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Population-level impacts of antibiotic usage
on the human gut microbiome

Kihyun Lee 1,2, Sebastien Raguideau3, Kimmo Sirén4, Francesco Asnicar 5,
Fabio Cumbo 5, Falk Hildebrand3,6, Nicola Segata 5, Chang-Jun Cha 1,8 &
Christopher Quince 3,6,7,8

The widespread usage of antimicrobials has driven the evolution of resistance
in pathogenicmicrobes, both increased prevalence of antimicrobial resistance
genes (ARGs) and their spread across species by horizontal gene transfer
(HGT). However, the impact on the wider community of commensal microbes
associated with the human body, the microbiome, is less well understood.
Small-scale studies have determined the transient impacts of antibiotic con-
sumption but we conduct an extensive survey of ARGs in 8972 metagenomes
to determine the population-level impacts. Focusing on 3096 gut micro-
biomes from healthy individuals not taking antibiotics we demonstrate highly
significant correlations between both the total ARG abundance and diversity
and per capita antibiotic usage rates across ten countries spanning three
continents. Samples from China were notable outliers. We use a collection of
154,723 human-associated metagenome assembled genomes (MAGs) to link
these ARGs to taxa and detect HGT. This reveals that the correlations in ARG
abundance are driven by multi-species mobile ARGs shared between patho-
gens and commensals, within a highly connected central component of the
network of MAGs and ARGs. We also observe that individual human gut ARG
profiles cluster into two types or resistotypes. The less frequent resistotype
has higher overall ARG abundance, is associated with certain classes of resis-
tance, and is linked to species-specific genes in the Proteobacteria on the
periphery of the ARG network.

The acquisition of antimicrobial resistance (AMR) by human patho-
gens is well-established as one of the most serious current and devel-
oping threats to human health. It is estimated that over 30,000 deaths
in Europe in 2015 were attributable to AMR infections1, and this impact
is growing2. To date, the majority of AMR surveillance consists of
resistance rates in pathogen isolates cultured from samples taken from
infected individuals. However, themajority of organisms that live onor

in the human body are not pathogens but commensal components of
the human microbiome. Antibiotic usage will impose a selective
pressure, not just on the target pathogens, but thewholemicrobiome3,
and given that many antibiotic resistance genes (ARGs) are found on
mobile genetic elements (MGEs) and are therefore frequently hor-
izontally transmitted4,5, it is vital for us to study not just AMR in
pathogens, but also the wider impact of antibiotics on the aggregate
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collection of resistance genes, or resistome6, of the commensal
microbiota. In particular, the most numerically abundant component
of the humanmicrobiota, the gutmicrobiome7, has the potential to be
an important reservoir of AMR8.

There is now a significant body of research focussed on the
transient impact of antibiotics on individual human gut microbiomes.
These studies typically involve a relatively small number of individuals
and/or follow their subjects for a limited amount of time. The first
studies used 16S rRNA gene sequencing to follow changes in the
microbial community structure associated with antibiotic treatment9.
Substantial inter-individual variability was observed in the gut micro-
biome response to antibiotics, but in many cases, an increased relative
abundance of Enterobacteriaceae and other potential pathogens was
observed, with a concomitant reduction inmore beneficial commensal
organisms such as butyrate producers and a reduction in species
diversity10.

More recently shotgun metagenomics has enabled the impact of
antibiotics on both the overall functional gene content of the com-
munity and variants within species to be determined. This has con-
firmed the substantial but mostly transient changes in community
structure but not always with clear associations between the abun-
dance of specific resistance genes and the antibiotic used10–13. Meta-
genomics combined with recently developed Hi-C library preparation
strategies that allow a higher proportion of mobile ARGs to be asso-
ciated with taxa have demonstrated that ARGs can transfer horizon-
tally between gutmicrobes during the course of antibiotic treatment14.

These studies demonstrate the significant transient impact that
antibiotics canhaveon the humanmicrobiota but the consequences of
this impact at a population scale and over longer time periods are still
relatively under-explored. There are clear geographic differences in
the frequency and type of resistance observed in clinical isolates and
these are associated with patterns of antibiotic usage15. There is also
direct recent evidence from longitudinal studies on travellers to
countries with high levels of resistance that resistant strains can be
acquired even in the absence of treatment with antibiotics and then
persist in the microbiome16–18.

Clearly, the human microbiome is not an isolated system, strains
are transmitted between hosts, and horizontal gene transfer (HGT) will
occur between strains within hosts and in the environment. The result
is that we can imagine an individual microbiome as receiving a con-
stant stream of immigrant strains from a metapopulation19 and with
mobile genes in those strains being sampled from a mobilome that is
shared at least amongst related species20. It is likely therefore that the
widespread use of antibiotics will lead to ARGs not just increasing in
abundance amongst individuals that are directly exposed but
becoming endemic throughout the population, and this resistance
then spreading throughout the microbiota.

There is already evidence of this, Forslund et al. (2013) demon-
strated clear differences in ARG profiles between three countries for
which deeply sequenced metagenome data sets were available at that
point21, and for four European countries a correlation between anti-
biotic resistance potential and outpatient antibiotic consumption,
albeit at shallower sequencing depths. These differences between
countries and also anomalously high resistance levels in China, have
been confirmed bymore recent studies22, sometimes using asmany as
a thousand samples23, but an explicit correlation between antibiotic
consumption and resistance at a global scale has yet to be unequi-
vocally demonstrated24. There is also the question of what is driving
these geographical differences in the gut resistome, are the ARGs
pathogen associated or commensal, are they species specific or
mobilised.

We take advantage of the recent availability of both large-scale
curated human microbiome metagenome data sets and genome bin-
ning of these same samples into metagenome assembled genomes
(MAGs)25,26 to perform a comprehensive population-level study of

ARGs in the human gut microbiome. We build on previous analyses
both in termsof scale andbymore carefully attributing the response to
antibiotic consumption to different types of ARGs, species-specific or
mobile, and by cataloguing the mechanisms which are mobilising
them21–23.

We use both an assembly-based analysis strategy27,28, identifying
open reading frames prior to annotation of the entire gene, and a read-
based method, mapping reads to the CARD, an AMR gene database29,
without assembly. The former, enabled us to compare AMR ORFs to a
large-scale genome collection, over 300,000 genomes, derived
approximately equally from human microbiome MAGs and reference
isolate genomes, and detect mobile ARGs as those shared by different
species. The latter, was found to be more sensitive for the family-level
ARGprofiling of individual samples. The identification ofmobile genes
as assembled sequence shared across taxa was complemented by
direct screening of sequences corresponding to different types of
MGEs including amachine learningmethod to identify plasmid contigs
and thereby the ARGs on those plasmids30. The results of these ana-
lyses were then compared with information on population-level anti-
biotic usage to reveal the impact of antibiotic consumption on
resistance in the human gut microbiome at a population-scale. This
approach also enabled us to construct a bipartite network of ARGs and
microbiome species.

Using this methodology, we show that (i) the per capita antibiotic
consumption rate in a country correlates with the abundance of
resistance genes in the population, (ii) such correlation is principally
driven by mobile resistance genes embedded in a central network
component dominated by commensal organisms, (iii) two distinct
types of human gut resistome (resistotypes) exist.

Results
A comprehensive catalogue of ARGs from the human
microbiome
We created a catalogue of ARGs across both the human microbiome
and reference genomes by locating open reading frames (ORFs) on
metagenomic assemblies from 8972 human microbiome samples
spanning gut (7589), oral cavity (746), skin (380), airway (118), nasal
cavity (55), and vagina (83)— (sample details are given in Table S1 with
metadata included in Supplementary Data 1).More specifically, sample
types classified as ‘oral cavity’ include samples from plaque (222),
tongue (189), buccal mucosa (118), others or unspecified (217); ‘nasal
cavity’ includes anterior nares (55); ‘airway’ corresponds to sputum
(118). These human microbiome ORFs were combined with the ORFs
identified on 151,655 bacterial and 842 archaeal genomes obtained
from NCBI RefSeq. These genomes included representatives from the
principal phyla found in the human gut microbiome although they
were dominated by Proteobacteria (54.7%). ORFs across all these data
were then annotated to ARGs at a stringent 80% amino acid identity
across at least 80% of the target sequence31, using a custom version of
the Comprehensive Antibiotic ResistanceDatabase—CARD (28 and see
Methods). We identified a median of 15 ARGs per metagenome across
all body sites with a maximum of 242 and retrieved a total of 216,849
ARGs from the human microbiome. There were slightly more ARGs
recovered per sample from airways (median 17.5) and stool (median
16) than from oral cavity (median=11) and skin (median= 4). Note that
ARG diversity comparisons need to account for sampling depth as
discussed below.

These microbiome ARGs were then pooled together with the
2,349,728 ARGs annotated from the RefSeq genomes and clustered at
multiple levels (90%, 95%, 99%, 100%) of nucleotide identity (see Fig. 1
and Methods). These cut-offs were chosen to give varying levels of
taxonomic resolution with 95% roughly corresponding to species32. In
total, we identified 65,260 unique ARG sequences from the human
microbiome samples, and these sequences represented 15907 gene
variants at 99% nucleotide identity (Table S2). We will denote them as
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‘ARG_cluster99’ for convenience, and the clusters generated at other
cut-offs as ARG_clusterX (where X is the percent identity cutoff; see
Table S2). Of the ARG_cluster99 that occurred in the microbiome
samples, 60.9%were not found in the reference genome collection, for
the ARG_cluster90 this was true of 18.0%, indicating that we have
uncovered substantial previously unknownARGdiversity directly from
human-associated metagenomes even at relatively large sequence
divergence (Table S2).

ARG novelty varied with respect to antibiotic classes
The degree of ARG novelty compared to the isolate genomes varied
across ARG families and the antibiotic class that they provide resis-
tance to (Fig. S1). Sulfonamides and peptide antibiotics were the two
antibiotic classes with the lowest proportion of ARG_cluster99s
exclusively composed of metagenomic ORFs (42.9% out of 21 clusters,
44.0% out of 1522 clusters, respectively). Tetracyclines and ampheni-
cols, on the other hand, were associatedwith the highest proportion of
uniquely metagenomic ARG_cluster99s (85.1% out of 1,656 clusters,
85.7% out of 342 clusters, respectively). Of the ARG families for which

at least 100 ARG_cluster99s were discovered in the microbiome sam-
ples, two tetracycline resistance genes tetA(60) (99.0% out of 100
clusters) and tetB(60) (97.5% out of 122 clusters) displayed the highest
proportion of uniquely metagenomic clusters. Two multi-drug resis-
tance genes, msbA (35.4% out of 144 clusters) and acrF (32.4% out of
145 clusters) were found to have the lowest proportion of uniquely
metagenomic clusters.

