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RNA splicing analysis using heterogeneous
and large RNA-seq datasets

Jorge Vaquero-Garcia1,5, Joseph K. Aicher 1,2,5, San Jewell1,5,
Matthew R. Gazzara 1,5, Caleb M. Radens1, Anupama Jha3, Scott S. Norton 1,
Nicholas F. Lahens 4, Gregory R. Grant1,4 & Yoseph Barash 1,3

The ubiquity of RNA-seq has led to many methods that use RNA-seq data to
analyze variations in RNA splicing. However, available methods are not well
suited for handling heterogeneous and large datasets. Such datasets scale to
thousands of samples across dozens of experimental conditions, exhibit
increased variability compared to biological replicates, and involve thousands
of unannotated splice variants resulting in increased transcriptome com-
plexity. We describe here a suite of algorithms and tools implemented in the
MAJIQ v2 package to address challenges in detection, quantification, and
visualization of splicing variations from such datasets. Using both large scale
synthetic data and GTEx v8 as benchmark datasets, we assess the advantages
of MAJIQ v2 compared to existing methods. We then apply MAJIQ v2 package
to analyze differential splicing across 2,335 samples from 13 brain subregions,
demonstrating its ability to offer insights into brain subregion-specific splicing
regulation.

The usage of RNA sequencing (RNA-seq) has become ubiquitous in
biomedical research. While some studies utilize RNA-seq only to
investigate the overall expression level of genes, an increasing number
of studies analyze changes in the relative abundance of gene isoforms.
Changes in gene isoforms can occur through multiple mechanisms,
including alternative promoter usage, alternative polyadenylation, and
alternative splicing (AS). The production of different gene isoforms
can in turn lead to diverse functional consequences, including changes
to the translated protein domains, to degradation rates, and to loca-
lization. Previous studies showed that themajority of humangenes are
alternatively spliced with over a third of them shown to change their
major isoform across 16 human tissues1. These observations, com-
bined with the association of splicing defects with both monogenic
and complex disease, serve tomotivate the study of splicing variations
across diverse experimental conditions. Consequently, independent
labs as well as large consortia produce vast amounts of RNA-seq data.
Datasets may involve anywhere from just a few to many thousands of
samples each, and are typically heterogeneous as they often do not

represent biological or technical replicates. The consequent increased
splicing variability, illustrated in Fig. 1a, b, can be the result of a mul-
titude of factors, both experimental (e.g., difference in sequencing
machine), and biological (e.g., sex, age). While some confounding
factors may be corrected with appropriate methods2, fully removing
the observed variability in such data is unlikely and may also over-
constrain the data, thus leading to a loss of true biological signal. Thus,
there is a general need for methods that can effectively detect, quan-
tify, and visualize splicing variations from large and heterogeneous
RNA-seq datasets.

Broadly, the quantification of changes in gene isoform usage can
be divided between methods that aim to quantify whole isoforms and
those that quantify localized AS “events” within a gene. While quanti-
fying all gene isoforms accurately across diverse conditions can be
regarded as the grand challenge of transcriptomics, achieving this goal
remains open due to several limiting factors. In the case of long reads
technology, these factors include high error rate and high costs which
do not allow researchers to capture enough reads from all isoforms. In
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the case of the more commonly used short reads technology, these
limiting factors include the sparsity of reads, their positional bias, and
the fact that reads usually cannot be assigned to a unique isoform. In
addition, the composition of isoforms in a sample is typically
unknown, requiring further inference of the existing isoforms or
making simplifying assumptions such as a known transcriptome.
These issues have led many researchers to focus on local AS “events,”

which can be more easily and accurately quantified from RNA-seq. AS
events arequantified in termsof percent spliced in (PSI, denotedbyΨ),
which is the relative ratio of isoforms including a specific splicing
junction or retained intron. Traditionally, AS events have been studied
only for a restricted set of the most common “types” (e.g., cassette
exons). In a previous study, we extended this set of AS event types
using the formulation of local splicing variations (LSVs) and
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introducedMAJIQ as a software package for studying such LSVs3. LSVs,
which can be defined as splits in a gene splicegraph coming into or
from a reference exon, allow researchers to capture not only pre-
viously defined AS types, but also much more complex variations
involving more than two alternative junctions (see examples in Fig. 1c
for illustration). Furthermore, the LSV formulation, and similar defi-
nitions of local AS events suggested in subsequent works4,5, also help
incorporate and quantify unannotated (also termed de novo) splice
junctions. Previous work comparing splicing across mouse tissues has
shown that accounting for complex and de novo variations results in
over 30% increase of detected differentially spliced events while
maintaining the same level of reproducibility and experimental vali-
dation rates3. Importantly, capturing such unannotated splice varia-
tions is of particular importance for the study of disease such as cancer
and neurodegeneration, which often involve aberrant splicing6,7.

Despite previous demonstrations of MAJIQ’s utility for analyzing
AS3,8, we found MAJIQ along with many commonly used methods for
AS events quantification to be ill-suited for handling heterogeneous
and large RNA-seq datasets. Such datasets pose several algorithmic,
computational, and visualization challenges. First, the assumption of a
shared PSI per LSV junction in a group, usedbymethods suchasMAJIQ
and LeafCutter, is violated in such data even when handling only a
small dataset with few samples, leading to a potential increase in false
positives and loss of power. Second, algorithms need to not only scale
to thousands of samples efficiently but also to allow incrementally
adding new samples asmore data is acquired, and to support multiple
group comparisons (e.g., multiple tissue comparisons across GTEx).
Third, the increased complexity of the data requires efficient repre-
sentation. Such efficient representation would allow users to capture
themany unannotated splicing variations in the data, while at the same
time simplifying its representation and quantification. Such simplifi-
cation will allow to filter lowly used splice junctions while also
detecting additional, non-classical sub-types of significant variations.
Finally, efficient and user-friendly visualization is required to probe
possibly multiple sample groups as well as individual samples.

To address the above challenges, we developed an array of tools
and algorithms included in the MAJIQ v2 package. These include
nonparametric statistical tests for differential splicing (MAJIQHET), an
incremental splicegraph builder, a new algorithm for quantifying
intron retention, a method to detect high-confidence negative (non-
changing) splicing events, and a new Modulizer algorithm to parse all
LSVs across genes into modules which can then be classified into
subtypes. These algorithms and tools are coupled with a new visuali-
zation package (VOILA v2), which allows users to compare multiple
sample groups, simplify splicegraphs, and probe individual data points
(e.g., LSV in an individual sample) while representing hundreds or
thousands of samples. In addition, to support reproducibility, we
develop a package for comparative evaluation of differentmethods for
RNA splicing analysis and use it to demonstrate that the new version of
MAJIQ compares favorably with the current state of the art using both
synthetic (simulated) and real (GTEx) data. Finally, we apply theMAJIQ

v2 toolset to 2335 RNA-seq samples from 374 donors across 13 brain
subregions. We use VOILA v2 to visualize the result and highlight
several key findings in brain subregion-specific variations in cerebellar
tissue groups compared to the remaining brain regions.

Results
The MAJIQ v2 splicing analysis pipeline
To support RNA splicing analysis using large RNA-seq datasets we
implemented the set of tools and algorithms illustrated in Fig. 1c. In the
first step, the MAJIQ builder combines transcript annotations and
coverage from aligned RNA-seq experiments in order to build an
updated splicegraph for each gene which includes de novo (unan-
notated) elements such as junctions, retained introns, and exons.
Several user-defined filters can be applied at this stage to exclude
junctions or retained introns which have low coverage or are not
detected in enough samples in user-defined sample groups. Notably,
per-experiment coverage is saved separately so that it can be used in
subsequent analyseswithout reprocessing aligned reads a second time
(i.e., incremental build). This feature is highly relevant for large studies
with incremental releases, such as ENCODE and GTEx, and also for
individual lab projects where datasets or samples are added as the
project evolves.

In the second stepof thepipeline, theMAJIQquantifier is executed.
As in theoriginalMAJIQ framework, splicingquantification is performed
in units of LSVs. Briefly, an LSV corresponds to a split in gene splice-
graphs coming into or out of a reference exon. Each LSV edge, corre-
sponding to a splice junction or intron retention, is quantified in terms
of its relative inclusion (PSI, Ψ 2 0, 1½ �) or changes in its relative inclu-
sion between two conditions (dPSI, ΔΨ 2 �1, 1½ �). Given the junction
spanning reads observed in each LSV,MAJIQ’s Bayesianmodel results in
a posterior distributions over the (unknown) inclusion level (P Ψð Þ), or
the changes in inclusion levels between conditions (P ΔΨð Þ). Thismodel
accounts not only for the total number of reads but also for factors such
as read distribution across genomic locations and read stacks. Given its
Bayesian framework, the model can also output the confidence in
inclusion change of at least C (P ∣ΔΨ∣>Cð Þ), or the expectation over the
computed posterior distributions (E Ψ½ �, E ΔΨ½ �). In this work, we
introduce two new algorithms within the MAJIQ quantifier. The first
involves how intron retention is quantified, allowing for much faster
executionwith higher accuracy (see “Methods”). The second addition is
the implementation of additional test statistics, termed MAJIQ HET
(heterogeneous). Conceptually, the original MAJIQ model assumes a
shared (hidden) PSI value for a given groupof samples and accumulates
evidence (reads) across these samples to infer PSI. In contrast, MAJIQ
HET quantifies PSI for each sample separately and then applies robust
rank-based test statistics (TNOM, InfoScore, or Mann–Whitney U). As
we demonstrate below, the new HET test statistics allow MAJIQ to
increase reproducibility in small heterogeneous datasets, and gain
power in large heterogeneous datasets.

A new optional analysis step introduced here is the VOILA
Modulizer, an algorithm which organizes all identified LSVs into AS

Fig. 1 | MAJIQ efficiently and accurately models, quantifies, and visualizes RNA
splicing from large and complex RNA-seq datasets. a The number of identified
distinct unannotated de novo junctions increases with larger subsets of different
tissues fromGTEx. Lines show themedian over 30 randomly selected permutations
over experiments ineach subset, confidencebands show the 5th to 95th percentiles
over permutations of samples per tissue. b The number of genes with at least one
junction where the difference between the 95th percentile and 5th percentile of PSI
exceeds a given value for different tissues from GTEx (same tissues/colors as in a).
Dashed vertical line indicates how many genes have a difference in PSI exceeding
20%. c MAJIQ combines annotated transcript databases and coverage from input
RNA-seq experiments to build a model of each gene as a collection of exons con-
nected by annotated and de novo junctions and retained introns (splicegraph).
Junctions and retained introns sharing the same source or target exon form local

splicing variations (LSVs). MAJIQ quantifies the relative inclusion of junctions and
retained introns in each LSV in terms of percent spliced in (PSI, Ψ) and provides
VOILA to make interactive visualizations of splicing quantifications with respect to
each gene’s splicegraph and LSV structures. MAJIQ v2 introduces an incremental
build, which allows RNA-seq coverage to be read from BAM files only once to a
coverage file (SJ), accelerating subsequent builds with different experiments.
MAJIQ v2 introduces a simplifier, which can be used to reduce splicegraph/LSV
complexity by ignoring lowly used junctions and retained introns. MAJIQ v2
introduces a new mode for quantification, HET, which compares PSI differences
between populations of independent RNA-seq experiments and accounts for
variable uncertainty per experiment. MAJIQ v2 introduces the modulizer, which
allows performing analysis relative to non-overlapping splicing modules rather
than LSVs.
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modules and then groups these modules by type. Briefly, AS modules
represent distinct segments of a gene splicegraph involving over-
lapping LSVs which are contained between a single source and single
target exon. However, unlike DiffSplice’s ASmodules9, we do not use a
recursive definition of these modules and instead classify all identified
modules by their substructures into types. Themodule’s substructures
are in turn defined by the basic units of alternative splicing, namely
intron retention, exon skipping and 3’ or 5’ splice variations. As we
demonstrate below, the automatic AS module classification greatly
facilitates a wide range of downstream analysis tasks.

The next step of the pipeline involves visualization of the quan-
tified PSI anddPSI usingVOILA v2. This newpackage runs as an app (on
macOS, Windows, Linux) which supports the visualization of thou-
sands of samples per LSV as violin beeswarm plots with multi-group
comparisons and advanced user filters. Users can perform searches by
gene name or junction, and simplify the visualization by filtering out
lowly included junctions. This option is highly relevant for large het-
erogeneousdatasetswheremany junctionsmight be capturedbutmay
not be relevant for specific comparisons/samples. Notably, unlike the
builder filters described above, the VOILA v2 filters do not affect the
underlying splicegraphs but only help declutter the visualization to aid
in subsequent analysis. VOILA v2 has the option to run as a server to
share results with collaborators while all of the pipeline’s results can
also be exported into other pipelines as tab-delimited files and for
automated primer design for validation using MAJIQ-SPEL10.

