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Expectation violations enhance neuronal
encoding of sensory information in mouse
primary visual cortex

Matthew F. Tang 1,2,3,8 , Ehsan Kheradpezhouh1,2,8, Conrad C. Y. Lee1,2,4,
J. Edwin Dickinson 5, Jason B. Mattingley 2,3,6,7 & Ehsan Arabzadeh 1,2

The response of cortical neurons to sensory stimuli is shaped both by past
events (adaptation) and the expectation of future events (prediction). Here we
employed a visual stimulus paradigm with different levels of predictability to
characterise how expectation influences orientation selectivity in the primary
visual cortex (V1) of male mice. We recorded neuronal activity using two-
photon calcium imaging (GCaMP6f) while animals viewed sequences of grat-
ing stimuli which either varied randomly in their orientations or rotated pre-
dictably with occasional transitions to an unexpected orientation. For single
neurons and the population, there was significant enhancement in the gain of
orientation-selective responses to unexpected gratings. This gain-
enhancement for unexpected stimuli was prominent in both awake and
anaesthetised mice. We implemented a computational model to demonstrate
how trial-to-trial variability in neuronal responses were best characterised
when adaptation and expectation effects were combined.

There is often more information in the sensory environment than the
brain has the capacity to fully process. To cope with this information
overload, activity within neuronal circuits is modulated by processes
suchas adaptation1,2 attention3,4, andprediction5,6. Neural adaptation is
known to improve the transmission of sensory information in circuits
by accounting for the statistics of past sensory inputs1,7,8. Likewise,
selective attention can enhance neural responses to task-relevant
features and suppress irrelevant information3,9. An influential theory of
neural function argues that predictions about specific future stimuli,
based upon Bayesian inference, might similarly improve the fidelity of
stimulus representations5,6. Based on this predictive coding view, the
mammalian cortex is conceptualised as a predictivemachine that uses
the statistical regularities of incoming sensory inputs to iteratively
generate an internal model of its external environment. Predictive
coding provides a simple theoretical view of perception which is
supported by a substantial body of work in human neuroimaging and

behavioural studies10,11. The classic mismatch negativity effect has
become a hallmark of this literature12,13. When encountering an unex-
pected stimulus, the brain generates a significantly larger evoked
response compared with the response following an expected
stimulus11. Decoding of activity from electroencephalography (EEG)
recordings in humans has revealed that expectation affects the
representation of visual information in the brain14–18.

Recent work supports the idea that prediction influences single
neuron responses across a number of sensory modalities19–24. Theo-
retical models propose that higher level processing regions generate
inhibitory copies of the expected stimulus which are passed down the
cortical hierarchy to the earlier processing regions6, where they are
integrated with incoming sensory inputs. If a stimulus is expected, the
inhibitory copy should minimise the neuronal response. By contrast,
any mismatch between the expected and presented stimulus should
result in a prominent response.
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Here, we tested key elements of predictive coding theory at the
neuronal level in mouse primary visual cortex (V1). We used two-
photon calcium imaging in awake mice that were exposed to
sequences of oriented gratings at different levels of predictability.
We characterised howprediction affects orientation selectivity in V1
neurons, and how changes in orientation tuning modulate the
amount of information about the sensory input carried by indivi-
dual neurons and neuronal populations. We demonstrate that
unexpected stimuli significantly increase the gain of orientation
selectivity without any corresponding changes to the width of the
tuning function. Such increased gain to expectation violations
yields increased information about stimulus features within single-
cells and at the level of neuronal populations. This enhanced
representation of unexpected stimuli is present in both awake and
anaesthetised mice. Finally, we use a computational model to
quantify the contribution of adaptation and expectation to neuro-
nal responses at the single trial level.

Results
We combined experimental and modelling approaches to determine
howprediction affects neuronal responses inmouse (C57BL) V1 cortical
neurons to sequences of oriented grating stimuli.We askedwhether the
selectivity of individual neurons changes with expectations about the
orientation of future stimuli by presenting sequences of gratings with
different levels of predictability to awakemice (N = 3 across 23 sessions
in total, 1693 neurons) while imaging Layer 2/3 activity in V1 using two-
photon excitation microscopy (Fig. 1a–c, Supplementary Movie 1). The
stimulus sequence was adapted from the Allen Brain Institute’s Brain
Observatory paradigm25 used to quantify orientation selectivity. Each
sequence consisted of a series of full-screen gratings (0.034 c/°, 50%
contrast) oriented between 0° and 150° in 30° steps, presented at 4Hz
with no inter-stimulus interval. In the Random condition (Fig. 1b, c), the
orientations of successive gratings were uncorrelated.

To establish predictions about stimulus orientation, in the Rotat-
ing condition the grating rotated either clockwise or anti-clockwise
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Fig. 1 | Experimental procedure for testing the effects of prediction on orien-
tation selectivity in mouse V1 neurons. a Apparatus for using two-photon cal-
cium imaging in combination with visual stimulation. b Schematic of the Random
and Rotating sequences of oriented gratings. c In the Random condition, the
orientation of each stimulus was drawn from a pseudo-randomised distribution
(uniform probability from 0 to 150° in 30° steps). In the Rotating condition, the
gratings rotatedclockwise (e.g., 0° -> 30° -> 60°) or anti-clockwise (e.g., 0° -> 150° ->
120°) for 5–9 presentations (red dots) before jumping to a random unexpected
orientation (indicated by the green dots). d Mean motion-corrected two-photon

image from a single session, with individual neurons highlighted in red. e Time
course of activity in the corresponding neurons highlighted in d in response to
different grating orientations from the Random condition. The tuning functions in
the right panels show the average response from 0 to 1000ms after stimulus
presentation. Points are fitted with a circular Gaussian with a baseline offset. The
key parameters of the fits are given as the gain (amplitude) and width (standard
deviation) of the Gaussian for each neuron. Shading and error bars show ±1 stan-
dard error over trials.
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for 5–9 presentations (in 30° steps), before jumping to an unexpected
random orientation. In this condition, Expected events were those
which constituted the rotating sequence, whereas Unexpected events
were those in which the stimulus jumped randomly to an unpredicted
orientation. Critically, for unexpected events the jump from the
predicted orientation was to a random orientation matched to
the correlation statistics for the stimulus sequence embedded in the
Random condition. Figure 1b, c identify the three types of transitions
within the visual stimulation protocol: Random transitions (in blue),
Expected transitions (in red) and Unexpected transitions (in green).
Figure 1d, e showseight example neurons imagedwithin afield of view,
each of which exhibited a varying degree of orientation selectivity
under the Random condition. In line with previous work25, many
imaged neurons showed orientation selectivity for the spatial
frequency employed (462/1693; one-way ANOVA p <0.05 for orienta-
tion selectivity).

