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Multivariate genomic architecture of cortical
thickness and surface area at multiple levels
of analysis

Andrew D. Grotzinger 1,2 , Travis T. Mallard 3,4,5,8, Zhaowen Liu3,4,5,8,
Jakob Seidlitz 6,7, Tian Ge3,4,5 & Jordan W. Smoller3,4,5

Recent work in imaging genetics suggests high levels of genetic overlap within
cortical regions for cortical thickness (CT) and surface area (SA).Wemodel this
multivariate system of genetic relationships by applying Genomic Structural
Equation Modeling (Genomic SEM) and parsimoniously define five genomic
brain factors underlying both CT and SA along with a general factor capturing
genetic overlap across all brain regions. We validate these factors by demon-
strating the generalizability of the model to a semi-independent sample and
show that the factors align with biologically and functionally relevant parcel-
lations of the cortex. We apply Stratified Genomic SEM to identify specific
categories of genes (e.g., neuronal cell types) that are disproportionately
associated with pleiotropy across specific subclusters of brain regions, as
indexed by the genomic factors. Finally, we examine genetic associations with
psychiatric and cognitive correlates, finding that broad aspects of cognitive
function are associated with a general factor for SA and that psychiatric
associations are null. These analyses provide key insights into the multivariate
genomic architecture of two critical features of the cerebral cortex.

The human cerebral cortex broadly refers to the brain’s outer sheet of
graymatter and is typically indexed using two central metrics: cortical
thickness (CT) and surface area (SA). In practice, CT is operationalized
as the distance between pial surfaces and white matter, and SA as
geodesics along the gray-white matter boundary. These twomeasures
are both key predictors of important life outcomes; for example, CT
has been associated with a range of psychiatric disorders1,2, and SA
with a host of cognitive outcomes across the lifespan3–6. In the last
decade, twin studies have shown thatbothmetrics arehighly heritable,
while characterized by distinct genetic underpinnings7,8. Even more
recently, genotyped samples with neuroimaging data have become
large enough to employ genome-wide association studies (GWAS) as a

means of identifying the specific genetic variants associatedwith these
structural phenotypes. For example, the ENIGMA consortium exam-
ined bilateral averages of 34 cortical brain regions to identify 175 and
48 genetic loci associated with regional SA and CT, respectively9. Two
additionalfindings include the observation, consistent with the family-
based literature, that the different SA and CT brain regions were highly
positively correlated within measures of CT and SA and negatively
correlated across CT and SA9. These results point towards distinct,
multivariate genetic architectures.

The current studyutilizes large-scale, imaginggenetics datasets to
formally model the genetic overlap across brain regions within CT and
SA using the Genomic Structural Equation Modeling (Genomic SEM)
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framework10. We began by performing exploratory and confirmatory
factor analyses of the genetic correlations estimated from the ENIGMA
CTandSA summary statistics.We then replicate this factor structure in
a semi-independent sample from UK Biobank (UKB), showing that the
multivariate structure identified in ENIGMA fits the data well for both
the left and right hemispheres in UKB. Having established the port-
ability of this factor structure, we characterize the genomic factors at
three levels of analysis. First, we examined the boundaries that define
these genomic factors by examining relationships with molecular,
cellular, and functional topographical maps. Second, we applied
Stratified Genomic SEM11 to identify classes of genes that are enriched
at the level of the structural imaging factors. Finally, we examined
associations between the brain factors and both general and domain-
specific facets of cognitive function and psychiatric disorders. Col-
lectively, our multivariate analyses of structural imaging phenotypes
provide key insights into the biological, functional, and clinical rele-
vance of varying levels of structural brain organization.

Results
Genomic factor analysis
Our primary analyses utilize the ENIGMAGWAS summary statistics for
N ≈ 33,992 participants across the lifespan (age range: 3–91). These
reflect 34 bilateral averages of regional CT and SA9 defined using the
Desikan–Killiany atlas segmentations12. We note that GWAS summary
statistics were not corrected for a global structural metric (e.g., total
SA or mean CT). Instead, global (co)variation was accounted for psy-
chometrically bymodeling a latent, general factor in the context of the
bifactor model described below. This analytic pipeline has the advan-
tage of avoiding bias due to adjusting for a heritable trait (i.e., global
metrics for SA and CT)13. As expected, LD-score regression revealed
high levels of genetic overlap across brain regions within each metric
(Fig. 1), and individual regions all displayed highly significant levels of
SNP-based heritability for both CT (average h2

SNP= 17.1%; range:
8.0–25.2%; p ≤ 9.10E-7) and SA (average h2

SNP = 23.8%; range:
12.0–31.7%; p ≤ 5.47E-14). We went on to model SA and CT separately
given a moderate, negative genetic correlation across their global
metrics (rg = −0.32, SE = 0.05), previously described unique genetic
underpinnings9, and extant hypotheses about divergent develop-
mental pathways across CT and SA 14.

We applied three tests (Kaiser15, acceleration factor, and optimal
coordinates16) to determine the optimal number of genomic factors
that could be used to parsimoniously describe the data.Wewent on to
fit exploratory factor analyses (EFAs) using the promax (i.e., correlated

factor) rotation based on these three tests. These EFA results were
used to inform fitting confirmatory factor analytic models (CFAs)
within Genomic SEM. More specifically, individual brain regions were
assigned to a factor when their standardized loading was >0.5, or if the
brain region did not achieve a loading of 0.5 for any factor, assigning
the region to the factor with the largest standardized loading (addi-
tional details provided in “Methods”; see Fig. 1 for example path dia-
gram). The CFAs were evaluated using standard metrics of model fit10

(i.e., comparative fit index [CFI]17; standardized root-mean-squared
residual (SRMR); Akaike Information Criteria [AIC]18). For all models,
including expandedmodels that incorporate psychiatric and cognitive
correlates, residual covariances were iteratively added to the model
where indicated. This was done by obtaining the residual covariance
matrix—calculated as the difference between the model-implied
genetic covariance and observed genetic covariance matrix—and
adding the residual covariances one at a time until they no longer
reached a significance threshold of p < 0.01. This procedure resulted in
adding eight and seven residual covariances for CT and SA,
respectively.

The common factormodelfit, implying a single factor onwhich all
brain regions loaded, was acceptable for CT (AIC = 83732.6, CFI =
0.907, SRMR=0.093) and did not fit the data well for SA (AIC =
179949, CFI = 0.826, SRMR=0.076). A correlated factors model with
five genomic factors defined by subsets of brain regions fit the data
great and provided a better fit for both CT (AIC = 42220.0, CFI = 0.953,
SRMR=0.065) and SA (AIC = 60940.9, CFI = 0.941, SRMR=0.057).
Finally, a bifactor model fit the data best for CT (AIC = 33065.3; CFI =
0.964; SRMR=0.063) and SA (AIC = 46120.3; CFI = 0.956; SRMR=
0.048). The bifactormodel consisted of a general factor defined by all
34 brain regions along with five residual, uncorrelated factors cap-
turing brain regions that covary above and beyond the global (general)
structure (Supplementary Data 1–3 for full CFA and EFAmodel output;
Supplementary Data 4 for model fit). We recognize that bifactor
models are generally guaranteed tofit thedata better, regardlessof the
data-generating process in the population19. At the same time, we
consider the bifactor model informative as brain regions are known to
globally covary, and because it provides a psychometrically informed
comparison point to previous results produced using GWAS summary
statistics that controlled for total SA and average CT. Thus, all analyses
presented in the main text consider the bifactor model, while full
results for the correlated factors model are presented in the Online
Supplement. The average proportion of genetic variation in the indi-
vidual brain regions explained by the general factor was 52.1% for CT