Performance evaluation
In order to assess MAJIQ HET, our updated method for detecting dif-
ferential splicing, we performed a comprehensive comparison to an
array of commonly used algorithms using both synthetic and real data.
We considered only algorithms capable of analyzing large datasets,
including the original MAJIQ algorithm (upgraded with the v2 code-
base to enable efficient data processing), rMATS turbo11, LeafCutter5,
SUPPA212, and Whippet4. This analysis was performed using a 16 core
machine and reports memory together with wall-time rather than CPU
time to capture a more realistic estimate of running time on amodern
desktop. However, since Whippet and SUPPA2 do not support multi-
core usage out of the box we implemented a user script for those
methods that ran 16 jobs in parallel (denoted “(×16)”). Figure 2a shows
the results of this analysis when running multi-group, multi-sample
differential splicing task, typical for such datasets. In this case, we
perform all pairwise comparisons between 10 tissue groups, and the
number of samples in each group grows from 1 (10 total samples) to 6
(60 total samples). Supplementary Fig. 1 shows the results of this
analysis without the addition of a parallelization script).

For MAJIQ V2, the builder step is roughly 6.6 times slower in wall-
time compared to the quantification step, emphasizing the advantage
of separating the twoas thebuilder needs toonly be executedonce. All
algorithms are able to process such large datasets using only 0.5–4GB
of memory, an amount readily available on modern laptops.

Nonetheless, large differences exist between the methods. Both
SUPPA2 and Whippet are significantly faster than the other methods
when using the additional parallelization script and much slower
without it. Memory and time consumption also greatly depend on the
task definition, with the biggest effect associated with read mapping.
rMATS, LeafCutter and MAJIQ rely on aligned BAM files. Such files are
commonly available for large datasets such as GTEX, or may be pro-
duced independently for other tasks such as expression analysis. In
contrast, Whippet performs pseudo mapping internally which is
computationally expensive, cannot be removed, and also limits it to
annotated splice sites. However, when including STAR alignment time
and memory into the analysis, or Salmon mapping for SUPPA2,
Whippet exhibits significantly shorter running time (parallelized) and
lower memory consumption. Finally, we note that even when com-
paring rMATS, LeafCutter andMAJIQ the computational tasks perform

by those methods are quite different. All three capture annotated
“classical” splicing events, while MAJIQ and LeafCutter also capture
complex events involving more than two alternative RNA segments,
unannotated splice junctions and exon. In addition, MAJIQ is the only
method that performs unannotated intron retention detection and
quantification, a computationally expensive task.

Next, we assessed the accuracy of all algorithms using a large-
scale synthetic dataset for comparing two tissue groups. This synthetic
dataset, by far the largest of its kind to the best of our knowledge, was
constructed to be “realistic” such that each synthetic sample was
generated to mimic a real GTEx sample from either cerebellum or
skeletal muscle tissues (see “Methods”). All methods were required to
report changing AS events which pass the method’s statistical sig-
nificance test and inferred to exhibit a substantial splicing change of at
least 20% (see “Methods”). However, we note that since the various
algorithms use significantly different definitions of AS events it is hard
to compare those directly. For example, LeafCutter defines AS events
as clusters of overlapping introns which may involve multiple 3’/5’
alternative splice sites and skipped exons, while rMATS is limited to
only classical AS events with two alternative junctions. Thus, to facil-
itate a comparative analysis, we resorted to comparing the various
algorithms output at the gene rather than event level using the syn-
thetic dataset shown in Fig. 2b. A more refined analysis at the event
level can be found in Supplementary material (Supplementary Fig. 2
and Supplementary Data 5–8) and exhibits similar trends to the ones
reported here at the gene level. First, we found SUPPA2 consistently
reported over 6000 differentially spliced genes, thousands more than
any other method, while Whippet reported an average of 727 genes,
significantly fewer than the other methods which reported over 2000
changing genes (Fig. 2b top bar chart). Whippet, followed by rMATS,
reported significantlymorenon-changing events.Whippet, rMATS and
SUPPA2 all exhibited high FDR ranging around 15–30%, as well as high
average FNR of 32%, 60%, and 49%, respectively. Both MAJIQ and
MAJIQ HET consistently maintained a lower false discovery rate com-
pared to other algorithms (0.3%) and a low level of false negative rate,
which was similar to that of LeafCutter. On small sets, for example
when using 5 samples per group, LeafCutter had a slightly lower FNR
(2.5% vs 5.5% for HET), but MAJIQ exhibited slightly lower FDR (0.03%
vs 0.8%). However, we note that unlike regular classification tasks, the
aforementioned statistics are not computed over a fixed set, as each
method reports on a different set of genes. For example, while both
MAJIQ and LeafCutter achieve similarly high Matthew Correlation
Coefficient (MCC) statistic of 0.97–0.99 across groups sizes (Fig. 2b,
bottom), MAJIQ reports overall 34% more genes as changing (2337 vs
1739) and 6% more as non-changing (7110 vs 6713) compared to Leaf-
Cutter (Fig. 2b, top). These differences are further amplified when
considering changes at the event rather than gene level: 4267 events
reported as changing by MAJIQ versus 2169 by LeafCutter (see Sup-
plementary Data 5–8). This increased difference is mainly due to the
increased resolution of event definition by MAJIQ. Specifically, MAJIQ
uses the local splice variations formulation described above, while
LeafCutter uses a definition of overlapping intronic regions which give
rise to coarser event definition that can be sensitive to the coverage
threshold used.

The significant differences between themethods described above
raises the question how the reported sets of differentially spliced
genes overlap. Figure 2c illustrates the result of such analysis when
using 10 samples per group. Here, we looked at the intersection
betweendifferentmethods at the gene level andwhen a setwasunique
to a method (i.e., the underlying events are well defined) we also
estimated the associated FPR.We found SUPPA2 reports a significantly
higher number of unique genes (1713) as differentially spliced but over
a quarter of those are false positives. The next set sizes are those for
Whippet (356), LeafCutter (324), HET and SUPPA2 (248), HET (230),
and MAJIQ HET and DPSI (181) with a FPR of 9.5% for the LeafCutter’s
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unique set and close to 0 FPR for bothMAJIQ’s algorithms unique sets.
rMATS and Whippet report significantly fewer unique genes with a
high false positive rate of 47% and 16%, respectively.

Next, we turned to assess performance on real GTEx data using
several metrics. Here, unlike the synthetic data analysis which focused
on comparative evaluation at the gene level, we focus on the actual AS
events reported by each method. First, we used the reproducibility
ratio (RR) statistic as shown in Fig. 2d. The RR plots follow a similar
procedure to that of irreproducible discovery rate (IDR) plots, used

extensively to evaluate ChIP-seq peak callers3,13. Briefly, RR plots
answer the following simple question: given an algorithm A and a
dataset D, if we rank all the events that algorithm A identifies as dif-
ferentially spliced (1,…,NA), how many would be reproduced if you
repeat this with dataset D0, comprised of similar experiments using
biological or technical replicates? TheRR(n) plot, as shown inFig. 2d, is
the fraction of those events that are reproduced (y-axis) as a function
of n ≤ NA (x-axis), with the overall reproducibility of differentially
spliced events expressed as RR(NA) (far right point of each curve in
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Fig. 2d). In our RR analysis using groups of size 3–50 GTEx samples
each, we found bothMAJIQ andMAJIQHET compared favorably to the
other methods, but with the new HET algorithm exhibiting improved
detection power resulting in a higher number of AS events at the same
reproducibility level. These results were robust with respect to the
specific random subset of samples selected (Supplementary
Fig. 3, top).

The second statistic we used for evaluating performance on real
data is the intra-to-inter ratio (IIR)8, which serves as a proxy for FDR on
real data where the labels are unknown. Specifically, IIR computes the
ratio between the number of differentially spliced events reported
when comparing groups of the same condition (e.g., brain) and the
number of events reported for similar group sizes of different condi-
tions (e.g., brain vs liver). In ourwork, we found IIR to be a lower bound
estimate of true FDR, though it lacks theoretical guarantees. In the
analysis shown in Fig. 2e, we found IIR to behave similarly to FDR on
synthetic data with MAJIQ, MAJIQ HET, and LeafCutter exhibiting low
IIR of 2–7% even for small group sets of 5 samples, while rMATS,
SUPPA2, and Whippet had an IIR of 13%, 26% and 23.7% respectively.
However, unlike FDR on synthetic data, IIR dropped much more sig-
nificantly, hitting practically zero for all methods for large sample
groups. This result is to be expected since the IIR statistic compares
sample groups of the same type, unlike the synthetic dataset described
abovewhere different tissues are compared. These results were robust
to the specific random subset of samples selected (Supplementary
Fig. 3, bottom).

The last component we included for the methods assessment is a
comparisonof eachmethods’dPSI accuracy irrespective of the specific
statistical test used or ranking. On the synthetic data described above
we plotted a CDF of absolute deviation between computed and actual
dPSI for all cases reported to exhibit a change of at least 20% or 10%
(Supplementary Fig. 4).We found thatMAJIQ,Whippet and LeafCutter
all performed generally well, while rMATS and SUPPA exhibited larger
deviations. MAJIQ-HET compared favorably to all other methods,
especially when the number of samples per group was low and when
using a more permissive threshold of 10%. Finally we assessed PSI
quantification accuracyby comparing it to triplicates of RT-PCRassays,
the gold standard in the RNA field. Using over 100 such experiments
from two different mouse tissues we previously produced3,8, we
computed the Pearson correlation between RT-PCR and each meth-
od’s quantification, along with the statistical significance of observed
differences (Fig. 2f). Overall, we found MAJIQ, Whippet and rMATS all
achieving high correlation of approximately 0.97–0.98, while Leaf-
Cutter and SUPPA had significantly lower correlation of 0.915 and
0.869, respectively (see Supplementary Fig. 5 for scatter plots per
method). We note that this analysis for LeafCutter was possible since
all events we tested were simple cassette exon skipping, but it is not
clear how to translate LeafCutter’s output to actual PSI in the
general case.

VOILA v2 enables visualization of thousands of samples
To facilitate visualization and downstream analysis of both the new
outputs from MAJIQ HET over large, heterogeneous datasets and tra-
ditional MAJIQ PSI or MAJIQ dPSI quantification over replicate
experiments, we developed VOILA v2 as a server based cross-platform
app. Replacing the previous HTML file based visualization with VOILA
v2 allows for interactive visualization of all LSVs in all genes, with data
ranging from one sample to thousands of samples. After an initial
indexing step that is run one time, users can now, on the fly, filter their
data by several criteria including dPSI levels between groups, read
coverage over junctions, LSV types and complexity, and the statistical
test for significance, as opposed to re-running VOILA with the filtering
criteria, as was required in the previous version. Another advantage of
the new VOILA v2 is its ability to run as a server so that results can be
shared with collaborators without the need to transfer large files.

To highlight these new features, we ran MAJIQ HET and VOILA v2
on GTEx v8 brain tissues which are known to exhibit high levels of
alternative splicing. Overall, this analysis involved 2335 RNA-seq sam-
ples from 374 donors across 13 tissue groups (see “Methods”). Figure 3
shows the VOILA view for this large dataset for the key splicing factor
gene PTBP1, including a splicegraph (top) with combined read infor-
mation from 225 cerebellum RNA-seq samples. Users can easily add
and remove splicegraphs for other tissue groups or individual samples
of interest. Figure 3 bottom panel shows a VOILA visualization for
quantifying a single junction in a single LSV across the 2335 RNA-seq
samples. Here, the 13 tissues are displayed as violin beeswarm plots
with each point representing a single sample which can be inter-
rogated by hovering the user’s cursor over it. Finally, VOILA uses a
heatmap (Fig. 3 bottom right) to represent the pairwise differences
between the tissue groups for the junction of interest. The upper half
of the heatmap represents the difference in medians of E Ψ½ � dis-
tributions between the tissue groups, while the bottomhalf represents
the p values associated with these group differences (see “Methods”).
For the example LSV and junction in PTBP1, the cerebellar tissues
(cerebellum and cerebellar hemisphere) show a distinct splicing pat-
tern with reduced usage of this junction (lowerE Ψ½ � values in the left-
most violin plots) which was significant according to MAJIQ HET
(Mann–Whitney U shown) (Fig. 3).