Prediction affects single neuron activity
We next examined how orientation selectivity of individual neurons
was affected by stimulus predictability (Fig. 2). The three example
neurons shown in Fig. 2a all exhibit orientation selectivity from ~85 to
100ms after stimulus onset. The first neuron (top row of Fig. 2a)
responded maximally to gratings at 0°, with slight suppression for
themoredistant orientations (60°, 90°, 120°). During presentation of
the Expected stimulus (red trace), modulation of neuronal activity
began before the onset of the stimulus (0ms). This pre-stimulus
modulation is due to the rotating nature of the sequence: the sti-
mulus presented at −500 ms was orthogonal to that presented at
0ms. This means that in the 0° condition, the anti-preferred stimulus
(90°) was presented at −500 ms, whereas in the 90° condition, the
preferred stimulus (0°) was presented at −500 ms. The rotating
nature of the stimuli during the Expected sequence thus produced an
idiosyncratic temporal profile in neuronal response. For this reason,
here we focus on the Random and Unexpected transitions where the
stimuli presented immediately before 0ms were uncorrelated with
the current stimulus.

The main effect of predictability is evident from the three exam-
ple neurons illustrated in Fig. 2a. There was a systematic increase in
neuronal responses to the preferred orientation, and a decrease to the
anti-preferred orientation, in the Unexpected (green trace) compared
with the Random condition (blue trace). This response profile is con-
sistent with a positive gain modulation for unexpected gratings. The
overall population response (aligned to the preferred orientation)
showed the same pattern of results (Fig. 2b), with an increased
response to the preferred stimulus in the Unexpected versus Random
condition. The responses of 133/462 orientation-selective neurons
(28.8%) were significantly modulated in the Unexpected condition
relative to the Randomcondition (t-test, p < 0.05). Of these, all but two
(98.5%) showed a larger response in the Unexpected condition
(Fig. 2d), and this increase in selectivity emerged shortly after stimulus
presentation (Fig. 2e).

We next quantified how orientation selectivity was affected by
predictability. To do this, we fitted circular Gaussian tuning functions
to separately determine the gain (amplitude) and width (standard
deviation) parameters of orientation selectivity for each neuron
(Fig. 2f, Supplementary Fig. 1, see Eq. 1). The gain of the tuning curve
was significantly greater in the Unexpected condition than in the
Random condition (t(461) = 15.67, p < 0.001). By contrast, there was
no difference in the width between these two conditions,
(t(461) = 1.58, p = 0.12, Supplementary Fig. 1). These results are con-
sistent with our recent work examining how prediction affects
orientation selectivity measured non-invasively in humans14,15. A
control condition showed these effects were not due to the sys-
tematic rotations that followed Unexpected gratings (Supplemen-
tary Fig. 2).

Prediction affects population coding of orientation
In our initial set of analyses, we found that expectation affected
orientation selectivity in individual V1 neurons.We next examined how
enhanced orientation selectivity for unexpected stimuli at the single-
neuron level in turn shaped the information contained within the
population response. Previous human neuroimaging studies using
multivariate pattern analysis have shown that expectation affects
classification accuracy of the stimulus features14–17,26. To determine
how these findings generalise across species, we applied a similar
multivariate pattern analysis to the neuronal population data.We used
all imaged neurons (N = 1693; 23 imaging sessions), including both
orientation-selective and non-orientation selective neurons to decode
the presented orientation using inverted/forward encoding modelling
(see multivariate analysis section in Methods for details). Figure 3a, b
illustrates the key steps in a forward (or inverted) encoding approach
and how this method can be used to determine the amount of
orientation-selective information contained in the population activity
on a trial-to-trial basis. In line with the human work14–17,26, in a first step
themethod applies an encodingmodel using a subset of trials (training
trials) to estimate neuronal selectivity to each orientation (Fig. 3a).
Then, in a second step, it inverts these weights to reconstruct the
stimulus representation from the population response on a new set of
test trials (Fig. 3b).

We first applied this decoding procedure in a time-resolved
manner to determine the temporal dynamics of population-level pre-
diction effects (Fig. 3d). This showed the decoding performance star-
ted to rise for the Random and Unexpected conditions shortly after
stimulus presentation. More importantly, greater decoding accuracy
emerges for Unexpected relative to Random stimuli from shortly after
stimulus onset (~100ms). The early divergence suggests that the
increase in selectivity for unexpected stimuli results fromexpectations
developed before the stimulus appears rather than from a subsequent
top-down influence which would appear later. Unsurprisingly, in the
Expected condition orientation information could be decoded above
chance before the stimulus appeared. This is because orientations
occurring before stimulus presentation (0ms) were correlated with
the orientation of the decoded stimulus presented at time zero. The
decoding profile for Expected stimuli also exhibits an oscillating pro-
file, which likely reflects a combination of three factors: oscillations in
neuronal activity due to the periodic onsets of stimuli in the presented
sequences; the 30° changes in orientation from one stimulus to the
next within the rotating sequences; and the dynamics of the calcium
indicator.

We next examined the effect of different-sized neuronal popula-
tions on decoding accuracy (Fig. 3e). To do this, we selected groups of
neurons and used a 10-fold cross-validation procedure to train and test
the classifier, which was repeated 24 times with different subsets of
neurons. The decoding procedure was performed on the average
neuronal responses from 250 to 1000ms after stimulus onset, and
different-sized pools of neurons were selected (1 to 1600 neurons, in
100 logarithmically-spaced steps). This analysis again showed that the
presented orientation was decoded significantly better in the Unex-
pected than the Randomcondition. Figure 3e illustrates that this effect
emerged with population sizes of relatively few neurons (<10). The
Expected condition also showed greater decoding accuracy relative to
the Random condition, but this effect was smaller than in the Unex-
pected condition and did not emerge until a population of ~100 neu-
rons was included in the analysis.