ARG diversity varied across body sites
The gut microbiome contributed the majority of the metagenome-
unique ARG_cluster99 that were uncatalogued in the RefSeq genomes
(6810 ARG_cluster99s, 70.3% of the metagenome-unique clusters).
However, gut microbiome samples were over-represented in our data
set, so this may give a false impression of their true relative con-
tribution to ARG diversity. To address this we performed rarefaction,
calculating ARG_cluster99 numbers in random subsets of a hundred
samples (see Methods). Using this method, the gut had the highest
diversity per sequenced sample with a median ARG_cluster99 richness
of 9.3, compared to oral cavity with 6.2, airways with 5.6 and skin with

Fig. 1 | A schematic overview of the bioinformatics pipeline employed in the
study.This summarises theoverall strategyused toprofile ARGs in themicrobiome
samples and compare to the genome collection, for details see the Methods. The

number of samples used for each country is given in Table S1 and the number of
ARG clusters created in Table S2.
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4.7, these differences were significant (Kruskal-Wallis, χ2(3) = 306.13,
p = 4.7e − 66). However, to account for variable sample size we also
scaled by total bases sequenced (see Methods), then airways had the
highest richness of 289.9 ARG_cluster99s per 100Gbp of sequence
(Kruskal-Wallis, χ2(3) = 228.36, p = 3.1e − 49), compared to stool with
263.3, skin=206.4 and oral cavity=189.0 (see Figure S2a, b for
ARG_cluster99 rarefaction curves). The two body sites best repre-
sented in our study after the gut were the oral cavity and skin. Oral and
skin datasets only shared 16.6% and 52.0% of their ARG_cluster99swith
the gut catalogue, implying that each body site has a distinct resis-
tome. Using a lower resolution ARG clustering, ARG_cluster90, the
overlap increases to 77.8% and 74.1% of their catalogues respectively,
but there are still ARGs not present in the gut samples.

ARG diversity and abundance of the healthy gut microbiome
varies across countries
The gut microbiome is in general the best studied component of the
humanmicrobiome and in thisdata set only the stool samples spanned
a wide range of different countries. We have 23 countries with greater
than ten samples for stool as compared to four for skin, three for the
oral cavity and just one for the other sites. We therefore restricted
further analysis to stool samples, excluding infants and children
because of the known instability of the gut microbiome in early life33,
and filtering low quality samples (see Methods). This gave 6104 sam-
ples spanning twenty different countries. In Fig. S2c, we give rarefac-
tion curves for the ARG gene diversity as a function of total amount of
sequencing summed across samples at different clustering cut-offs.
This confirms that even though the 6104 samples totalled nearly 30
Tbp of sequenced reads, there is no sign of ARG diversity reaching an
asymptote even for the 90% identity clusters. Therefore, even though
the ARGcataloguewe present here is themost comprehensive to date,
it represents only a fraction of the true diversity of ARG sequences in
the gut microbiome.

These samples include both healthy individuals and those who
have at least one diagnosed disease,more precisely: 3565 from healthy
controls, 1658 from subjects labelled with a specific disease, 131 from
miscellaneous cases includinghunter-gatherers andnoncontemporary
samples, 750 from subjects without health-disease information (for
detailed sample information see Supplementary Data 1 and Table S1).
As we would expect disease to impact the overall microbiome state
and possibly associate with increased antibiotic usage, which in turn
may reshape the ARG profiles, we restrict the following analysis to the
3565 healthy control samples. We then kept only the healthy controls
that could be unambiguously determined to be not taking antibiotics
at the time of sampling, to give a data set of 3096 samples. It is
important to note that because this is ameta-analysis there is no single
definition of healthy control which might vary from one study to
another.

The fact that ARG diversity is not saturating, implies that for ARG
richness comparisons between countries we must correct for the
varying sample number and sizes. Therefore we developed and tested
a procedure that generated random subsets of samples from each
country comprising 100 ± 10Gbp of sequence (see Methods and
Table S3). Following this subsampling procedure we observed sig-
nificant differences in diversity across countries at all cut-offs
(Kruskal–Wallis, χ2(10) = 877.33, p = 7.7e − 183). The country with the
highest median subsampled ARG_cluster95 diversity per 100Gbp of
sequence was China (222) with approximately four times the diversity
of the lowest median diversity, observed in the USA (55), Fig. 2d
(Wilcoxon rank sum, W = 9801, Benjamini–Hochberg adjusted B.-H.
p = 2.6e − 33).

The above analysis was based on annotating metagenome
assemblies. This is necessary to determine the number of novel ARGs
in a sample. However, for simply profiling the abundance of ARGs we
found read-based mapping directly to the CARD to be more sensitive

than assembling first (see Fig. S3). This is probably because aminimum
coverage depth for a gene will be necessary for assembly to be pos-
sible. Following read-mapping abundance levels were expressed as
‘copies per genome (cpg)’, calculated for each ARG in each sample as
the coverage depth normalized with respect to a panel of prokaryotic
single-copy core genes (SCGs - seeMethods). The summed abundance
of all ARGs in the healthy subjects without current antibiotic usage
(n = 2, 740 profiled by the read-based approach) ranged from 0.751 to
18.4 (5th–95th percentile) with a median of 2.71 cpg. When the sum-
medARG abundances in the sampleswere grouped by country and the
medians in the 14 countries with at least 10 samples from healthy
individuals were compared to each other, we found significant varia-
tion between countries (Fig. 2a Kruskal–Wallis, χ2(13) = 920.16, p = 2.4
e − 188, B.-H. adjusted p <0.05 for 73 out of 91 country pairs tested).
There was a five-fold variation inmedian resistance levels between the
lowest in the Netherlands with 1.08 cpg to Spain with 5.56 cpg (Wil-
coxon rank sum, W = 1130, B.-H. p = 1.6e − 65).

Gut ARG abundance in healthy individuals correlates with anti-
biotic consumption
We then compared two population-level measures of the potential
impact of antibiotics on the gut microbiome of a country, the median
rarefied ARG_cluster95 richness and the median total prevalence of
ARGs (cpg), with the antibiotic consumption rate (Fig. 2). We relied on
two resources for the data on national antibiotic consumption rates:
ResistanceMap operated by the CDDEP34 and the WHO report35. We
used the total defined daily dose (DDD) per 1000 (capita) per year —
shortened to DDD per 1000 — summed across all antibiotic classes
surveyed from each data resource, to quantify the overall intensity of
antibiotic usage in each country. Of the 20 countries for which we
could quantify the resistome (i.e. at least 10 high-coverage metagen-
omes available), CDDEP data covered 15 countries and WHO data
covered 14 countries, 12 countries were covered in both, three coun-
tries were not included in either. The two sources of data did not
completely agree, although there was a strong correlation in those 12
countries where they overlapped (Fig. S4 Pearson’s correlation,
r =0.77, p = 0.0036).

We found significant correlations between a country’s ARG
abundance, as measured by the median of the per-sample ARG copies
per genome, and per capita antibiotic usage rates (Fig. 2b, c; Pearson’s
correlation r = 0.89, p = 2.3e − 5 for CDDEP consumption rates
excluding China, and r =0.65, p =0.040 for WHO usage rates). In the
CDDEP comparisons China is a notable outlier and we discuss possible
reasons for this below. WHO data was not available for China. We also
observed a strong positive correlation between the rarefied ARG
richness and the antibiotic usage rates for the WHO statistics for
ARG_cluster95 (r =0.86, p =0.0063) although for the CDDEP it was
only marginally significant (see Fig. 2e-f: r = 0.57, p =0.11). We used
Pearson’s correlation for these comparisons as both the total ARG
abundance and the rarefied diversity appeared Normal under a
Shapiro-Wilk test (see Table S4). When we separated the abundance
and diversity of ARGs into different classes of antibiotics and corre-
lated those individually with the consumption rate of the corre-
sponding class, inmost casesweno longer found correlations, with the
notable exception of the Beta-lactams where for abundance we did
observe a significant correlation for the WHO data (r =0.73 and
p =0.021 — see Table S5).

Taxonomic assignment of ARG clusters and identification of
mobile ARGs using a human microbiome MAG collection and
reference isolate genomes
Bacterial genomes contain intra- and extra-chromosomal MGEs which
facilitate rapid horizontal gene transfer - HGT4,36. This enables them to
evolve rapidly under selective pressures. This horizontal gene transfer
can occur both within species and between more distantly related
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organisms even across phyla20,37,38. We employed two independent
approaches to determine which of the ARGs in our resistome catalo-
gue have been recently mobilized. Firstly, we searched for highly
similar (99% nucleotide identity) ARG clusters, which were found in
twoormoredistinct taxa.With this approachweexploited the fact that
our ARGs derive from the samemetagenome data used by Pasolli et al.
(2019) to generate a collection of 154,723 humanmicrobiomeMAGs26.
These MAGs were assigned along with the RefSeq prokaryotic gen-
omes to species-level genome bins, SGBs, at 95% average nucleotide
identity (ANI) with a complete taxonomy to superkingdom ranks. This
enabled us to assign species labels to any ORF that was derived from
MAGs or RefSeq genomes and perform lowest common ancestor
assignments (LCA) across the ORFs present in an ARG cluster. We then
labelled any ARG_cluster99 that was found in multiple SGBs as ‘multi-
species’ and those found in only one SGB as ‘single-species’,
ARG_cluster99s without any SGB-assigned ORFs were ‘LCA-unas-
signed’. This strategy of searching for highly similar (99% nucleotide
identical) sequences across species to detect recent horizontal gene
transfer is equivalent to that used in39.

We were able to assign taxa to 54.5% of the ARG_cluster99s and
10%of theARG_cluster99swere assigned tomultiple species across the
whole data set. Despite this, the putatively mobile multi-species ARGs
constituted the majority of each individual’s gut resistome: 87% of

within-sample ARG richness and 96%of the total ARG abundance (cpg)
per individual. Note ARG cpg here is calculated using the assembly
approach since our definition of mobility requires assembly. Multi-
species ARGs were biased towards particular antibiotic classes and
mechanisms, thehighest ratio of recentlymobilised clusterswas found
for the sulfonamides and diaminopyrimidine, and they were more
prevalent amongst target replacement and inactivation resistance
mechanisms (see Table S6 and Fig. S5c). The multi-species ARGs were
geographically morewidespread, i.e. dispersed acrossmore countries,
than the single-species ARGs (average number of countries 5.9 vs. 3.0,
Wilcoxon rank sum,W = 3478595, p = 1.21e − 74).