Fig. 1 | Schematic of Genomic SEM. a Truncated heatmap of genetic correlations
for six regions of interest (ROIs) that all load onto the same genomic factor of
cortical thickness (F2CT). These six brain regions were identified as loading on the
same factor using exploratory factor analysis (EFA). b Path diagram of the con-
firmatory factor model results produced by Genomic SEM using the genetic cor-
relationmatrix in panel (a) as input. All parameter estimates are standardized with

respect to SNP-based genetic variances. The genetic components of each brain
region, the common factor defined by these genetic components, and the residual
genetic variance for each brain region are represented as circles to reflect the fact
that these are latent (i.e., not directly observed) variables. c Map of the factor
standardized loadings for the six cortical regions on the cortex. Color coding is the
same as in panel (a).
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and 56.7% for SA. In addition, 24 of the CT factor loadings and 23 SA
loadings on the five residual factors were significant at a Bonferroni-
corrected threshold for 34 brain regions. In sum, model fitting results
and significant residual covariation indexed by the factor loadings
suggest that pervasive genetic overlap across regional measures of CT
and SA are not merely reflective of a single dimension of macroscale
organization.

Aswould be expected, physically proximalbrain regions clustered
within the five residual factors. For CT, these factors can be approxi-
mately described as representing somatomotor frontoparietal (F1CT),
mesolimbic (F2CT), prefrontal (F3CT), occipital (F4CT), and temporal
(F5CT) brain regions. For SA, the first two factors were more diffuse,
representing a combination of frontal dorsotemporal (F1SA) and par-
ietal ventrotemporal (F2SA), followed by a third factor defined by
occipitoparietal regions (F3SA), and finally two highly specific factors,
one reflecting the anterior cingulate regions (F4SA), and a fifth factor
defined solely by the medial orbitofrontal region (F5SA). We note that
these characterizations donot consistentlydescribe everybrain region
that loads on the factor and refer the reader to Fig. 2 for a full list of the
regions that load on each factor (also see Supplementary Figs. 1 and 2
for a full path diagram for CT and SA, respectively). In addition, these
factors are further annotated in the context of established cytoarchi-
tectonic and functional classifications presented below.

The replicability of these findings was tested using a semi-inde-
pendent, genetically informative imaging dataset from UKB
(N = 26,739; see “Methods” for details on sample overlap). The UKB
sample also offered the opportunity to examine the portability of the
identified factor structure for a more age-homogenous cohort (age
range: 39–73). We found that the bifactor models fit the data well for
both the left and right hemispheres in UKB (Supplementary Data 4 for
model fit; Supplementary Data 5–8 for full model outputs; Supple-
mentary Figs. 3–7 for heatmaps), indicating that the identified factor
structure is relatively stable and captures a robust, bilaterally sym-
metrical pattern of genetic covariation.

Topographical annotation of cortical genomic factors
We next examined whether the spatial organization of the CT and SA
factors reflected a biologically and functionally relevant partitioning of
the cortex. To test these hypotheses, we utilized spin-based methods
to compare the factor analytic parcellation to several canonical and
meta-analytic maps from the neuroimaging literature (see “Methods”).
First, we asked whether there was a statistically nonrandom overlap in
the assignment of regions of interest to the five residual CT and SA
genomic factors. We find that the spatial organization of both metrics
did significantly overlapwith one another (Pspin < 1e-4), suggesting that
the genomic factors reflect meaningful boundaries of cortical (co)
variation that are partially consistent across these two morphological
indices. Moreover, these genomic parcellations appear to capture
biological differences of the cortical sheet, as comparisons to a digi-
tized parcellation of von Economo and Koskinas’s20 cytoarchitectonic
mapping of the cortex (Fig. 3a) also revealed significant overlap (CT
Pspin = 1.00e-4, SA Pspin = 3.82E-2, Fig. 3b, c).

Consistent with the notion that these genomic factors differ-
entiate broad areas of the cortex by their biological underpinnings,
further topographical annotation identified myriad aspects of
intracortical microstructure, laminar differentiation, cellular/neu-
ronal density, neurotransmitter receptor density, and cell-type-
specific transcriptional signatures that significantly varied as a
function of the CT and SA factors (Fig. 3d, Supplementary Figs. 7–8,
Supplementary Data 9). Generally, results suggest that the SA fac-
tors better captured interregional variation of these biological
features relative to the CT factors (Fig. 3d). While similar effects
were seen for some neurobiological features (e.g., CB1, D1, and μ-
opioid receptor densities), CT- and SA-specific effects were also
observed, such as In1 inhibitory neuron signatures that were more
associated with CT and somatostatin interneuron transcriptional
signatures more associated with SA. This indicates that the factor
structures identified within CT and SA partially index unique bio-
logical signatures.

Fig. 2 | Genomic factor analysis of the cerebral cortex. a, bHeatmaps illustrating
the genetic relationships between cortical regions for a CT and b SA, as estimated
with Genomic SEM. Genetic correlations are reported in the lower triangle while
factormembership is illustrated in the upper triangle. Cortical regions are ordered

with respect to the factor model results. c, d Categorical brain maps depicting the
brain regions that correspond to each genomic cortical factor for c CT and d SA.
Color coding is consistent throughout the figure.
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Given thesefindings ofmolecular and cellulardifferences,wenext
asked how the genomic parcellations were organized relative to the
functional topography of the cortical sheet. We first compared the
spatial organization of the genomic factors to that of the seven cano-
nical functional networks defined by Yeo and Krienen21 (Fig. 3e) and
found a significant overlap between these maps (CT Pspin = 1.20E-3, SA
Pspin = 7.70E-3, Fig. 3f, g). To obtain finer-grained insights into how the
genomic factors might relate to aspects of brain function, we then
comparedour factor analyticmaps tometa-analyticmapsof functional
activation for 123 cognitive processes from Neurosynth (“Methods”).

As observed with the biologically focused analyses above, we found
that many patterns of functional activation associated with cognitive
processes, emotion regulation, reward learning, decision-making, and
visual processing were significantly different across the genomic fac-
tors for both CT and SA (Fig. 3h, Supplementary Figs. 9–10, Supple-
mentaryData 9). However, in contrast to themore biologically derived
maps, these results revealed that CT factors better captured inter-
regional variation of psychological and cognitive features relative to
the SA factors, with specific effects for perception, locomotion, and
language.
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area factors. a Map of cytoarchitectonic classes defined by von Economo and
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thickness (CT) and c surface area (SA) and the vEKcytoarchitectonic classes.dTwo-
dimensional density plot of significant overlap between cortical factors and bio-
logically derived features of the cortex (from the BigBrain project, Allen Human
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sided p-values were calculated using the spin-based test. The dashed line denotes
statistical significance on a −log10 scale after correcting for multiple comparisons