Predictions repel perception away from the expected
orientation
The analyses presented above reveal a higher gain in orientation
selectivity among V1 neurons following Unexpected grating stimuli
relative to otherwise identical gratings within Random sequences.
According to formal models of predictive coding, the magnitude of a
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prediction error should be determined by the degree of surprise, with
more surprising stimuli yielding larger responses5,6. Consistent with
these models, we have shown in human observers that orientation-
selective stimulus-evoked responses increase as the difference
between expected and presented stimuli also increases15.

In the current study, we were able to quantify the degree of
prediction error in the Rotating condition and use this index to
characterise any change in orientation-selective responses in indi-
vidual V1 neurons. To do this, we grouped orientation-selective
neurons (N = 462) based on their maximum orientation-selective

response in the Random condition (Fig. 4a and Supplementary
Fig. 3). We found that orientation selectivity was influenced by the
expected orientation, such that responses were smallest when the
expected orientation was closest to the preferred orientation. For
example, as shown in Fig. 4a, neurons tuned to 90° had the lowest
orientation tuning when a 90° grating was expected (darkest green
line). Orientation selectivity was reduced to a lesser degree when
the surrounding orientations (60° and 120°) were expected, sug-
gesting that the magnitude of the prediction error affected neuro-
nal responses in an orientation-selective manner.

Fig. 2 | Expectation affects orientation-selective responses of individual V1
neurons. a Time-courses of three example neurons in response to oriented grating
stimuli in the expected, Unexpected and Random conditions. Each neuron is illu-
strated in a separate row, with the rightmost panel showing orientation tuning
curves for that neuron. The tuning is measured as the averaged response from 250
to 1000ms after stimulus onset (grey shading). The solid curve is a fitted Gaussian
functionwith a constant offset.b Sameas inA, but shows activity for all orientation-
selective neurons (N = 462 neurons) aligned to their preferred orientation (0°) to
allow averaging. Right panel: Same as inAbut showing theGaussian tuning function
for the population response. c Response to the preferred orientation across the
three conditions for all orientation-selective neurons. For presentation the time-
courses are smoothed with a Gaussian with a 33.3ms kernel. Every row represents
the response of one neuron. In each panel, neurons are sorted based on their
evoked response in the Unexpected condition (most excited on the top).

d Comparison of the response in the Unexpected and Random conditions at the
preferred orientation. Each dot represents one neuron. Purple dots show neurons
significantly modulated by expectation (N = 133 neurons); grey dots are non-
modulated neurons (N = 329 neurons). e Time-course of orientation-selectivity
(circular mean) for the Random (blue) and Unexpected (green) conditions. Black
horizontal lines indicate timepoints with statistically significant difference between
conditions, determined using non-parametric cluster-corrected procedures (see
Methods). f Summary statistics (n = 462) for fitted Gaussian parameters across the
population for the different sequence types. All parameters are shown in Supple-
mentary Fig. 1 for all three conditions. The Gain is the amplitude of the Gaussian.
The insert shows the distribution of the difference between the two conditions
(random minus unexpected). The purple line shows the zero point. Across all
panels error bars and shading represent ± 1 standard error of mean. All statistical
tests were two sided.
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To better visualise these effects, we aligned all neurons to their
preferred orientation and replotted the data as a function of the
difference between the expected orientation and the preferred
orientation (Fig. 4b). To quantify these effects, we fit Gaussian
curves to each neuron’s orientation selectivity for all expected
orientations (Fig. 4c, d). Both the gain (Fig. 4c, one-way ANOVA,

F(5,1835) = 3.31, p = 0.006, η² = 0.006) and the baseline response to
all orientations (Fig. 4d, F(5,1835) = 8.38, p < 0.001, η² = 0.022) were
systematically affected by the magnitude of the violated
expectation.

We followed up these results by examining how population-level
encoding of the presented orientation was affected by the magnitude
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Fig. 3 | Expectation affects stimulus-specific information carried by neuronal
population activity. a Schematic of training the multivariate forward orientation
encoding. Example regressors for 7 training trials with different orientations. The
basis functions (grey lines) in response to different orientations which produce the
regressor weights. Neuronal response for four example neurons for the example
trials. Least squared regression is applied between the regressors and response to
determine selectivity. Regression coefficients (beta weights) for four example
neurons for each of the regressors found from a training set of data. b Testing the
encoding model. Activity for the four neurons in test trials. Inverting the regressor
weights and multiplying them by the population responses from the four neurons
produces the predicted orientation response from this pattern of activity. The
difference between the predicted and presented orientation for a given stimulus is
the orientation error. c Distribution of orientation error when encoding was

performed separately on groups of 50 neurons and 500 neurons at a time (with 24
permutations of different neuronal combinations). The vector average of these
histograms was taken as the decoding accuracy for each condition. The coloured
numbers show the vector sum for the corresponding curves. d Time-resolved
classification from forward encoding modelling (N = 500 neurons) with 24 per-
mutations of different groups of neurons. e Decoding accuracy scales with the
number of neurons. The classifier was trained and tested on the average response
from 250 to 1000ms following stimulus onset, with different numbers of neurons
included (N = 24 permutations of different neurons for each population size). The
coloured horizontal lines indicate statistical significance using sign-flipped cluster
permutation tests comparing Random vs. Unexpected (green line) and Random vs.
Expected (blue line). In panelsd and e, shading/errorbars indicate±1 standarderror
of the mean across permutations.
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of the prediction error (or expectation violation). To do this, we divi-
ded the forward encoding results (Fig. 3) into separate bins based on
the difference between the expected and presented orientation
(Fig. 4e). We found that the decoded orientation of the presented
stimulus was biased away from the expected orientation, with the
largest effect observed for a difference of 30°. This “repulsion” effect is
reminiscent of the well-known adaptation aftereffect for oriented
stimuli27,28, in which the largest effect typically arises when the adapt-
ing and test stimuli are separated by around 30°. In the present
experiment, however, the observed repulsion effect was driven by the
expected orientation rather than the orientation of the preceding
stimulus.