To complement the above identification ofmobile genes through
their presence inmultiple taxa we also directly searched for sequences
characteristic of MGEs and determined which ARGs are on or in close
proximity to them. For plasmids we did this using a machine learning
approach that uses features such as ORF length and dipeptide fre-
quencies (see ref. 30 andMethods). To identifyARGspossiblymobilised
by other MGEs, we searched for the hallmark genes of insertion
sequence (IS) elements, conjugative elements (e.g., ICEs), and class 1
integrons among the genomic and metagenomic ORFs and subse-
quently classified each ARG-annotated ORF using MGE-specific
thresholds of distance on genomic contigs. Applying this strategy to
the gut metagenomes, we found that overall 36.2% of the adult gut

Fig. 2 | Correlation between median diversity and abundance of ARGs in
healthy adult gut metagenomes in a country and antibiotic consumption
rates. aMedian total gut ARG abundance (cpg) in healthy antibiotic free adults for
countries with > 10 samples. b, c Correlations between median total ARG abun-
dance and the per capita rate of antibiotic consumption (DDD per 1000), using
CDDEP consumption statistics in (b) and WHO in (c). Pearson’s correlation tests
gave r =0.89, p =0.00023 for CDDEP (b) and r =0.65, p =0.040 for WHO (c),
excluding China from the CDDEP correlations. d Median rarefied (100 ± 10Gbp
subsamples) ARG_cluster95 richness across countries. e, f Correlations between
ARG_cluster95 richness per 100Gbp and the per capita rate of antibiotic con-
sumption forCDDEP (e) andWHO(f) estimates. Pearson’s correlation tests r =0.57,
p =0.11 for CDDEP (e) and r =0.85, p =0.0073 for WHO (f), excluding China from
the CDDEP correlations. Vertical lines range from the 25th percentile to 75th per-
centile (b, c, e, f). Country-level ARG statistics are given in Table S3. Correlation

tests in Table S4. Novelty of the ARG clusters with respect to RefSeq is visualized in
Fig. S1. Rarefaction curves of ARG cluster richness in human microbiomes are
shown in Fig. S2. . Linear trend line was determined by a generalized linear model
using ggplot2 R package, the shaded area represents 95% confidence interval.
Country name abbreviations and metagenome sample number: AUT (n = 16) -
Austria, CAN (n = 35) - Canada, CHN (n = 209) - China, DEU (n = 103) - Germany,
DNK (n = 230) - Denmark, ESP (n = 139) - Spain, FRA (n = 62)- France, ISR (n = 937) -
Israel, ITA (n = 33) - Italy, KAZ (n = 168) - Kazakhstan, MDG (n = 112) - Madagascar,
NLD (n = 468) - Netherlands, SWE (n = 109) - Sweden, USA (n = 115) - United States.
The number of rarefactions performed to derive each box plot and range bar
shown in d–f: n = 99. In the box plots shown in a and d, the box spans from 25th to
75th percentiles, the line inside the box is the median, and the whisker spans from
the minimum to the maximum values.
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resistome ORFs were associated with at least one type of MGE (27.1%
on plasmids; 4.4% proximate to IS transposases; 10.2% proximate to
conjugative systems; 0.3% proximate to integron integrase). The pro-
portion of MGE-associated ARGs in the RefSeq-derived catalogue was
39.2%. Therewas a good correspondence between ARG localisation on
a plasmid or being positioned near a MGE hallmark gene and the
definition of recently mobilised ARG clusters described above (see
Fig. S5a and Fig. S6). Among the ARG-annotated ORFs in the adult gut
metagenomes, 89.1% of the plasmid-borne ARGs were found within
multi-species clusters, compared to the 49.0% of non-plasmid-borne
ARGs. Similarly, 80.9% of ICE-associated ARGs were multi-species,
82.1% of theARGs located ≤100Kbp from IS transposases, and99.4%of
the ARGs located ≤10Kbp from integron integrases. This enrichment
of multi-species ARG clusters in MGE-associated ARGs is logical as
these ARGs are expected to have a higher chance to cross species
boundaries into new hosts. Conversely, 53.0% of multi-species cluster
ORFs were associated with at least one MGE type, whilst of the single
species cluster ORFs only 12.5% were. ARGs involved in rifamycin,
nucleoside and sulfonamide resistance were most frequently located
on plasmids (≥90% of ORFs) while fluoroquinolone, fosfomycin, pep-
tide, and multi-drug resistance genes were infrequently located on
plasmids ( < 10%) — See Fig. S5b.

We then separated both the total abundance and the richness of
ARG clusters in each country across these gene mobility categories.
The non-mobile species-specific gene abundances in a country did not
have a significant association with per capita antibiotic consumption
but both the plasmid-borne ARGs and the multi-species mobile clus-
ters showed similar and in some cases stronger correlations of abun-
dance with consumption rates than the total resistance (see Table S4
and Fig. S7). The same was not true for the ARG diversity, asmeasured
by rarefied ARG_Cluster99 richness, herewe do see correlations across
all gene types, we will return to this observation in the Discussion.

ARGclusters are preferentially sharedbetweenphylogenetically
similar species that co-occur across gut microbiome samples
For each candidate species SGB we determined the total number of
unique ARG_cluster99s observed across all MAGs and reference gen-
omes assigned to that species. We then considered every pair of spe-
cies and counted the number of clusters that were shared between
them. Using a negative binomial regression we found a highly sig-
nificant negative association (coefficient= −0.51 ± 0.003, p < 2e − 16)
between the rate of ARG cluster sharing and the phylogenetic distance
but a positive association (coefficient=2.43 ± 0.02, p < 2e − 16) with the
number of samples they co-occur in (see Methods). These coefficients
correspond to an eleven fold increase in the rate of gene sharing as
species go from never co-occurring to being found in every sample
together and a 40% decrease in gene sharing for every unit of phylo-
genetic distance (maximum in the data set 4.55). This matches with
earlier studies on HGT37.

Human gut resistome profiles exhibit two distinct ‘resistotypes’
We characterised the resistome composition for each adult gut
microbiomeas aprofile giving the total normalised (cpg) abundanceof
each ARG family in a curated version of the CARD database using a
read-based approach (see Methods). We observed 422 out of 752 total
ARG families at least once in the 5372 adult gut metagenomes for
which the raw reads were processed. These 422 dimensional profiles
were then mapped onto two dimensions using NMDS (see Methods)
and Bray-Curtis distances. Two distinct clusters were observed sepa-
rated by the first NMDS axis (Fig. 3a). This apparent binary split was
confirmed quantitatively by performing partitioning around medoid
(PAM) clustering using Bray-Curtis dissimilarities calculated on all 422
ARG family abundances (see Methods). Increasing cluster number (k)
from 2 to 20, we found that the average silhouette score, a measure of
how well separated the clusters are, was maximized for two clusters

(Fig. 3b). The observation of two clusters was robust to the choice of
distance measure (Manhattan and Euclidean also tested) in PAM
clustering (Fig. S8a, b) and clusteringmethod, k-means with the elbow
method also predicted two clusters (Fig. S8c). Finally, UMAP an alter-
native projection method also generated two recognizable clusters of
resistome profiles (Fig. S8d).

Wewill refer to the two clusters derived from PAM clustering with
Bray–Curtis dissimilarities as ‘resistotypes’. In order to give a quanti-
tative measure of how likely a profile is to derive from each cluster, we
define a ‘resistotype scale index’ (RSI) as the difference of the
Bray–Curtis dissimilarities to the medoids of the resistotype PAM
clusters. The RSI displayed a clearly bi-modal distribution that is con-
sistent with the PAM assignment (Fig. 3c). There is a higher frequency
of one resistotype (56.5% vs. 43.5%; n = 5372) and more so within the
healthy subjects (67.1% vs. 32.9%; n = 3113). The individuals in the less
common resistotype displayed higher overall ARG abundance (Fig. 3d;
median cpg 2.04 in major, 3.72 in minor, fold difference=1.82; Wil-
coxon rank sum, W=2276161, p=1.49e-112) and greater ARG cluster
richness (Fig. S9a, b) compared to individuals in the high frequency
resistotype. We calculated the total ARG abundance (cpgs) in each
antibiotic class for the samples and compared these between the two
resistotypes. We found that the low frequency resistotype was more
than 10-fold enriched for multiple antibiotic classes and the five with
the highest fold difference were fluoroquinolones, fosfomycins, ami-
noglycosides, and peptide antibiotics, as well as multi-drug resistance
genes (Fig. 3d and Table S7). In contrast, ARGs in these classes were
almost absent in the major resistotype. Based on the initials of these
antibiotic classes, we will refer to the low frequency resistotype as
the ‘FAMP’ resistotype, and the high frequency resistotype as the
‘background’ resistotype.

Resistotypes are independent of enterotypes but are associated
with particular species
We then determined the degree to which the resistotypes can be
explained by the species composition of the gut microbiome or
alternatively as a functionofmobilemulti-species genes.We calculated
the species abundance profile for each sample by identifying single-
copy core genes (SCGs) associated with SGBs (see Methods). The
number of species detected in the adult gut metagenomes was dis-
tributed around a median of 329.5 species (inter-quartile 268–395) for
healthy adult subjects (Fig. S9c). Overall, there was an association
between species profile and resistance profile as ARG family abun-
dances (Mantel test r =0.27, p <0.001).

We next determined which species were associated with the two
resistotypes (see Fig. 3e and Table S7). SGBs that aremore abundant in
FAMP resistotype individuals, included opportunistic pathogen spe-
cies such as Escherichia coli (log10-fold mean difference -
Log10FMD = 4.4, Wilcoxon rank sum, W = 858917, p = 0). and Proteus
mirabilis (Log10FMD = 4.2, W = 891027, p =0), whereas beneficial gut
anaerobes (e.g., butyrate producers or complex carbohydrates
degraders) such as Coprococcus eutactus (Log10FMD =0.88,
W = 4132374, p = 1.1e − 57) and Eubacterium siraeum (Log10FMD =0.86,
W = 3858630, p = 2.8e − 28) were more abundant in the background
resistotype samples. In the following section, we determine system-
atically, whether the species associated with each resistotype are
enriched for commensal or pathogenic bacteria.