using the false discovery rate (FDR). e Map of canonical resting-state functional
connectivity networks defined by Yeo and Krienen (YK)16. f, g Marginal table of
proportional overlap between f CT and g SA and the YK networks. h Two-
dimensional density plot of significant overlap between cortical factors and pat-
terns of functional activation associated with psychological processes (from Neu-
rosynth; “Methods”). As in panel (d), two-sided p-values were calculated using the
spin-based test and the dashed line denotes statistical significance on a −log10 scale
after correcting for multiple comparisons using FDR.
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Stratified Genomic SEM
Stratified Genomic SEM11 is a multivariate analogue of partitioned her-
itability analyses22 that can be used to determine whether a given
functional annotation is enriched for any model parameter within
Genomic SEM. Functional annotation is used here to denote a set of
genetic variants that are grouped according to shared characteristics.
For the current analyses, we specifically utilize 168 functional annota-
tions reflecting genes expressed in different brain regions, evolutiona-
rily conserved regions, tissue types, histone marks, neuronal cell types,
and protein-truncating-variant-intolerant (PI) genes (see “Methods” for
further details). A functional annotation is deemed enriched if the
proportion of genetic variance explained by the annotation is greater
than the proportional size of the annotation. Multivariate functional
analyses then allow for distilling both highly polygenic and pleiotropic
signals into their biologicallymeaningful, constituent parts. To this end,
we specifically examined the enrichment of the genomic factor
variances.

After removing 16 annotations that produced highly non-
positive definite, stratified genetic covariance matrices (indicating
unstable estimates), we examined a total of 152 annotations.
Employing a Bonferroni correction of p < 5.48E-5 (i.e., 0.05/
[152annotations × 6Genomic Factors]), we identified two significant
annotations for the general CT factor: H3K4me1 union and the cin-
gulate gyrus H3K27ac histone mark. We highlight that the oligo-
dendrocytes annotation was also just below the significant
threshold for CT (p = 7.11E-5; Supplementary Data 10). There were
nine significant annotations for the general SA factor, including the
PI Genes, Super Enhancer, H3K4me3 histonemark in the fetal female
brain, and astrocytic transporters annotations (Supplementary
Data 11). Five histone mark annotations were also significant for the
fifth SA factor defined solely by the medial orbitofrontal region
(Supplementary Fig. 11). In line with the modest inverse correlation
across these two metrics and unique topographical signatures
described directly above, the patterns of enrichment were markedly

different across the top functional annotations for SA and
CT (Fig. 4).

Genetic overlap with cognitive function
We examined the genetic overlap between the brain-based factors and
a g-factor estimated from UKB GWAS summary statistics for seven
cognitive traits: trail-making tests-B, tower rearranging, verbal
numerical reasoning (VNR), symbol digit substitution, memory pairs-
matching test, matrix pattern recognition, and reaction time (RT;
Table 1). The genetic overlap across these seven cognitive indicators
was modeled using the same common factor model for genetic g
identified by de la Fuente and colleageus23. Genetic correlations were
estimated across g and the brain-based factors for the separate CT and
SA bifactor models. We first sought to test whether the degree of
genetic overlap across g and brain morphology also varied by factor.
For both CT and SA, we found robust evidence that the genetic cor-
relations between g and the brain factors could not be constrained to
be equal (p <0.05 for both χ2 difference tests, “Methods”). This sug-
gests that there is significant variation across the cortical sheet in the
degree of genetic overlap between intelligence and brain structure.

We next turned our attention to both global and localized patterns
of genetic overlap between the brain factors and g, allowing for residual
covariances between individual brain regions and cognitive tests where
indicated (“Methods”). As each family of tests for CT and SA with g
consisted of 204 possible associations (i.e., 34 brain regions × 7 cog-
nitive tests), we employed a Bonferroni correction of 0.05/204
(p < 2.10E-4). There were no significant factor correlations for CT in the
bifactor model after correcting for multiple comparisons, though we
identified a nominally significant residual genetic correlation across
VNR and the precentral region (partial rg =0.38, p = 2.50E-4). Bifactor
model results revealed a significant genetic correlation between the
general SA and g-factor (rg =0.24, SE =0.04, p= 2.34E-11). None of the
correlations between g and the five residual factors or individual brain
regions were significant. These results indicate that the genetic overlap

Fig. 4 | Functional enrichment for general factors. The figure depicts the 11
annotations that were Bonferroni significant for the general factor from the
bifactor model for either surface area or cortical thickness, along with the oligo-
dendrocytes annotation that was just below the Bonferroni threshold for CT
(p = 7.11E-5). Bothpanelsdepict the−log10(p) valueson themultivariate enrichment
estimate from Stratified Genomic SEM. p-values are one-tailed and were calculated

using the ratio of the enrichment estimate over its standard error. We correct for
multiple testing for StratifiedGenomic SEMresultsby employing a strict Bonferroni
correction for the number of annotations (152) and factors (6) analyzed (i.e.,
p < 5.48E-5). Bars significant at a Bonferroni-corrected threshold (shown as a red
dashed line) are depicted with a “*”. Bars are ordered with respect to the level of
significance across both CT and SA.
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between SA and cognitive function can be conceptualized as operating
through largely general pathways shared across brain regions and dif-
ferent classes of cognitive tasks. Supplementary Data 12 also compares
genetic correlations obtained for the general factors to the estimates
using the global averages across all 34 brain regions for CT and SA. As
would be expected, the direction of effects across the global averages
andgeneral factorswas consistent,while point estimates for the general
factors estimated in Genomic SEM were slightly larger. This slight
increase in estimates likely reflects improvement in genetic signal when
psychometrically extractingwhat is shared across the 34 regions via the
general factor, as opposed to taking the global average.

Genetic overlap with psychiatric traits
To examine the multivariate system of genetic relationship with psy-
chiatric traits, we employed the same four-factor correlated factors
model of 11major disorders identified in ref. 11. Thismodel consists of a
Compulsive disorders factor defined by anorexia nervosa24, obsessive-
compulsive disorder (OCD)25, and Tourette’s syndrome26, a Psychotic
disorders factor defined by schizophrenia27 and bipolar disorder28, a
Neurodevelopmental disorders factor defined by autism spectrum
disorder (ASD)29, attention-deficit hyperactivity disorder (ADHD)30,
and post-traumatic stress disorder (PTSD)31, and an Internalizing dis-
orders factor defined by major depressive disorder (MDD), anxiety
disorders32, and PTSD31 (Table 1; Supplementary Data 13 for factor
loadings from psychiatric measurement model). In addition, alcohol
use disorder33 loaded on the Psychotic, Neurodevelopmental, and
Internalizing factors. As with the g-factor analyses, we tested whether
the degree of genetic overlap between psychopathology and brain
morphology varied across the cortex. For CT, the constrained model
with invariant genetic correlations per psychiatric factor would not
converge, suggesting it is not an appropriate model. Similarly, for SA
we found robust evidence that the genetic correlations between the
psychiatric factors and the brain factors could not be constrained to be

equal (p <0.05, see “Methods”), indicating that there is significant
variation across the cortex in the degree of genetic overlap with the
psychiatric factors.