Computational modelling of the relative contributions of
adaptation and prediction on visual coding efficiency
Formal models of predictive coding assume that high-level cortical
areas pass predictions, which are inverse copies of the expected sti-
mulus, to lower-level areas5,6. According to this framework, only a small
neuronal response is required for representation if a stimulusmatches
the expectation29. Such an account is reminiscent of the effect of
adaptation on neuronal representation, whereby an immediately pre-
ceding stimulus reduces the neuronal response to a current stimulus
without decreasing the overall amount of stimulus information1,8.
Indeed, a number of studies have investigated whether adaptation
might bedue toprediction errors14,30,31. Both adaptation andprediction

Fig. 4 | Increase in neuronal responses to unexpected stimuli is determined by
the magnitude of the prediction error. a Neurons tuned to each displayed
orientation are affected differently when different orientations are expected. Panel
a shows an example for each expected orientation using neurons selective for 90°
orientations (n = 92 neurons), as defined based on their responses in the Random
condition (from 250 to 1000ms). Responses of remaining neurons selective for the
other presented orientations are shown in Supplementary Fig. 3. For each unex-
pected stimulus in the rotating condition, we identified the difference between the
orientation of the expected stimulus and the orientation of the presented unex-
pected stimulus. For instance, if 60° was expected but 0° was unexpectedly pre-
sented, the expectation violation would be 60°. b All orientation-selective neurons
(n = 462) alignedwith their preferred orientation, plotted as separate Gaussians for

each difference between the expected orientation and the presented orientation
(expectation violation). c Gain and d baseline of Gaussians fitted to each neuron’s
response (n = 462), plotted as a function of expectation violation for all orientation-
selective neurons. e Forward encoding modelling reveals how population repre-
sentations of orientation are affected by the degree of expectation violation. The
encoding weights are shown separately here for different values of expectation
violation. Encoding was performed on population response recorded in each ses-
sion (n = 23 sessions). f The y axis shows the difference between the presented and
decoded orientation (ΔPerceived orientation). The population response (filled
symbols) is biased away from the expected orientation with the largest bias at ±30°
(n = 23 sessions). In all panels, error bars indicate ±1 standard error of the mean. All
statistical tests were two sided.
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rely on the statistics of sensory inputs. Adaptation exploits the recent
history of stimulus presentations to alter current sensory representa-
tions, whereas prediction is thought to use statistical regularities to
extract future patterns.

We created a simple computational model of orientation pro-
cessing to better understand how expectation interacts with adapta-
tion to influence the neural coding of orientation. The model is based
on several tuned orientation-selective neurons (or information chan-
nels) maximally sensitive to different orientations. The neurons
respond proportionally based on their sensitivity to the presented
orientation (Fig. 5). We incorporated two sources of inhibition: adap-
tation (in response to a previously presented stimulus) and expecta-
tion (in response to a predicted future stimulus). Similar to previous
work27,28,32,33, adaptation causes gain modulation in neuronal orienta-
tion selectivity based on the response to the preceding stimulus
(Fig. 5a, b). Prediction, on the other hand, affects neuronal responses
by producing an inverse copy of the expected orientation. To account
for commonly observed long-lasting effects of gain modulation on
orientation sensitivity34,35, the model allows sensitivity to recover gra-
dually over a number of trials. The amount of gain modulation can be
varied to increase or decrease the influence of either adaptation or
prediction.

We presented sequences of orientations to the model from both
the Random and Rotating conditions to determine whether it can
explain the observed changes in orientation selectivity at the single-trial
level. Because there are two sources of gain (adaptation and expecta-
tion), we assume an equilibrium of gain modulation is available to the
system to allow it to maintain population homeostasis36. To this end, in
the initial model we implemented 0.5 arbitrary units (arb. units). of gain
available, which was varied in the two stimulus conditions. In the Ran-
dom condition, the adaptation gain was set to 0.5 (arb. units) and the
expectation gain was set to 0 arb. units because the stimulus sequence
was completely unpredictable. In the Rotating condition, by contrast,
the gain for both expectation and adaptation were set to 0.25 arb. units.
We re-aligned neurons (Fig. 5d) to their preferred orientation and
determined their response to stimuli under different conditions by fit-
ting the same Gaussian to the results (Fig. 5e, f). Consistent with the
neuronal data (Fig. 2), in the model the gain of orientation selectivity
increased in the Unexpected condition (M=0.64, SD=0.05) relative to
the Expected (M=0.59, SD=0.03) and Random (M=0.55, SD=0.02)
conditions. The Unexpected trials resulted in greater orientation selec-
tivity than the Expected trials because sensitivity to the stimulus was
reduced for a different orientation (the predicted grating orientation)
than the one that was presented (Fig. 5e). As with the experimental data,
the width of tuning was similar for the Unexpected (M=29.8, SD=0.62)
and Random (M=30.06, SD=0.59) conditions, whereas the Expected
condition was slightly wider (M= 32.18, SD=0.79, Fig. 5f). The model
produced a qualitative fit consistent with the effects of expectation on
V1 orientation selectivity. The modulation of stimulus selectivity is
consistent with previous work which found that uncommon stimuli
result in increased stimulus-specific adaptation in auditory cortex37, and
that the V1 population response adapts to high-level stimulus statistics
in a homeostatic manner36.

We next determined whether the model provided a quantitative
fit to the recorded neuronal activity. To do this, we used the model to
generate predictions about neuronal responses, which we regressed
against the actual data for each neuron. Specifically, for each experi-
mental session for the awake mice, we presented the model with the
same orientation sequence viewed by the mouse, which in turn gen-
erated a predicted response for each simulated neuron on every trial.
We used ridge regression to determine beta weights for each of the six
regressors (orientations) for the three different gain settings for each
neuron.

