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ResistanceofOmicron subvariantsBA.2.75.2,
BA.4.6, and BQ.1.1 to neutralizing antibodies
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Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 lineages
has led to the emergence of several new subvariants, including BA.2.75.2,
BA.4.6. and BQ.1.1. The subvariant BQ.1.1 became predominant in many
countries in December 2022. The subvariants carry an additional and often
redundant set of mutations in the spike, likely responsible for increased
transmissibility and immune evasion. Here, we established a viral amplification
procedure to easily isolate Omicron strains. We examined their sensitivity to 6
therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer
BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 break-
through infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld
(Cilgavimab and Tixagevimab) lose antiviral efficacy against BA.2.75.2 and
BQ.1.1, whereas Xevudy (Sotrovimab) remaine weakly active. BQ.1.1 is also
resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals
are low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting.
A BA.1/BA.2 breakthrough infection increases these titers, which remains
about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Recipro-
cally, a BA.5 breakthrough infection increases more efficiently neutralization
against BA.5 andBQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of
novel Omicron subvariants facilitates their spread in immunized populations
and raises concerns about the efficacy of most available mAbs.

Successive sub-lineages of Omicron have spread worldwide since
the identification of BA.1 in November 20211,2. More than 80% of the
population were infected by one or another Omicron subvariant in
less than one year3,4, without efficient protection against infection
conferred by vaccination5–7. The incidence of breakthrough infec-
tions in vaccinated individuals has thus increased with Omicron3,8.
All Omicron lineages exhibit considerable immune evasion prop-
erties. BA.1 and BA.2 contained about 32 changes in the spike

protein, promoting immune escape and high transmissibility9–11.
BA.5 was then predominant in many countries by mid-2022 and was
responsible for a novel peak of contaminations2,12. BA.4 and BA.5
bear the same spike, with 4 additional modifications when com-
pared to BA.2. The neutralizing activity of sera from COVID-19
vaccine recipients was further reduced against BA.4/BA.5 by about
3–5 fold compared to BA.1 and BA.212–15. This reduced neutralization
was associated with an abbreviated serum neutralization in triply
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vaccinated individuals. the duration of neutralization was markedly
shortened from 11.5 months with the ancestral D614G strain and
8 months with BA.1 to 5.5 months with BA.515. Novel sub-variants
with enhanced transmissibility rates, derived from either BA.2 or
BA.4/BA.5, rapidly emerged and became prevalent in November-
December 2022. Their geographical distribution is heterogeneous,
but they carry an additional limited set of mutations in the spike.
For instance, BA.2.75.2, derived from BA.2, was first noted in
India and Singapore and comprises R346T, F486S, and D1199N
substitutions16–18. BA.4.6 was detected in various countries, includ-
ing USA and UK, and carries R346T and N658S mutations19,20. As of
December 2022, BQ.1.1 became themain circulating lineage inmany
countries. It also carries the R346T mutation found in BA.2.75.2,
along with K444T and N460K substitutions21. The R346T mutation
has been associated with escape from monoclonal antibodies
(mAbs) and from vaccine-induced antibodies17,18,22. This convergent
evolution of the spike suggests that the different circulating SARS-
CoV-2 sub-lineages faced a similar selective pressure, probably

exerted by preexisting or imprinted immunity22,23. With the large
increase of breakthrough infections observed since Omicron
emerged, “hybrid immunity” is also probably a main selective driver
of SARS-CoV-2 immune evasion24,25. A characterization of these new
viruses is needed to evaluate their potential impact.

A few recent articles and preprints reported an extensive escape
of these Omicron subvariants to neutralization, studying sera from
individuals who received three or four vaccine doses, including a
bivalent booster16,26–29. Most of these studies were performed with
lentiviral or VSV pseudotypes. Recombinant SARS-CoV-2 viruses car-
rying spikes from Omicron sublineages in an ancestral SARS-CoV-2
backbone were also generated16, but they might behave somewhat
differently than authentic isolates.

Here, we identify and use a highly permissive cell line to amplify
BA.2.75.2, BA.4.6. and BQ.1.1 isolates. We analyze the sensitivity of
these strains to approvedmAbs, to sera from Pfizer BNT162b2 vaccine
recipients, and to individuals with BA.1/BA.2 or BA.5 breakthrough
infections.

