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Quantum Rabi dynamics of trapped atoms
far in the deep strong coupling regime

Johannes Koch 1 , Geram R. Hunanyan 1, Till Ockenfels1, Enrique Rico 2,3,4,
Enrique Solano 3,4,5,6 & Martin Weitz 1

The coupling of a two-level system with an electromagnetic field, whose fully
quantized version is the quantum Rabi model, is among the central topics of
quantum physics. When the coupling strength becomes large enough that the
field mode frequency is reached, the deep strong coupling regime is approa-
ched, and excitations can be created from the vacuum. Here we demonstrate a
periodic variant of the quantum Rabi model in which the two-level system is
encoded in the Bloch band structure of cold rubidium atoms in optical
potentials. With this method we achieve a Rabi coupling strength of 6.5 times
the fieldmode frequency, which is far in the deep strong coupling regime, and
observe a subcycle timescale raise in bosonic field mode excitations. In a
measurement recorded in the basis of the coupling term of the quantum Rabi
Hamiltonian, a freezing of dynamics is revealed for small frequency splittings
of the two-level system, as expected when the coupling term dominates over
all other energy scales, and a revival for larger splittings. Our work demon-
strates a route to realize quantum-engineering applications in yet unexplored
parameter regimes.

The motivation to develop the quantum Rabi model1,2, which is also
termed the single-mode spin-boson model, mostly stems from the
quest to obtain a complete quantum description of the interaction of
matter and light3–6, and currently this topic is also highly relevant in the
context of quantum information technologies7–13. For increased cou-
pling between matter and light, as the coupling strength becomes
stronger than the decoherence rate, the so-called strong coupling
regime is reached, with mixed states of the two-level system and the
field mode becoming relevant, as can be described in terms of the
Jaynes–Cummings model developed earlier14. The quantum Rabi
model, in addition to the co-rotating, also includes the counter-
rotating terms of the interaction Hamiltonian, which has striking
consequences as the coupling strength approaches the eigen-
frequency of the oscillator, a regime that is not accessible to natural
light-matter interactions. On the theoretical side, an analytic solution

of the full quantum Rabi model has more recently been found15.
Experimentally, implementations of the quantum Rabi model using
Josephson qubit, metamaterial, and spin-motion cold atom settings
have reached values of the ratio of coupling g and bosonic mode fre-
quencyω of up to 1.4316–19. A recent ion trapping experiment reporting
a quantum phase transition in the ground state dynamics of the
quantum Rabi model has operated in a regime with g/ω ≈ 3.5520.

Using an experimental approach based on implementing the
quantum Rabi model in the Brillouin zone of trapped cold atoms, we
demonstrate a coupling ratio of g/ω ≈ 6.5. A regimewhere the coupling
term dominates over all other energy scales can be experimentally
accessed in a wide parameter range. Our approach uses a two-level
systemprovided by two Bloch bands in an optical lattice and a bosonic
mode provided by the quantized atomic vibration in a superimposed
optical dipole trap potential. For short interaction times, predictions
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of the quantum Rabi model in the investigated parameter regime are
experimentally validated. For long interaction times, upon that the
edge of the Brillouin zone is reached we observe the onset of the
dynamics of a proposed generalized periodic version of this model21.

Results
Background and experimental realization
A schematic of the relevant vibrationalmodes of ultracold atoms in the
implemented potential landscape is shown in Fig. 1a, see the left hand
side for an illustration of the bosonic mode represented by the
quantized atomic vibration in the harmonic trapping potential. The
right hand side shows the superimposed periodic lattice potential
serving to implement the two-state system in its Bloch band structure,
and atomicwavepackets nowevolve in time in the combined potential,
see the bottom schematic. Before discussing the degree of coupling
between these two quantized modes for typical experimental para-
meters, we briefly describe our experimental implementation, see
Fig. 1b for a schematic of the used set-up. A harmonic trapping
potential for a cold cloud of rubidium atoms (87Rb) is generated by a
focused laser beam derived from a CO2-laser operating near a wave-
length of 10.6 μm, which due to its large detuning from the atomic
resonances allows for the creationof deeppotentialswhile keeping the
scattering rate low enough to prevent spurious heating of the atomic
ensemble. The additional lattice potential, of spatial periodicity λ