The species configuration of microbiomes has previously been
proposed to cluster into distinct ‘enterotypes’40,41. We searched,
therefore, for correlations between these enterotypes and the resis-
totypes identified here. In confirmationwith the enterotype studies we
did find three clusters of species configurations, corresponding to the
clusters conventionally characterised by the dominance of Prevotella,
Bacteroides, and Lachnospiraceae (or Firmicutes), respectively (see
Fig. S8f, g and Table S8). There was an association between enterotype
and resistotype (Chi-sq. test, χ2(2) = 65.185, p = 7.0e − 15), but it was
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quite weak (Cramer’s V =0.11), driven by slight differences in resisto-
type proportions in each enterotype, e.g. the Lachnospiraceae enter-
otype being less likely to have the FAMP resistotype (Fig. S8h).

This suggests that each resistotype is not associated with a par-
ticular species profile such as an enterotype but rather is driven by a
subset of the microbiome. This was confirmed by the fact that just 1%
of the variance in species profile depends on resistotype (Bray–Curtis
perm. ANOVA, R2 = 0.011, p =0.001). To resolve whether the FAMP
resistotype might instead reflect a low diversity dysbiotic state we
compared the species richness of the individuals assigned to the
background and FAMP resistotypes but found the opposite trend, a
slightly higher species diversity for the FAMP samples (359 vs. 336
median SGBs; Wilcoxon rank sum, W = 2853218, p = 6.3e − 15), parti-
cularly for the Proteobacteria (Fig. S9d).

Pathogenic and non-resident species are associated with the
FAMP resistotype
The gut microbiome comprises a complex community of both
potentially pathogenic and harmless or beneficial resident com-
mensal organisms. It is the pathogenic species, more specifically
certain strains encountered in clinical infections, that will be the
target of antibiotic treatment. Wemight expect ARGs associatedwith
pathogens to drive both the response to country-wide antibiotic
consumption and the distinct resistotypes we observed above. To

determine the type of organism an ARG cluster is associated with, we
first classified SGBs as either pathogenic or non-pathogenic,
depending on whether any strain has been reported to cause infec-
tion at any site in the human body including the gut itself42. This
species level definition of potential pathogenicity will include
opportunistic pathogens, where only particular strains in particular
circumstances are pathogenic, but since they will then be the target
of antibiotic treatment and developed resistance may spread rela-
tively easily to other strains of that species it seemed a pragmatic
definition. On this basis, 237 of the 4686 SGBs that occurred in our
adult stool metagenome profiles (roughly 5%) were classified as
pathogens. In Fig. S10a we show the distribution of prevalences
(percentage of samples they occur in) for pathogenic and non-
pathogenic SGBs across the 3,096 gut microbiome samples from
individuals that were healthy and not taking antibiotics at the time of
sampling (see Methods). For both pathogens and non-pathogens a
broad distribution of prevalences is observed with some opportu-
nistic pathogens e.g. Bacteroides ovatus and B. thetaiotaomicron
being found in the vast majority of samples. We therefore further
classified SGBs as either resident (present in ≥10% of samples) or an
infrequent colonizer (<10% of samples). There is a weak negative
association between pathogenicity status and residency status, with
11.4% of pathogens being classed as resident versus 16.1% of non-
pathogenic species (Fisher’s exact test, p = 0.055, see Table S9).

Fig. 3 | Two distinct clusters apparent in the global landscape of adult gut
resistome profiles. a NMDS projection of Bray–Curtis dissimilarities among the
log-transformed ARG family profiles (cpg) in adult gut metagenomes (contours
estimate sample densities). Samples were colored by cluster assignment (PAM,
Bray-Curtis clustering, k=2). bAverage silhouette width of PAMBray-Curtis clusters
as a function of cluster number k. c Sample density projecting points onto the line
joining cluster medoids using Bray–Curtis dissimilarities. d Box plots of the sum-
med abundance of ARGs in each antibiotic class, separated by resistotype (`back-
ground' or `FAMP') with the distribution of total ARGs (cpg) by resistotype shown
at the bottom. e Relative abundances of the ten species with highest mean fold
difference between resistotypes and two-sided Mann–Whitney test,

Benjamini–Hochberg-adjusted p <0.05. Statistics on the differential abundance of
ARG classes and the species between the two resistotypes are provided in Table S7.
Results from clustering the ARG profiles with alternativemethods and clustering of
species compositions are given in Fig. S8. Comparison of species diversity and ARG
diversity between the background and the FAMP resistotypes is provided in Fig. S5.
Naming of the FAMP resistotype reflects the five antibiotic resistance classes
enriched with the largest fold differences: F, fluoroquinolone and fosfomycin; A,
aminoglycoside; M, multi-drug; P, peptide. Number of metagenome samples
n = 3034 for the background resistotype, n = 2338 for the FAMP resistotype. In the
box plots, the box spans from 25th to 75th percentiles, the line inside the box is the
median, and the whisker spans from the minimum to the maximum values.
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We next defined an SGB as associated with one of the two resis-
totypes if themean abundance was at least five-fold higher in one than
the other and this difference was significant (Mann–Whitney test,
adjusted p < 0.05). We found that the SGBs associated with the FAMP
resistotype were enriched for pathogen SGBs (41.2% were pathogens)
compared to the background resistotype-associated SGBs (0% patho-
gens) or the SGBs not associated with either resistotype (4.8% patho-
gens), and overall, there was a highly significant association between
pathogen status and resistotype association (see Table S9, Fisher’s
exact test, p = 5.2e − 10). Similarly, the FAMP associated SGBs were
biased toward species with lower prevalences, i.e., infrequent coloni-
zers (Fig. S10).

We investigate the distribution of ARG families across SGBs
associated with the two resistotypes further in Fig. 4. ARG families are
ordered by their association with the FAMP resistotype. This confirms
that the majority of FAMP associated families are found in Proteo-
bacteria particularly Enterobacteriaceae, that they are mostly core to
the species and that the most strongly associated are actually neither
mobilised across multiple-species or plasmid-borne. The background
resistotype associated SGBs are distributed throughout the other
major phyla.

Country-level response to antibiotic consumption but not
resistotype is driven by ARGs that are shared between patho-
gens and resident commensals
Wecandefine the single-species ARG_cluster99s in termsof the type of
species - pathogen, non-pathogen or neither - that they are found in,
multi-species clusters can additionally derive from both. This reveals
that far more of the ARG abundance in the FAMP resistotype derives
from pathogen associated clusters (33.0%) either single or multi-
species rather than the background resistotype (0.0%). In contrast, for
themajor resistotype themost important class by coverage (89.3%) are
multi-species clusters that span both pathogens and non-pathogens
(Fig. S10c). We can refine this further by considering the taxonomy of
the associated SGBs and again separating by cluster type and resisto-
type (see Fig. S10d). From this we see that the majority of the ARG
coverage in the FAMP resistotype derives from Proteobacteria, which is
not the case for the background resistotype, where clusters aremostly
shared across phyla, as was seen at the ARG family level in Fig. 4.

We then used the same ARG_cluster99 cluster assignments to
determine the type of ARG that is driving the correlations between
ARGabundanceand antibiotic consumption rates presented above. To
do this we summed the abundance of all clusters deriving from the
following four ARG categories: pathogen-associated, pathogen and
resident non-pathogen (i.e. commensals), just commensals and unas-
sociated. We then repeated the correlation analysis between the
median ARG abundance in each country with antibiotic consumption
rates for each category of ARG. The results are given in Fig. 5, sig-
nificant correlations are only found for the ARGs that are shared
between pathogens and commensals (Fig. 5c WHO - r = 0.81,
p = 4.2e − 3 and Fig. 5g CDDEP excluding China - r = 0.81, p = 2.6e − 3).

The FAMP resistotype is associatedwith antibiotic exposure and
some diseases, particularly enteric infections
The frequency of the FAMP resistotype is quite strongly (Cramer’s
V = 0.248) associated with disease status (Chi-Sq. test, χ2(11) = 285.23,
p = 1.1e − 54 - Fig. S11a). There appears to be a gradient from healthy
individuals with 32.9% FAMP (22.8% among the samples from the
1980s) through colorectal cancer (51.9%) and metabolic disorders
(58.2%) to enteric infections with Shiga-toxin-producing Escherichia
coli at 79.4% and cholera with 83.3%. In healthy individuals, recent
antibiotic exposure within the last three months, is associated with a
higher frequency of the FAMP resistotype (Fig. S11b, (Chi-Sq. test,
χ2(1) = 5.5293, p =0.019), and this association is stronger if we include
non-healthy subjects too (Chi-Sq. test, χ2(1) = 12.17, p =0.00049),

probably because of the increase in antibiotic positive sample number
from n = 38 to n = 244. It is important to note though that the FAMP
resistotype is still present in 28.6% of healthy subjects not currently
exposed to antibiotics.

There is no difference between sexes (Chi-Sq. test, χ2(1) = 1.8586,
p =0.173). There was, however, a significant but weak positive asso-
ciation between age in years and the probability of deriving from the
FAMP resistotype (logistic regression of resistotype against age for
healthy samples: n = 1, 267, coeff. = 0.0056, p = 1.3e − 11). There were
also strong (Cramer’s V = 0.449) significant differences in resistotype
frequencies across countries for these samples (Chi-Sq. test,
χ2(13) = 552.28, p = 1.1e − 109) but the frequency of the FAMP resisto-
type was not found to be correlated with the antibiotic consumption
rate (Pearson’s correlation for WHO statistics, n = 10, r =0.37 and
p =0.29; CDDEP statistics, n = 12, r =0.097 and p =0.76).

Consumption of antibiotics causes a short-term shift to the
FAMP resistotype
We used existing time series data from healthy individuals in a con-
trolled antibiotic trial11 to explore the short-term dynamics of resisto-
type classifications. In this study, twelve men received a cocktail of
three last-resort antibiotics orally, meropenem, gentamicin and van-
comycin, for four days and then their gut microbiome was tracked for
six months. We calculated the normalized abundance profiles of ARGs
from the metagenome shotgun reads generated in this study, as
described above, and then used our ‘resistotype scale index’ (RSI) to
determine how similar each sample’s resistome profile was to our
resistotypes. We observe a clear shift to the FAMP resistotype at eight
days after the end of the antibiotic treatment (see Fig. 6a). This effect
persisted slightly at 42days, althoughby 180daysmost individuals had
entirely returned to the background resistotype. The observed tran-
sitions to the FAMP resistotype following antibiotic exposure was
accompanied by an increase in total ARG abundance (Fig. 6b). This
temporary increase in ARG abundance was attributable to single-
species rather than multi-species ARGs (Fig. 6c) deriving from Pro-
teobacteria (Fig. 6d).

