sC,1 sC,2 � � � sC,C

2
666664

3
777775
, ð7Þ

si, j =
ai, j

minðmi,mjÞ
, i, j = 1, :::,C, ð8Þ

where mi denotes the number of cells in cluster i, and the matrix S is
still symmetric. Inspired by Lihi et al.53, we provided a strategy to
automatically infer the number of clusters according to the eigenva-
lues of the similarity matrix S (Algorithm 3 in Supplementary Note).

In particular, scDML applies a merging rule different from BER-
MUDA, which can generate a more stable result. scDML utilizes the
idea of hierarchical clustering to merge clusters one by one. For the
detailed merging procedure please refer to Algorithm 1 in
Supplementary Note.

After the above merging procedure, we finally obtain a set P
whose element can be viewed as an edge in an undirected graph G, in
which the nodeofG is the clustered index {1,…, C}. Thenwecanfind all
connected components in graph G to reassign the label of cluster.
Suppose that we have obtained K connected components in graph G.
We represent each connected component asGi, i = 1,…, K, where each
Gi is the subset of {1, …, C} and they are disjoint. That is to say,

[K
i= 1

Gi = 1, . . . , Cf g,Gi \ Gj =+, 8i≠ j, i= 1, � � �K , j = 1, � � �K : ð9Þ

K can be set as the final number of expected clusters. In other
words, all clusters belonging to a same connected component should
be considered as one cluster so that we can merge the initialized
clusters to the updated clusters, taking the batch effect into account.

Step5: deep metric learning to remove batch effect
As we know, MNN pairs can help to remove batch effect to some
degree. Therefore, we tend to use the above MNN-guided information
to build better low-dimensional embeddings. In addition, metric
learning is an approach based on distance metric directly, which aims
at automatically constructing task-specific from (weakly) supervised
data54,55. Although scDML has reassigned the cluster label of the data-
set, raw data has not been corrected for batch effect actually. Here we
use the deepmetric learning (DML)methodwith triplet loss to capture
more accurate low-dimensional representation. Broadly speaking, our
goal is to learn a distance metric that pulls points with the same label
close together while pushing away points with different labels, mean-
while considering the influence of batch effect.

Triplet definition
In step 4, we have obtained the cluster label for each cell. To make full
use of the cluster information, we construct triples (anchor, positive,
negative) according to the following guidelines. Given a cell a (anchor
point), we randomly choosea cellp as apositive point fromcellswhose
cluster label is the same as a and randomly select a cell n as a negative
point from cells whose cluster label is different from a. The tuple (a, p,
n) can be regarded as a triplet. Any cell in the dataset can be used as an
anchor.
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Triplet loss
Here, the triplet loss function is defined as follows:

L a,p,nð Þ=max d a,pð Þ � d a,nð Þ+m, 0ð Þ, ð10Þ

where d is the distance metric and we adopt Euclidean distance.m is a
margin between similar and dissimilar pairs, by default m = 0.2. The
triplet loss is optimized by minimizing the distance between anchor-
positive pairs and maximizing the distance between anchor-negative
pairs. Basedon thedefinitionof the triplet loss, there are threepossible
categories of triplets:
1. Easy triplets: triplets which have a loss of 0, that is, d(a, p) +m <

d(a, n);
2. Hard triplets: triplets where the negative point is closer to the

anchor point than the positive point, i.e., d a,nð Þ<dða,pÞ;
3. Semi-hard triplets: triplets where the negative point is not closer

to the anchor point than the positive point, but the loss is still
positive. i.e. d a,pð Þ<d a,nð Þ<d a,pð Þ+m.

As can be seen from above, easy triplets do not affect the opti-
mization of triplet loss. Semi-hard triplets can be used for the opti-
mization, but it will find too many triplets, which will cost much
training time and memory for real datasets. Considering the time and
memory consumption, we select hard triplets found in embedding
space to train the scDML model.

The structure and training of scDML
Unless otherwise specified, scDML adopts a simple embedding net-
workwith the number of nodes of input layer, the hidden layer and the
embedding layer being 1000, 256, and 32 respectively. According to
the definition of triplets, the anchors are independent, and thuswe can
optimize the triplet loss by a mini-batch strategy. For detailed training
procedure please refer to Algorithm 2 in Supplementary Note 1, where
f(∙) represents thenonlinear functionmapping input to the embedding
net. The implementation of scDML is based on the PyTorch frame-
work, which makes full use of a scalable package named
pytorch_metric_learning.

Evaluation metrics
To benchmark the various competing methods on different datasets,
the following six evaluation metrics are employed to quantify the
concordance of clustering results and the ability of removing batch
effect.

ARI. Adjusted rand index (ARI) is used to quantify clustering accuracy,
and can be calculated by the function adjusted_rand_score in the
python module sklearn.metrics.cluster. ARI measures the similarity
between two clustering results, defined as

ARI =

P
ij

nij

2

� �
� P

i

ai

2

� �P
j

bj

2

� �� 	
=

n

2

� �

1
2

P
i

ai

2

� �
+
P

j
bj

2

� �� 	
� P

i

ai

2

� �
+
P

j
bj

2

� �� 	
=

n

2

� � , ð11Þ

where nij is the number of cells in both cluster i of the clustering result
and cell type j of the true cell type labels, ai is the number of cells from
cluster i, bj is the number of cells from cell type j, and n is the total
number of cells. We calculate ARI to compare the clustering result of
integrated data with the predefined cell types. ARI ranges in [0, 1], and
higher values indicate higher similarities.