4,
where λ = 783.5 nm denotes the wavelength of the driving laser beams,
is generated by the dispersion of Doppler-sensitive Raman
transitions22,23, see Fig. 1c for the used level scheme. These effective
four-photon processes couple atoms in momentum states |−2_k + q〉
and |2_k + q〉, where q denotes the atomic quasimomentum and k = 2π

λ .
The coupling leads to a splitting between bands, see Fig. 1d for the
resulting atomic dispersion, and we in the following restrict the dis-
cussion to the lowest two bands. At the band crossing (at q =0) we are

left with the eigenstates of the two-level system of the quantum Rabi
Hamiltonian, with |g〉 = 1ffiffi

2
p (|−2_k〉 + |2_k〉) and |e〉 = 1ffiffi

2
p (|−2_k〉 − |2_k〉)

respectively, whose coupling to the bosonic mode provided by the
vibrational dynamics we are interested in.While in the general case the
system is described by a periodic variant of the quantum Rabi model
(see “Methods” and ref. 21), which interestingly also maps on a Hamil-
tonian realizable in afluxionium superconducting qubit setting24, we in
the present work concentrate on interaction times short enough to
remain in the first Brillouin zone such that both the quantum Rabi and
the periodic quantum Rabi models coincide. The atomic dynamics in
this regime is determined by the quantum Rabi Hamiltonian

Ĥ = _ωâyâ+
_ωq

2
σz + i_gσx ây � â

� �
, ð1Þ

where ây and â correspond to creation and annihilation operators of the
bosonic field, with as usual x̂ =

ffiffiffiffiffiffiffiffi
_

2mω

q
ðâ+ âyÞ, q̂=

ffiffiffiffiffiffiffiffiffiffiffiffi
� _mω

2

q
ðây � âÞ, and σx

and σz are Pauli matrices that act on two-component spinors with the
components describing course-grain atomic wavefunctions in upper
and lower bands, respectively, σx = ∣nb =0ihnb =0∣� ∣nb = 1i hnb = 1∣ and
σz = ∣nb = 1ihnb =0∣+ ∣nb =0ihnb = 1∣, with the Bloch band index nb (see
“Methods”). Further, _ωq is the energetic spacing between the bands at
the position of the crossing (Fig. 1d), which can be adjusted by the depth
of the lattice potential, and g = k

ffiffiffiffiffiffi
2_ω
m

q
is the coupling constant. This

magnitude of the coupling is well-understood in terms of the energy
transfer between momentum picture states ∣�2_k + qi and ∣2_k +qi
being of order ΔE = ðq+2_kÞ2=2m� ðq� 2_kÞ2=2m=2_k � q=m≈

ffiffiffi
n

p
_g

with the above value of the coupling constant for a typical value of
q≈

ffiffiffi
n

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m_ω=2

p
in the harmonic oscillator potential. Typical experi-

mental parameters are a trap oscillation frequency ω
2π 2 350,750½ �Hz, for

which we arrive at g
2π between 2290 and 3090Hz, so that the deep

strong coupling limit is well fulfilled, meaning that the two motional

Fig. 1 | Experimental schematic. a Atoms are exposed to the combined potential
obtained by superimposing a harmonic trapping potential (left) generated by a
focused CO2-laser beam and a lattice potential of spatial periodicity λ

4 (right). The
relevant oscillatory modes, of frequency ω for the oscillation in the harmonic
trapping potential and ωq for oscillation at the first band gap of the lattice, are
indicated. For atoms moving in the combined potential, the two modes are very
strongly coupled. b Schematic of the experimental set-up along with the optical

frequency components in the optical lattice beams used to synthesize the four-
photon latticepotential of periodicity λ

4, see c for the coupling scheme.dDispersion
relation of rubidium atoms in the lattice (blue) versus the atomic quasimomentum
along with the dispersion of free atoms in states ∣2_k +qi and ∣�2_k +qi (orange
dotted). At the position of the crossing, atoms in the lower and upper band cor-
respond to states |g〉 and |e〉 respectively of the two-level qubit system.
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modes present in the system, see also Fig. 1a, exchange energywith each
other faster than the temporal period. The qubit frequency spacing

ωq

2π
can be tuned between 0Hz and 5.5 kHz. In the coupling regime of g≫ω
that we study, striking dynamics is observed at this point.