We found that a greater proportion of the variance in the trial-to-
trial activity of neurons could be explained when the model

incorporated inhibition from expectation (Fig. 5i). We presented the
orientation sequences from the Rotating condition to the model with
three different gain responses for expectation. With no gain, only the
presented stimulus determined the response of themodel. As gainwas
increased from 0.25 and 0.75 arb. units, greater inhibition from
expectation increased the model’s fit with the data (Fig. 5i).

For the adaptation model, there was no significant increase in its
ability to explain neuronal activity with increasing gain (Greenhouse-
Geisser corrected; one-way ANOVA, F(1.87, 420.23) = 0.66, p =0.62). By
contrast, the explanatory power of the expectation-only model greatly
increased with increasing levels of gain (one-way ANOVA, F(2.04,
458.98) = 21.87, p <0.001). Furthermore, themodel that incorporated a
moderate amount of adaptation (0.25) with varying degrees of expec-
tation gain best predicted the neuronal response (one-way ANOVA,
F(1.79, 403.06) = 30.55, p <0.001). A 3 (Model type; Adaptation,
Expectation, Combined model) × 5 (Gain level; 0,0.2,0.4,0.6,0.8,1.0)
repeated-measures ANOVA confirmed this observation, revealing that
both the type of model (F(1.78,404.61) = 23.71, p <0.001), and the gain
level (F(2.03,456.78) = 35.00, p <0.001) significantly affected the pro-
portion of variance explained. These factors significantly interacted
(F(1.99) = 17.87, p <0.001), showing that the difference in explanatory
power between the models increased with increasing gain. Follow-up
tests showed that the expectation model and combined model
explained significantlymore variance than the adaptationmodel across
all gain levels (Bonferroni correct p <0.001) but neither explained
more than one another (Bonferroni correct p = 1.00).

Predictive coding under anaesthesia
Finally, we asked whether global anaesthesia altered the influence of
prediction on orientation selectivity observed in awake animals. Pre-
vious work in humans on expectation violations has reported larger
neural responses to unexpected than to expected stimuli during
sleep38,39, in different attention states15,40, and when individuals were in
a coma41, vegetative state42–44 or under anaesthesia45. These findings
suggest that the influence of prediction errors on patterns of brain
activity varies across different global brain states and levels of con-
sciousness. To address this issue at the level of individual V1 neurons,
we conducted a further experiment in which the stimulus sequences
(Random versus Rotating) were displayed to mice under urethane
anaesthesia (n = 3 animals). Before each recording session, the mouse
was anesthetized by intraperitoneal administration of urethane/
chlorprothixene (0.8 g/kg and 5mg/kg body weight, respectively). All
other methodological details were identical to those described for the
awake recordings. For each mouse, we ran the full stimulus protocol
with 2–4 different areas in V1 (11 in total, 576 neurons). We found
96/576 (16.6%) neurons were orientation selective. As shown in Fig. 6a,
b, the gain of orientation selectivitywas again significantly enhanced in
the Unexpected relative to the Randomcondition (Fig. 6c, t(95) = 5.64,
p <0.0001). As in awake animals, there was a small but non-significant
decrease in the width of the tuning curve in the Unexpected condition
relative to the Random condition Supplementary Fig. 5,
t(95) = 0.39, p =0.70).

Finally, for each neuron we calculated the “surprise” effect by
subtracting the gain of the Gaussian tuning curve for the Unexpected
condition from that of the Random condition (Fig. 6d). A value larger
than 0 indicates that the neuron’s orientation selectivity was enhanced
in the Unexpected condition. There was no significant difference in the
magnitude of the surprise effect in awake animals compared with those
that had been anaesthetised (t(556) = 1.38, p=0.17), suggesting that the
influence of prediction errors on orientation-selective responses in V1
neurons is equivalent for awake and anaesthetised animals.

Discussion
Here we provided an experimental test of how neuronal representa-
tions of visual information are affected by prediction in the primary
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(Adaptation) as well as future predicted orientations (Expectation). These factors
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the response (orange line) to the presented orientation (vertical dashed line; in this
case 0°). d Dots indicate the responses of the channels, and the curves are fitted
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ferent stimulus conditions showing gain (e) and width (f) of the response to each
session (n = 23) data. The largedots show themedian and the smaller dots show the
session results. The error bars indicate the upper and lower quartile range. g An
example testing which model parameters best match the neuronal response in
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regardless of whether they were orientation selective). Error bars indicate ±1 stan-
dard error of the mean. All statistical tests were two sided.
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visual cortex (V1). Awake mice viewed streams of oriented grating
stimuli in either a Randomcondition, inwhich therewas no correlation
between the orientations of successive stimuli (Random stimuli), or in
a Rotating condition, in which grating orientations were mostly pre-
dictable from previous events within the sequence (Expected stimuli),
but inwhich anoccasional randomorientation appearedunexpectedly
(Unexpected stimuli). Expectations reliably modulated the gain of
orientation selectivity in V1 activity, both at the level of single neurons
and across the population of recorded neurons. We found that neu-
rons tuned to an expected orientation showed a large decrease in their
response compared with those not tuned to the expected orientation.
The expectation violation response was also reliably present under

anaesthesia, suggesting that the relevant visual circuits utilise pre-
dictive patterns in the sensory input even when the animal is uncon-
scious. Finally, we provided a computational implementation of a
predictive coding model in V1 to better understand the interaction
between adaptation and prediction. By varying the parameters of the
model, we found that the best explanation for the observed neuronal
activity relied on both inhibition from adaptation in response to
immediately preceding stimulus events, and expectations about future
stimulus features.

Our model of expectation-violation responses is phenomen-
ological, in the sense that it describes our results in a way that is
grounded in neuronal and synapticmechanisms. Thismodel contrasts
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with more formal accounts based upon hierarchal predictive coding.
Generally, neuronal responses to violations of expectations are for-
mulated as precision-weighted prediction errors45–53. In other words,
neuronal responses reflect the difference between sensory afferents
and top-down predictions that are modulated or weighted by preci-
sion. Precision, in this context, is a prediction of predictability, as
opposed topredictionof the sensory input. In the context of precision-
weighted prediction errors, we can associate adaptation gain with the
effects of predictability (i.e., precision weighting) and excitation gain
with the prediction error per se; namely, the disinhibition of stimulus-
bound responses by absent top-down predictions. This fits with pre-
dictive coding accounts of the mismatch negativity, where the
equivalent effects are sometimes discussed in terms of stimulus-
specific adaptation and a sensory memory component—which in turn
correspond to predictions of precision and stimuli, respectively14,15.