We then estimated genetic correlations between all psychiatric
and brain factors and added residual covariances between individual
disorders and brain regions when indicated. We employed a
Bonferroni-corrected significance threshold of p < 1.34E-4 (i.e., 34
brain regions × 11 disorders = 0.05/374). There were no significant
genetic correlations across any of the CT or psychiatric factors (Sup-
plementary Data 14). The Neurodevelopmental factor displayed the
strongest genetic correlation with the general SA factor in the bifactor
model (rg = −0.17, SE =0.05,p = 1.19E-3), though thiswas not significant
at a Bonferroni-corrected threshold. Four nominally significant resi-
dual relationships were also identified between ASD and specific brain
regions, the strongest of which was with the rostral anterior cingulate
region (partial rg = 0.184, SE = 0.051, p = 3.23E-4). In summary, the
associations with psychiatric traits were largely null at the level of both
genomic factors and individual brain regions.

Discussion
The current study examined the multivariate genomic architecture of
CT and SA at various levels of analysis using two of the largest available
imaging genomic datasets. At the genome-wide level, we find that
ENIGMA summary statistics for 34 physically proximal brain regions
can be grouped across a general factor and five residual factors. In
addition, we observe that this factor structure fits the data well for the
left and right hemispheres in UK Biobank, indicating a bilaterally
symmetrical structure. We also find that these five genomic factors
explain significant genetic variation in the individual brain regions
even when pulling out shared global variation via the general factor. It
is of note that the multivariate architectures with respect to the make-
up of the genomic factors were distinct acrossCT and SA. This is in line
with prevailing developmental accounts of these structures, including

Table 1 | Summary of external traits

Cognitive traits

Trait Data source Total sample size

Reaction time23 UKB 330,024

Matrix pattern recognition23 UKB 11,356

Verbal numerical reasoning23 UKB 171,304

Symbol digit substitution23 UKB 87,741

Memory pairs-matching test23 UKB 331,679

Tower rearranging23 UKB 11,263

Trail-making test-B23 UKB 78,547

Psychiatric traits

Trait Data source Cases Controls Population prevalence

Alcohol use disorder33 PGC 8485 20,272 15.90

Anorexia nervosa24 PGC 16,992 55,525 0.90

Anxiety disorders32 UKB +ANGST + iPSYCH 31,977 82,114 20.00

Attention-deficit hyperactivity disorder30 PGC 19,099 34,194 5.00

Autism spectrum disorder29 PGC 18,381 27,969 1.20

Bipolar disorder28 PGC 41,917 371,549 2.00

Major depressive disorder PGC+UKB 170,756 329,443 15.00

Obsessive-compulsive disorder25 PGC 2688 7037 2.50

Post-traumatic stress disorder31 PGC 2424 7113 30.00

Schizophrenia27 PGC 53,386 77,258 1.00

Tourette’s syndrome26 PGC 4819 9488 0.80

The top half of the table reports information for the cognitive phenotypeswhile the bottom half reports information for the 11 psychiatric traits. Sample sizes reported are for the European ancestry-
only subsets of the summary statistics.We note that formany of the psychiatric summary statistics, an SNP-specific sumof effective sample sizes was provided and that these effective sample sizes
were used for relevant calculationswithinGenomic SEM. Thepopulationprevalence column lists the prevalenceused for liability scale conversion. The broad depression phenotypewas specifically
used from the UKB Major Depression GWAS. The lifetime anxiety disorder phenotype was used for the UKB Anxiety GWAS. The PGC ALCH GWAS used the unrelated subsample from the overall
genotyped European sample. We note that the sample sizes listed are the raw totals and do not reflect effective sample sizes.
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the radial unit hypothesis that argues for distinct developmental tra-
jectories categorized by neurogenetic division of neural progenitor
cells for CT, as compared to the propagation of these cells for SA14.
Indeed, previous studies have shown that CT and SA are characterized
by differing developmental trajectories34,35, and the family-based lit-
erature corroborates the finding that genetic variation in these two
metrics is distinct 7,8.

To understand these genomic parcellations of the cortex, weused
recently developed surface-basedmethods to place our findings in the
broader context of the neuroimaging literature. This topographical
annotation allowed us to evaluate the spatial organization of our CT
and SA factors relative to two canonical parcellations of the cortex: the
cytoarchitectonic classes defined by von Economo and Koskinas20 and
the functional networks derived by Yeo and Krienen21. For both
canonical parcellations, we found significant patterns of overlap
between classifications of cortical regions, suggesting the organization
of the CT and SA factors reflected a biologically and functionally
relevant partitioning of the cortex. Further annotation revealed rela-
tionships across the identified genomic factor structures and myriad
quantitative features of the cortex, such as neurotransmitter receptor
densities, cell-type transcriptional signatures, and patterns of func-
tional activation measured by fMRI.

These results provide an anatomical context for our factor ana-
lytic findings and lend insight into what underlies the differences
between CT and SA factors. For example, while the SA factors were
more broadly related to biologically derived features of the cortex
(e.g., neuronal density, neurotransmitter receptor densities), the CT
factors were more strongly related to functional activation underlying
a variety of psychological processes. Interestingly, the spatial organi-
zation of bothCT and SA factors captured functional boundaries of the
cortex underlying emotion regulation, reward learning, decision-
making, and visual processing. At the functional genomic level, we find
that astrocytic transporters and (consistent with their generalized
biological roles) the PI genes and Super Enhancer annotations are
broadly relevant for SA, with significant enrichment identified for the
general factor. Notably, we do not observe enrichment for these
annotations for CT, indicating that these classes of genes are specifi-
cally relevant to SA.

The current analyses reflect a well-powered, psychometrically
informed approach to examining genetic overlap across CT, SA, and a
broad range of psychiatric and cognitive outcomes. Consistent with
prior work3–6, we find that the genetic underpinnings for a general
factor of SA are associated with a diverse set of cognitive functions, as
indexed by a genetic g-factor. Conversely, we observe no significant
genetic relationships across CT or SA and the four psychiatric factors.
These null results are in line with recent findings indicating that the
majority of associations across structural metrics and human complex
traits are much smaller than initially thought and that the bulk of prior
studies has been underpowered36. At the same time, large-scale phe-
notypic meta-analyses indicate widespread associations across struc-
tural metrics and various psychiatric disorders37. These findings may
reflect associations that operate through largely environmental path-
ways or the current analysesmay not be sufficiently powered to detect
genetic effects for psychiatric disorders. It is also possible that
psychiatric-structural associations are specific to different parcella-
tions of the cortex or to clinically ascertained samples. In line with this
latter account, associations between CT and various psychiatric dis-
orders have been shown to reflect responses to treatment 38,39.

Prior work using dimension reduction techniques applied hier-
archical clustering of the genetic correlations to identify five spherical
components for the CT and SA ENIGMA summary statistics9. As with
the current analyses, those analyses indicated that physically adjacent
regions tend to cluster together. We build on these findings by char-
acterizing our genomic factors using topographical annotation, Stra-
tified Genomic SEM, and patterns of relationships with external

correlates within the broader SEM framework. GWAS has also been
conducted on the first two principal components (PCs) for CT and SA
and, in linewith our cognitive results, the first principal component for
SA was found to be significantly associated with cognitive function40.
Our findings are conceptually overlapping but statistically distinct
from the latter application of PCs in that these are derived based on
patterns of phenotypic associations, whereas Genomic SEM explicitly
models genetic overlap.