Temporal evolution of system excitations
To begin with, we have characterized the temporal evolution of the
bosonic excitation number, as to verify the presence of quantum Rabi
physics in the deep strong coupling regime. For this, both the atomic
dynamics in position space was monitored by spatial imaging of the
atomic cloud following its manipulation in the combined lattice and
harmonic dipole trapping potential, as well as the atomic dynamics in
momentum space by time-of-flight imaging. In this way, the expecta-
tion value for the bosonic excitation number 〈N〉, where
_ω Nh i+ 1

2

� �
= mω2

2 x2
� �

+ 1
2m hq2i, can be determined. For these mea-

surements, atoms are initially prepared at a momentum centered at
|−2_k〉, corresponding to a quasimomentum of q = 0 in the Brillouin
zone, see Fig. 1d, and Nh i=0. The blue dots in Fig. 2a show the
observed temporal dynamics of the atomic excitation number in our
system for a qubit splitting

ωq

2π = 586 6ð ÞHz, which is of the order of the
harmonic trapping frequency ω

2π =346 7ð ÞHz. The observed increase of
the excitation number hNi with time shows that the deep strong cou-
pling regime is reached. In general, the experimental data is in good
agreement with theory based on numerically integrating the Schrö-
dinger equation using the Hamiltonian of Eq. 1, for the large coupling
strength of g

ω ffi 6:5 used in the experiment (blue line). Remaining
differences visible especially for shorter interaction timeare attributed
to the limited spatial resolution of the imaging system of 6.5μm
(“Methods”), causing systematic uncertainties in the determination of
themoment x2

� �
. For comparison, the orange data points correspond

todata for the larger qubit spacing of
ωq

2π = 5200 50ð ÞHz, at which for the
used value of g

2π =2275ð23ÞHz the dispersive deep strong coupling
regime, defined as ωq ≥ g21, is reached. Here, the increase in excitation
number occurs more slowly. Next, we have recorded experimental
data for different ratios of the relative coupling strength g

ω. For this, the
trapping frequencyωwas tuned, and Fig. 2b gives corresponding data
recorded at the fixed interaction time of t = 3

8
π
ω versus the relative

coupling strength g
ω both for a qubit frequency of

ωq

2π = 590 6ð ÞHz (blue
dots) and

ωq

2π = 5850 60ð ÞHz (orange triangles), respectively. The data
shows that the excitation number increases with the relative coupling
strength g

ω, and the achieved large values of up to above 70 excitation
quanta, which are achieved at the used short subcycle interaction time,

i.e., being much shorter than the period 2π
ω , gives evidence that we

operate in the regime of the coupling strength g far exceeding the
oscillator frequency ω. This can be seen analytically when for sake of
simplicity as a lower bound the formula for the maximum value of the

excitation number in the slowqubit approximationωq ffi 0 forwhich a

displaced harmonic oscillator model applies, of g
ω ≥

ffiffiffiffiffi
Nh i

p
2 is used (see

“Methods”). For a quantitative comparison, given both thatwe operate
at a nonvanishing value ofωq and that at the used interaction times the
maximum of the bosonic excitation number is not yet reached, we
have to rely on a comparison to a numeric solution of theHamiltonian;
see the good agreement of the experimental data with corresponding
theory in the two different regimes.

Dynamics of real and momentum space mean values
Next, we have analyzed the variation of themean displacement xh i of
the atomic cloud from the trap center versus time. For this mea-
surement, atoms are prepared at momentum of ∣�2_ki and after
evolution in the combined lattice and harmonic trapping potential
imaged in real space. Corresponding experimental data is shown in
Fig. 3a as a function of interaction time for different values of the
qubit frequency ωq, as tuned by adjusting the lattice depth. For a
vanishing depth of the lattice potential, i.e., in the slow qubit limit of
ωq → 0, we observe the onset of a harmonic oscillation in the har-
monic trapping potential, while for increasing lattice depth, corre-
sponding to a non-vanishing value of the qubit spacing ωq, the
observed displacement is reduced, and the evolution for stronger
lattice potentials becomes nonharmonic. From the observed dis-
placement of the ωq = 0 data, we can readily determine the ratio of
the coupling to the oscillation frequency, which equals g

ω = xm,0
xho

, where
xm,0 =

2_k
mω is the amplitude of the classical oscillation in the absence of

a lattice potential and xho =
ffiffiffiffiffiffi
2_
mω

q
≈ 0.82μm the size of the harmonic

oscillator ground state wavepacket. From this, we obtain g
ω = 5:6ð6Þ,

which is near the above-described result for the coupling ratio. To
put the deep strong coupling condition g