While the notion that predictions about the future affect per-
ception was first proposed by Helmholtz54, direct evidence in support
of this idea at the level of individual sensory neurons has been lacking.
A number of more recent theoretical models5,6 have proposed a ‘pre-
dictive coding’ framework with the common idea that the brain inhi-
bits sensory representations of expected stimuli to increase coding
efficiency. Although there is good evidence that predictions affect the
magnitude of neural responses measured with non-invasive, whole-
brain neuroimaging methods10,55, few studies have addressed whether
individual neuronal responses are affected, even though this is a cri-
tical component of predictive coding models. The current results
obtained frommouse V1 neurons fit well with our previous findings in
humans, which suggest that orientation selectivity changes with
expectation14–16,26. Specifically, and in line with the current work, for-
ward encoding modelling of EEG activity revealed an increase in the
gain, but not the width, of orientation tuning to unexpected stimuli in
human observers14.

Our results add to the understanding of how expectations affect
the representation of sensory information. Previous work19,22,23 has
suggested that locomotion-induced increases in activity in primary
visual cortex inmice relates to predictive coding56,57 (but see ref. 57 for a
different interpretationof thesefindings). Under the predictive coding
framework, the increased activity caused by locomotion creates an
expectation that the stimulus should move and change size. A pre-
diction error is generated if the stimulus remains static, as is typical
when measuring orientation selectivity, or moves in an inconsistent
direction. There is significantly less locomotion-induced increase in
response if the stimulus is made to move as the animal moves23. Our
results are consistent with these findings, but also identify an
enhanced gain mechanism reflected by a larger response to the neu-
ron’s preferred orientation.

In the human literature, expectation appears to affect sensory
responses through different neural oscillatory frequency bands58,59.
Recordings in macaques suggest visual information is fed forward
through high-frequency gamma (60–80Hz) oscillations, while feed-
back occurs through slow theta-band (14–18Hz) activity60,61. As the
present recordings were conducted using two-photon imaging with a
relatively slow sampling rate, we are at present unable to determine
the possible role of different oscillation frequencies in the observed
expectation effects. Future work in which activity is recorded from
multiple sites concurrently using electrophysiology could help char-
acterise the distinct contributions of top-down and bottom-up neural
signals to this expectation-induced gain modulation.

Methods
Mouse information
A total of five male wild-type mice (C57BL) were used for this study;
two only awake, two only anaesthetized, one in both awake and
anaesthetized. Themice were acquired from the Australian Phenomics
Facility. All methods were performed in accordance with the protocol

approved by the Animal Experimentation and Ethics Committee of the
Australian National University (AEEC 2015/74; 2019/11). Mice were
housed in a ventilated and air-filtered climate-controlled environment
with a 12-h light–dark (8 am lights on, 8 pm lights off) cycle. The mice
were kept in cages attached to Tecniplast Smart Flow. The system
keeps the cage temperature at 22 degree C, but the humidity is not
controlled but was typically around 40–50%. Mice had ad libitum
access to food and water. Mice were transfected at 4–5 weeks with
recordings starting 4–5weeks later, and lasting between 2 and 3weeks.
Mice were culled at a maximum of 12 weeks of age. No statistical
methods were used to calculate the sample size, but these were con-
sistent or exceeded many other studies in the field.

Expression of Ca2+ indicator GCaMP6f
Mice were briefly anaesthetised with isoflurane (~2% by volume in O2)
in a chamber and moved to a thermal blanket (37 °C, Physitemp
Instruments) before the head was secured in a stereotaxic frame
(Stoelting, IL). Thereafter, the anaesthetic gas (isoflurane, ~2% by
volume in O2) was passively applied through the nose mask at a flow
rate of 0.6–0.8 L/min. The level of anaesthesia was monitored by the
respiratory rate, and hind paw and corneal reflexes. The eyes were
covered with a thin layer of Viscotears liquid gel (Alcon, UK). The scalp
was opened with ~5mm rostrocaudal incision at the midline using
scissors and the periosteum was gently removed. A circular cra-
niotomy was made over the right visual cortex (3mm diameter;
centred 2mm lateral and 4.5mm posterior to Bregma) with the dura
left intact. A glass pipette (15–25 µm diameter at tip) containing
GCaMP6f (AAV1.Syn.GCaMP6f.WPRE.SV40, Penn Vector Core, The
University of Pennsylvania, USA) was inserted into the cortex at a
depth of 230–250 µmbelow the dura using a micromanipulator (MPC-
200, Sutter Instruments, Novato, CA, USA). GCaMP6f was injected at
4–6 sites (with four 32-nL injections per site separated by 2–5min; rate
92 nLs−1). V1 was localised anatomically using coordinates established
using functional methods60. Injections were centred 2mm lateral and
4.5mm posterior to Bregma. Injections were controlled using a
Nanoject II injector (Drumont scientific, PA). After virus injection, the
craniotomy was covered with a 3mm diameter cover-glass (0.1mm
thickness, Warner Instruments, CT). This was glued to the bone sur-
rounding the craniotomy. Custom-made head bars were fixed to the
skull over Bregma using a thin layer of cyanoacrylate adhesive and
dental acrylic. A small well was built surrounding the craniotomy
window using dental acrylic to accommodate distilled water required
for the immersion lens of the 2-photon microscope.

Ca2+ imaging was performed using a two-photon microscope
(Thorlabs Inc., Newton, NJ, USA) controlled by ThorImage OCT soft-
ware (ThorImageLS, v3). The visual cortex was illuminated with a
Ti:Sapphire fs-pulsed laser (Chameleon, Coherent Inc., Santa Clara, CA,
USA) tuned at 920 nm.The laser was focused onto L2/3 cortex through
a 16x water-immersion objective lens (0.8NA, Nikon), and Ca2+ tran-
sients were obtained from neuronal populations at a resolution of
512 × 512 pixels (sampling rate, ~30Hz). To abolish the effect of visual
stimuli on the calcium signals, we filled the gap between the objective
and the well with removable adhesive (Blu-Tack).