NMI. Normalized mutual information (NMI) is also used to measure
clustering accuracy, and can be calculated by the function normal-
ized_mutual_info_score in the python module sklearn.metrics.cluster.

NMI is defined as

NMI= 2 ×

P
ij
nij

n log
n×nij

ai ×bj

� �
P

i
ai
n log

n
ai

� �
+
P

j
bj

n log
n
bj

� � , ð12Þ

where the notations are the sameas that in ARI. NMI ranges in [0, 1] and
higher values also indicate higher similarities between the clustering
result and true cell types.

ASW_celltype. Average silhouettewidth for cell type (ASW_celltype) is
used to assess cell type purity, and can be calculated by the function
silhouette_score in the python module sklearn.metrics. The silhouette
width for cell type label of cell i is defined as

si =
bi � ai

max ai,bi


 � , ð13Þ

where ai is the average distance from cell i to all cells with the same
label, and bi is the lowest average distance of cell i to each group of
cells which are assigned different labels. ASW_celltype is the mean of
silhouette widths across all cells and ranges in [0, 1], where higher
values indicate cells are closer to cells with the same label and further
away from cells with a different label.We calculate ASW_celltype based
on predefined cell type labels in the low-dimensional (with dimen-
sions=32 by default) PCA embedding space.

ASW_batch. Average silhouettewidth forbatch (ASW_batch) is used to
evaluate howwell batches are globally mixed. The silhouette width for
batch of cell i is defined as

si =
bi � ai

max ai,bi


 � , ð14Þ

whereai is the averagedistance fromcell i to all cells of the samebatch,
and bi is the lowest average distance of cell i to each group of cells
which are assigned to other batches. ASW_batch is the mean of sil-
houette widths across all cells, where higher values indicate cells are
closer to cells of the same batch and further away from cells of a
different batch.We inferred that higherASW_batchmeans that batches
are more mutually exclusive, and conversely, lower ASW_batch typi-
cally indicates better batch mixing and batch effect correction.
ASW_batch also range in [0, 1].

iLISI. Inverse Simpson’s index of integration (iLISI) is used to evaluate
how well batches are locally mixed after integration. The local inverse
Simpson’s index (LISI) can be used to measure the batch distribution
(iLISI), based on local neighbors chosen on a preselected perplexity.
Using the selected neighbors of a cell, the LISI was then computed on
the batch labels for the iLISI index, and a score close to the expected
number of batches denotes good batch mixing. We compute iLISI
using the function compute_lisi in the R package lisi for all cells in the
dataset, output the average score and higher iLISI indicates better
performance for batch mixing.

BatchKL. KL divergence is used to evaluate the performance of
methods in batch effect removal based on the embedding repre-
sentation. For the definition of KL divergence of batch mixing
(BatchKL) please refer to Li et al.31. The lower value denotes the better
mixing performance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
We analyzed multiple published scRNA-seq datasets and two simu-
lated datasets, which are available through the accession numbers
reported in the original articles. (1) Simulated datasets: generated by
splatter from Luecken et al.17, which can be accessed by https://
figshare.com/articles/dataset/Benchmarking_atlas-level_data_
integration_in_single-cell_genomics_-_integration_task_datasets_
Immune_and_pancreas_/12420968(sim1_1_norm.h5ad, sim2_2_norm.
h5ad); (2) Mammary epithelial datasets: mammary epithelial cells
from three independent studies, and can be downloaded from https://
doi.org/10.6084/m9.figshare.20499630.v256; (3) Human pancreas
dataset:We used a pre-annotated collection from the tutorial of Seurat
(https://satijalab.org/seurat/archive/v3.2/integration.html, standard
workflow)with accession codes “GSE81076”, “GSE85241”, “GSE86469”,
“GSE84133” and “E-MTAB-5061 []”; (4) Macaque retina dataset:
“GSE118480”; (5) Mouse retina dataset: “GSE81904”; (6) Mouse brain
datasets: “GSE116470” and “GSE110823”, which can be also down-
loaded from http://scanorama.csail.mit.edu/data.tar.gz; (7) Human
lung and mouse lung dataset: “GSE133747”; (8) Healthy human heart
dataset: https://www.heartcellatlas.org/, which can be downloaded
from https://doi.org/10.6084/m9.figshare.20499630.v256; (9) Failing
human heart dataset with multiple-level-batch: “GSE183852”; (10) Sin-
gle batch datasets: three datasets analyzed are processed by Chen
et al.57 and can be downloaded from https://drive.google.com/drive/
folders/1BIZxZNbouPtGf_cyu7vM44G5EcbxECeu (Adam, Muraro and
Quake_10X_Limb_Muscle). Details of these datasets are described in
Supplementary Data 1. All datasets analyzed are available from https://
doi.org/10.6084/m9.figshare.20499630.v256. All other relevant data
supporting the key findings of this study are available within the article
and its Supplementary Informationfiles. Sourcedata areprovidedwith
this paper.

Code availability
scDML algorithm is implemented in python based on the PyTorch
framework and avaliable via https://github.com/eleozzr/scDML58. All
analyses and results presented in the manuscript are available via
https://github.com/eleozzr/scDML_reproduce. scDML is licensed
under the MIT license.
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