ω ≫ 1 differently, only in this
limit the splitting of wavepackets in the bosonic mode expected for
the nontrivial case of a nonvanishing qubit splitting can exceed the
wavepacket size. That is, only in the deep strong coupling regime we
can expect to observe distinguishable dynamics not only in the qubit
occupation, but also in the bosonic field modes. The time evolution
of the observedmeandisplacement hxi of the datawith nonvanishing
qubit spacing depicted in Fig. 3a qualitatively agreeswith simulations

Fig. 2 | Creating system excitations. a Variation of the number of excitation
quanta Nh i in the potential versus interaction time for a coupling g

2π = 2275 23ð ÞHz
and a bosonicmode frequency ω

2π = 346ð7ÞHz, corresponding to a relative coupling
strength g

ω =6:58ð7Þ, i.e., far in the deep strong coupling regime. The used qubit
spacings were

ωq

2π = 586ð6ÞHz (blue dots) and 5200(50)Hz (orange triangles).
The lines are theory. Atoms for this measurement are prepared in the momentum

state |−2_k〉 in the center of the harmonic trapping potential. b Variation of the
number of excitations on the relative coupling strength g

ω. Here a fixed interaction
time of 3

8
π
ω was used, and blue dots and orange triangles correspond to qubit

spacings
ωq

2π = 590 6ð ÞHzand 5850(60) Hz, respectively. The visible error bars denote
the statistical uncertainties.
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of the quantum Rabi model in the deep strong coupling regime
depicted as lines for large atomic displacements. A more detailed
analysis of the real space data in our system again is limited by the
finite instrumental resolution of the imaging system.

We have in more detail analyzed the momentum space data
obtained by the far-field time of flight imaging, from which both the
quasimomentum q and the band index nb of Bloch bands, with nb = 0
and 1 formomentameasured in the absence of a trapping potential of
p= �2_k +q and p= +2_k +q respectively, can be derived (see
“Methods”). Figure 3b, c show both the variation of the mean atomic
quasimomentum q

� �
and the mean Bloch band occupation hσxi,

which in the basis of the band eigenstates can be written as
σ̂x = ∣nb =0

�
nb =0
�

∣� ∣nb = 1ihnb = 1∣, with time along with theory.
Remarkably, at small lattice depth, corresponding to a low value of
ωq, we observe a temporally nearly constant value of the Bloch band
occupation hσxi. This is understood as signal preparation, detection
and the systemHamiltonian—the latter in the unusual regime of g ≫ω
being dominatedby the interaction term—all are diagonal in the same
basis, the eigenbasis of the Pauli matrix σx. In contrast, for larger
lattice depth, i.e., with increased ωq, an oscillatory behavior is
observed, as attributed to atomic wavepackets localized in the trap
center performing Rabi oscillations between the momentum eigen-
states ∣±2_k

�
respectively. This is most clearly visible for the data

shown by the red squares for
ωq

2π ffi 3600 40ð ÞHz, for which withωq >ω
the dispersive deep strong coupling regime is reached. In general, we
observe that the average value of the Bloch band occupation hσxi

reduces for large lattice depth, as has been predicted in earlier
work25.

One also finds that near the largest investigated interaction times
the experimental data (data points) visible in Fig. 3b, c starts to deviate
from the theory curves (lines), which were derived based on the
quantum Rabi model, as understood from that the edge of the Bril-
louin zone at t = π

2ω is reached, uponwhich it becomes relevant thatour
system realizes a periodic variant of the quantum Rabi model. This is
most clearly seen for the data sets recorded with the smallest qubit
spacings. Theory predictions based on the periodic quantum Rabi
model, which qualitatively reproduce the experimental data also near
the band edge, are shown by semi-translucent lines.