Fig. 1 | Improved detection of infectious Omicron BA.1 in nasopharyngeal
swabs using IGROV-1 cells. A retrospective series of 135 RT+qPCR+ nasophar-
yngeal swabs from COVID-19 patients, harboring Delta (n = 53) or Omicron BA.1
(n = 82) variants was collected. a Viral RNA loads, measured by RT-qPCR. The
samples were ranked from high to low viral RNA load (low to high Ct). Viral titers
were measured in Vero-TMPRSS2 (b) and IGROV-1 cells (c). Delta and Omicron

BA.1-positive samples are depicted in the left and right panels, respectively.
d Comparison of infectious titers for Delta and BA.1 samples in IGROV-1 cells (left
panel). e Percentage of samples harboring detectable infectious Delta (middle
panel) or BA.1 virus (right panel) using Vero and IGROV-1 cells. A two-sided Chi-
square test was performed ****p <0.0001. Source data are provided as a Source
Data file.
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Results
Rapid isolation of Omicron subvariants with the IGROV-1
cell line
SARS-CoV-2 strains are classically isolated and amplified in Vero E6 or
Vero-TMPRSS2+ cells. Vero cells are african green monkey kidney
epithelial cells that were derived in the 1960s. They are defective in
type-I interferon production and sensitive to many viral species30.
However, upon serial passages in Vero E6 cells, SARS-CoV-2 may
acquire adaptive spike mutations, with modification or deletion of the
furin-like cleavage site, resulting in phenotypic changes in plaque
assays31. Omicron isolates are growing less efficiently in Vero E6 and
Vero-TMPRSS2+ cells than previous SARS-CoV-2 variants, probably
because Omicron relies more on endocytic proteases and less on
TMPRSS2 than other variants32,33. This may explain why infectious viral
loads measured in nasopharyngeal swabs from Omicron-infected
individuals appeared lower than those infected with Delta, despite an
enhanced transmissibility of Omicron34. We thus sought another cell
line thatmay bemore adapted to isolation and replication of Omicron
subvariants than Vero cells. To this aim, we screened a panel of cells
and observed that IGROV-1 cells were highly permissive to Omicron.
IGROV-1 cells originated from an ovarian carcinoma and were estab-
lished in 198535. IGROV-1 cells naturally express low levels of ACE2 and
TMPRSS2, as assessed by flow cytometry (Extended data Fig. 1).

We compared the permissibility of Vero-TMPRSS2+ and IGROV-
1 cells to Omicron and Delta. We titrated infectious viral loads in
nasopharyngeal swabs from 53 Delta and 81 Omicron (BA.1) infected
individuals collected at the Hôpital Européen Georges Pompidou
(HEGP) in Paris. The characteristics of the patients (age, sex, days
post onset of symptoms, vaccination status) appear in Supple-
mentary Table 1. Nasopharyngeal swabs were serially diluted and
incubated with either Vero-TMPRSS2+ or IGROV-1 cells. After 48 h,
cells were stained with an anti-SARS-CoV-2 N monoclonal antibody.

Foci of infected cells were scored with an automated confocal
microscope. A representative experiment with Delta and Omicron
positive samples demonstrated a high sensitivity of IGROV-1 to
Omicron (extended data Fig. 2).

The 134 samples were ranked according to their viral RNA levels
measured by RT-qPCR, from low to high Ct (Fig. 1a). With Delta-
positive samples, therewas nomajor difference in infectious viral titers
calculated with Vero-TMPRSS2+ or IGROV-1 cells which inversely cor-
relatedwithCt (Fig. 1b, c).Wedid not detect infectious virus in samples
with Ct > 27. About 35% of Delta positive samples carried infectious
virus (Fig. 1d, e). The situationwasdifferentwithOmicron BA.1 positive
samples. We did not detect Omicron-infected Vero-TMPRSS2+ cells,
even in samples with low Ct, at this early time-point (48 h). In contrast,
52% of the samples from Omicron-infected individuals were positive
when titrated on IGROV-1 cells (Fig. 1c–e), confirming that these cells
are particularly sensitive to Omicron BA.1.

We next isolated BA.4.6 and BQ.1.1 variants from nasophar-
yngeal swabs collected at HEGP using IGROV-1 cells. As with BA.1,
numerous foci of infected cells were detected at 2 days post-
infection (p.i.) and supernatants were harvested at days 2 or 3 p.i.,
yelding high titers with the S-Fuse reporter cells. S-Fuse cells form
syncytia and become GFP + upon infection, allowing overnight
measurement of viral infectivity and neutralizing antibody
activity36,37. Sequences of the variants after one passage on IGROV-1
cells identified BA.4.6 and BQ.1.1 (Pango lineage B.1.1.529.4.6 and
B.1.1.529.5.3.1.1.1.1.1.1, respectively according to Nextstrain, GISAID
accession ID: BA.4.6: EPI_ISL_15729633 and BQ.1.1: EPI_ISL_15731523),
indicating that no adaptative mutations were generated during this
short culture period. As expected, BA.4.6 included R346T and
N658S mutations19,20 and BQ.1.1 carried R346T, K444T, and N460K
substitutions21. The spike mutations in the main Omicron sub-
variants are depicted Fig. 2.