ARGs driving country-level response are embedded within a
closely connected component enriched for resident non-
pathogen species
We constructed a weighted bipartite graph of ARG clusters and SGBs
by linking an ARG to a SGB if any ORFs assigned to that ARG_cluster99
were found in a high-quality MAG assigned to that SGB (see Methods).
Links supported by a single ORF were removed and each remaining
linkwasweighted by the number ofORFs supporting the link. In Fig. 7a
we visualise this network and colour nodes by their status as patho-
gens (red) andnon-pathogens (blue). Bipartitemodule detection using
Beckett’s method43 revealed 10 subnetworks: a single central module
containing a large number of species, mostly non-pathogenic (91.1%)
and gut microbiome residents (81.6%), which are strongly inter-
connected via multi-species ARGs, and nine peripheral modules
(Fig. 7a, b).

To simplify interpretation we will compare this central module
to all the peripheral modules grouped together. The majority of
SGBs (158 out of 229, i.e. 70.0%) were assigned to the central
module but the majority of ARG_cluster99s, were found in the
peripheral modules (1284 out of 1447, i.e. 88.7%). The SGBs in the
central module had a higher proportion of non-pathogens com-
pared to the peripheral modules (91.1% vs. 76.1%, Chi-sq. test,
χ2(1) = 8.28, p = 0.004) and also more resident gut species (81.6% vs.
62.0%, Chi-sq. test, χ2(1) = 9.23, p = 0.002). In addition, more SGBs
associated with the FAMP resistotype were found in the peripheral
modules (11.3%) compared to the central component (3.16%;
p = 0.032; Fig. 7b) whilst the SGBs associated with the background
resistotype were roughly evenly split between the two (4.43% vs.
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2.82% of the SGBs in the central and the peripherals, respec-
tively; p = 0.83).

The ARG clusters also differ between the central and peripheral
modules, there is a much higher preponderance of multi-species
clusters in the central module (57.1% of ARG_cluster99 vs. 17.4%) with
single-species clusters dominating in the periphery (82.6% vs 42.9%,
Chi-sq. test, χ2(3) = 131.15, p = 2.3e − 30 and Fig. 7c). The same is true of
plasmid associated clusters which are more often found in the central

module. We see the same patterns for ARGs as SGBs with a higher
percentage of pathogen and non-resident associated ARGs in the
peripheral modules. The peripheral modules are strongly enriched for
FAMP associated ARG families, with 85.7% of the ARG_cluster99s in the
periphery deriving from these families compared to 21.5% for the
central module (Chi-sq. test, χ2(1) = 351.39, p = 2.11e − 78; Fig. 7c). In
contrast, the central module has a higher percentage of clusters that
correlate with the country-level per-capita antibiotic consumption
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rates than the peripheral modules (6.1% vs. 0.2%, Chi-sq. test,
χ2(1) = 55.82, p = 8.0e − 14 and Fig. 7d).

Discussion
We conducted an extensive and geographically wide-spread survey of
ARGs in the human microbiome. We resolved substantial previously
uncharacterized ARG diversity, with the observed ARG richness vary-
ing across body sites. We demonstrated that this ARG diversity is,
however, still only a fraction of that present, even for the best-studied
body site the gut and therefore, could represent an important poten-
tial reservoir of ARGs. We focused on close homologs of known
resistanceproteins in cultured isolates. This has the advantage that the
diversity we do observe is of potentially high clinical relevance. There

are other classes of AMR-conferring genomic features most notably
point mutations that provide resistance. We excluded these as com-
prehensive databases of such mutations only exist for a handful of
pathogens, whereas we wanted to survey resistance in as an unbiased
fashion as possible. We will also miss ARGs with low sequence simi-
larity to known ARGs. Taking these factors into account the true ARG
diversity in the human microbiome could be larger still.

Focussing on the gut microbiome, we observed two distinct
phenomena. The first, observed in healthy individuals not currently
taking antibiotics, was a substantial difference in both median total
ARG abundance (five-fold) and richness (four-fold) across countries.
These differences could be largely explained by differences in per
capita consumption rates of antibiotics. The strength of the

Fig. 4 | Phylogenetic distribution of the ARG families in the two resistotypes.
Mainpanel (a): heatmapgivespresenceof eachARG family across thephylogenetic
tree of the SGBs, color reflects the fraction of genomes in the SGB that contain the
ARG family. The 363 ARG families detected in adult stool metagenomes based on
our assembled catalogue are sorted (y-axis) by fold-difference between the mean
abundances in the background and FAMP resistotypes. The phylogenetic tree
includes the 522 SGBs which are most abundant in the gut microbiome or are
associated with resistotypes (see Methods). Subpanels left to right: bar plot of the
fold-difference in abundance between the resistotypes; fraction of ORFs in multi-
species ARG_cluster99s in each ARG family; fraction of plasmid-borne ORFs; frac-
tion of ORFs containing at least one high-identity alignment of CRISPR spacers

collected from gut metagenomes (minimum 90% identity over 90% of the spacer
length) in each ARG family. Panel (b): For each major phylum and for all taxa
combined, we give the total occurrence of ARG families in the core resistomes of
the SGBs (top row) and the accessory resistomes (bottom row). FAMP-associated
and non-associated ARG families were compared, and the occurrence in patho-
genic and non-pathogenic species were coloured differently. The maximum-
likelihood phylogenetic tree was reconstructed using one representative genome
for each of the selected SGBs. Concatenated nucleotide sequence alignments of 40
single-copy COGs were used as the input. The overall contribution of ARG subsets
based on pathogenicity and residence to the resistomes of background and FAMP
reistotypes is summarized in Fig. S10.

Fig. 5 | Correlation between median total abundance of ARGs deriving from
different species types and antibiotic consumption rates. ARG_cluster99s were
assigned to four categories based on the presence of ORFs from pathogens (see
definition in text) and non-pathogenic residents (non-pathogenic found in at least
10%of the stoolmetagenomesofhealthy adults not taking antibiotics).a,b, c,dWe
display correlations between the median ARG abundance (cpg) summed for each
species category and the per capita rate of antibiotic consumption (DDDper 1000)
in each country using CDDEP statistics. Pearson’s correlation a r = 0.19, p =0.58;
b r = 0.25, p =0.46; c r = 0.81, p = 2.6e-3; d r = 0.11, p =0.76. In e, f, g, hwe used the
WHO antibiotic consumption. Pearson’s correlation e r = 0.44 p =0.2; f r = 0.26,
p =0.61; g r =0.81, p = 4.2e-3;h r = 0.14,p =0.69. Diamonds give themedians of the

countries. Vertical lines indicate the range from the first quartile to the third
quartile. Linear trend line was determined by generalized linear model using
ggplot2Rpackage, shaded area represents 95%confidence interval. The numberof
metagenome samples used to derive themedian and the range bar shown for each
country in A-H: AUT (n = 16), CAN (n = 36), CHN (n = 340), DEU (n = 103), DNK (n
= 401), ESP (n = 139), FRA (n = 62), ITA (n = 33), KAZ (n = 168), NLD (n = 470), SWE
(n = 109), USA (n = 147). Correlation test statistics are given in Table S4. The
numbers summarizing two-way categorization of species are provided in Table S9.
Comparisons between the results from detection schemes of plasmid-borne ARGs
andmulti-species ARGs, and between the results from analyzing gutmetagenomic
ORFs and RefSeq genomic ORFs are provided in Fig. S10.
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associations was quite remarkable with correlation values above 0.8
for total ARG abundance. Previous studies have shown a higher
abundance of ARGs in microbiomes from individuals deriving from
countries with higher antibiotic consumption21,24, but we have
demonstrated a direct correlation between consumption rates and
ARG levels in the microbiome at a global scale for healthy antibiotic
free individuals. This is in contrast to global wastewater metagenome
surveys of ARGs, which failed to find a clear link between antibiotic
consumption and ARG abundance44,45. This highlights the importance
of sampling microbiomes directly from individuals rather than from
waste streams where additional factors may be impacting abundance.

When we separated ARGs by the antibiotic classes they provide
resistance to, we only found a significant correlation between abun-
dance and consumption for the beta-lactams. This is probably because
the beta-lactams are the most commonly used antibiotic class across
the countries we studied, representing a mean of 50.1% (WHO data) or
61.6% (CDDEP data) of DDDs, usedmuchmore frequently than the two
next most common, macrolides at 14.5% (WHO) or 11.6% (CDDEP), and
fluoroquinolones with 10.0% (WHO) or 9.8% (CDDEP). This result had a
FDRof 0.13 so it shouldbe treatedwith caution but it suggests that this
phenomena is not only operating at the level of overall consumption.

The three countries with the highest abundance and diversity of
ARGs were Spain, France and China. For Spain and France these high
levels can be explained by their high antibiotic consumption rates.
China by contrast, is an obvious outlier in Fig. 2, with an abnormally
high level of resistance given its reported antibiotic consumption.
There are many potential explanations for this. The samples from
China may be atypical in some way, they could derive from unusual
localities within China or despite our selection for healthy controls
have unreported diseases. However, four separate studies were
included in the healthy adult stool samples from China, so we might
expect any such biases to average out. Furthermore, this does match
with earlier studies that observed anomalously high levels of ARGs in
China21–23. If these samples are indeed representative of the Chinese
population then itmay indicate that antibiotic consumption in China is
substantially under-reported, or it may reflect an unusually high
impact of antibiotics used in agriculture on the human microbiome,
most probably from livestock production where China has the highest
estimated usage globally46. The country with the lowest observed ARG
total abundance was the Netherlands, this was consistent with the low
levels of antibiotic usage in that country, but the contrast with France,
which is geographically close, emphasises the spatial localisation of

Fig. 6 | Impact of short-term antibiotic consumption on resistotype assign-
ment and total ARG abundance.We present individual gut resistome trajectories
during a course of antibiotic treatment in healthy individuals11. The subjects (n = 12)
were orally administered 500mg/day meropenem, 500mg/day vancomycin, and
40mg/day gentamicin for four days. a Resistotype scale index. b Total ARG
abundance in normalized copies-per-genome (cpg). c Total ARG abundance in
single-species or multi-species clusters (cpg). d Total ARG abundance across phyla
based on taxonomic LCA (cpg). Resistotype scale index (a) and total ARG abun-
dance (b) were calculated directly using our read-based approach. The ARG
abundances stratified by cluster type (c) or taxonomic classification (d) were

derived from the assembly-based analysis (see text). Data points were colored
according to the resistotype scale (all panels). Significance compared to baseline
computed with the two-sided paired Wilcoxon rank sum test, *
Benjamini–Hochberg p <0.05. Exact adjusted p-values for the significant case:
resistotype scale at day 8, adjusted p =0.0020 (a); total cpg at day 8, adjusted
p =0.0020 (b); single-species clusters cpg at day 8, adjusted p =0.0038 (c); Pro-
teobacteria ARGs cpg at day 8, adjusted p =0.0038 (d); Bacteroidetes ARGs cpg at
day 0, adjusted p =0.039 (d). Samples from the same individual are connected by a
gray line. Variation of resistotype frequencies by health condition, or by antibiotic
exposure status, is provided in Fig. S11.
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Fig. 7 | Bipartite network of ARGclusters and species-level genomic bins based
on the genomes reconstructed from stool metagenomes. Network comprising
species-level genomic bins (SGBs) connected to ARG_cluster99s they contain (ORF
frequency > 1) generated from high-quality MAGs (HQ-MAGs) constructed from
6104 adult stool metagenomes. Ten modules in the network were detected using
Beckett’s method (computeModules of the R package bipartite). The largest (SGBs
n = 158) was defined as `central' the others all (n < 20) as peripheral. a SGB and

ARG_cluster99 nodes coloured by pathogen status, edges by module (when
shared). b SGB not coloured, ARG_cluster99s by single-species, multi-species,
plasmid-borne. c SGB nodes and ARG_cluster99s were categorised into back-
ground- or FAMP-associated. d SGB nodes were not categorised, ARG_cluster99s
categorised by association with country-level antibiotic consumption (see
Methods).
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ARGs in the microbiome and the importance of the local antibiotic
usage regime.