Preparing atoms in qubit eigenstates
In furthermeasurements, we have prepared atoms in the qubit ground
state |g〉 and excited state |e〉, respectively, formed by the Bloch bands
and studied the temporal variation of the qubit population. As
described above, the qubit states correspond to coherent super-
positions of the momentum picture states |±2_k〉, respectively, and to
prepare these states Bragg transitions were driven with counter-
propagating momentum transfer using Raman beams with the corre-
sponding phase difference imprinted. We again start at a vanishing
bosonicmode quantumnumber (hNi=0). The initial states |g, 0〉, |e, 0〉
prepared in this way correspondingly have different parity12. For
detection, given that the qubit occupation is encoded in the relative
phase of two wavepackets, at the end of the measurement atoms were

Fig. 3 | Revealing the time evolution of system parameters. a Variation of the
mean value of the atomic cloud position xh i on the interaction time. On the right
hand scale, this quantity is given in units of the harmonic oscillator length xho.
Experimental parameters were a coupling g

2π = 2275 23ð ÞHz and a bosonic mode
frequency ω

2π = 346ð7ÞHz. Further, the used qubit spacing
ωq

2π was 0Hz (blue dots),
586(6) Hz (orange triangles), 1660(20)Hz (green upside-down triangles), and

3600(40)Hz (red squares) respectively. The system is initially prepared in the
momentum state |−2_k〉. Theory results for the quantum Rabi and the periodic
quantum Rabi models are represented by non-transparent and semi-transparent
lines, respectively.bTime evolutionof theobservedmeanatomicquasimomentum
q
� �

and c the Bloch band occupation σx

� �
for corresponding values of the qubit

spacing. The visible error bars denote the statistical uncertainties.
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first adiabatically moved away from the bandgap by chirping the four-
photon lattice potential, which remaps the upper and lower bands |e〉
and |g〉 to the bare states |2_k〉 and |−2_k〉, respectively, and then
observing the band population, which allows to determine the popu-
lation in the corresponding qubit states. Experimental results for the
variation of the measured qubit population difference σz

� �
= hð∣eihe∣�

∣gihg∣Þi with time are shown in Fig. 4a. Here the blue dots and yellow
triangles correspond to an initial population in the ground state for a
qubit frequencyωqofωq→0and 1050(10) Hz, respectively, and the red
squares and green triangles to preparation in the excited state for the
corresponding qubit frequencies. In all cases, rapid decay of the
population difference hσzi with time is observed, in agreement with
theoretical predictions, as understood from the strong coupling of the
qubit states with the bosonic field mode leading to a highly entangled
nature of the systems eigenstates12. We attribute the visible deviation
from theory for the largest investigated interaction times of near
700 μs, at which the end of the Brillouin zone is reached, to non-
adiabatic transitions occurring in the used experimental band-
mapping readout scheme.

We have also determined the variation of the mean excitation
number hNi on the interaction time, as shown in Fig. 4b for both
atoms initially in the qubit ground state ∣g

�
(blue dots) and the

excited state ∣ei (orange triangles) respectively. Here an enhance-
ment of the excitation number for atoms initially in the upper qubit
state with respect to that when preparing in the lower state is
observed. Given that the qubit states are superposition states this
demonstrates a dependence of hNi on the phase of the initial state,

which gives evidence that also at the largest interaction times
investigated in Fig. 4a, b quantum coherence is preserved. The dif-
ference is smaller than theoretical predictions, and we attribute the
reduced contrast to the imperfect resolution of our imaging system,
which reduces the distinguishability of the diffraction peaks.
Figure 4c shows the variation of the difference of the excitation
number hNi between when preparing the qubit in the ground and
excited states respectively on both time and qubit frequencyωq. This
generalizes the results shown in Fig. 4b to different qubit frequency
spacings. While for small spacings the sensitivity of the excitation
number on the initial state of the qubit is small, at qubit frequencies
above

ωq

2π ≈ 1 kHz a clear difference is visible. While for the simple case
of ωq = 0 the atomic wavepacket superposition oscillating in the
trapping potential can be expressed by the Schrödinger cat states
1ffiffi
2

p ð∣ igωi± ∣� ig
ωiÞ, respectively, for a nonvanishing qubit frequency ωq

the quantum states become much more complex entangled states.
The experimental findings of Fig. 4c demonstrate the phase-
dependent behavior of the quantum Rabi dynamics in the deep
strong coupling regime, see also the good agreement of the datawith
theory (Fig. 4d) for comparison.