VOILA Modulizer defines alternative splicing modules to facil-
itate downstream analysis
The LSV and junction showcased in the above example are of biolo-
gical importance. PTBP1 is a widely expressed splicing factor that
binds CU-rich sequences, but it is downregulated during neurogen-
esis which contributes to neuronal splicing patterns14–16. Decreased
activity of PTBP1 in neuronal tissues is attributed to numerous
mechanisms, some of which involve splicing regulation of two cas-
sette exons in the region highlighted in the PTBP1 splicegraph (Figs. 3
and 4a boxed regions)3,17, making differences between brain

Fig. 2 | Performance evaluation using synthetic and real data. a Time (left) and
memory (right) consumption for running all pairwise differential splicing analysis
between 10GTEx tissue groups, with number of samples per group increasing from
1 to 6 (x-axis). The “x(16)” label denotes a parallelization script added to methods
not supporting multithreading. b Performance evaluation, aggregated over genes,
for differential splicing calls using simulated GTEx samples (cerebellum and ske-
letal muscle). Metrics include the total number of genes reported as changing
(TOTAL-CHG) or non-changing (TOTAL-NO-CHG), with the resulting FDR, FNR, and
Matthew’s correlation coefficient (MCC). Horizontal axis denotes set size. c Upset
plot basedon the 10vs10 analysis shown inb. The bars on top represent the overlap
between genes reported as differentially spliced by each method indicated below.
The bars and FPR values by each method’s name refer to genes reported only by
thatmethod.dReproducibility ratio (RR) plots for real data, usingGTEx cerebellum
and muscle samples. Plots are based on each method’s reported list of splicing
events (not genes) and unique scoring approach. X-axis is the ranked number of

events reported and Y-axis is the fraction of those events reproduced within the
same number of top-ranking events when repeating the analysis using a different
set of samples from the same tissues. Line length represents the total number of
differentially spliced events reported (see “Methods” for details). RR graphs are
shown for group sizes of 3 (left), 15 (middle), and 50 (right). e Intra-to-Inter Ratio
(IIR) results for GTEx samples as in d. IIR is the ratio between the number of events
reported as significantly changingwhen comparing two sample groups of the same
type (“NoSignal” column) and the number of events reported as significantly
changing when comparing groups of different types (muscle versus cerebellum, as
in d). f Correlation between estimated dPSI and RT-PCR quantification of splicing
changes. RT-PCR results taken from ref. 3 based on mouse liver and cerebellum
RNA, extracted by ref. 46 for the matching RNA-Seq samples. All splicing events
examined are annotated cassette exons. Two-sidedp values based on theDunn and
Clark’s z procedure estimated via ref. 47.

Article https://doi.org/10.1038/s41467-023-36585-y

Nature Communications |         (2023) 14:1230 6



subregions of potential interest. Mammalian-specific, neuronal
skipping of an alternative cassette exon in the linker region between
the second and third RNA recognition motifs (RRMs) of PTBP1 (exon
12 in the splicegraph) results in a protein isoform of PTBP1 with
reduced repressive activity leading to altered splicing patterns dur-
ing neuronal differentiation17. Additionally, in mouse brain we pre-
viously described inclusion of a unannotated, premature termination
codon (PTC) containing cassette exon with conserved splice sites in
humans that shows increased inclusion in mouse cerebellum (com-
pared to brainstem and hypothalamus) and is developmentally
regulated through murine cortex development3. While LeafCutter
analysis of PTBP1 on all of GTEx failed to detect this event in human
tissues, we find evidence of de novo splice junction reads corre-
sponding to both the conserved 3’ and 5’ splice sites of this unan-
notated exon that we validated previously in mouse (Fig. 4a),
suggesting this exon is also included in human brain tissues.

This region of the splicegraph is complex, however, and is defined
by overlapping LSVs each with multiple splice junctions and intron
retentiondetected (Fig. 4a: exon 11 source LSV, left; exon 13 target LSV,
right). While the LSV formulation has several benefits, including
accurate PSI quantification of complex splicing patterns involving
more than two splice junctions3, it is difficult for users to know which
junction quantifications and combinations of junctions from different
LSVs should be combined to define common alternative splicing (AS)
events, like the cassette exons described above in PTBP1. Moreover,
while certain annotated and de novo junctions may have sufficient
read coverage for detection and quantification by MAJIQ, they can be
very lowly included in a user’s condition(s) of interest. For example,
several hundred reads across GTEx brain samples support the exis-
tence of the annotated, intron distal alternative 3’ss of exon 12 of

PTBP1, but source LSV quantification of the relative usage of this
junction is lowacross all samples (Fig. 4a, left. Blue junctionmedian PSI
across samples of <5% in all tissue groups). Such junctions add addi-
tional complexity to the splicegraph and may hinder definition of
common AS event types across the transcriptome.

To overcome these limitations and to facilitate downstream,
transcriptome wide analysis of common AS event types we developed
the VOILA Modulizer (Fig. 4b). First, users have the option to simplify
the splicegraph to remove junctions that do not meet a threshold for
raw read coverage, low inclusion levels across the input samples
(E Ψ½ �), and/or low relative splicing changes between input compar-
isons between sample groups (E ΔΨ½ �) (Fig. 4bi). This helps remove
junctions that do not meet a user’s desired threshold for biological
significance and facilitate downstream event definitions, like the
alternative 3’ss of exon 12 of PTBP1 discussed above with low inclusion
levels across all sample groups (blue junction in Fig. 4a, left). Next, the
simplified splicegraph is traversed to define single entry, single exit
regions of the splicegraph thatwe call alternative splicingmodules (AS
modules or ASMs), as shown for part of PTBP1 (Fig. 4bii). Within each
AS module, pattern matching is performed between the remaining
exon and junction structure of the simplified splicegraph to each of 14
basic AS event types (Supplementary Fig. 8a). This process is illu-
strated in Fig. 4biii for two ASmodules within PTBP1. We note that this
step can lead to some redundant event information (e.g., intron
retention events sharing the same junction and intron coordinates, as
in Fig. 4b). Because these events are quantified from both sides
through a source and a target LSV, the quantification in terms of PSI or
dPSI between conditions may not agree and thus both are provided.
Nonetheless, downstream filtering can ensure agreement when
counting event types and defining changing events.

Fig. 3 | Enhanced visualization of large datasets with VOILA v2. VOILA view of
MAJIQ HET output for 13 brain tissue groups from GTEx from 2335 RNA-seq sam-
ples originating from374 unique donors. Top portion shows gene information and
filtering criteria as well as the splicegraph for PTBP1 showing median read counts
from 225 cerebellum samples. Bottom portion displays visualization and PSI
quantification for each junction in each LSV for the gene of interest. Here the
distribution ofE Ψ½ � values across the indicated tissue groups (abbreviations given
in Fig. 5a) is displayed as a violin beeswarmplot for the red junction for the exon 13
target LSV, represented in the cartoon, for all 2335 RNA-seq samples. Individual

sample information is given by hovering the cursor over individual points that
represent each sample (gray box). Bottom right heatmap displays MAJIQ HET
quantifications of all group pairwise comparisons across the 13 brain tissue groups
to highlight significant splicing changes. Yellow to purple color scale on the top
right indicates the expected ΔΨ between tissue groups while blue color scale on
the bottom left indicates the significance of the difference between group PSI
distributions for one of four statistics used by MAJIQ HET (Mann–Whitney
displayed).
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Running the VOILA Modulizer produces a number of files based
on event types with a uniform structure containing coordinate and
quantification for each sample group to facilitate downstream analysis
on ASmodules and AS event types of interest (Supplementary Fig. 8a).
SomeAS event definitions identifiedby theModulizer are analogous to
those defined by other splicing quantification algorithms that only
handle binary, classical splicing events (e.g., MISO18 or rMATS11).
However, the MAJIQ + VOILA Modulizer approach adds a number of
benefits compared to other available algorithms. First, our approach
allows for de novo splice junction and intron retention detection,
which is crucial in the context of GTEx brain subregions. Using a sim-
plification threshold ofmedianE Ψ½ � over brain tissue groups of ≥5% to
be included in the simplified splicegraph, we defined 32,435 AS mod-
uleswhere 70.6% contain at least one unannotated splice junction and/
or intron retention (Fig. 4c and Supplementary Fig. 8b). TheASmodule

formulation also allows for definition of common splicing patterns
across brain subregions beyond binary splicing events, whichmade up
59.2% of all AS modules. The remaining 40% of AS modules contained
multiple AS events which, inmany cases, involvedmixing of a classical
event type with intron retention (Supplementary Fig. 8b). Both at the
AS event level (Fig. 4c) and at the AS module level (Supplementary
Fig. 8b), intron retention was particularly common using our simplifi-
cation threshold of median E Ψ½ � of greater than 5% in any one brain
tissue group. This is consistent with previous studies that have found
certain neuronal tissues to have very high levels of intron retention
compared to other contexts19.

Initial analysis of themost commonASmodule types led us to add
additional splicing event patterns to our definitions, beyond those that
are classically defined in other tools (intron retention, cassette exon,
alternative 3’ and 5’ss, alternative first and last exons, tandem cassette

Fig. 4 | Downstream analysis of alternative splicing modules with VOILA v2.
a Top shows region of human PTBP1 splicegraph (with reads from combined cer-
ebellum samples) and two LSVs corresponding to a mammalian specific exon
skipping event that alters PTBP1 splicing regulatory activity17 (green junction in
exon 11 source LSV, left; red junction in exon 13 target LSV, right) and de novo
detection of a conserved, PTC-containing exon previously shown to be included in
mouse neuronal tissues3 (green junction in exon 13 target LSV). Bottom shows
distribution of PSI across the 13 brain tissue groups as well as annotation of each
junction. b VOILA Modulizer workflow (gray boxes) and an example region of the
PTBP1 splicegraph where junctions that did not meet a medianE Ψ½ � value of 5% or
more in any of the 13 brain tissue groups were removed (arrows). Two alternative
splicing modules (ASMs) were defined as single entry, single exit regions of the
splicegraph and within these modules binary, AS events are defined. Gray exons

highlighted in yellow indicate reference exons that belonged to LSVs for which
MAJIQ quantification exists. Blue junctions and exonic or intronic regions indicate
inclusion of the alternative region of the event and red junctions indicate exclusion
of the alternative region. c Stacked bar chart showing the number of binary AS
event types that make up ASmodules across the 13 brain tissue groups fromGTEx.
ASevent types are representedwith a cartoon to the leftof thechart and arenamed
to the right of bars. Asterisks indicatenon-classical ASevent types. Each junction or
intron had to have a median ofE Ψ½ � values of 5% or more across the samples of at
least one tissue group to contribute toASmodule definitions. Blue regions indicate
AS events that contained de novo junctions and/or introns not found in the
annotated transcripts (Ensembl v94) while orange regions indicate AS events
containing only annotated junctions and introns.
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exons, and mutually exclusive exons11,18). These included putative
alternative first and last exons, where at least one alternative exon is
created from a de novo junction that does not belong to any nearby
exon, and putative alternative 3’ or 5’ss, where a cassette exon has an
inclusion junction removed during simplification (low inclusion) with
sufficiently high intron retention levels (see Supplementary Fig. 8a for
full details). Taken together, these additional, non-classical splicing
event types participated in themakeupof 13.1% of ASmodules or 11.6%
of AS events overall detected in the brain (Fig. 4c, event types marked
with asterisks). Importantly, the Modulizer outputs all of these event
types in a format amenable to downstream regulatory analysis, which
will facilitate the future characterization of these splicing patterns
(Supplementary Fig. 8a).

To expand on the finding of widespread intron retention and how
this alters AS events and AS module definitions beyond neuronal tis-
sues, we analyzed a subset of GTEx samples from each of the 53 tissues
(see “Methods”). We observed a range of expected Percent Intron
Retention (PIR) across all tissues where both cerebellar tissues have a
relatively higher degree of intron retention, when compared to other
tissues (Supplementary Fig. 9a, b). Surprisingly, the other neuronal
tissues ranked towards the bottom of all GTEx tissues along with heart
andmuscle (Supplementary Fig. 9a, b). To see how these differences in
intron retentionmay affect thedefinitionofAS events andASmodules,
we selected a subset of 9 tissues across the range of intron retention
levels (Supplementary Fig. 9b, arrowheads) and ran the VOILA Modu-
lizer. We used an E Ψ½ � ≥ 5% simplification threshold on each of these
single tissues individually or on all 53 GTEx tissues together and
compared these results to the brain subregion analysis above. At an AS
event level, intron retention was the most common event detected
within AS modules where it was detected in over 75% of modules from
single tissueswith high levels of IR (e.g., cerebellumor spleen) down to
as little as 53% of modules in the tissue with the lowest level of IR
(skeletal muscle, Supplementary Fig. 9c). Other AS event types were
similarly detected across single tissues or tissue groups, with notable
exceptions like a larger fraction of modules containing cassette exons
in skeletal muscle or a higher fraction of AS modules containing all
other AS event types when all 53 GTEx tissues were analyzed together
(Supplementary Fig. 9c). Similarly, at the ASmodule level, including all
53 tissues in the VOILA Modulizer analysis as a group led to the defi-
nition of more complex AS modules where 41.8% of the detected
modules contained two or more unique AS event types, when com-
pared to the brain tissue group alone (Supplementary Fig. 9d). Nota-
bly, analysis of the of the nine single tissues also led to a significant
portion of between 25 and 30% of modules containing two or more
unique AS event types (Supplementary Fig. 9d). Analyzing the fre-
quency of the top ten AS module types that were defined by the brain
tissue analysis (defined in Supplementary Fig. 8b) showed similar
trends where most AS module types were stably detected across
diverse tissue types with diverse levels of intron retention (Supple-
mentary Fig. 9e). In all, this analysis highlights the importance of
consideringmore complex splicing patterns through the use of MAJIQ
with the VOILA Modulizer, even when analyzing a single condition.