The obtained images were processed using the Suite2p toolbox
(https://github.com/cortex-lab/Suite2P) for motion correction and
segmentation. The surrounding neuropil signal was subtracted for
each neuron’s calcium traces. These corrected traces were high-pass
filtered before themedian response for each neuronwas subtracted to
determine dF/F.

Visual stimulus
The stimuli were displayed on a 22-inch LED monitor (resolution
1920 × 1080 pixels, refresh rate 60Hz) using the PsychToolbox pre-
sentation software for MATLAB62,63. The mouse was placed next to the
monitor, which subtended 76.8° × 43.2° (one pixel = 2.4’ × 2.4’)
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orientated 30° from their midline. The visual stimulus sequence was
based on the Allen Brain Institute Brain Observatory paradigm used to
measure orientation selectivity in mice. The stimuli were full-screen
gratings (0.034 c/°, 50% contrast) displayed for 250ms with no inter-
stimulus blank interval giving a 4Hz presentation rate. The spatial
frequency was chosen to be close to optimal sensitivity of neurons in
V125. The orientations of the gratings were equally spaced between 0
and 150° in 30° steps so we could characterise each neuron’s orien-
tation selective profile.

The predictability of the orientations of the gratings was varied in
the two stimulus conditions. In the randomcondition, the orientations
of the gratingsweredrawn fromapseudo-randomdistributionwith no
relationship between the current orientation and the previous orien-
tation. In the Rotating condition, the orientations of the gratings
rotated (in 30° steps) either clockwise or anti-clockwise for 5–9 pre-
sentations, before jumping to an unexpected random orientation,
where it began rotating in the opposite direction. The random and
rotating conditions were presented in blocks of trials which were
pseudorandomised in time within each imaging session.

In 3 mice, we ran a total of 23 imaging sessions and collected data
from 1693 neurons. Neurons from all sessions and mice were pooled
for analysis. One session (1.5–2 h) was recorded in a day from each
mouse. These sessions occurred between 1 and 4 times per week. In
each session, two runs of Rotating and Random sequences were pre-
sented, and each of these contained 1800 trials, alternating between
Rotating and Random. The order of sequences was counter-balanced
across mice. For some sessions for 2 of the mice, we also presented a
rotating control condition to determine whether the systematic rota-
tional movement after the unexpected jump affected orientation
selectivity. In this condition, after the unexpected orientation the sti-
mulus made another jump to a random orientation before starting to
rotate in the opposite direction as the previous rotation. The number
of events was increased from 7200 (3600× 2) in each condition to
8400 to have the same number of unexpected trials as the original
Rotating condition, while all other details remained identical with the
Rotating condition. We ran 13 sessions in these two mice for all three
conditions to compare the effect of the control. For all conditions,
there was a balanced number of presentations of all the orientations.

Data analysis
To determine the effect of predictability, we averaged the calcium
response (dF/F%) from 250 to 1000ms after stimulus presentation to
derive tuning curves for each condition. To quantify how expectation
affected the gain and selectivity of orientation-selective neurons we
fitted circularGaussian distributionswith a constant offset (Eq. 1) using
non-linear least square regression.

GðxÞ=A exp� ðx� ϕ� j � 180Þ2
2σ2 +C ð1Þ

where A is the gain (amplitude) of the Gaussian, ϕ is the preferred
orientation of the neuron (indegrees),σ is thewidth (in degrees) andC
a constant offset to allow for baseline shifts in the activity of the
neuron. We searched for best fitting solutions with parameter j, with a
search space from −4 to +4 in integer steps.

Neurons were selected for the primary analysis if they showed
significant orientation selectivity (one-way ANOVA) in either the Ran-
dom or Unexpected trials. To provide another test of how prediction
affects orientation selectivity of individual neurons, we found the cir-
cular mean64 of the averaged orientation tuning curve across all pre-
sentations within the condition (Fig. 2e). This was done for each time
point (1/sample rate) between −500 and 2000 ms around stimulus
presentation.

Multivariate encoding analysis
We used a multivariate encoding approach (forward encoding mod-
elling) to determine how the population activity carried information
about the orientation of the presented grating on a trial-to-trial basis.
This is adapted from human neuroimaging approaches, which exam-
ine orientation/feature selectivity from multivariate non-invasively
recorded neural activity14,15,65–68, but is similar to encoding approaches
used to describe neuronal response to sensory stimuli69,70. Compared
to the encoding-only, forward encoding takes the individual neuron
activity to reconstruct the stimulus representation from the popula-
tion activity. The technique goes beyond more commonly used mul-
tivariate pattern analysis procedures by producing tuning curves
showing the full representation (in both gain, width, and bias) relative
to the accuracy-only score.

The data were pooled across all experimental sessions with both
orientation and non-orientation selective neurons used. In the first
instance, we examined how the number of neurons affected decoding
on a fixed time interval (250–1000ms) and in the second instance, we
found the time-resolved selectivity by applying the decoding proce-
dure at each time point around the presentation of the stimulus (−500
to 2000 ms). A 20-fold cross-validation procedure was used in both
instances for test and training data. The procedure evenly splits each
test block to have the most even distribution of stimuli in each fold.