Discussion
Our experiment demonstrates that quantum Rabi physics at unpre-
ceded high coupling strength can be realized with ultracold atoms in
optical lattices using solely the spatial degrees of freedom. In our
approach, a two-level system has been encoded in the occupation of
Bloch bands, interacting with a bosonic mode implemented by

Fig. 4 | Preparing atoms in qubit states. a Time evolution of the qubit excitation
σz

� �
following preparation of atoms in lower (orange triangles) and upper (red

squares) states of the two-state system for a qubit spacing
ωq

2π = 1050 10ð ÞHz. For
comparison, the blue dots and green upside-down triangles correspond to mea-
surements with ωq = 0. The lines are theory. gω =6:50 5ð Þ in all measurements.
b Variation of the mean excitation number <N > on the interaction time for atoms

initially prepared in the ground (blue dots) and the excited qubit states (orange
triangles), respectively, for

ωq

2π =4660 50ð ÞHz, along with theory (lines).
c Experimental data for the difference in themean excitation number hNi∣ei � hNi∣gi
observed when preparing atoms initially in qubit excited and ground states,
respectively, on both interaction time and qubit spacing represented in color code.
d Corresponding theory expectations.
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harmonicmotion in a dipole trap. The characteristic dynamics at these
parameter regimes has been mapped out.

For the future, extensions of this work can include quantum
information processing based on qubits encoded in the vibrational
dynamics of cold atoms in engineered superpositions of periodic
lattices and slowly varying dipole trapping potentials. This is remi-
niscent of work done in the phase space of superconducting qubit
systems, albeit with stronger coupling strengths24,26. For coupling of
different qubits, digital techniques, alternating between tightly
confined interaction and qubit manipulation periods following here
demonstrated techniques can be envisioned27. It also will be inter-
esting to extend the present work to longer interaction times, as to
study predictions of the periodic quantum Rabi model and observe
collapse and revival patterns of the initial state21. Other interesting
future work includes the search for phase transitions of the spin-
boson model28,29.

Methods
Experimental set-up and procedure
Our experimental apparatus, see also the schematics shown in Fig. 1b
of the main text, is a modified version of a set-up used in earlier
works30. Inside a vacuum apparatus, cold rubidium atoms (87Rb) col-
lected in a magneto-optic trap are loaded into the dipole trapping
potential inducedbyabeamfocused to42μmdiameterderived froma
CO2-laser operating near 10.6μm wavelength. The atoms are eva-
poratively cooled toquantumdegeneracy by lowering the depth of the
dipole potential. In the final stages of the cooling, a magnetic quad-
rupole field is activated, which allows to generate a spin-polarized
Bose-Einstein condensate in the mF = 1 component of the F = 1
hyperfineground state. To keep interactioneffects small, herewework
with small condensate numbers of typically 2500 atoms, as achieved
by ramping the depth of the trapping potential in evaporative cooling
to lower values than needed to achieve condensation to reduce the
number of confined atoms. Subsequently, the dipole trapping poten-
tial is ramped up adiabatically within 250ms to reach the desired
values of the trapping frequency ω, see also the main text, for simu-
lation of the quantum Rabi model. Typical beam powers are 32W,
30mW, and 100mW during loading, the final stage of evaporative
cooling, and quantum Rabi manipulation phases, respectively. In the
latter phase, atoms remain well confined in the center of the Gaussian

beam, in a range where the dipole trapping potential can well be
described as a harmonic potential. The anharmonicity, defined as the
difference of the dipole potential expected to be imprinted by a
Gaussian laser beam and a harmonic potential, for the experimentally
relevant parameter regime is below0.25%. The estimated decoherence
rate fromphoton scattering from themid-infrared trapping laser beam
in thequantumRabimanipulationphase is 1.7 × 10−5/s, i.e., is negligible.
In practice, decoherence will be determined by scattering from the
Raman beams and atomic interaction effects.

The method used to generate a high spatial harmonic lattice
potential of periodicity λ

4, where λ ’ 783:5 nm (which is detuned
3.5 nm from the rubidium D2-line) denotes the wavelength of the
driving laser beams, relies on four-photon Raman processes22. The
transitions are driven in a three-level configuration with two stable
ground states |1〉 and |2〉 and one spontaneously decaying excited
state |3〉 by a beam of frequency ωlat and two counterpropagating
superimposed beams of frequencies ωlat +Δωlat and ωlat � Δωlat. The
mF = −1 and mF = 0 components of 5S1=2,F = 1 constitute the used
ground states and the 5P3=2 manifold serves as the excited state of the
three-level configuration. Atomic momentum is exchanged with the
driving light field in units of four-photon momenta, which is a factor
two above that of the relevant processes in a usual standing wave
lattice induced by two-photon processes. Correspondingly, the spa-
tial periodicity of the induced potential is a factor two smaller and
equals λ