Analysis of unique cerebellar splicing patterns highlights reg-
ulatory programs
Finally, we wished to use MAJIQ + VOILA Modulizer to analyze differ-
ential splicing patterns between brain subregions. Previous studies
focused on splicing quantitative trait loci within GTEx brain tissues
found the cerebellar tissues cluster separately from other brain sub-
regions basedonsplicing20. Our analysis of PTBP1 (Fig. 4a) andpairwise
analysis of the number of significant LSVs according to MAJIQ HET
further supports distinct splicing patterns in cerebellar tissues (Sup-
plementary Fig. 10a). For these reasons, we sought to identify AS
modules and events with unique splicing patterns in the cerebellum.
Using the above AS module definitions from all junctions and introns

with group level median E Ψ½ �≥ 5%, we next searched for consistent
splicing changes between the two cerebellar tissues (cerebellum and
cerebellar hemisphere) and other brain subregions using MAJIQ HET.
We required an absolute difference in median E Ψ½ � values of 20% or
morewhen comparing both cerebellar tissue groups to the sameother
brain region tissue group in addition to having a Mann–Whitney two-
sided p <0.05 (Fig. 5a, see “Methods”).

From these comparisons we found 3995 unique, changing AS
modules (Fig. 5b) comprising over 7500 changing AS events (Sup-
plementary Fig. 10b). At the changing ASmodule and AS event levels,
intron retention was most prevalent, followed by cassette exons and
other mixtures of binary AS event types with intron retention
(Fig. 5b). As with the analysis based on inclusion levels alone (Fig. 4),
most changing AS modules (53.3%) consisted of multiple, binary AS
event types (Fig. 5b), highlighting the prevalence of complex splicing
changes and the power of MAJIQ + VOILA Modulizer approach.

Alternative splicing regulation of cassette exons in neuronal tis-
sues is very well studied with a number of expression changes asso-
ciatedwith splicing factors (e.g., expressionof theRBFOX family, down
regulation of PTB proteins, expression of NOVA proteins, etc.)15,16. For
this reason we wished to analyze the regulatory signature around the
cassette exons defined from our MAJIQ HET + VOILA Modulizer ana-
lysis to see if we could capture known, and potentially novel, reg-
ulatory motifs around cerebellar cassette exons.

Our initial analysis focused on all changing cassette exon (CE)
events. This mirrors the CE landscape that would be identified by
other, event-based splicing quantification algorithms and consists of a
combination of CEs which come from modules consisting of only a
single CE event (Fig. 5b, c brown dot) in addition to those from com-
plex modules with multiple event types (Fig. 5b, c purple dots).
Because RNA binding proteins bind short motifs and splicing factor
binding that results in alternative splicing regulation typically occurs
proximal to the splice sites of an alternative exon21, we performed a Z-
score analysis for hexamer occurrence within 300 nucleotides
upstream or downstreamof cerebellar changing cassette exons versus
those alternative exons that did not change between brain subregions
(see “Methods”). Moreover, because splicing factors typically act in
position-specificmanners (e.g., bindingdownstreamof a cassette exon
enhances exon inclusion while binding upstream represses
inclusion)22,23, we further separated cassette events into those with
increased exon inclusion in cerebellar tissues (Fig. 6a, blue) and those
with increased exon exclusion in cerebellar tissues (Fig. 6a, red) when
compared to other brain subregions.

Supporting the validity of our approach, this analysis uncovered a
number of motifs either upstream or downstream of cerebellar cas-
sette exons with known links to neuronal splicing regulation. For
example, for cerebellar inclusion cassettes we found a number of CU-
rich and UGC containing hexamers upstream and the RBFOX-binding-
motif, UGCAUG24, enriched downstream (Fig. 6a, blue). SRRM4/
nSR100 is known to bind UGC-containing sequences upstream of
neuronalmicroexons to enhance their inclusion with the aid of SRSF11
that binds CU-repeat sequences25. Accordingly, motif maps across our
different cerebellar exon classes based on hexamers shown to bind
SRRM426 and SRSF1125 by iCLIP show clear enrichment of these motifs
just upstream of cerebellar inclusion cassette exons (Supplementary
Fig. 11a, c). This result is consistent with increased expression of these
two genes in cerebellar tissues leading to enhanced intronic splicing
enhancer (ISE) activity around these events (Supplementary
Fig. 11a–e).

In addition to SRRM4 and SRSF11, the RBFOX family is highly
expressed in neuronal tissues and is known to enhance exon inclusion
when it binds downstream of the 5’ss27,28. Indeed, we find a strong
enrichment of the known UGCAUG-binding site just downstream of
cerebellar inclusion events (Fig. 6a and Supplementary Fig. 11f, blue).
This result is consistent with increased expression of these genes and
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increased ISE activity in the cerebellum versus other brain subregions
(Supplementary Fig. 11h, i).

Because RBFOX proteins were previously shown to regulate
alternative splicing by binding distal intronic regions (>500 nucleo-
tides from a splice site)29, we also computed Z-scores for 6-mers in the
distal intronic regions upstream and downstream of cerebellar inclu-
sion versus non-changing exons. We found the RBFOX hexamer was
among the motifs with the highest Z-scores in the downstream distal
intronic region, although to a lesser degree compared to UGCAUG in
downstream proximal intronic region (distal Z = 5.38, proximal
Z = 21.08). The topmotifs for distal intronic regions both upstreamand
downstream of cerebellar inclusion exons were CA-repeats (Supple-
mentary Fig. 11g), which are the known binding sites for HNRNPL and
HNRNPLL30. While both L and LL are expressed in the brain, with
HNRNPLL showing tissue-enriched protein expression in the cere-
bellum in GTEx samples31, they have not, to our knowledge, been
linked to distal intronic splicing regulation in the brain.

Interestingly, we found hexamers containing motifs known to
bind QKI (e.g., ACUAA containing32) were enriched around both cere-
bellar inclusion (upstream) and exclusion events (downstream)
(Fig. 6a). QKI is known to act as a splicing enhancer when it binds
downstream of cassette exons and represses exonic inclusion when it
binds upstream32. We generated a motif map of the QKI hexamer
(ACUAAY33) around these exon classes and found clear positional
enrichment proximal to the regulated splice sites in both exon sets
(Fig. 6b, top). Moreover, we generated RNA maps of in vivo binding
events (determined by CLIP peaks) of QKI across multiple cell types
and found enriched binding consistent with the motif maps (Fig. 6b,
bottom, Supplementary Fig. 11j). Compared to other brain subregions,
the two cerebellar tissues exhibited lowest expression of QKI (Fig. 6c).
This result points to a regulatory mechanism by which decreased
expression of QKI in cerebellum may contribute to both cerebellar

exon exclusion events (loss of enhancing activity downstream leading
to exon skipping) and cerebellar exon inclusion events (loss of
repressive activity upstream leading to inclusion) (Fig. 6d). To further
support this model, we analyzed RNA-seq from ENCODE where QKI
was knocked down in HepG2 cells via shRNA and searched for evi-
dence ofQKI regulation of the junctions involved in cerebellar cassette
exon events (∣ΔΨ∣≥ 20 with Mann–Whitney two-sided p <0.05 upon
knockdown, see “Methods”).We found cerebellar cassette exon events
were overall 5.6 times more likely to show evidence of QKI regulation
when compared to non-changing events (two-tailed binomial
p < 2.8 × 10−31). Importantly, when we considered the direction of spli-
cing change upon QKI depletion, we found a significant enrichment of
both cerebellar inclusion and exclusion events that were consistent
with our model (i.e., QKI depletion promotes cerebellar splicing pat-
terns, fold-enrichment versus non-changing >4.2, two-tailed binomial
p < 6.4 × 10−11, Supplementary Fig. 11k). We did not observe a statisti-
cally significant enrichment of cerebellar inclusion or exclusion events
that were inconsistent with our model (fold-enrichment versus non-
changing <1.3, two-tailed binomial p >0.44, Supplementary Fig. 11k).

Given that many regulated cassette exons occur within AS mod-
ules containing other AS event types (Fig. 5b, c), we next wished to
explore if regulatory motifs differed between these subsets. Because
AS modules containing cassette exons and those containing both
cassette exon and intron retention events are common (Fig. 5b and
Supplementary Figs. 8b and 9e), we chose to stratify the set of all
cassette exons into those that contained a regulated intron retention
event and those that occurred in ASmodules in which intron retention
was not detected. We calculated Z-scores for hexamers from these
exon subsets by comparing themagainst the set of exons thatwerenot
changing in cerebellar comparisons and compared the results of the
two analyses. Figure 6e shows an example of this analysis for hexamers
locateddownstreamof cerebellar exclusion cassette exon subsets. The
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Fig. 5 | MAJIQ HET + VOILA Modulizer defines the complex landscape of cere-
bellar splicing changes. a Pairwise comparisons run through MAJIQ HET to find
significant splicing changes between GTEx cerebellar tissues (cerebellum and
cerebellar hemisphere) versus the other 11 brain tissue groups. Dark arrows
indicate an example of a consistent change, where both cerebellar tissue groups
versus the same other brain region, the hypothalamus, shared a significant
change. Alternative splicing (AS) modules were kept for downstream analysis if at
least one such consistent comparison was significant (see “Methods”). GTEx
abbreviations are given for each tissue. b Upset plot showing the consistent,

significantly changing AS event type(s) that make up AS modules. AS events had
to have an absolute difference in median E Ψ½ � of 20% or more when comparing
both cerebellar tissue groups (cerebellum and cerebellar hemisphere) to the
same other brain region tissue group in addition to having a Mann–Whitney two-
sided p < 0.05 as reported by MAJIQ HET. c Examples of cassette exon (CE) types
with consistent changes between cerebellar and other brain tissues. All CEs have
quantified inclusion junctions (blue junctions) and a shared exclusion junction
(red junction), potentially within a mixture of other AS event types (gray junc-
tions and introns) (purple circles on upset plot in b).
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top two hexamers that match QKI binding motifs (ACUAAC and
CUAACG) foundwhen analyzing all CE events (Figs. 5c and 6a) also had
the highest Z-scores in the intron retention regulated and no intron
retention CE subsets (Fig. 6e, green). On the other hand, several of the
G- and C-rich motifs that were enriched downstream of all CE cere-
bellar exclusion events (Fig. 6a and SupplementaryData 1) were biased
towards higher Z-scores solely in the CE subset that contained regu-
lated intron retention (Fig. 6e, orange). This is consistent with

observations from previous studies analyzing intron retention events
that found retained introns tended to be more G/C-rich when com-
pared to non-retained introns19. Motif maps across the different cere-
bellar exclusion CE sets supported the Z-score analysis and highlight
that the enrichment of G-rich sequences (Fig. 6f, top) and C-rich
sequences (Supplementary Fig. 12a, b) around all cerebellar exclusion
CEs is drivenmostly by the subset of CEs containing a regulated intron
retention event (compare dashed orange and dashed fuchsia lines).

Fig. 6 | Regulatory analysis of simple and complex cerebellar cassette exon
types. a Distribution of hexamer Z-scores within 300 nucleotides upstream or
downstream of all CE event types (Fig. 5c) for cerebellar inclusion versus non-
changing (top, blue) or cerebellar exclusion versus non-changing (bottom, red) (see
“Methods”). Top motifs for RBPs of interest are highlighted (QKI (green), RBFOX
(blue), SRRM4 (yellow), SRSF11 or PTB (purple)). All motifs and Z-scores are given in
Supplementary Data 1. b RNAmaps showing the frequency of QKI hexamers
(ACUAAY, top) or binding of QKI (K562 eCLIP peaks, bottom) around cerebellar
inclusion (blue), exclusion (red), or non-changing (gray) CEs. Frequencies calculated
over windows of 20 nucleotides smoothed by a running mean of 5 nucleotides.
c GTEx QKI brain tissue expression (log10 1 +TPMð Þ) generated using gtexportal.org.
Violins represent the distribution of values, boxes represent the 25th and 75th
percentiles, white lines represent medians, and outliers beyond 1.5 times the
interquartile range are shown. Each tissue is represented by no fewer than

109 samples. Abbreviations are defined in Fig. 5a. d Model for QKI position-
dependent regulation in GTEx brain tissues. Decreased expression of QKI in cere-
bellar tissues results in decreased downstream intronic splicing enhancer (ISE)
activity, resulting in cerebellar exon exclusion (top). Decreased upstream intronic
splicing silencer (ISS) activity results in cerebellar exon inclusion (bottom). e Scatter
plot showing hexamer Z-score correspondence for non-overlapping sets of cere-
bellar CE exclusion events: (y-axis) CE exclusion events fromASmodules containing
changing intron retention (IR) event(s) versus non-changing and (x-axis) CE exclu-
sion events from AS modules without IR event(s) detected. Motifs of interest are
highlighted according to colors in the inset. f RNAmaps (plotted as in b) for given
cerebellar CEs stratified by intron status for G-rich hexamers (five of six positions
are G and contains GGGG, top) or QKI hexamers (ACUAAY, bottom). Red lines, all
cerebellar exclusion CEs; orange dashed, subset of exclusion CEs with changing IR;
fuchsia dashed, subset of exclusion CEs with no IR; gray, all non-changing CEs.
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The QKI hexamer showed similar positional enrichment downstream
of both CE subsets (Fig. 6f, bottom).