The current analyses have a number of limitations. First, we
highlight that our analyses were restricted to participants of Eur-
opean ancestry only due to the availability of sufficiently well-
powered GWAS data for this ancestral group coupled with the
requirement of LD-score regression to produce estimates within a
single ancestral population due to differences in LD structure
across groups. It will be of the utmost importance, both with
respect to scientific value and representation, that future analyses
build on the expanding, genetically informed datasets for different
populations. Second, while we were able to evaluate the fit of the
factor structure in both ENIGMA and UKB, these were not entirely
independent samples. In addition, ENIGMA reflects an age-
heterogeneous sample, and findings should be interpreted in this
light. These models should continue to be evaluated in external,
genetically informed imaging datasets for specific developmental
windows. For Stratified Genomic SEM analyses, we utilized the zero-
order stratified genetic covariance matrices that do not control for
overlap with other annotations for the estimation of enrichment.
This decision point reflects the power needed to utilize the τ
matrices that do control for annotation overlap (see “Methods”),
but as GWAS sample sizes continue to grow, future work can
examine the robustness of these results.

Polygenic risk for schizophrenia was recently found to have more
robust associations with microstructural metrics derived from
diffusion-weighted imaging (DWI) relative to macrostructural imaging
metrics41. As our analyses utilized the Desikan–Killiany (DK) atlas
parcellations12, future work could examine both more fine-grained
parcellations (e.g., Glasser42) and extend analyses to examine pheno-
types derived from other scanning modalities, such as DWI-derived
outcomes. We note that F1CT mapped onto both physically proximal
regions and regions that have previously shown the highest reliability
for the DK atlas across manual and automated regional definitions12.
Future work applying different parcellations may help additionally
clarify whether the structure for this particular factor is merely a
reflection of a more reliable signal.

Substantially overlapping genetic signal within CT and SA brain
regions necessitates statistical tools that allow for examining the
multivariate system of relationships across these phenotypes. To
this end, we employed Genomic SEM to examine the factor struc-
ture and its correlates at the genome-wide level and went on to
better characterize these factors by performing topographical
annotation and estimating multivariate functional enrichment. In
line with prior studies that utilize the global metrics of CT and SA,
we find that a general factor explains significant genetic variation
and captures patterns of enrichment shared across the 34 brain
regions. At the same time, we observe that the five residual genomic
factors reflect biologically and functionally relevant partitionings of
the cortex. As all data used here is publicly available, we present an
accessible framework for studying the multivariate genomic archi-
tecture of the cerebral cortex. We propose that future studies use
this approach to examine other research questions relevant to this
highly studied set of imaging outcomes. Collectively, these findings
point towards the utility and need to simultaneously model the
different levels of genetic risk sharing, from the most general level
across all the cortex to the specific subclusters indexed by the
genomic factors, and down to the variation unique to a single brain
region.
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Methods
Quality control procedures
Quality control filters for estimating the genetic covariance and sam-
pling covariance matrices followed the defaults in the Genomic SEM10

implementation of LDSC43. These filters included restricting to SNPs
present in HapMap3 and, when this information was available,
restricting to minor allele frequency (MAF) >1% and excluding SNPs
with information scores (INFO) <0.9. We highlight that UKB and
ENIGMA structural summary statistics, and the UKB cognitive sum-
mary statistics, includedMAF but not INFO. However, ENIGMA filtered
summary statistics on imputation quality at the level of the con-
tributing cohorts prior to performing the meta-analysis9. Imputation
quality was available for a subset of psychiatric disorders. The LD-
scores used for LDSC were calculated using the European subsample
of the 1000 Genomes phase 3 project; the scores excluded the MHC
region due to the high degree of LD outliers which is known to unduly
influence estimates. We note also that when calculating the liability
scale heritability for the psychiatric traits we used the sum of effective
sample sizes, and a sample prevalence of 0.5 to reflect the fact that the
corrected sample size already accounts for sample ascertainment; we
have shown that this produces amore accurate estimate of heritability
for binary traits as it more appropriately accounts for ascertainment
differences across cohorts contributing to GWAS meta-analysis44. For
comparative purposes, population prevalences for the liability con-
version were chosen to reflect those used from the corresponding
univariate GWAS publication and are reported in Supplementary
Data 11.

Genomic factor analysis: ENIGMA
We refer the reader to the original ENIGMA9 publication for details
about how the univariate GWAS were performed. We note briefly here
that ENIGMA9 used the Desikan–Killiany12 atlas segmentations to
define the 34 brain regions and that SA and CT were measured using
T1-weighted magnetic resonance imaging scans. We used the publicly
available summary statistics that apply genomic control. We note also
that all analyses presented here utilize the GWAS summary statistics
that were not corrected for global volume as this allowed for explicitly
modeling the shared genetic variation across the 34 regions in the
context of a bifactor model. Factor analysis of ENIGMA GWAS sum-
mary statistics proceeded in five primary steps. First, standard quality
control filters (see “Quality control procedures” section above) were
applied to the GWAS summary statistics using the munge function in
Genomic SEM. Second, LD-score regression43,45 was applied to the
ENIGMA GWAS summary statistics to produce a genetic heatmap
across the 34 CT and SA brain regions. As certain SNPs were not pre-
sent across all cohorts that comprise the ENIGMAconsortium, the SNP-
specific participant sample sizes were used for LDSC estimation. Third,
the Kaiser15, acceleration factor, and optimal coordinates16 rules were
applied to these genetic correlation matrices in order to collectively
determine the number of genomic factors that could be used to par-
simoniously represent the data. For both SA and CT, these results
pointed towards five factors according to the Kaiser and optimal
coordinates tests, and a single, common factor according to the
acceleration factor test. Fourth, exploratory factor analyses (EFAs)
were conducted using the promax (i.e., correlated factor) rotation in
the factanal R package.

Finally, we fit confirmatory factor models in Genomic SEM and
evaluated these models using standard metrics of model fit10. More
specifically, comparative fit index (CFI) values above 0.917 and stan-
dardized root-mean-squared residual (SRMR) values less than 0.10
were considered indicative of acceptablemodel fit. We also report the
Akaike Information Criteria (AIC)18 a fit index that balances overall
model fit with the number of estimated parameters (i.e., parsimony),
with lower values indicating better fit. We fit three primary con-
firmatory models in Genomic SEM. The first was a common factor

model that was used to determine whether, consistent with the
acceleration factor test, a single factor was sufficient for describing the
data. The second was a five-factor, correlated factors model specified
based on the five-factor EFA results. More specifically, individual brain
regions were assigned to a factor when their standardized loading was
>0.5, or if the brain region did not achieve a loading of 0.5 for any
factor assigning the region to the factor with the largest standardized
loading. This was with the one exception that the medial orbitofrontal
region was the one indicator that showed evidence of cross-loadings
for both CT and SA, with standardized loadings >0.5 for both the
second and third factor in the CTmodel and the first and fifth factor in
the SA model. However, including this cross-loading in the con-
firmatory model produced a worse model fit for CT (with cross-load-
ing: AIC = 68157.97, CFI = 0.924, SRMR=0.070; without cross-loading:
AIC = 53570.8, CFI = 0.941, SRMR=0.070); it also included the only
negative factor loadings for CT and caused model convergence issues
for SA. This cross-loading was consequently removed for both struc-
tural metrics with the medial orbitofrontal factor specified to load on
the factor with the highest EFA loading.