The second phenomenon, was a clear separation of the ARG
family profiles into two clusters or resistotypes. These were robust to
the choiceof clustering algorithmor distancemetric. The less frequent
FAMP resistotype was associated with resistance to fluoroquinolone,
fosfomycin, aminoglycoside, and peptide antibiotics, as well as multi-
drug resistance genes, and a much higher level of resistance overall.
The FAMP resistotype was not correlated with antibiotic consumption
across countries but was strongly correlatedwith diseases, particularly
enteric infections. We also observed that the short-term consumption
of antibiotics causes a rapid shift to the FAMP resistotype. It is possible
therefore, that the FAMP resistotype is simply due to individuals that
have recently taken antibiotics but we believe this not to be the case,
because even when restricted to samples from individuals recruited
with a 3month antibiotic exclusion criterion,we still observed that 22%
of gutmicrobiomes derive from this resistotype. In addition, if this was
the case, thenwewould expect to see a correlation at the country-level
with consumption rates, which we do not. We believe that the FAMP
resistotype represents a genuine population-level impact of antibiotic
consumption relevant to both healthy and diseased individuals.

Methods based on structural similarity such as the study of Ruppé
et al. may bemore sensitive than the homology searches used here but
may also have more false positives47. This may explain why in Ruppé
et al. six resistotypes were observed rather than two, although that
might also be due to the use of a different clustering algorithm,
Dirichlet-multinomial mixtures48, which are not suitable for con-
tinuous metagenome ARG profiles.

We were able to attribute these two phenomena to different
components of the resistome. The FAMP resistotype is principally
driven by single-species ARGs associated with pathogens within the
Proteobacteria, although some multi-species ARGs shared between
pathogens and commensals are also important. In contrast, mobile
multi-species ARGs shared between pathogens and commensals
dominate the correlations between ARG abundance and consumption
of antibiotics at a country-scale. This was confirmed through the
construction of a network of species and ARGs. The ARGs driving the
population-level response to antibiotics were found in a highly con-
nected central module enriched for resident non-pathogens and
mobile resistance genes, with the network periphery which comprises
more non-resident pathogens associated with the FAMP resistotype.
As part of this analysis, we also quantified the importance of different
MGEs in mobilising ARGs in the gut microbiome, with plasmids asso-
ciating with nearly three times as many ARGs as the next most
important, conjugation elements.

We should add two important caveats to the above conclusions,
firstly our definition of a pathogenic species, as one with a strain
reported to have caused infection at any body site, is imperfect and
probably overly broad. Therefore, the ARGsmay actually be carried on
non-pathogenic strains of opportunistic pathogen species. However,
the associations we observe, suggest that in a statistical sense our
definition is useful and no better definition was apparent to us. Sec-
ondly, metagenomics can only determine relative changes in abun-
dance so for example in the FAMP resistotype it is possible that the
absolute abundance of resistant pathogens is not higher, rather that
the susceptible commensals have decreased, this would motivate
revisiting these observations with methods for quantifying absolute
microbial loads49.

The correlations between total ARG abundance and country-level
consumption rates were restricted to multi-species mobilised genes
but the correlations in ARG diversity were not. An explanation for this
may be that the abundance of single-species ARGs are constrained by
the ecology of the gut microbiome in healthy individuals and hence a
response in abundance will be restricted to multi-species genes that
can spread through the community. In contrast, antibiotic exposure

candrive an increase in the richnessof single-species ARGs even if their
total abundance is constrained.

Regarding the clinical relevance of these phenomena, the FAMP
resistotype is perhapsmore immediately concerning than the country-
level correlations. The shift to resistant Enterobacteriaceae associated
with the FAMP resistotype may potentially lead to an increased risk of
resistant opportunistic infections whereas, since the central module is
dominated by non-pathogenic residents, the actual clinical con-
sequences of the country-level response to antibioticsmay appear less
significant. However, this is only true in the short-term, there are some
pathogens in the central module and the country-level response is
driven by mobile genes that are often shared between pathogens and
commensals. There is potential, therefore, for these genes to act as a
reservoir maintaining and transferring resistance between pathogen
and commensal species, with long-term consequences for how effec-
tively changes in antibiotic usage may eliminate resistance in specific
pathogenic organisms.

These two phenomena, operating on different parts of the
microbiome and over different time-scales, may be connected. A
possible explanation for the FAMP resistotype is that the usage of
antibiotics drives resistance in principally pathogenic gram-negative
bacteria within a country. This is well established at both country-
scales and across US states15,50. These resistant gram-negatives then
enter the gut either through pathogenic blooms or for opportunistic
pathogens e.g. E. coli over longer time-scales as more permanent
commensal residents. This explains the FAMP resistotype phenom-
enon being driven by proteobacterial pathogen associated ARGs and
why the FAMP is associatedwith enteric infections and on a short time-
scale by antibiotic consumption.

We then further hypothesise that this pool of resistant organisms
associatedwith the FAMPmay transfer ARGs to commensalswithin the
gutmicrobiome, but that selection for resident commensalswith these
shared ARGs occurs over a longer time-scale, the degree of selection
being dependent on the rate of overall antibiotic consumption in the
population as a whole. This explains the overall ARG abundance cor-
relations with antibiotic consumption that we observe.

The above hypothesis is similar to the concept of resistance
‘spillover’ from individuals exposed to antibiotics to othermembers of
a population50 but at awhole community level throughhorizontal gene
transfer, with the microbiome acting as a reservoir mediating this
spillover, and dysbiosis and a community dominated by Enter-
obacteriaceae as a mechanism accelerating it. As we discussed in the
Introduction, there is now good evidence from longitudinal sampling
of travellers16–18, that resistant strains can transfer into an individual’s
microbiomes from thewider host population, it thereforemakes sense
to view hosts as embedded within a population-level resistome, that is
impacted by overall population-level behaviours. This is just a
hypothesis, and there are alternative explanations consistent with our
observations, but we hope that the strong population-level impacts of
antibiotic consumption on resistance in the human microbiome that
we have observed, will serve as a catalyst for further,moremechanistic
research in this area.

Methods
Metagenome assembly data
The data set consists of 9251 human microbiome samples from mul-
tiple body sites (7718 stool, 783 oral cavity, 410 skin, 150 airway, 93
nasal cavity, 88 vagina, and 9 milk) which had been sequenced in
various studies (Supplementary Data 2). The assembly data from
Pasolli et. al. (2019) includes the depth of coverage for each contig in
the header lines, which provided the basis for quantitative profiling of
the genes annotated on the contigs. We assessed the integrity of each
sample’s metagenome assembly based on the recovery rate of the
homologs of 40 single-copy genes (SCGs)51 and removed any samples
for which we failed to detect one or more ORF homologs for all 40
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SCGs - as those assemblies likely do not provide ≥1x-genome-equiva-
lent coverage. The refined dataset contained 8972 samples including
7589 stool metagenomes of which 6104 derived from adults Table S1.

Metagenome-assembled genomes and NCBI RefSeq prokaryotic
genomes
We combined prokaryotic genome sequences from two resources to
create a panel of reference genomes across which we determined the
phylogenetic and taxonomic distribution of ARGs. The first data set
consisted of 154,723 metagenome-assembled genomes reconstructed
from the same human microbiome samples that we obtained meta-
genome assemblies for26. Of these reconstructed genomes 70,178were
labeled as ‘high-quality’ in the original study, based on >90% com-
pleteness and<0.5% strain heterogeneity. The seconddata set consists
of 152,497 bacterial and archaeal genomes fromNCBI RefSeq accessed
on 19 April 2019. These genomes included representatives from the
principal phyla found in the human gut microbiome although were
dominated by Proteobacteria (Proteobacteria: 83,445; Firmicutes:
44,484; Actinobacteria: 16,529 and Bacteroidetes: 3563, Others: 3634).

Genome sequences from the two sources were clustered into
species-level bins (SGBs)basedon 5%average nucleotide identity (ANI)
radius according to the method described in Pasolli et al. (2019). The
list of reconstructed genomes used in this study and their mapping to
SGBs and full-rank taxonomy are provided in Supplementary Data 3.
The list of RefSeq genome accession numbers used in this study and
their mapping to SGBs and full-rank taxonomy are provided in Sup-
plementary Data 4.

ARG database
We refined the CARD database October 2017 version29 with the
objectives of minimizing false identification of non-ARG specific
homologs and maximizing the consistency in ARG family annotation
when performing homology search with 80% identity threshold.
Starting with the proteins included in the ‘protein homolog model’ of
the CARD ontology, we first removed any housekeeping genes or
regulatory genes, the homologs of which may not always imply anti-
biotic resistance. Next, we clustered the reference proteins by running
cd-hit v4.652 with 80% global identity threshold. Superclusters of the
80% identity clusters were defined by agglomerative single-linkage
clusteringof the cluster-representative sequences basedon all-against-
all blastp.We thenbuilt a phylogenetic tree for each supercluster using
Muscle v3.853 and FastTree254.