Similar results were seen when comparing Z-scores for upstream
and downstream hexamers identified in the all cassette exon analysis
(Figs. 5c and 6a) of cerebellar inclusion and exclusion CE subsets
stratified by intron status (Supplementary Fig. 12a). While some of the
motifs found in the complete CE analysis scored similarly in subsets
stratified by intron retention status (e.g., the RBFOX hexamer or
SRRM4 hexamers around cerebellar inclusion exons), others showed
biased enrichment in CEs with regulated intron retention compared
those with no intron retention (e.g., CU-repeat hexamers) (Supple-
mentary Fig. 12). Overall, this analysis highlights some shared and
distinct regulatory features of cerebellar cassette exons with and
without evidence of intron retention.

Discussion
The work presented here represents the culmination of continuous
development of MAJIQ since its original release in 20163. The original
MAJIQ, like many other algorithms, was designed for comparing rela-
tively small groups of RNA-seq experiments frombiological replicates.
However, as we demonstrate here using GTEx v8, datasets nowadays
can easily grow to hundreds and thousands of non-replicate samples.
The sheer size and heterogeneous nature of such data poses chal-
lenges related to efficiency, ability to capture but also simplify de novo
and complex splicing variations, ability to identify event subtypes, and
the ability to visualize such events and subtypes. To address these
challenges we developed MAJIQ v2 with algorithmic improvements as
well as the simplifier, the modulizer, incremental build options, and
the VOILA v2 visualization package. In addition, we perform extensive
comparison of MAJIQ v2 to other algorithms, create a resource for
reproducible algorithm comparison, and demonstrate the utility of
MAJIQ v2 in a detailed splicing analysis of more than 2300 samples
from GTEx v8 brain subregions.

With respect to performance, we showed MAJIQ v2 compares
favorably to available methods in terms of efficiency, accuracy on
synthetic data, and reproducibility on real RNA-seq data. When com-
paring MAJIQ HET to MAJIQ dPSI from ref. 3 that was ran with the new
v2 code base, we found both exhibited similar reproducibility, but HET
offered a significant increase in detection power. Finally, in terms of
efficiency,we foundMAJIQv2performed similarly to themost efficient
tools in both memory and time. This is a notable achievement given
that MAJIQ is the only tool amongst those that offers detection and
quantification of de novo intron retention, a computationally expen-
sive yet important task as we discuss below.

The extensive evaluations performed here are accompanied with
data and code which is aimed to serve as resources for the community.
Specifically, we created the largest synthetic RNA-seq dataset to date,
with over 300 samples. This data was generated based on real life GTEx
samples, quantifiedbyRSEM, rather thanMAJIQmodeling assumptions.
A related contribution is the evaluationpackagewe created, validations-
tools. This package allows users to not only reproduce our results but
also to easily add other tools or specific datasets of interest and repeat
the analysis.We recommend researchers and cores to take advantageof
this as it is possible that on a dataset with other characteristics the
various algorithms would perform differently. We hope the data and
code provided here will help avoid software misuse and lack of repro-
ducibility that previously affected the assessment of MAJIQ and other
splicing software34. More generally, the reproducibility tools we inclu-
ded here should help future developers to achieve at least the “bronze”
level of reproducibility as was recently proposed35.

Finally, applying our improved pipelines toGTExbrain subregions
allowed us to map the complex alternative splicing patterns observed
across over 2300 heterogeneous humanneuronal tissue samples from
374 donors and 13 tissue groups. Our approach and subsequent ana-
lysis offers several advances compared to previous efforts such as

refs. 5,20 for mapping brain sub-region splicing patterns. First, we offer
improved quantification accuracy and the ability to capture de novo
and complex splicing events as well as retained introns (IR). Further-
more, as we illustrated for cerebellum-specific regulation, the defini-
tion of AS modules and AS event types we introduce here greatly
facilitates downstream analysis. Specifically, we were able to find reg-
ulatory signatures of known neuronal cassette exon splicing programs
(i.e., the RBFOX family, SRRM4with SRSF11, PTBP1, andQKI15,16,25,36) and
to discover additional regulatory complexity between the cassette
exons subsets that contain or lack intron retention events. We antici-
pate the ability introduced here to interrogate AS modules and their
components will facilitate future regulatory discoveries in other
datasets from additional biological contexts.

We note that there are key limitations to the regulatory analysis
we performed for cerebellar-specific splicing, which was based solely
on bulk tissue RNA-seq experiments from GTEx. Previous work lever-
aging single cell data to deconvolute bulk GTEx tissues into their
relative cell type compositions suggests that cerebellar tissues contain
relatively larger proportions of neurons compared to other brain
subregions37. This fact can confound the interpretation of our results
in terms of neurobiology as neurons are known to express certain
splicing factors (e.g., RBFOX3/NeuN, SRRM4), which may explain the
cerebellar splicing pattern we observed here. Thus, future directions
for improvingMAJIQ involve accounting for cell-type heterogeneity as
well as combining long reads for isoformspecificdeconvolution.Other
promising directions for future exploration include analysis of RNA
sequencing for clinical diagnostics and exploiting MAJIQ’s advantages
for improved sQTL analysis.

In summary, we introduced here a significant update to the ori-
ginal MAJIQ package. We hope the analysis we performed, along with
the tool, data, and evaluation package we supply, will inspire many
more researchers to delve into splicing regulatory analysis in their own
data and make exciting discoveries.

Methods
MAJIQ builder
In this subsection, we review how the MAJIQ builder prepares the
structure and observations per experiment that are used for down-
stream splicing quantification as part of a scalable and principled
approach to splicing analysis of large numbers of experiments. We
describe the MAJIQ builder’s new approach for estimating intron read
rates, which allows junction and intron coverage to be calculated once
and reused efficiently for multiple analyses, unlike other methods that
quantify intron retention.We also describe theMAJIQ simplifier, which
reduces the complexity of the structural models of splicing used in
quantification that especially arises from the analysis of large and
heterogeneous datasets.

MAJIQ encodes the set of all possible splicing changes for a gene
in terms of a splicegraph. A splicegraph is a graph-theoretic repre-
sentation of a gene’s splicing decisions fromone exon to another, with
exons as vertices and junctions and retained introns as distinct edges
connecting exons. The exons of each gene are non-overlapping
genomic intervals. Each junction has a source and target exon with a
position within each exon, indicating the positions that are spliced
together when the junction is used. Retained introns are between
adjacent exons and indicate that intron retention between the exons is
possible.

MAJIQ first constructs each gene’s splicegraph by parsing tran-
script annotations from a GFF3 file. Exon boundaries and junctions
from each transcript for a gene are combined in order to produce the
minimal splicegraph that includes each transcript’s annotated exons
and junctions, splitting exons by retained introns to ensure that each
junction starts and ends in different exons. MAJIQ then updates the
splicegraphwith de novo junctions and introns found fromprocessing
input RNA-seq experiments’ junction and intron coverage.
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MAJIQ processes aligned input RNA-seq experiments to per-
position junction and intron coverage in the following way. First,
MAJIQ identifies reads with split alignments. The genomic coordinates
of each split corresponds to a potential junction. Meanwhile, the
coordinate of the split on the aligned read is the junction’s “position”
on the read. MAJIQ counts the number of reads for each junction from
each possible position. Afterwards, MAJIQ identifies reads that con-
tiguously intersect known or potential introns (i.e., reads that intersect
the genomic coordinates between adjacent exonswithout splits within
the intron boundaries). If the intron start is contained in the aligned
read, the intron “position” is defined as for junctions (treating the
exon/intron boundary as a junction with zero length). For aligned
reads intersecting the intron but not the start, additional positions are
defined by the genomic distances of the first positions of the aligned
reads to the intron start. These additional positions per intron increase
the number of ways aligned reads can intersect introns in comparison
to junctions. To adjust for this and model intron read coverage simi-
larly to junction read counts, MAJIQ aggregates together adjacent
intron positions to the equivalent number of possible positions per
junction, taking the mean number of reads per reduced positions.

MAJIQ uses the obtained junction and intron coverage to update
the splicegraph in the following way. Each potential junction is map-
ped to matching genes by prioritizing (1) genes that already contain
the junction (i.e., annotated junctions) over (2) genes where both
junction coordinates are within 400 bp of an exon, which are prior-
itized over (3) genes where the junction is contained within the gene
boundaries. The input experiments are divided into user-defined build
groups. MAJIQ adds a de novo junction to the splicegraph if there is
sufficient evidence for its inclusion in one of the build groups. This
happenswhen the total number of reads and total number of positions
with at least one read exceeds the user-defined minimum number of
reads and positions in at least a minimum number of experiments.
MAJIQ adds new de novo exons or adjusts existing exon boundaries to
accommodate the added de novo junctions as previously described.
Potential introns are added to the splicegraph under similar criteria,
and their boundaries are adjusted or split to accommodate the
adjusted or de novo exon boundaries.

Since processed intron coverage is averaged over the entire ori-
ginal intronic region, we can carry over the same coverage as an esti-
mate for all resulting splicegraph introns, which are contained in the
original intron’s boundaries. In contrast, MAJIQ’s previous approach,
which is also used by most other tools that quantify intron retention,
quantified intron coverage using local counts of unsplit reads sharing
the position of known junctions. These local countsmust be calculated
using information from all processed experiments (for all de novo
junctions), which requires samples to be reprocessed each time an
analysis with different samples are performed. MAJIQ’s new approach
allows intron coverage to be processed once and used for multiple
builds with potentially different intron boundaries. This enables
MAJIQ’s new incremental build feature, which saves intermediate files
with junction and intron coverage that can be calculated once and
reused instead of BAM files for multiple builds. This reduces storage
and time processing experiments that are part of multiple analyses.

While MAJIQ uses raw totals of read rates and number of nonzero
positions for adding junctions and introns to the splicegraph, the
MAJIQbuilder performs additionalmodeling of per-position read rates
for use in quantification. First, we mask positions with zero coverage
and with outlier coverage. Outlier coverage is assessed under the
observation that per-position read rates generally follow a Poisson
distribution. For each junction/position, we use all other positionswith
nonzero coverage for that junction to estimate the Poisson rate para-
meter. Then, MAJIQ calls any position with an extreme right-tailed p
value (default 10−7) under this model an outlier and ignores its con-
tribution to coverage for quantification. Second, we perform boot-
strap sampling of the total read rate over unmasked positions in order

tomodel measurement error of true read rates. Under the assumption
that eachunmaskedposition is identicallydistributed,MAJIQperforms
nonparametric sampling with replacement to draw from a distribution
with identical mean and variance as the observed positions (see Sup-
plementary Note). Since we assume that our read rates are generally
overdispersed relative to the Poisson distribution, MAJIQ replaces
nonparametric sampling with Poisson sampling when the nonpara-
metric estimate of variance is less than themean (i.e., underdispersed).

MAJIQ performs quantification of splicing events modeled as
LSVs, which are defined by a splicegraph. A source (target) LSV is
defined for an exon as a choice over the incoming (outgoing) edges to
(from) that exon from (to) a different exon. In general, only LSVs with
at least two edges are considered. MAJIQ builder prepares output files
with raw and bootstrapped coverage for each junction/intron in each
LSV for quick use by downstream quantifiers.

We observed that builds from many build groups or with high
coverage tend to have increasingly complex splicegraphs and LSVs
withmany junctions.Manyof these junctions are often lowly used in all
the samples but were included in the splicegraph because they had
enough raw reads and positions (noisy de novo) or are part of an
unused annotated transcript. This motivated the MAJIQ simplifier,
which allows junctions and introns to be masked from the final spli-
cegraph used for quantification. After the splicegraph is constructed
using all input build groups, MAJIQ calculates the ratio of the raw read
rate for each junction/intron relative to the other junctions/introns in
each LSV. If a junction has consistently low coverage in each of the
build groups relative to the other choices in the two LSVs it can belong
to, it is “simplified” and removed from the final splicegraph. This
reduces the complexity of the final splicegraph and quantified LSVs,
making output files smaller and downstream quantification more
efficient.