The third type of model we fit, and the model presented in the
main text, was a bifactor model. This consisted of a general factor that
captures shared variation across the 34 brain regions and five, residual
factors (defined by the same brain regions from the correlated factors
model) thatmodel covariation not accounted for by the general factor.
As the general factor defined by all indicatorswithin a bifactormodel is
conceptually posited to account for the covariation across the
remaining factors, the five residual factors were all specified to be
orthogonal (i.e., factor correlations fixed to 0). For allmodels, we used
unit variance identification such that the factor variances were fixed to
1. For the SAmodels, the fourth factorwasdefinedby twobrain regions
(caudal anterior cingulate and rostral anterior cingulate) and the fifth
factor was defined only by the medial orbitofrontal brain region. To
ensure that the SA models were locally identified, the factor loadings
were then constrained to equality for the fourth factor, and the resi-
dual variance of themedial orbitofrontal region that solely defined the
fifth factor was fixed to 0.

Given the pervasive levels of genetic overlap across the 34 brain
regions, the generally parsimonious representation of the data using
five factors, and the stringent threshold of assigning brain regions to
factors using standardized loadings of 0.5 or greater, we went on to
iteratively add residual covariances across pairs of brain regions. This
was done by obtaining the residual covariance matrix—calculated as
the difference between the model-implied genetic covariance and
observed genetic covariance matrix—and adding the residual covar-
iances one at a time until they no longer reached a significance
threshold of p <0.01. This procedure resulted in adding eight residual
covariances for CT and seven residual covariances for SA. We con-
firmed that these residual covariances improvedmodel fit for both the
correlated factors and the bifactor model for CT and SA (Supple-
mentary Data 4). We find for both CT and SA that a bifactormodel and
five-factor correlated factorsmeet or exceed field standardmetrics for
providing an acceptable fit to the data and are both considered theo-
retically informative for downstream analyses, including replication in
UK Biobank.

Genomic factor analysis: UK Biobank
The UK Biobank (UKB; http://www.ukbiobank.ac.uk) is a large
population-based cohort study that recruited approximately 500,000
volunteers between 2006 and 2010 across the UK. A subset of parti-
cipants underwent brain MRI scans since 2014. UKB received ethical
approval from theNorthWestCentre Research Ethics Committee (REC
number 11/NW/0382). The current analyses were conducted under the
approved UKB application 32568.

Raw brain imaging data were processed through an automated
image processing pipeline46 by the UKB imaging team to create a wide
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range of image-derived phenotypes (IDPs) (https://www.fmrib.ox.ac.
uk/ukbiobank/fbp). Details of the MRI protocol and processing are
publicly available46,47. Here, we focused on CT and SA measures of the
34 brain regions defined by the Desikan–Killiany atlas12. The temporal
pole was excluded from analysis, as part of the temporal lobe is diffi-
cult to segment, leading to a large amount of missing data for the
region.

The genetic data for all UKB participants were subjected to a
standard set of QC filters consisting of removing strand ambiguous
SNPs, regions with long-range LD, SNPs with call rates <0.98, and SNPs
with a minor allele frequency <0.05. Analyses were also restricted to
autosomal SNPs. In order to calculate predicted ancestry, PLINK
(https://www.cog-genomics.org/plink/2.0/assoc) was first used to
perform LD pruning on the QC’d genetic data using an r2 threshold of
0.2 within a 100 kb window that shifted by 50kb each time. Principal
components (PCs) of ancestry calculated in 1000 Genomes Phase 3
data were then projected onto the LD-pruned UKB genetic data. The
top six PCs were subsequently used as input to a Random Forest
classifier with 1000 Genomes as the training set to calculate predicted
probabilities of belonging to a particular ancestral population. Of the
initial pool of 40,733 UKB participants with genetically informed MRI
data, we retained 31,522 individuals with predicted probabilities of
belonging to the European population >90%.

Using sample-level filters created by the original UKB investiga-
tors, participant QC was then performed on the European ancestry
subsample. This involved removing 3802 individuals with: (1) mis-
match between self-reported and genetically inferred sex; (2) miss-
ingness or heterozygosity outliers; (3) sex chromosome aneuploidy; or
(4) related participants in the sample. Related participants were spe-
cifically removed by restricting to participants classified in UKB Data-
Field 22020 as having been used for genetic principal component
estimation, which was performed on an unrelated sample that
removed inferred, third-degree relatives. We note that kinship (i.e.,
relatedness) was carefully estimatedwithin the full UKB sample using a
restricted set of 93,511 SNPs that weakly loaded on principal compo-
nents of ancestry. This selected set of SNPs is consequently less likely
to upwardly bias kinship estimates due to recent admixture48. Our
approach to filtering relatedness is more conservative than other
approaches that attempt to identify the maximum, independent set in
a given kinship matrix. However, using the filters provided by UKB
investigators is far more computationally efficient as it does not
require re-running preprocessing procedures when UKB releases
additional neuroimaging data. Finally, we removed 981 individuals
with incomplete data on necessary covariates, which yielded a final
sample size of 26,739 participants that were brought forward for
GWAS analyses (Supplementary Fig. 13 for QC schematic).

GWASwas performed using the non-LD pruned, QC’d genetic and
imaging data as input to PLINK. We specifically used the linear
regression model, adjusting for age, sex, X/Y/Z/T position of the head
and the radio-frequency receive coil in the scanner, UKB imaging
acquisition center, mean resting-state and task-based functional MRI
head motion, volumetric scaling factor, T1 density, genotyping chip,
and the top 40 principal components of the genetic data (estimated
within the UKB sample) as covariates.

The ENIGMA imaging sample utilized in the primary analyses also
includes an earlier release of the UKB imaging data for N = 10,083
participants9. While it would be possible to restrict to a strictly inde-
pendent holdout sample based on the date of the imaging visit in UKB,
the ENIGMA paper also included 5095 unrelated European individuals
with imaging data from UKB as a holdout sample for polygenic risk
score analyses. Consequently, a strict UKB holdout sample based on
imaging date would reflect only ~11,500 participants and consequently
be underpowered relative to the full UKB imaging sample. As we note
in the “Results” section, we view the semi-independent UKB sample as
informative both as a replication sample and, more specifically, as a

sample that is far more age homogenous relative to ENIGMA. We also
quantify the level of shared information across our UKB summary
statistics and the ENIGMA summary statistics using the bivariate LDSC
intercept. The bivariate (i.e., cross-trait) LDSC intercept is estimated
directly from the GWAS summary data, and for two traits (1 and 2) is
expressed as:

ρ1,2Ns1,2ffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ð1Þ

where ρ1,2 is the phenotypic correlation, Ns1,2 is the sample overlap,
and N1 and N2 reflect the total sample size for traits 1 and 2, respec-
tively. The bivariate LDSC intercept then reflects the phenotypic cor-
relation weighed by proportional sample overlap, thereby providing a
quantitative index of the sampling dependence across the ENIGMA
summary statistics and our UKB summary statistics. We specifically
estimated the bivariate intercept for global CT and SA metrics for
ENIGMA with the global metrics for the left and right hemispheres in
UKB. For CT, the bivariate interceptwas0.178 across ENIGMAandboth
global metrics of the left and right hemispheres in UKB. For SA, the
bivariate intercept was 0.262 across ENIGMA and the left and right
global metrics in UKB. As expected, this indicates that our updated
UKB summary statistics reflect a largely independent replication
cohort relative to the primary ENIGMA analyses.