4
22. In the experiment, we typically use a magnetic bias field of

1 G to remove the degeneracy of Zeeman sublevels and a frequency
difference ΔωZ

2π ’ 1:6MHz.
In the experimental sequence, following the ramping up of the

CO2-laser beam intensity to the desired harmonic trapping frequency,
atoms are prepared near the first avoided crossing of the lattice band
structure (Fig. 1d) by means of Bragg diffraction. For the used lattice
with spatial periodicity λ

4 usual Bragg diffraction, transferring
momentum in units of two-photon momenta, can be used to prepare
atoms at the position of the first band crossing. For the experimental
data shown in Fig. 4, with qubit states |g〉 and |e〉 respectively as the
initial states, two simultaneously performed Bragg pulses with oppo-
site directions of the momentum transfer were used with the relative
phase of the pulses allowing to set the desired qubit initial state. Fol-
lowing preparation, atomswere left in the desired combined potential
of lattice and harmonic trapping for quantum Rabi manipulation for a
variable interaction time.

Subsequent detection of the atomic cloud was performed after
extinguishing both the lattice and the dipole trapping beams. For this,
absorption imaging of the atomic samplewas employed onto a sCMOS
camera. During the experiments described in the main text, both
measurements probing the real-space distribution are carried out by
probing directly following the experiment, as well as far-field time-of-
flight imaging probing the momentum distribution were performed.
For an analysis of measurements of the rms displacement x2

� �
of the

atomic cloud from the trap center, the experimental image data was
first deconvoluted by the point spread function of the imaging system
(of near 6.5μm instrumental resolution) determined in an indepen-
dent measurement before analysis of this moment from a series of
measurement. Example images after deconvolution are shown
in Fig. 5a.

Themomentumpmeasured in the absenceof a trappingpotential
maps onto the quasimomentum q and the band index nb 2 0,1f g !
�2_k,2_k

	 

mapping the basis states of our qubit state via

p=q+2_k 2nb � 1
� �

. Example time of flight images to obtain the
momentum p and subsequently quasimomentum q and band index nb
are shown in Fig. 5b.

Theoretical methods
The single-particle Hamiltonian for a cloud of ultracold atoms is
described by the sum of a harmonic part, which includes the kinetic

Fig. 5 | Examples of obtained image data. a Series of real space images for the
system initially prepared in the qubit excited state of the quantum Rabi Hamilto-
nian, with

ωq

2π = 2380 40ð ÞHz and g
ω =6:5ð5Þ, after deconvolution of the obtained raw

absorption imaging data of the atomic ensemble accounting for the point spread
function of the usedoptics. From left to right the interaction time increases in steps
of 50μs. Despite the limited instrumental optical resolution, a splitting up of the
atomic cloud is observed. b Series of time-of-flight images of the atomic cloud, for
the same system state as in a. The numbers on the left-hand side represent the
measured atomicmomentump, while the on the right-hand side the corresponding
quasimomentum q is given.
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energy of the atoms and the harmonic trap, and a periodic potential,

Ĥ =
p̂2

2m
+
mω2

2
x̂2 +

V
2
cos 4kx̂

� �
, ð2Þ

where p̂= �i_ d
dx and x̂ aremomentumandpositionof an atomofmass

m, respectively. If wewrite this Hamiltonian in the Bloch basis function
x∣ϕnðqÞ

� �
= eiqx=_e�i2kxei4nkx and we project to the two lowest energy

bands, it is recast into

Ĥ =
q̂2

2m
+
mω2

2
x̂2 +

2_k
m

1 0

0 �1

� �
q̂+

V
4

0 1

1 0

� �
: ð3Þ

Defining creation and annihilation operators â=
ffiffiffiffiffiffi
mω
2_

p ðx̂ + i
mω q̂Þ

and ây =
ffiffiffiffiffiffi
mω
2_

p ðx̂ � i
mω q̂Þ, while rotating the qubit (band index) with the

unitary operator U = 1ffiffi
2

p 1 1
1 �1

� �
, and defining the Pauli matrices in

the rotated basis as

σx = ∣n =0ihn=0∣� ∣n= 1ihn = 1∣

σz = ∣n= 1ihn=0∣+ ∣n=0ihn= 1∣

the total system Hamiltonian is the one given in Eq. (1).
In our experimental sequence, the prepared initial states corre-

spond to quite highly energetic states of the system Hamiltonian, as
can be seen in Fig. 6, which shows the numerically determined
occupation probability of the states for atoms prepared in a ∣�2_k