In summary, the MAJIQ builder combines transcript annotations
and input RNA-seq experiments in order to build a splicegraph
encoding all possible splicing events consistent with both annotations
and data and to prepare read coverage for quantification in terms of
LSVs. The MAJIQ builder’s updated approach for estimating intron
read rates allows junction and intron coverage to be calculated once
and reused as part of an incremental build formultiple analyses, unlike
other methods that quantify intron retention. The MAJIQ builder also
introduces an approach for simplifying the complexity that arises in
splicing events when processing large numbers of experiments.
Overall, this allows the MAJIQ builder to produce structural models of
possible splicing events and read coverage for downstream quantifi-
cation that scale to the setting of large numbers of RNA-seq
experiments.

MAJIQ quantifiers
MAJIQ provides three methods for quantifying RNA-seq experiments.
MAJIQ PSI, MAJIQ dPSI, and MAJIQ HET, which we introduce in this
paper. MAJIQ PSI and dPSI, which were previously described in ref. 3,
quantify groups of experiments that are assumed to be replicates with
a shared true value of PSI per group. MAJIQ PSI estimates a posterior
distribution of PSI (Ψ) for a single group, while MAJIQ dPSI compares
these distributions for two groups in order to estimate a posterior
distribution for dPSI (ΔΨ). MAJIQ HET compares two groups of sam-
ples but drops the replicate experiments assumption, enabling analy-
sis of more heterogeneous samples. Instead, experiments are
quantified individually and groups are compared under the assump-
tion that the true values of PSI are identically distributed between the
two groups.

All three pipelines share the same underlying machinery for
inferring posterior distributions forΨ. Formally,Ψ for a junction in an
LSV is defined as the fraction of expressed isoforms using the junction
out of all expressed isoforms containing the LSV. This fraction is not
directly observable. Instead, we observe the number of reads aligned rj
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to each junction j in the LSV. We model each rj as a realization of a
binomial distribution over the isoforms with probability Ψj:

rj ∼Binomial
X

j2LSV
rj,Ψj

 !
: ð1Þ

We take a Bayesian approach to integrate prior knowledge of Ψ,
allowing for improved estimation when there is low read coverage.
This requires a prior distribution on Ψ. We previously observed that
most values ofΨ are nearly zero or one, which can bemodeled using a
generalization of the Jeffrey’s prior for an LSV with J junctions:

Ψj ∼Beta
1
J
, 1� 1

J

� �
: ð2Þ

This prior is conjugate to the binomial likelihood, allowing for
efficient closed-form estimation of the posterior distribution of Ψj

given the observed number of reads:
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Since MAJIQ build obtains bootstrap replicates of observed read
rates, we perform this posterior inference on each set of bootstrap
replicate read rates to obtain an ensemble of posterior distributions.

For MAJIQ PSI, we obtain this ensemble of posteriors for replicate
experiments by adding the observed read rates from the experiments
that pass more stringent reads and position thresholds than the
builder. MAJIQ PSI treats the average of the posterior distributions as a
final distribution overΨ. It reports point estimates ofΨ as themean of
this distribution (E Ψ½ �) and saves a discretized version of the dis-
tribution for visualization in VOILA.

MAJIQ dPSI takes this a step further by using the posterior dis-
tributions onΨ1,Ψ2 for two groups in order to compute ΔΨ=Ψ2 −Ψ1

between the twogroups.We start by computing the distribution ofΔΨ
under the assumption of independence ofΨ1 andΨ2 by marginalizing
the product of their distributions:

Pind ΔΨð Þ=
X

Ψ2�Ψ1 =ΔΨ

P Ψð Þ1P Ψð Þ2: ð4Þ

We know thatΨ1 andΨ2 are not independent, so we integrate our
knowledge that ΔΨ is usually close to zero as a prior on ΔΨ. Following
our previous work, we formulate our prior Pprior ΔΨð Þ as a mixture of
three components: (1) a spike around ΔΨ =0, (2) a broader centered
distribution around ΔΨ =0, and (3) a uniform slab. We determine our
final posterior distribution on ΔΨ by adjusting Pind ΔΨð Þ by the prior
and renormalizing:

P ΔΨð Þ / Pind ΔΨð ÞPprior ΔΨð Þ: ð5Þ

MAJIQ dPSI computes point estimates of ΔΨ using the posterior
mean of the distribution (E ΔΨ½ �) and identifies confidence of mea-
sured changes in inclusion as posterior probabilities P ∣ΔΨ∣>Cð Þ.

MAJIQ HET takes a different approach for comparing inclusion
between twogroups of experiments.MAJIQHETdrops the assumption
of replicate experiments to consider heterogeneity in Ψ between
experiments within a group. Instead, MAJIQ HET assumes that the
values ofΨ per experiment in each of the groups come from the same
distribution. We evaluate this assumption using null hypothesis sig-
nificance testing. Null hypothesis significance testing is performed
using one (or more) of four tests: (1) Welch’s two-sample t test, (2)
Mann–Whitney U-test, (3) Total Number of Mistakes (TNOM) test, and
(4) InfoScore test. Welch’s two-sample t test andMann–WhitneyU-test

are well-documented elsewhere38,39. Our implementation of
Mann–WhitneyU-test computes exact p values when there are atmost
64 experiments and computes asymptotic p values using normal
approximation with tie and continuity correction for larger samples.
Meanwhile, the InfoScore and TNOM tests are adapted from
ScoreGenes40. The TNOM test evaluates howwell a single threshold on
PSI can discriminate between the observed values in the two groups.
The Total Number ofMistakes is theminimumnumber ofmisclassified
observations under the best possible thresholds. The distribution on
TNOM when the distributions are equal are calculated using the
closed-form formula in ref. 41 to obtain p values. Similarly, the Info-
Score test evaluates howwell a single threshold discriminates between
groups, but, instead of measuring misclassifications directly, it iden-
tifies the threshold with the highest mutual information between the
threshold and the true group labels. MAJIQ HET uses the dynamic
programming algorithm in ref. 41 to evaluate the distribution of Info-
Score under the null hypothesis in order to obtain p values. All four
tests require observed values of Ψ per experiment, which is not
directly observed. MAJIQ HET accounts for variable uncertainty per
experiment in our estimations of Ψ by repeated sampling of Ψ from
the posterior distributions of quantified samples. MAJIQ HET com-
putes the p value for each repeated sample of Ψ over quantified
experiments and reports the 95th percentile over the resulting p
values. These p value quantiles are not calibrated, so MAJIQ HET also
computes p values with the posterior means of Ψ. MAJIQ HET also
reports the median of the observed posterior means of Ψ for each
group. These p values and the difference between the median
observed posteriormeans are used together downstream in VOILA for
the identification of high-confidence differentially spliced LSVs.

VOILA
VOILA provides a suite of post-processing and visualization tools
designed to allow researchers to make use of MAJIQ quantifications
directly, or easily format andfilter the output for passing to other post-
processing tools.

The VOILA viewer acts as a complete visualization tool for inter-
active analysis of output fromMAJIQ PSI, dPSI, or HET. It includes search
and filter mode for all discovered LSVs, as well as an in-depth viewer for
the full splicegraph of a gene and all of the LSVs found within it. When
using the VOILA viewer with output from MAJIQ HET, VOILA will also
automatically generate heatmaps for each LSV with the to quickly indi-
cate the discovered ΔΨ and statistical results from each group com-
parison. The viewer front end runs completely within a web browser
interface, so it is able to function with similar results on any modern
operating system without installation of special frameworks or system
libraries. The viewer can also be configured to run as a standalone web
server such that the interactive results can be easily shared with colla-
borators. Tutorials and parameters are made available to integrate
VOILA with a wide range of common web server production software.

VOILA also has a number of modes for filtering and rearranging
data into a number of human andmachine-readable files. Determining
confidently non-changing (background) and confidently changing
events is one of the primary use cases.We define highly-confident non-
changing events fromMAJIQ HET as being (1) above a nominal p value
threshold, (2) within-group variance is sufficiently low as measured by
IQR, and (3) between-group ΔΨ is sufficiently low as measured by
difference in medians. We accept that the between-group ΔΨ thresh-
old may be redundant in combination with the other two thresholds.
We define confident changing events from MAJIQ HET as being (1)
below a p value threshold and (2) between-group ΔΨ is sufficiently
high as measured by difference in medians.

In addition to the basic text output modes, there is a separate
comprehensiveoutputmodededicated tofinding specific event types/
patterns called the VOILA Modulizer. The VOILA Modulizer searches
for a large number of relevant patterns, both common and complex.
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Each set of events is delimited on the basis of AS “modules” found
by MAJIQ in each analyzed gene. Modules refer to areas of the splice-
graph between single entry (one junction path, diverges to two or
more) and single exit (all junction paths converge back to one).

Inside each of the AS “modules” detected by the modulizer,
smaller AS “events” (sub patterns matching specific known organiza-
tions of junctions or introns) are then categorized. Currently, the list of
potential patterns we match to find an event is fixed to a specific set,
which can be found in Supplementary Fig. 8a. All events which do not
match any known splicing pattern are dumped to an “other” category
which may be of possible interest in rare cases.

Modulizer supports any number or combination of MAJIQ
experiments as input, in the form of PSI, dPSI, and/or HET VOILA files.
These are used for narrowing modules to form around junctions/
introns we find relevant, as well as to verify which AS modules and AS
events are changing or non-changing, based on coverage, Ψ, and dif-
ferences in Ψ (ΔΨ). All filters may be disabled or adjusted.

At a high level, Modulizer uses a sequential pipeline for filtering
and assembling output. First, all junctions and introns are read, and
any which do not pass the reads, PSI, and/or dPSI thresholds are
immediately removed from consideration. Then, using the remaining
introns, and junctions, Modulizer identifies ASmodules by looking for
genomic locations with single entry/single exit as previously descri-
bed. Then, Modulizer filters and removes modules which do not pass
criteria such as not being sufficiently changing, lack of LSVs, or being
constitutive. After filtering, Modulizer performs pattern matching for
each AS event type on each AS module to identify all component AS
events. Finally, Modulizer scans the input VOILA files for relevant
quantifications in order to produceoutput TSV files for each individual
AS event type, a high-level summary of all events found in each dis-
covered module, and a summary of quantifications per module sui-
table for generating a heatmap according to the user’s filtering criteria
(e.g., the shortest discovered junction within the AS module to
represent the inclusive AS product, the most changing junction in the
AS module from HET and/or dPSI inputs, etc.).

Sample selection from GTEx
We selected from GTEx in the following way. We required all samples
to have a RIN score of greater than 6. For performance evaluation we
chose to evaluate a comparison between cerebellum and skeletal
muscle. We randomly selected 150 samples from both tissues,
excluding the same donor from being selected in both tissues (Sup-
plementary Data 2). For the brain subregions analysis, we selected all
samples inGTEx v8 associatedwithbrain tissue (not includingpituitary
gland). Samples were downloaded as FASTQ or as BAM and converted
to FASTQ depending on when they were released. Samples that were
part of v7 are available on SRA, so they were downloaded using SRA
Tools (v2.9.6) as FASTQ files. New samples from the v8 release were
only available as BAMs on the cloud, so they were downloaded using
gsutil (v4.46) and converted to FASTQ using samtools (v1.9).

Simulated RNA-seq as ground truth
We used the expression quantification data from the GTEx v8 release
as the basis for our simulations. Briefly, we downloaded publicly
available gene- and transcript-level quantification tables for GTEx v8
from the GTEx portal (https://www.gtexportal.org/home/datasets). To
match how the GTEx consortium performed these analyses, we
downloaded the GRCh38 build of the reference genome sequence and
gene models from v26 of the GENCODE annotation.

We selected 300 samples from GTEx to serve as the basis for
300 simulated samples, each real sample providing the expression
distribution underlying one simulated sample (Supplementary Data 3).
To run BEERS, we first need to prepare four configuration files that are
customized for the desired dataset: geneinfo, geneseq, intronseq, and
feature quants. The geneinfo, geneseq, and intronseq files define the

structure and sequence information for each simulated transcript. As a
result, these three files are determined solely by the choice of refer-
ence genome build and annotation. The feature quant files are specific
to each individual sample and define a distribution of transcript-level
expression. First, we used the genome sequence and gene models to
create the geneinfo, geneseq, and intronseq files. Since the genome is
fixed across all simulated samples. We used the same set of these files
to simulate all GTEx-derived samples. Next, we extracted TPM values
for each sample from theGTEx transcript quantification table andused
these distributions of TPM values to generate separate BEERS feature
quant config files for each simulated sample. Lastly, to determine the
total number of reads to simulate for each sample, we used the gene-
level quantification file to count the total number of gene-mapping
reads in each GTEx sample.