Topographical annotation
In order to better understand the spatial organization of our genomic
brain factors, we sought to characterize their relationships with
established canonical and meta-analytic maps from the neuroimaging
literature. The specific test employed was dependent on the nature of
the comparison (i.e., comparing two categorical maps required a dif-
ferent test than comparing one categorical map and one continuous
map), as described in the following sections. However, regardless of
the specific test used in a given comparison, a spin test approach was
used to assess the statistical significance of the observed spatial cor-
respondence. We refer the reader to previous publications for a
detailed description of this method, but it critically allows for two
neuroimaging maps to be compared while accounting for spatial
contiguity and hemispheric symmetry of the cortex. Here, we used the
spin test approach to generate an empirical null distribution of
10,000 spatially permuted test statistics.

To examine the spatial correspondence between our genomic
factors of brainmorphology andother categorical neuroimagingmaps
(e.g., the cytoarchitectural classes defined by von Economo and
Koskinas20,49, the functional intrinsic connectivity networks derived
from resting-state functional magnetic resonance imaging [fMRI] by
Yeo and Krienen21,50), we first assigned labels from each parcellation to
corresponding Desikan–Killiany regions on the basis of maximal
overlap.We thenperformed a Fisher’s exact test to evaluate the degree
of dependence between the two categorical maps of interest. The
observed p-value from this testwas subsequently compared against an
empirical null distribution generated via the spin test approach
described above, yielding a final Pspin value for interpretation.

We also compared the spatial relationships between our genomic
factors and numerous features that varied continuously across the
cortex, which can be generally described as being derived from either
biological/physiological or cognitive/psychological data sources. The
former is a collection of cortical maps derived from the BigBrain
project (intracortical microstructure, laminar differentiation, cellular/
neuronal density)51–53, a recent meta-analysis of neurotransmitter
receptor and transporter densities measured with positron emission
tomography54 and the Allen Human Brain Atlas (cell-type-specific
transcriptional signatures)55, while the latter is a collection of cortical
association maps obtained from Neurosynth56, an online platform for
automatedmeta-analysis of more than 15,000 published fMRI studies.
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Here, we used a subset of 123 probabilistic association maps that
correspond to cognitive and psychological processes described in the
Cognitive Atlas57 as described in a previous study using similar
methods54. For these continuous maps, we fit an analysis of variance
model and computed an omnibus F statistic for each comparison. As
done for the categorical comparisons, Pspin values were subsequently
calculated and adjusted for false discovery rate.

Stratified Genomic SEM
Stratified Genomic SEM11 reflects a multistep process that ends in the
ability to estimate enrichment within functional annotations for any
parameter of interest (e.g., factor variances) within the genomic
model. Functional annotations reflect a subset of genetic variants that
are categorized using collateral gene expression data, such as single-
cell RNA sequencing, with respect to some shared characteristic,
including upwardor downward expressionwithin specific tissue types,
histone marks, or brain regions. A functional annotation is enriched
when the proportion of genetic variation explained by the variants
within that annotation is greater than the proportional size of the
annotation. The first step in Stratified Genomic SEM is to estimate
genetic covariance matrices stratified across a chosen set of annota-
tions. This is achieved by estimating the multivariable version of
Stratified LDSC22 More specifically, stratified genetic covariancewithin
a functional annotation that controls for overlap with other annota-
tions is estimated as:

E
�
z1jz2j

�
=

ffiffiffiffiffiffiffiffiffiffiffi
N1N2

p X
c

τc
l j,cð Þ
Mc

+
ρNsffiffiffiffiffiffiffiffiffiffiffi
N1N2

p +a ð2Þ

where Ni is the sample size for study i, c is a specific genomic anno-
tation, Mc is the number of SNPs in the annotation, τc is the coherit-
ability within annotation c controlling for overlap with other
annotations, Ns is the sample overlap across the twoGWAS studies, a is
a constant term across annotations that captures unmeasured con-
founding (e.g., shared population stratification), and ρ is the pheno-
typic correlation within overlapping participants. Stratified heritability
estimates are producedusing the same general formula reduced to the
univariate S-LDSC model15, where the expectation across two zj
statistics for the same trait is given as E½χ2j �.

For the current application, the τc values are converted to their
zero-order form that does not control for overlap with other annota-
tions. The zero-order stratified values are useful as the estimates are
not directly contingent on the other annotations included in themodel
and produce more stable estimates at moderate GWAS sample sizes,
such as those observed here. This comes with the caveat that enriched
signal can, in part, reflect signal sharedwith other annotations and this
limitation should be kept in mind when interpreting results. The τc
estimates are converted to zero-order values ðζ tÞ for a target annota-
tion t by taking the sum of weighted τc values given as:

ζ t =
X
c

∣Mc\Mt ∣
∣Mc∣

� �
τc ð3Þ

where, as in the bivariate S-LDSC equation described above, ∣Mc∣ is the
total number of SNPs in annotation c, and ∣Mc \Mt ∣ is the number of
SNPs in both annotations c and t. Putting these pieces together,
∣Mc\Mt ∣

∣Mc ∣

� �
τc then reflects the stratified (co)heritability estimate in

annotation cweighted by the proportion of annotation c SNPs that are
shared with target annotation t. The summation of these estimates
then produces the zero-order estimates used to populate the zero-
order, stratified genetic covariance matrix across the pairwise
combinations of included phenotypes.

Each stratified, zero-order genetic covariancematrix is alsopaired
with a stratified, zero-order sampling covariance matrix. The diagonal
of the sampling covariancematrix contains squared standard errors of

stratified heritability and covariance estimates. The off-diagonals
reflect the sampling covariances that capture dependencies among
estimation errors that can arise in cases such as participant sample
overlap. Both the diagonals and off-diagonals are estimated using a
multivariate block jackknife and taken together allow for producing
unbiased standard errors in the context of Stratified Genomic SEM.
The stratified, zero-order genetic covariance and sampling covariance
matrices were specifically estimated using the s_ldsc function within
the GenomicSEM R package.

When the parameter being examined for enrichment reflects
pleiotropic effects captured by the factor variances, these stratified
matrices are used as input toGenomic SEMwherein the factor loadings
arefixed from themodel estimated using the genome-wide annotation
that includes all SNPs, and the factor and residual indicator variances
are freely estimated. The factor variances estimated within an anno-
tation then reflect the proportion of pleiotropic genetic variation
captured by a given annotation. This estimate and its standard error
are subsequently divided by the proportional size of the annotation to
produce estimates of multivariate enrichment.

The current project utilized functional annotations from various
sources. This included functional annotations from the most recent
1000 Genomes Phase 3 baseline set of annotations (BaselineLD Ver-
sion 2.2) recommended by the original developers of univariate
S-LDSC22,58. These annotations include minor allele frequency bins,
histone marks, classes of enhancers and evolutionarily conserved
variants, and flanking window annotations. We also include brain and
endocrine relevant annotations for tissue-specific gene expression
from GTEx59 and DEPICT60 and histone marks from the Roadmap Epi-
genetics project61. This was in addition to five randomly selected
control regions for gene expression andhistonemarks (i.e., 10 controls
total). Finally, we utilized 29 functional annotations that reflected the
main effects of protein-truncating-variant (PTV)-intolerant (PI) genes,
human hippocampal and prefrontal brain cells, and their interactions.
Theseannotationswere created using collateral data from theGenome
Aggregation Database (gnomAD)62 and GTEx59 data, with the para-
meters used to construct these annotations outlined in ref. 11.