We used the presented orientations to construct a regression
matrix with 8 regression coefficients. This regression matrix was con-
volved with a tuned set of nine basis functions (half cosine functions
raised to the eighth power) centred from 0° to 160° in 20° steps. This
helps pool similar orientations and reduces overfitting70. This tuned
regressionmatrix was used to measure orientation information across
trials. This was done by solving the linear Eq. 2:

B1 =WC1 ð2Þ

where B1 (Neurons × N training trials) is the data for the training set, C1

(8 channels ×N training trials) is the tuned channel response across the
training trials, and W is the weight matrix for the sensors to be esti-
mated (Neurons × 8 channels). We separately estimated the weights
associated with each channel individually.Wwas estimated using least
square regression to solve Eq. 3:

W = ðC1C1
T Þ�1

C1
TB1

ð3Þ

We removed the correlations between neurons, as these add noise to
the linear equation. To do this, we first estimated the noise correlation
between neurons (which stops finding the true solution to the equa-
tion) and removed this component through regularisation by dividing
the weights by the shrinkage matrix68,71. The channel response in the
test setC2 (8 channels ×N test trials)was estimatedusing theweights in
(4) and applied to activity in B2 (Neurons × N test trials), as per Eq. 4:

C2 = ðW WT ÞWTB2 ð4Þ

To avoid overfitting, we used 10-fold cross validation, where X-1
epochs were used to train the model, and this was then tested on the
remaining (X) epoch. This process was repeated until all epochs had
served as both test and training trials.We also repeated this procedure
for each point in the epoch to determine time-resolved feature-
selectivity. To re-align the trials with the exact presented orientation,
we reconstructed the item representation by multiplying the channel
weights (8 channels × time × trial) against the basis set (180
orientations × 8 channels). This resulted in an Orientation (−89° to
90°) × trial × time reconstruction.

To quantify the orientation selective response, we found the
vector sum of the orientation for each trial (Fig. 3) to determine the
decoded orientation. The difference between the decoded and
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presented orientation was the orientation error. For each condition
(and time point where applicable) we found the distribution of orien-
tation errors and calculated the histogram of responses.

In the temporal classification analysis, groups of 500 neurons
were used in each instance for both training and test data with the
cross-validation procedure applied to each timepoint around stimulus
presentation.Wepermutednewgroupsof 500neurons 24 times.Next,
we averaged the evoked activity from 250 to 1000ms after stimulus
presentation. To determine how decoding was affected by population
size, the same classification was then used as in the previous analysis
but with different numbers of neurons (2–1600 neurons in 100 loga-
rithmically spaced steps). Again, we selected different groups of neu-
rons 24 times so as not to skew the results by the neurons that were
selected.

Statistics
Non-parametric signed permutation tests71,72 were used to determine
time-resolveddifferences between conditions. The sign of the datawas
randomly flipped (N = 5000), with equal probability, to create a null
distribution. Cluster-basedpermutation testingwasused to correct for
multiple comparisons over the timeseries, with a cluster-form thresh-
old of p <0.05 and significance threshold of p < 0.05. All statistical
tests were two-sided and the alpha was set at 0.05.

Computational model
The analytic model is based on previous work accounting for feature
(i.e. orientation, spatial, colour) adaptation based on neuronal
response andhumanpsychophysical data27,28,33,73,74. Themodel consists
of a bank of six orientation-selective information channels with pre-
ferred orientations evenly spaced between 0 and 150° (in 30° steps).
Each channel’s sensitivity profile is given by aGaussian function (Eq. 5).

GðxÞ=A exp�ðx � ϕÞ2
2σ2

ð5Þ

where A is the gain (amplitude) (set to 1 arb. units),ϕ is the channel’s
preferred orientation, σ is the width of the channel (set to be 40°
consistent with the neuronal data). The number of channels, along
with the width means the model is equally sensitive to all orientations.
The population response to any presented orientated stimulus is given
by the sensitivity profiles of the channels (See Supplementary Fig. 4). In
an unadapted state (Supplementary Fig. 4A), the model will show a
maximal response around the presented orientation with the vector
average of the population response will be the presented orientation.

To account for adaptation, the gain of the information channels is
reduced in inverse proportion to their response by the previous sti-
mulus (Supplementary Fig. 4B). For instance, if a 90° stimulus is the
adapting stimulus, the sensitivity of the channels around 90° will be
maximally reduced while orthogonal channels will be unaffected. The
magnitude of this reduction (adaptation ratio) can be varied to allow
for greater or less adaptation and was included as a free parameter in
the analysis. The adaptation aspect of the model is consistent with
previousmodels used to psychophysical data27,28,33,73,74. The newmodel
accurately predicts serial dependency effects (where the current
orientation is biased away from the previous orientation) seen in the
neuronal data34,35,75.

Prediction gain modulation works in a similar manner as adapta-
tion except that the stimulus sensitivity, rather than channel sensitiv-
ity, ismodulated. Furthermore, the gainmodulation occurs before the
stimulus and is for the orientation that is expected rather than pre-
sented. The modulation of stimulus sensitivity is consistent with a
previous study which found that uncommon stimuli result in stimulus-
specific adaptation in the auditory cortex37. Stimulus-specific adapta-
tion has been used in modelling neuronal adaptation36. To model
stimulus-selective gain modulation, the tuned Gaussian function was

found using Eq. 1 and inverted before being applied to the channels.
The amount of gain modulation by expectation was a free parameter
(expectation gain).

To account for long-lasting effects of gain modulation, the chan-
nel’s sensitivity was normalised by the maximum sensitivity of
response on each trial. This causes the model to have adaptation and
expectation effects based on the presented orientation of at least four
stimuli back. How many n-back stimulus affect the current trials sen-
sitivity is determined by the modulation factor. We used this type of
long-lasting gain to account for well-known effects such as serial
dependency-like which can occur with adaptation and prediction34,35.
We regressed the adaptation-onlymodel against the neuronal data and
found a factor of 3.0best fit the datawhichwas set for othermodelling
experiments.

To determine the effects of the different stimulus conditions
(Random, Expected and Unexpected) on the model’s channels, we
presented sequences of orientations to the model and split the
responses into conditions. To allow for easier comparison, we aligned
the six orientation channels to their preferred orientation and col-
lapsed the results across conditions. The same effects were evident
before collapsing across the channels.

Lastly, we examined how the actual neuronal responses could be
predicted by the model’s predictions with different values of the free
parameters. To do this, we used to model to predict responses to the
orientations presented to the mice during the session for all stimulus
conditions. For each neuron, we used the model’s responses to the
stimuli as regressors to predict the neuron’s response (averaged from
250 to 1000ms) for each stimulus condition. We iterated this proce-
dure with different values for adaptation and expectation gain to
determine what values best predicted the data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data are available at: https://osf.io/t2vb3.

Code availability
The code for the analysis has been published in an open-access format
(doi: 10.5281/zenodo.7444479)76. This is available at: https://github.
com/MatthewFTang/PredictionOrientationSelectivityMouseV1.
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