To simulated strand-specific reads with uniform coverage across
no errors, substitutions, or intron retention events, we ran the BEERS
simulator using the following command-line options: -strandspe-
cific -outputfq -error 0 -subfreq 0 -indelfreq 0 -intronfreq
0 -palt 0 -fraglength 100,250,500.

We transformedground-truth transcript abundances into ground-
truth splicing quantifications for each splicing quantification tool,
taking into account the tools’ differing definitions of splicing events.
First, we defined ground-truth abundances for each exon or junction
by adding the abundances of all transcripts including the exon or
junction. Then, for each tool, we adopted their splicing event defini-
tions, mapping the exon/junction abundances to compute their spli-
cing quantifications.

MAJIQ. MAJIQ reports splicing quantifications with respect to LSVs.
Therefore, ground-truth values for PSI were calculated by dividing the
ground-truth abundance of each junction by the sum of the ground-
truth abundances for all junctions in each LSV.

rMATS. rMATS reports a different format file per event type. But since
all of them are classical binary event types, all can be reduced to two
paths events, inclusion and exclusion. Each file contains the exon that
defineseachoftheways,sowecalculatetheΨgtasinclusion/(inclusion+
exclusion) using the exon transcript combination to get the exons
ground-truth abundances for all junctions in each LSV.

LeafCutter. LeafCutter reports splicing quantifications with respect to
intron clusters composed of several junctions. Ground-truth values for
LeafCutter’s splicing ratios were calculated using ground-truth junc-
tion abundances, similar to MAJIQ.

SUPPA2. SUPPA2 reports classical events similarly to rMATS. So the
approachwe use here is similar to that tool. Themain difference is that
SUPPA2 reports the junctions coordinate in each one of the paths, so
we use those junctions ground truth quantification to obtain theΨgt as
inclusion / (inclusion + exclusion).

Whippet. Whippet outputs a psi.gz that contains the psi quantification
of an event. That PSI is their formulation of the quantification from
inclusion and exclusion paths. Unlike SUPPA2 or rMATS, Whippet
combines a set of junctions to define a path, emulating in that way a
transcript (or a portion of it). So, in order to findΨgt of those paths, we
look for those transcripts that include all the junctions (and virtual
junctions). We combine the expression of those transcripts to find the
Ψgt of each path.

RNA-seq sample preprocessing before splicing analysis
We aligned RNA-seq reads from real and simulated GTEx samples to
the human genome for splicing analysis with MAJIQ and other tools
using the following procedure. Simulated GTEx samples were gener-
ated as pairs of FASTQ files. We performed quality and adapter
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trimming on each sample using TrimGalore (v0.4.5). Some tools
require reads aligned to the genome. For these tools, we used STAR
(v2.5.3a) to perform a two-step gapped alignment of the trimmed
reads to theGRCh38primary assemblywith annotations fromEnsembl
release 94. Other tools required transcript quantifications relative to
annotated transcripts. For these tools, we used Salmon (v0.14.0) using
the trimmed samples to estimate transcript abundances.

Performance evaluations
We wrote a package of evaluation scripts, called validations-tools, in
order to compare MAJIQ in terms of speed, memory footprint, accu-
racy, and reproducibility for each one of the following tools: rMATS,
LeafCutter, SUPPA2, and Whippet. This package was written to allow
future users to not only reproduce our results but to easily add future
tools and repeat these kinds of analyses with different datasets.

We adjusted the tools parameters following recommendations by
each tool’s authors. Specific parameters are listed in Supplementary
Data 4. For these comparisons, we evaluated the methods’ computa-
tional efficiency and ability to identify splicing differences.

First, we evaluated computational efficiency of the different
methods. We evaluated computational efficiency in terms of runtime
and peakmemory usage. Not all tools provide an extensive log of their
execution, so, in order to measure wall time and memory usage, we
used the output of /usr/bin/time -v. We ran each method for all
pairs comparisons between 10 groups with increasing sample sizes on
an Ubuntu Linux environment with 32 cores (Intel Xeon 2.7 GHz and
64GB RAM).

Second, we evaluated the different methods’ performance in
quantifying splicing differences on simulated and real datasets. On the
simulated datasets, where we know ground-truth differences in spli-
cing between transcripts, we calculated true and false positive rates for
the identification of splicing differences by eachmethod. However, on
real datasets, where no ground-truth is available, it is not possible to
calculate true or false positive rates. Instead, we evaluated twometrics,
reproducibility ratio (RR) and intra-to-inter ratio (IIR), on real (and
simulated for comparison) data. The first metric, RR, measures the
internal consistency of differential splicing tools. This internal con-
sistency is reflected in the assumption that each tool should identify
roughly the same events when repeating a comparison between two
groups using different samples. We quantify this by performing two
such comparisons and computing the fraction of the top n
differentially-spliced events in the first comparison that are also in the
top n events of the second comparison. This produces a “reproduci-
bility-ratio” curve, RR(n) for themethod as a function of the number of
top events. If thefirst comparison yieldsN “significant” events, RR(N) is
called the reproducibility ratio. For the specific case ofMAJIQ, we note
that in order to comparisons of LSV-type events more comparable to
classic AS events such as used by rMATS, we filtered out overlapping
LSVs (i.e., those that share junctions) in order to avoid double-
counting classic AS events. For example, a classic exon-skipping event
would have matching source and target LSVs that overlap. However,
we note that this filtering only reduces NA but does not affect the
reproducibility curves (apart fromextending to a different value ofNA)
(Supplementary Fig. 7). Although reproducibility of a method on real
data is a scientifically important goal, it is not a sufficient goal because
highly biased methods can be highly reproducible. To address this
limitation, the second metric, IIR, is based on the principle that com-
parisons between (inter-) two groups should have many more sig-
nificant events than comparisons within (intra-) a group. Furthermore,
significant events within the group are likely false positives. This is
quantified by computing the ratio of the number of significant events
from an intra-group comparison to the number of significant events
from an inter-group comparison. We evaluated these metrics for each
tool with varying sample sizes to identify which methods out-
performed each other in different settings.

Event-level evaluations. In theseevaluationswe check reproducibility
and accuracy of reported differentially spliced events by the various
tools shown in Fig. 2. As we describe in themain text, each tool defines
alternative splicing events differently so that direct comparison of the
events or their number between tools is not possible. Thus, when using
real data each method was assessed by its own set of reported events
to compute reproducibility ratios (RR) and intra-to-inter ratio (IIR) as in
Fig. 2d, e.

In contrast, whenusingGTEx based simulateddatawedohave the
“ground truth” (denoted “gt” below) for the abundance of each tran-
script. We thus use these values to summarize Ψ and ΔΨ observed in
each method reported AS events and assess accuracy using the fol-
lowing definitions:

• True Positive: maxΔΨtool ≥ 20% and pvaluetool ≤0.05
and maxΔΨgt ≥ 20%

• True Negative: maxΔΨtool<5% and pvaluetool > 0.05
and maxΔΨgt<5%

• False Positive: maxΔΨtool ≥ 20% and pvaluetool ≤0.05
and maxΔΨgt<5%

• False Negative: maxΔΨtool<5% and pvaluetool > 0.05
and maxΔΨgt ≥ 20%

• Ambiguous: all other cases (when either ΔΨ 2 5%,20%½ Þ or when
ΔΨ and pvalue reported by the tool conflict),
wheremax is taken over all junctions/introns that belong to each
AS event.
The above definitions were used to assess accuracy at the event

level for each method, as shown in Supplementary Fig. 2, and also
served as the base for gene level evaluations described below.

Gene-level evaluations. To facilitate more direct comparison
between the different methods shown in Fig. 2 we aggregated each
tool AS events and their respective annotation as TP, TN, FP, and FN as
given above to assess gene level performance. Naturally, gene level
labels of TP, TN, FP and FN are defined based on the events they
contain. The gene-level labels are easy to define as positive or negative
when all AS events embedded in it are considered positive or negative,
respectively. The problem arises when a gene has some of its events as
false positives and false negatives. In that case, we prioritize the labels
according to the following order: FP, FN, TP, TN. This means for
example that an occurrence of a false positive event in a gene
(according to the method’s specific event definition) would be coun-
ted as a false positive gene even if some other events were correctly
labeled as true negative or even true positives. The rationale for this
prioritization is that (a) positive events are expected to be rare and (b)
we care the most about trying to validate or follow up on wrong hits
(false positives) followed by missing true changes (false negatives).

Testing different running configurations
The extensive evaluations described in this work require running dif-
ferent tools, each with its own settings. This requires addressing key
pain points in the computational and genomics research, regarding
both reproducibility and fair/accurate representation of competing
software (see, for example, ref. 34). With respect to the former, we
produce the validations-tools package, supply all synthetic dataset
used here and processedMAJIQ files (see “Data availability” and “Code
availability” sections) so that our analysis can be both reproduced and
extended to include other tools. With respect to fair comparisons, we
believe that it is unrealistic for authors to try an extensive set of non-
default parameters for all competing programs they are evaluating, yet
it is important tomake a concrete effort tohave eachmethodexecuted
correctly. Specifically, we first strive to use up to date software. Sec-
ond, if we run into specific problems/issues we are unclear about we
contact the authors directly. During our work we ended up contacting
the authors of Whippet, LeafCutter, and SUPPA and updated our
evaluations several times as new versions/bug fixes were released. We
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generally use software according to the authors specifications unless
these specifications seemed problematic for a specific assessment task
such that these would clearly degrade the methods’ performance. In
such situations, we try to assess sensible alternatives and report the
best performance we find. Our efforts with respect to each methods
configuration are reported below.

LeafCutter. For LeafCutter, default parameterwereusedwith standardp
value <0.05. However, LeafCutter’s default execution seems to have
been motivated by sQTL analysis and did not include any explicit
threshold on dPSI, only on the calculated p value. We noticed very high
false positives (reflected through high IIR values) when using this
approach. Furthermore, for tasks where the ground truth is set by
defining a threshold on dPSI it seems inappropriate to use a p value only
threshold by LeafCutter when its output also includes dPSI.We therefore
deviated from the original authors’ execution and report results for
events that pass both p value and the dPSI threshold. When it comes to
ordering events (as required for RR plots) we again found ourselves
without author specified guidelines.We therefore tried both options that
pass both filters: order by dPSI or order by p value (see Supplementary
Fig. 6). We report results for the setting which gave better performance.

rMATS. For rMATS, default parameter were used with standard p value
0.05 and dPSI cut-off as described in relevant sections. For ranking
events in RR plots, we applied both filters (p value and dPSI), tried
rankingby either (see Supplementary Fig. 6), reporting thebetter results.

SUPPA. For SUPPA default parameter were used with standard p value
0.05 and dPSI cut-off as described in relevant sections. For ranking
events, we applied both filters (p value and dPSI) and tried ranking by
either (see Supplementary Fig. 6), reporting the better results.We also
implemented a parallelization script to run the software on 16 threads
(denoted as “SUPPA2(×16)” in Fig. 2a) so that it can compare more
favorably to othermethods that havemulti-threading built-in. Running
time out of the box without the parallelization script is reported
Supplementary Fig. 1.

Whippet. For Whippet, we ended up needing to test several different
configurations. First, after contacting the authors we found that the
evaluations performed in Sterne-Weiler et al. applied the following
filters: First, events were required to have a CI < 0.1 in ALL samples. The
CI (confidence interval), serves as a measure of how sureWhippet is in
the quantification. For small datasets, typically composed of biological
replicates, these thresholds make sense as these should leave users
with a confidently quantified set. However, for large heterogeneous
data as assessed here, we found these thresholds to be overly restric-
tive as many AS events may end up not passing the CI < 0.1 in at least
some of the (many) samples. Left as is, these thresholds result in poor
performance. We therefore left Whippet confidence parameter per
event in a sample as is (CI < 0.1) but required only 50% of the samples
to pass that filter - analogous in spirit to MAJIQ’s default filter of
requiring an event to be quantifiable in at least 50% of the samples in
the group. We also tried an 80% threshold but 50% seemed better.

An issue that came up during the review of the manuscript is how
Whippet’s time and memory performance should be presented com-
pared to othermethods. Here, we preferred to use amulti-coremachine
and report wall-time as we view this is a more realistic representation of
performance than CPU-time. The latter, commonly used for comparing
algorithms efficiency is arguably a more theoretical measure as it does
not capture I/O bottlenecks or improved parallelization implementation
of a specific method. However, since Whippet does not support multi-
core usage out of the box this assessment approachmade it appear slow
even though the algorithm was efficient. To resolve this issue we
implemented a simple script that distributes Whippet jobs across mul-
tiple cores.We tested performance using 4, 8, and 16 cores and found 16

coresperformed slightlybetter than8cores, likelydue to I/Obottleneck.
We reported performance using this script in the Fig. 2a (denoted
“Whippet(x16)”) and running time without the parallelization script in
Supplementary Fig. 1.