�
momentum state and the bosonic vacuum state, corresponding to
typical initial conditions. The initial state ∣�2_k

�
corresponds to a

superposition of two qubit states, such that here both eigenstates
with negative and positive parity (see Fig. 6a, b, respectively) are
populated.

In what follows, we would like to understand the occupation
number, or number of photons, in an experiment starting with the
ground state of a cavitymodewith frequencyω in a Rabimodel, where
the frequency of the qubit is set to zero, i.e., ωq = 0, and the coupling
strength of the cavity and qubit is given by g,

Hωq =0
=ω N +

1
2

� �
+ gσx a+ay� �

=ω ay +
gσx

ω

� �
a+

gσx

ω

� �
+
ω
2
� g2

ω

ð4Þ

As it can be directly seen from the second line, this Hamiltonian is
diagonal with the displaced cavity operators

b =a+
gσx

ω
=a+α,

where the displacement operator is given by

D αð Þ= eαay�α?a = e�
∣α∣2
2 eαa

y
e�α?a,

for a general α parameter.
The action of the time evolution of a displaced Hamiltonian for a

cavity mode on the vacuum, i.e., no excitations, is given by

eiHðαÞt ∣0i=Dð�αÞeiHð0ÞtDðαÞ∣0i= eiωt
2 e

ig2 t
ω Dð�αÞ∣e�iωtαi

= e
iωt
2 e

ig2 t
ω eImð∣α∣2eiωt ÞD½αðe�iωt � 1Þ�∣0i:

From this expression, we can derive the expectation value in the
number of excitations for an interaction time t

Nh i= ∣α tð Þ∣2 = 4∣α∣2sin2 ωt
2

� �
: ð5Þ

Correspondingly, with α = g
ω, the maximum number of the

expectation value Nh i is given by

Nmax = 4∣α∣
2 =

4g2

ω2 : ð6Þ

Comparison to fluxonium qubit system
Finally, we remark that the here relevant Hamiltonian Eq. 2 maps onto
Hamiltonians reached with superconducting fluxonium systems. Spe-
cifically, see Eq. 1 of the quasicharge qubit system of ref. 24, which
reads:

H = EC
Q
2e

� �2

+
1
2
ELφ

2 � EJcos φ� φext

� �
, ð7Þ

with Q as the charge and φ as the superconducting phase difference.
Further, EC denotes the charging energy, EL the inductive energy, EJ the
Josephson energy, and φext an external phase. By separating the time-
dependent Schrödinger equation obtained with the Hamiltonian of
Eq. 7 into slow and fast varying parts respectively and substitution of

Fig. 6 | Simulation of the initial system state. a Population distribution of
negative parity eigenstates of the system when initially prepared in the ∣� 2_k

�
momentum state, and the vacuum field mode (<N > =0), versus the excitation

number n. The case of ωq

2π =0Hz is shown in blue color, and the case of
ωq

2π = 1000Hz
is shown in orange. b Corresponding population distribution of the positive parity
eigenstates.
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φ=4kx we find that resulting equation of motion can be written in
terms of an effective Hamiltonian that up to a basis transformation
directly maps onto Eq. 3 for

EC=_=
2_k2

m
, EJ=_=ωq, EL=_=

mω2

16_k2 , _g = 8ELE
3
C

� �1
4
, ð8Þ

For the specific case of an external phase φext = π, one also finds
that with these identifications Eq. 2 and Eq. 1 of ref. 24 are akin. This
allows us to directly compare the energy scales given in ref. 24 to the
parameters used here:

g
ω
’ 1:91,

ωq

ω
’ 2:42:

The here derived value of the (normalized) coupling strength g/ω
of this superconducting system is above that of earlier works explicitly
studying quantum Rabi physics in superconducting systems, and
below the corresponding values of both the ion trappingwork of ref. 20

and of the present work.

Data availability
Source data are provided with this paper.
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