The protein sequences were assigned to ARG families based on
the following rules. (1) If the proteins in a cd-hit-derived cluster share
the same gene name prefix, the cluster was finalized as is with the
consensus part of their gene names. (2) If a cd-hit-derived cluster
contained twoormore independent gene name prefixes, we inspected
the phylogenetic tree to check if each gene name prefix formed a
monophyletic branch. When every gene name prefix could be sepa-
rated from each other in monophyletic groups, we split the cluster
accordingly, otherwise we maintained the original cd-hit cluster and
created a concatenated name. (3) If clusters were nested within one
another, or intermixed in the phylogenetic tree, or if the clusters
sharing identical gene name prefixes appeared as sister clades with
marginal divergence, we collapsed the clusters into a single ARG
family. This manual curation resulted in the definition of 752 ARG
families mapped to the 2159 reference protein sequences.

Annotation of ARGs and SCGs
Open reading frames (ORFs) of protein-coding genes were defined on
the contigs, whether originating from metagenome assemblies or
RefSeq genomes, using Prodigal v2.6.2 with ‘-pmeta’ option55. Protein
sequences of the ORFs were searched against two protein databases:
(1) clusters of orthologous groups (COGs) the 2014 update version56

and (2) amanually refinedversionof theCARDasdescribed above. The

query (meta)genomic ORFs were aligned to the database proteins
using the blastp function of Diamond v0.9.957. COG numbers were
annotated to the ORFs according to the reference COG protein dis-
playing thehighestbit score afterfiltering thehits bymaximume-value
1e-7. ARG family names were annotated to the ORFs according to the
reference CARD protein displaying the highest bit score after filtering
the hits by maximum e-value 1e-20, minimum identity 80% and mini-
mum reference coverage 80%.

Calculation of normalized abundance of ARGs in metagenomes
We used an assembly-based approach, in which we a calculate nor-
malized abundance value for each ARG annotated ORF found on an
assembled contig, in the subset of analyseswherewe stratified theARG
abundance profile according to the taxonomic or phylogenetic dis-
tribution and MGE context associated with the ARGs. On the other
hand, for the purpose of simply profiling at the level of ARG families
(i.e., clusters of ARGs defined in the reference database described
above) we used a more sensitive read-based approach.

In the assembly-based approach, we assigned coverage depth
value to each metagenomic ORF using the coverage depth of the
corresponding contig. Raw unnormalized abundance value was cal-
culated for each ARG family in a sample as the summed coverage
depth values of all ORFs that were annotated to that ARG family in the
given sample. In the same way an unnormalized abundance value was
calculated for each of the 40 SCGs. We divided each ARG family’s
unnormalized abundance value by the median of the unnormalized
abundance values across 40 SCGs to give a normalized abundance that
is equivalent to ‘copies per genome (cpg)’ - in a sense that the nor-
malized value 1 would mean that the summed depth of the ORFs
annotated to the given ARG family across the metagenome contigs
would be the same as that of a typical SCG.

In the read-based approach, we first aligned raw reads of the
sample against the reference proteins in our curated version of CARD,
using ‘diamond blastx -k 1 -f 6 -e 1.e-10 --id 80 --query-cover 70’ using
Diamondversion v0.9.957. Then theblastx alignmentsweregroupedby
the referenceARG family, eachARG familywas subsequently inspected
for the coveragebreadth (the number of length/100 intervals thatwere
covered at least once) by the collection of blastx alignments. Any ARG
family displaying coverage breadth less than 80 was discarded, which
is equivalent to the 80% coverage threshold that we applied in the
assembly-based approach. Cpg values were calculated for each ARG
families that passed the 80% coverage breadth by dividing the ARG
family’s reads-per-kilobase (RPK) by the median RPK of the 40 SCGs.

We compared the ability of assembly-based and read-based
approaches to detect and quantify ARG families in the stool meta-
genomes based on 5341 adult stool samples that we processed using
both methods.

Clustering of ARG sequences
Nucleotide sequences of the metagenomic ORFs and the genomic
ORFs annotated as ARGs were pooled together and clustered using
four different thresholds to create the clustered catalogues of ARGs.
We ran the ‘cluster’ command of MMseqs258 using ‘–min-seq-id 0.9 -c
0.8’ (for ARG_cluster90), ‘–min-seq-id 0.95 -c 0.8’ (for ARG_cluster95),
‘–min-seq-id 0.99 -c 0.9’ (for ARG_cluster99), and ‘–min-seq-id 1.0 -c
0.9’ (for ARG_cluster100), under ‘–cov-mode 0’.

LCA taxa assignment and identification of multi-species ARGs
We determined the lowest common ancestor (LCA) taxon for each
ARG cluster using the application galaxy-tool-lca when the cluster
contained at least one ORF derived from a HQ-MAG or RefSeq gen-
ome. SGB assignments on themember ORF-affiliated MAG or RefSeq
genome were used as the input taxa for the LCA calculation, along
with the full-rank taxonomy provided by the Pasolli et al. 2019
method.
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Based on the LCA assignments, we determined which ARG_clus-
ter99s had evidence of recent horizontal gene transfer, by classifying
them into one of the following categories: species-specific when the
rankof LCA is at the species level,multi-specieswhen the rank is higher
than species, and LCA-unassigned. The latter occurs when none of the
ORFs belonging to the cluster has known SGB affiliations. We propose
that the multi-species ARG_cluster99s with ORFs deriving from dif-
ferent species may have experienced recent HGT and hence are
mobilised.

We validated this approach by clustering a panel of 40 SCGs at a
range of nucleotide identities. These SCGswhich are often core house-
keeping genes will be in general vertically transmitted albeit more
slowly evolving thanaccessory genes. This is confirmedby the fact that
the majority of SCGs coalesced into multi-species clusters at cut-offs
around 97%-98% below our 99% threshold for horizontal transfer.

In Supplementary Data 6 we give binning and multi-species rates
for all ARG families.

Rarefied richness of ARG clusters
We used a random subsampling strategy to compare the diversity of
ARG clusters between body sites and countries whilst adjusting for the
differences in metagenome sequencing depth across samples. To
construct rarefaction curves giving the number of observed ARG
clusters as a function of sample number or size for each body site, we
first created a matrix giving presence/absence of the clusters (col-
umns) in the samples (rows) per each body site. We then collected
random subsets of q samples with q increasing by 10 until it exceeded
the total number of samples in the body site. Theprocesswas repeated
99 times. For each random subset we recorded (1) the number of
subsamples, q, (2) the total sum of sequence (Gbp) in subsamples, and
(3) the number of clusters that were present in at least one subsample,
our measure of rarefied ARG diversity. To compare ARG richness
across the countrieswe found subsamples for each countrywith a total
of 100 ± 10Gbp of sequence data. In detail, we first created amatrix of
presence/absence of the clusters in the country’s samples and repeti-
tively performed incremental subsampling where the number of sub-
samples q started from 1 and increased by 1 until the accumulated total
amount of sequence in the subsample exceeded 110Gbp. After each
round of incremental sampling finished, we determined q0, the sample
number that produced the accumulated sequence data size closest to
100Gbp. If this waswithin 90 - 110Gbp, we recorded (1) the number of
subsamples, q0, (2) total amount ofmetagenome sequence, and (3) the
number of unique clusters observed in the subsamples, the rarefied
diversity. The process was repeated for each country until 99 suc-
cessful replicates, i.e. with 100 ± 10 Gbp of sequence data, were
generated.

Machine learning-based identification of plasmid sequences
We adapted an existing machine learning approach, PhageBoost,
developed to identify prophage sequences30, to the problem of clas-
sifying plasmid sequences. The resulting program, PlasmidNet, uses
the same principles as PhageBoost, but was retrained using a custom
database of RefSeq sequences identified unambiguously as genomes
and plasmids. It uses the same features from ORFs as PhageBoost e.g.
ORF length, amino acid dipeptide and tripeptide frequencies but the
underlying XGBoost machine learning algorithm was adapted to the
TabNet deep tabular data learning architecture59. We first classified
ORFs as deriving from plasmids or genomes based on this model and
then assigned contigs according to their ORF consensus. PlasmidNet
on a hold-out test data set of 11784 genome contigs and 14223 plasmid
contigs achieves a false negative rate of 1.4%with a falsepositive rate of
15.5%. We ran PlasmidNet on the entire set of contigs from the meta-
genome assemblies and RefSeq genomes analyzed in our study.

PlasmidNet is available from: https://github.com/kkpsiren/
PlasmidNet.

Annotation of MGEs
We annotated the hallmark proteins of class 1-4 integrons, IS elements,
and conjugative systems to determine the MGE contexts other than
plasmid around the ARGs. All contigs from metagenomic assemblies
and RefSeq genomes were subjected to this analysis. For integrons we
used integrase proteins (IntI) as the hallmark. We searched ORFs
against a database containing six sequences, the representative
sequences of IntI1-4 (AAQ16665.1, AAT72891.1, AAO32355.1, and
99031763) and the two outgroup sequences (P0A8P6.1 and P0A8P8.1),
using diamond blastp (version 2.0.13) with –id 80 –subject-cover 80.
For IS elementsweused IS-associated transposases as thehallmark.We
searched ORFs against the transposases retrieved from ISFinder60

using diamond blastp (version 2.0.13) with –id 80 –subject-cover 80.
For the conjugative elements we used the hallmark proteins provided
by theCONJscandatabase61.We searched for alignments to allmodules
(e.g., CONJ, MOB, typeB, typeC, etc.) included in the CONJscan HMMs,
using hmmsearch (version 3.2.1) with score threshold (-T) of 40. For
each and every ARG ORF annotated on the genomic or metagenomic
contigs, we determined distances to the closest IntI, IS transposases,
and conjugative system proteins, respectively. The ARGs found within
100Kbp of IS transposases or conjugative system proteins were
assigned to be putatively associated with thoseMGEs, since the size of
known composite transposons range up to 80Kbp62 and the size of
conjugative mobile elements up to 100Kbp63. The ARGs found within
10Kbp from IntI were assigned to be associated with integrons, since
the majority of integrons in bacterial genomes have 10 Kbp or shorter
cassette array length64.

Species-level profiling of metagenomes using SCGs
We first created a non-redundant reference sequence database com-
plete with taxonomies for each of the 40 SCGs. To do this, we anno-
tated COGs on the RefSeq genomes and the HQ MAGs. We selected
each set of SCG ORF sequences. The collected sequences were clus-
tered using the ‘linclust’ command of MMseqs258 at 100% identity and
90% sequence overlap using the parameters ‘–min-seq-id 1.0 -c 0.9
–cov-mode 1’ and each cluster was then assigned the taxonomy of the
SGB that the majority of ORFs derived from.