Another consideration in Whippet’s testing regards the com-
plexity of the events reported by Whippet. Whippet uses the para-
meter K to denote log2 of the number of possible paths through an AS
event. A classical event (e.g., cassette exon) would have K = 1, while
more complicated events would have K ≥ 2. In Sterne-Weiler et al., the
authors evaluatedWhippet (and all other competingmethods) only on
K < 2 events, i.e., only on simple “binary” events. This decision stem-
med from the desire to create a common base with methods such as
rMATS which only operate over classical (binary) AS events. Here, we
tested Whippet with both complex and binary (i.e., no K < 2 filter) and
reported evaluations do not include the original K < 2 filter. Our
rationale for thiswas thatmanymethods (Whippet, LeafCutter,MAJIQ)
can now handle complex events. Furthermore, it is important to
include those since in many cases the ability to detect and report such
events is part of the highlights/selling points of such methods and
users should be able to assess performance in the context of what the
method actually gives them (i.e., both complex and binary events). As
can be expected, Whippet’s metrics with no filtering of K ≥ 2 improved
significantly in terms of the total number of events reported in Fig. 2b
(see also Supplementary Data 5–8).

Yet another consideration when evaluating methods that detect
very different event types is which types of AS events to include/
exclude. For example, Whippet detects events of type transcriptional
start (TS), transcriptional end (TE), and back-splicing (BS), which other
methods do not. Similarly, MAJIQ is the only method that detects
unannotated intron retention. After contemplating much about how
such differences should be considered we converged to the following
procedure: In tests where we use the methods “native language” of AS
events it reports we kept all event types (but see restriction applied
againstMAJIQ to avoid “double counting” and inflating its stats below).
This applies to RR and IIR where the logic is to assess each method by
its own set of events in terms of what the user will get. However, when
trying to create a more uniform assessment at the gene level rather
than at the event level, as we did using synthetic data, then we exclu-
ded unique event types (i.e., Whippet’s TS/TE/BS and IR). We did not
exclude complex events here as most methods detect those (see
above) and the criteria applied is a change by 10% or 20% based on the
methods own event “language” (binary/complex etc.)

MAJIQ. For MAJIQ, we did not perform any special tweaks/parameter
optimization, running it with default parameters. The only addition is
that we used the flag “show-all” in order to actually get in the output files
all events assessedbyMAJIQ rather thanonly events thatpass thedefault
(conservative) thresholds of dPSI > 20% with a posterior probability >
0.95. Failing to using this flag while trying to assess MAJIQ’s perfor-
mance over all events across different thresholds (e.g., ROC plots) has
previously led to severe misrepresentation of MAJIQ’s performance5,34.

The only tweakwe performed forMAJIQ’s evaluation is to exclude
overlapping LSVs when assessing performance at the event level (i.e.,
for RR and IIR). This is because classical events reported by other
software (e.g., rMATS) can be captured by overlapping LSVs such that
counting/reporting those would inflate MAJIQ’s stats unfairly. For
example, a highly significant change in a cassette exon detected by
rMATS would be captured by two LSVs in MAJIQ: a single source LSV
and a single target LSV.Thus,when reportingRR and IIRwe rank all LSV
as usual but an LSV is disregarded if an overlapping LSV has already
been included in the RR curve. The effect of discarding overlapping
LSVs on MAJIQ’s performance can be seen in Supplementary Fig. 7.

To summarize, we did not try to exhaustively test all parameter
combinations for any specific software (MAJIQ included). When using
default parameters did not make sense or did not match the test’s
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assumptions we tried to give each method a fair representation,
exploring additional parameters/filter settings to the best of our
understanding, and reporting the best results. Finally, we note that all
our testing data, test scripts and parameters are documented and
included as a package for future use.

GTEx brain subregion analysis
MAJIQ HET and VOILAModulizer on GTEx brain subregions. MAJIQ
HET was run on all 78 unique pairwise comparisons of GTEx v8’s 13
brain tissue groups, and the results were visualized with VOILA. Sig-
nificant LSVswere those considered to be those containing at least one
junction or intron with an absolute difference in group median E Ψ½ �
values of 20% or more between the two tissue groups and all four HET
statistics (Mann–Whitney, InfoScore, TNOM, and t test) with p <0.05.

The VOILA Modulizer was run on the resulting outputs with the
following options:–decomplexify-psi-threshold 0.05 to remove
all junctions and introns from the splicegraph that had tissue group
median E(PSI) of less than 5% across samples for every group; –show-
all to include all AS modules and AS events in the output, not just
thosemeeting the changing criteria.Default valueswereused for other
options thatflag changingASmodules andAS events in the output. For
changing: a minimum absolute median difference in PSI between
groups of 20% or more for the primary threshold and a p value of less
than 0.05 across all four MAJIQ HET statistics (Mann–Whitney, Info-
Score, TNOM, and t test). For non-changing: a maximum absolute
median difference in PSI of 5% or less between groups; a maximum
interquartile range in PSI within a group of 10% or less; and a p value of
0.05 or greater across the MAJIQ HET statistics.

PSI-based AS module and AS event counts across the brain.
Counting of AS modules based on the initial PSI simplification across
the 13 brain tissue groups was done by parsing the resultant VOILA
Modulizer summary file. This file is organized by AS module and lists
the number of each of the 14 AS event types, outlined in Supplemen-
tary Fig. 8a, contained in each. ASmoduleswere classified and counted
based on the presence or absence of each of the 14 AS event types.
Certain AS event type definitions overlap. Specifically, every tandem
cassette exon containing AS module will also contain a multi exon
skipping AS event and every putative 5’ or putative 3’ss ASmodule will
also contain an intron retention event. In these cases, the additional,
partially redundant AS event type was added to the AS module clas-
sification if and only if their count within the module was larger than
the count of the AS event they overlap with. For example, for an AS
module to be classified as containing both tandem cassette exon (TCE)
and multi exon skipping events (MES), the number of MES events
within the module must be greater than the number of TCE events.

The pan-GTEx analysis of intron retention, AS modules, and AS
events (Supplementary Fig. 9) was carried out in the sameway, except
using a subset of up to 15 high quality samples to represent each tissue
that we defined previously42, which came from unique donors with
high RNA integrity numbers. TheModulizer was run on either all GTEx
tissues together or a subset of individual tissues, one at a time, to
assess how AS module and AS event definitions differ across different
tissues with varying degrees of IR.

Cerebellar AS module and AS event definitions. Given the large
number of LSV-based splicing differences between the two GTEx cer-
ebellar tissues (cerebellum and cerebellar hemisphere) and the other
brain subregions according to MAJIQ HET comparisons (Supplemen-
tary Fig. 10a), we wished to define ASmodules and AS events based on
these comparisons. These two cerebellar tissues were derived from
sampling in duplicate. Cerebellum (and Cortex) were sampled at the
time of non-brain organ sampling and preserved in PAXgene tissue
fixative solution while Cerebellar Hemisphere (and Frontal Cortex)
were sampled later from the remaining frozen whole brain, along with

other brain subregions, at the brain bank43. Therefore, we focused our
analysis on ASmodules and AS events that displayed changes between
both cerebellar tissues and oneof the other subregions. For example, a
cassette exon AS event would have to be labeled as changing accord-
ing to the VOILA Modulizer filters (minimum absolute median differ-
ence in PSI between groups of 20% or more for the primary threshold
and a p value of <0.05) in both cerebellum versus cortex and cerebellar
hemisphere versus cortex to be counted. We defined all such con-
sistent, changing cerebellar AS events from the 14 AS event files output
by the VOILA Modulizer and used these to count the number of
modules containing each AS event type or combination of types.

Cerebellar cassette exon regulatory analysis. To perform regulatory
analysis around exons with differential cerebellar inclusion patterns
we first defined a high confidence set of cassette exons (CEs) by
applying additional filters to those described above. In addition to the
primary filter of an absolute median difference in PSI of 20% or more
between a cerebellar tissue and another brain subregion for one
junction in the CE event, a secondary threshold of an absolute median
difference in PSI of 10% or more was enforced for all four junction
quantifications of the CE (i.e., the inclusion source LSV junction
quantification, the inclusion target LSV junctionquantification, and the
shared exclusion junction quantified in both the source and target
LSV). Next we enforced that the direction of change between the two
exclusion junction quantifications and the two inclusion junction
quantifications agreed in their direction of change in cerebellar versus
other tissues. If both inclusion junction qualifications increased in
cerebellar tissues and both exclusion junction quantification
decreased, this was considered a cerebellar inclusion CE events. The
opposite directions were considered cerebellar exclusion CE events.
Non-changing CE events were defined as those flagged as non-
changing by the VOILA Modulizer in every comparison of both cere-
bellar tissues versus the other 12 brain tissues. For CE subset analysis,
CE with intron retention (IR) events were those where one or more of
the CE junctions was also involved in a changing IR event in cerebellar
versus other tissues. CE with no IR events were those CE events that
came from modules without any IR events detected.

For sequence analysis we extracted GRCh38 sequences for intro-
nic regions 300 nucleotides (nts) upstream and 300 nts downstream
of every CE in each set. We calculated Z-scores by comparing the
occurrence of each hexamer in the upstream intronic region in each
cerebellar set of regulatedCEs versus the non-changing set of CEs. This
was repeated for the downstream intronic region as well. Z-score
analysis was carried out in the sameway for upstreamanddownstream
distal intronic regions that were >500 nts from the splice sites of both
the alternative exon and the flanking constitutive exons.

Motif maps were generated to visualize position specific enrich-
ment of particular hexamers of interest. Each hexamer, or set of hex-
amers, were searched for over sliding windows of 20 nts in the splice
site proximal regions around the CE (i.e., intronic region 300 nt
upstream of the 3’ss plus 50 nt downstream and 50 nt upstream of the
5’ss plus the intronic region 300 nt downstream). The frequency of
occurrencewas determined in each CE set and plotted using a running
mean of 5 nts for smoothing.

RNAmaps for CLIP based binding of QKI were plotted in a similar
way over the same splice site proximal regions. BED narrowPeaks files
were downloaded for ENCODE eCLIP data44 from encodeportal.org for
QKI in K562 cells (accession ENCSR366YOG) or QKI in HepG2 cells
(accession ENCSR570WLM) and replicate files were concatenated. BED
narrowPeaks for uvCLAP data for QKI-5 in HEK293 cells45 were down-
loaded fromGEO (accessionGSE85155) and lifted over fromGRCh37 to
GRCh38. These peak coordinates were overlapped with CE splice site
proximal regions and the frequency of occurrence was assessed over
the various cerebellar CE event sets at each position proximal to CE
splice sites.
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To examine if cerebellar CE splicing patterns showed evidence of
QKI regulation, we utilized QKI shRNA knockdown RNA-seq data from
HepG2 cells (accession ENCSR330YOU) generated by ENCODE44. We
processed these samples as described previously2. Briefly, batch cor-
rection was performed usingMoccasin and splicing changes upon QKI
knockdown were quantified by comparing knockdown samples to all
HepG2 control samples using MAJIQ HET. Significant changes upon
knockdown were those with an absolute median difference in expec-
ted PSI of ≥20% and a Mann–Whitney two-sided p < 0.05. We inter-
sected QKI regulated splicing changes with cerebellar CEs (defined
above) and calculated the fold enrichment and significance of overlap
of QKI regulated splicing with cerebellar regulated versus non-
regulated CEs using a two-tailed binomial test. We further stratified
these overlaps by the direction of splicing change in the cerebellar
tissues versus QKI knockdown to define overlaps that were consistent
with our model that decreased QKI expression promotes cerebellar
cassette exon patterns. Therefore, overlaps that were consistent with
our model were the cerebellar exclusion CEs with decreased CE
inclusion upon QKI knockdown or cerebellar inclusion CEs with
increased CE inclusion upon QKI knockdown. Those that were incon-
sistentwith ourmodelwere cerebellar exclusionCEswith increasedCE
inclusion upon QKI knockdown or cerebellar inclusion CEs with
decreased CE inclusion upon QKI knockdown.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw simulated RNA-seq data for cerebellum and skeletal muscle
generated in this study have been deposited in the GEO database
under accession code GSE222044 at https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE222044. Raw GTEx data used for the ana-
lyses in this manuscript are available in dbGaP under accession code
phs000424.v8.p2 at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000424.v8.p2. ENCODE raw RNA-seq for
QKI knockdown and eCLIP peaks were downloaded from https://www.
encodeproject.org/ under accession codes ENCSR366YOG,
ENCSR570WLM, and ENCSR330YOU. Processed data and code to
reproduce figures have been deposited in a Zenodo repository avail-
able at https://doi.org/10.5281/zenodo.7508313.

Code availability
The code for MAJIQ and VOILA are available for academic/non-com-
mercial use at majiq.biociphers.org. Licensing information for com-
mercial use can be found at majiq.biociphers.org/commercial.php.
The code for validation tools is available at bitbucket.org/biociphers/
validations_tools.
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