Flanking window, control, and continuous annotations were used
to produce unbiased estimates of stratified genetic covariance but
were excluded fromenrichment analyses as these results would not be
directly interpretable. This resulted in a totalof 168binary annotations.
For SA, we removed 16 annotations that were nonpositive definite and
required smoothing the stratified covariance matrix such that any
point estimate in the matrix produced a Z-statistic discrepancy >1.96
pre- and post-smoothing. As we examined the enrichment of the
genetic variance for six factors (the five residual factors and the gen-
eral factor from the bifactor model) we employed a Bonferroni cor-
rection of p < 5.48E-5 (i.e., 0.05FDR/[152annotations × 6Genomic Factors]). CT
required removing 22 annotations due to high degrees of matrix
smoothing, but we employed the same Bonferroni correction of
p < 5.48E-5 for comparative purposes.

Genetic overlap with cognitive function
Genetic overlap with genetic g was examined in the context of the
finalized bifactor and correlated factors models (i.e., those that inclu-
ded residual covariance across specific brain regions) for both CT and
SA. This was achieved by simultaneously estimating all brain factors
with g-factor correlations in the context of themodels. As a first step in
these analyses, we estimated an omnibus model χ2difference test that
compared the model fit for a model in which all correlations with the
brain-based factors were freely estimated versus constrained to
equality. This omnibus test asks, at a general level, whether g shows a
uniform or factor-specific pattern of relationships for CT or SA. In line
with the model fitting procedure used for the brain-regions-only
models, residual covariances between individual brain regions and
cognitive tests were iteratively added until they no longer reached a
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significance threshold of p <0.01 within the context of the correlated
factorsmodel. For CT, this resulted in adding two residual covariances
between verbal numerical reasoning and both the insula and pre-
central region. No residual covariances were added for SA. As each
family of tests for CT and SA with g consisted of 204 possible asso-
ciations (i.e., 34 brain regions × 7 cognitive tests) we employed a
Bonferroni correction of 0.05/204 (p < 2.10E-4).

Genetic overlap with psychiatric disorders
The same four-factor, correlated factorsmodel from ref. 11 was used to
model the multivariate architecture across the same 11 disorders. We
note a few differences in the summary statistics used for the 11 dis-
orders paper relative to the current analyses. This includes utilizing
only publicly available summary statistics such that 23andMe data was
not included for ADHD or MDD, using the most recent Freeze 3 sum-
mary statistics for bipolar disorder28, and using the recently released
anxiety summary statistics that reflect meta-analysis across the UK
Biobank, ANGST, and iPSYCH consortium32. We began by confirming
that themodel for psychiatric disorders only still provided a good fit to
the data even with the noted differences for some summary statistics
(AIC = 162.86, CFI = 0.976, SRMR=0.097), and that the factor loadings
were largely concordant with those reported in prior work (Supple-
mentary Data 10).

As with the g-factor analyses, we went on to examine the factor
correlations across all psychiatric factors and added residual covariance
between individual disorders and brain regions until they no longer
reached a significance threshold of p <0.01. For SA, this resulted in
adding in four residual relationships between autism spectrumdisorder
and the temporal pole, pars orbitalis, transverse temporal, and rostral
anterior cingulate regions. No residual covariances were identified for
CT. As each family of tests for CT and SA with psychiatric disorders
consisted of 374 possible associations (i.e., 34 brain regions × 11 dis-
orders), we employed a Bonferroni correction of 0.05/374 (p < 1.34E-4).
We also estimated the same omnibus model χ2difference test by com-
paring a model in which the correlations across the brain-based and
psychiatric factors were fixed to equality versus freely estimates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are all publicly
available or can be requested for access. Specific download links for
various datasets are directly below. Summary statistics for ENIGMA
are available from: http://enigma.ini.usc.edu/research/download-
enigma-gwas-results/. Summary statistics for the seven, individual
cognitive traits are available from: https://datashare.is.ed.ac.uk/
handle/10283/3756. Summary statistics for data from the PGC can
be downloaded or requested here: https://www.med.unc.edu/pgc/
download-results/. Summary statistics for the Anxiety phenotype
can be downloaded here: https://drive.google.com/drive/folders/
1fguHvz7l2G45sbMI9h_veQun4aXNTy1v. Data from gnomAD used
to identify PI genes for the creation of annotations can be down-
loaded here: https://console.cloud.google.com/storage/browser/_
details/gcp-public-data–gnomad/release/2.1.1/constraint/gnomad.
v2.1.1.lof_metrics.by_gene.txt.bgz?pageState=(%22StorageObject
ListTable%22:(%22f%22:%22%255B%255D%22)). Gene count data per
cell for the creation of annotations were obtained from: https://
storage.googleapis.com/gtex_additional_datasets/single_cell_data/
GTEx_droncseq_hip_pcf.tar. Data that maps individual cells to cell
types (e.g., neuron, astrocyte etc.) were obtained from: https://
static-content.springer.com/esm/art%3A10.1038%2Fnmeth.4407/
MediaObjects/41592_2017_BFnmeth4407_MOESM10_ESM.xlsx.
Links to the LD-scores, reference panel data, and the code used to

produce the current results can all be found at: https://github.com/
GenomicSEM/GenomicSEM/wiki. Links to the BaselineLD v2.2
annotations can be found here: https://data.broadinstitute.org/
alkesgroup/LDSCORE/. Data for the UK Biobank (UKB) can be
requested from: https://bbams.ndph.ox.ac.uk/ams/signup. Cortical
maps of intracortical microstructure, laminar differentiation, and
cellular/neuronal density were generated using data from the Big-
Brain project at: https://bigbrainproject.org/maps-and-models.
html. Cortical maps of neurotransmitter receptor and transporter
densities can be obtained from: https://github.com/netneurolab/
hansen_receptors. Probabilistic association cortical maps of 123
cognitive and psychological processes (generated using data from
Neursynth [https://neurosynth.org/]) can be obtained from: https://
github.com/netneurolab/hansen_receptors. Cortical maps of cell-
type-specific transcriptional signatures were generated using data
from the Allen Human Brain Atlas at: https://human.brain-map.org/
static/download.

Code availability
GenomicSEM software (which now includes the write.model function-
ality to generate model syntax based on EFA output for extensive sets
of traits), is an R package that is available fromGitHub at the following
URL: https://github.com/GenomicSEM/GenomicSEM. Directions for
installing and using the GenomicSEM R package can be found at:
https://github.com/GenomicSEM/GenomicSEM/wiki. The specific
Genomic SEM code release used for these analyses can be found here:
https://doi.org/10.5281/zenodo.7512951. The PLINK 2.0 software used
to run GWAS analyses in UK Biobank can be downloaded here: https://
www.cog-genomics.org/plink/2.0/. The factanal software used to fun
the EFAs can be downloaded directly in R, with its documentation
provided here: https://www.rdocumentation.org/packages/stats/
versions/3.6.2/topics/factanal. The figures that overlay the current
findings over images of the human brain (e.g., Fig. 1c) were created
using the BrainsForPublication software: https://github.com/
WhitakerLab/BrainsForPublication.
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