To profile the SGB compositions (i.e. species-level community
compositions) of the microbiome samples, we collected nucleotide
sequences of the metagenomic ORFs that were annotated to the 40
SCGs and searched them against the corresponding reference SCG
sequence database, as described above, using vsearch v2.4.365 with
parameters ‘–id 0.9 –query_cov 0.5’. The metagenomic ORFs were
assigned the SGB of their top-hits in the database, the coverage depths
of all ORFs assigned to an SGBwere then summed to obtain a vector of
SGB abundances for each sample. The coverage abundances were
normalised within each sample to have a sum of 1 to give a composi-
tionalmatrix of SGBs.We excluded samples which started off with less
than 1000 SCG-annotated ORFs from the subsequent analysis of var-
iation in species compositions.

Sample metadata and selected data subset for population-level
gut resistome analysis
Organized sample metadata were obtained from the cur-
atedMetagenomeData R package25. For the population-level gut resis-
tome analysis, we focused on stool samples and controlled the
host age by excluding 1435 stool samples from the ‘children’ or ‘new-
born’ categories from the ‘AgeCategory’ column in the cur-
atedMetagenomeData table. The remaining 6112 samples were again
filtered by the country of origin by excluding countries represented
with less than 10 samples. The resulting set of 6104 samples comprised
adult (defined here as post-childhood) gut microbiomes from 20
countries Table S1. For the adult gut microbiome samples, we con-
ducted additional metadata collection from the corresponding litera-
ture and via inquiries to the original data producers to fill in missing
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information related to host health (disease) status and recent anti-
biotic use. As a result, we were able to identify unambiguously
3565 samples as deriving from the gut microbiome of healthy indivi-
duals. Samples excluded from the ‘healthy’ category include (i)
1658 samples with various disease labels (CDI, cholera, colorectal
adenoma, CRC, IBD, liver cirrhosis, T2D, fatty liver, hypertension,
rheumatoid arthritis, and STEC), (ii) 750 samples without any infor-
mation regarding the host health and disease status, (iii) 58 healthy
controls that clearly derive from non-contemporary subjects (i.e. col-
lected in 1980s) and (iv) 73 samples from populations maintaining
traditional lifestyle (i.e. hunter-gatherer). It is still possible though that
some of these ‘healthy’ individuals have undocumented diseases irre-
levant to the original studies.

Using a combination of sample information from cur-
atedMetagenomeData and the original study protocols we identified
4155 adult stool samples the donors of whichwere unambiguously not
taking antibiotics at the time of collection. This includes cohorts with
any guaranteed length of antibiotic-free periods preceding the sam-
pling as declared in the recruitment criteria. In the remaining samples,
273 were ‘currently’ on antibiotics and 1676 had no available infor-
mation. Among the 3565 healthy adult samples, 3096were identifiable
as not taking antibiotics at the time of sample collection.

Country-level statistics for antibiotic consumption
National antibiotic consumption data was collected from the Resis-
tanceMap operated by the Center for Disease Dynamics, Economics
and Policy (CDDEP)34 and the World Health Organization (WHO)
report35. CDDEP provides antibiotic consumption rates in the units of
defined daily dose (DDD) per 1000 (capita) throughout the corre-
sponding year, while WHO provides DDD per 1000 per day. We con-
verted the CDDEP data to DDD per 1000 (capita) per year— (DDD) per
1000 — by multiplying by a factor of 365 so that the two data sets had
equivalent units. As the national data in theWHO reportmostly comes
from surveillance made in 2015 and the CDDEP provides data for the
years from 2000 to 2015, we used the data from the year 2015 in our
correlation analysis. Note that from the CDDEP data we found that the
ranks of the countries analyzed in this study in terms of DDD per 1000
do not change over the years.

Definition of human pathogenic species
We compiled a list of species names of bacteria that have been
reported as the causative agents of human infectious diseases, through
manual review of a clinical microbiology manual42. The compiled list
contains 463 species names and is available at https://github.com/
kihyunee/gut_resistotype.Wematched SGBs to those pathogen names
by comparing the NCBI taxid attached to the pathogen names and to
theRefSeq accessionnumbers.Whenmore thanone SGBmatched to a
single pathogen name, the pathogen name was assigned to the SGB
with the largest number of RefSeq entries that are linked to the taxid. A
table assigning pathogen names to the SGBs are provided in Supple-
mentary Data 5. Virulence factors were annotated on the set of RefSeq
genomes and MAGs using VFDB set A (as of 07-August 2022)66 as a
reference database and 90% identity over 80% subject coverage as
thresholds for diamond blastp. We categorised RefSeq genomes into
clinical and non-clinical isolates based on the ‘epi_type’ field in the
isolate metadata tables obtained on 28th July 2022 from NCBI Patho-
gen Detection https://www.ncbi.nlm.nih.gov/pathogens/.

Quantification and statistical analysis
Correlations tests between ARG abundance and diversity with
antibiotic consumption rates. We tested for correlation between the
median abundance of ARGs (cpg) in the gut microbiome of healthy
adults who were not taking antibiotics and the national antibiotic
consumption rates (DDD per 1000). Countries were included in the
test only if at least 10 subjects were available. In addition to the total

abundance of ARGs, various subcategories of ARGs were subjected to
this test, including the ARG_cluster99s that are multi-species (mobile),
species-specific, and LCA-unassigned, and the plasmid-borne ARGs
and non-plasmid-borne ARGs. We tested using CDDEP and WHO per
capita consumption rate data separately. For each correlation test, we
first tested the normality of country-level median ARG abundances
using a Shapiro-Wilk test, we then applied Pearson’s correlation if the
medians showed a normal distribution, otherwise a non-parametric
Kendall’s correlation was used. We also tested the correlation between
the country-level ARG cluster richness estimates (median across 99
iterations of 100 Gbp-targeted subsampling) and the antibiotic con-
sumption rates, using the same statistical method. All tests were per-
formed with R core functions.

Negative binomial regression of number of shared clusters as a
function of SGBphylogenetic distance and co-occurrence. For each
species SGB we determined the total number of unique ARG_clus-
ter99s observed across all MAGs and reference genomes assigned to
that species.We then considered everypair of species and counted the
number of clusters that were shared between them. The maximum
number of shared clusters that couldbe observedbetween twospecies
is the minimum of the number of clusters associated with each. We
performed a negative binomial regression (using the glm.nb function
from the MASS package of R) of number of shared clusters using the
maximumasanoffset termto effectively predict rate of cluster sharing
as a function of both phylogenetic distance between the pair and the
fraction of sites they co-occur in.

Multivariate statistical analysis of ARG profiles. We identified out-
liers using the assembly-based family coverages. First, we prepared
the abundance (cpg) matrix of 6,104 adult gut samples (rows) and
752 ARG families (columns). Next, we removed samples with less
than three ARG families (remaining n = 6022) and the ARG families
with zero occurrence (remaining n = 363). The remainingmatrix was
log-transformed after adding 0.1 * (minimum non-zero cpg value in
the matrix). Non-metric multidimensional scaling (NMDS) was per-
formed with the metaMDS function of the ‘vegan’ package and
Euclidean distances. To remove outlier data points, we calculated
the Euclidean distance from each sample to the global medians of
MDS1 andMDS2, and then iteratively ran Grubbs’s test implemented
in the ‘outlier’ R package on the vector of Euclidean distances,
removing outlier samples (p value cutoff 0.05) until no more out-
liers were detected. This resulted in a set of 6006 adult gut micro-
biome samples.

For the resistotype analysis presented in the paper, we used the
read-based profiles. We could obtain sequence reads for 5469 adult
gut samples. As above, we removed samples with less than three ARG
families (remaining n = 5457) and the ARG families with zero occur-
rence (remaining n = 422). Among these 5457 samples, we selected
those that were not-outliers based on the assembly-based profiles, i.e.
they were included in the 6006 samples above, that gave 5372 samples
remaining in the read-based cpg matrix.

The final sample set was again inspected by NMDS, as well as by
Uniform Manifold Approximation and Projection (UMAP) using the
‘umap’package. Partitioningof theARGprofiles into resistotypeswas
assessed using the partitioning around medoids (PAM) method
implemented in the ‘cluster’ package. Bray-Curtis distances were
used for the resistotype assignments but the PAM clustering was
repeated with Euclidean and Manhattan distances to test for con-
sistency in the number of predicted clusters. For the same reason,
k-means with the elbow method was also evaluated. Variation in the
species compositions of adult gut microbiome samples were
inspected with the same overall procedures except that the compo-
sitional matrix was used as is, without log-transformation with
Bray–Curtis distances.
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Selection of SGBs for construction of the phylogenetic tree. 522
SGBs were selected for inclusion in the tree of Fig. 4 that are: i)
detected in 1%ormoreof the adult stoolmetagenome samples, (ii) had
at least 10 genomes, (iii) have three or more relevant ARG families, or
showed significant associationwith one resistotype (≥5-fold difference
in mean relative abundance and p <0.05 by Mann–Whitney tests after
Benjamini–Hochberg adjustment).

Identification of ARG clusters associated with country-level anti-
biotic consumption rates.We selected the gene clusters that occurred
in 100 or more samples (clusters n = 268) and obtained the relative
abundance (cpg) profiles of these clusters throughout the samples
from the 15 countries where we had CDDEP statistic for the gross
antibiotic consumption rate of the year 2015 (samples n = 4738).
Logistic regressionwas performed on the binary, presence or absence,
profile of a cluster in a sample against the rank of the countries
according to the total antibiotic consumption rates. We defined the
gene clusters that showed coefficients of 0.1 or greater as a group of
gene clusters that are positively correlated with the country-level
antibiotic consumption rates (positively correlated clusters n = 13).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We downloaded metagenome assemblies generated in a previous
study26 fasta files accessed at: http://segatalab.cibio.unitn.it/data/
Pasolli_et_al.htmlRaw Illumina sequencing reads of these metagen-
ome samples were downloaded from the read archive at the NCBI or
the EMBL using kingfisher: https://github.com/wwood/kingfisher-
downloadwhen the run accession number was available. The list of
sample identifiers analyzed using raw reads can be found along with
the matched run accession numbers in the Supplementary Data 1.

The ARG catalogue and abundance profiles generated in this
study and the sample metadata table can be accessed at: https://doi.
org/10.5281/zenodo.7188053 Sourcedata are providedwith this paper.

Code availability
The analysis scripts used in this study are available from: https://
github.com/kihyunee/gut_resistotype and the exact version used for
this analysis archived at: https://doi.org/10.5281/zenodo.7465315
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