Fig. 2 | Mutations present in the spike proteins of Omicron subvariants. NTD,
N-terminal domain; RBD, receptor binding domain; RBM, receptor binding motif;
SD1, subdomain 1; SD2, subdomain 2; FP, fusion peptide;HR1, heptad repeat 1; HR2,

heptad repeat 2. The BA.1 and BA.2 mutations are relative to the ancestral Wuhan
sequence, theBA.2.75.2mutations are relative toBA.2, theBA.4.6 andBQ.1.1 relative
to BA.4/BA.5. Data are adapted from21.
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We also isolated a BA.2.75.2 variant from a nasopharyngeal swab
from the National Reference Center of UZ/KU Leuven (Belgium). The
virus was initially amplified by two passages on Vero E6 cells, but
the resulting viral titers were low. We thus performed one supple-
mentary passage on IGROV-1 cells, which significantly increased the
titers to 4 × 105 pfu/ml in 48 h. Sequencing of the virus confirmed the
presence of BA.2.75.2 (Pango lineage B.1.1.529.2.75.2, according to
Nextstrain, GISAID accession ID: E EPI_ISL_15731524). When com-
pared to BA.2.75, the BA.2.75.2 spike protein contained 3 additional
mutations, R346T and F486S in the RBD, and D1199N in the HR2
(Heptad Repeat 2) region, located in the S2 domain and involved in
fusion (Fig. 2).

Syncytia were observed in BA.2.75.2, BA.4.6., and BQ.1.1-infected
S-Fuse cells (Extended Data Fig. 3). The three variants generated syn-
cytia of similar size, that were smaller than those formed by the
ancestral D614G strain (Extended Data Fig. 3). It will be worth further

examining whether other Omicron subvariants may display different
fusogenic potential in different cell types.

Altogether, these results show that IGROV-1 cells are highly
sensitive to Omicron. They allow a rapid titration of infectivity
present in nasopharyngeal swabs from infected individuals, as well
as a one-passage amplification of Omicron subvariants. Future work
will help determining the underlying cellular mechanisms and
whether entry or other steps of the viral cycle are facilitated in
IGROV-1 cells.

Neutralization of BA.2.75.2, BA.4.6. and BQ.1.1 by approved
monoclonal antibodies
Several anti-spike monoclonal antibodies (mAbs) are used as pre-
exposure prophylaxis (PrEP) or post-exposure therapy in individuals at
risk for severe disease38. ThesemAbs belong to the fourmain classes of
anti-RBD antibodies which are defined by their binding site38,39.

Fig. 3 | Neutralization activity of therapeutic monoclonal antibodies against
BQ.1.1, BA.2.75.2, and BA.4.6. a. Neutralization curves of monoclonal antibodies.
Dose–response analysis of the neutralization by the indicated antibodies or their
clinical combinations. Evusheld: Cilgavimab and Tixagevimab. Ronapreve:

Casirivimab and Imdevimab. Data are mean ± s.d. of n = 2 independent experi-
ments. b IC50 values in ng/mL for each antibody against the indicated viral strains.
*ED50 against BA.2 and BA.5 are from49. Source data are provided as a Source
Data file.
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Prophylaxis based on Ronapreve (Imdevimab+Casirivimab) or
Evusheld (Cilgavimab +Tixagevimab) cocktails provided about 80%
protection against symptomatic infection40,41. Post-infection treatment
with Xevudy (Sotrovimab) reached 85% efficacy in preventing COVID-
19-related hospitalization or death38,42. However, Omicron BA.1, BA.2,
and BA.5 escaped neutralization from a large part of these mAbs,
leading to changes in treatment guidelines43,44. As of mid-2022, Rona-
preve and Sotrovimab were no longer approved and a double dose of
Evusheld was recommended. Bebtelovimab is another potent mAb,
similarly effective against ancestral strains and BA.1 and BA.245, cur-
rently only available in United States46.

We thus assessedwith the S-Fuse assay the sensitivity of BA.2.75.2,
BA.4.6. and BQ.1.1 to mAbs that are currently authorized (Cilgavimab,
Tixagevimab and Bebtelovimab) or were withdrew because of Omi-
cron escape (Sotrovimab, Casirivimab, and Imdevimab). As controls,
we included the ancestral D614G strain (Fig. 3a, b). Cilgavimab and
Tixagevimab, alone or in combination, as well as Casirivimab, lost any
neutralization activity against the three Omicron variants. Imdevinab
inhibited BA.4.6 (IC50 493 ng/ml) but was inactive against BA.2.75.2
and BQ.1.1. Bebtelovimab was efficient against BA.4.6 and BA.2.75.2
(IC50 2.7 and 4.3 ng/ml, respectively) but did not neutralize BQ.1.1.
Sotrovimab was the only mAb active, albeit weakly, against BA.2.75.2,
BA.4.6. and BQ.1.1. With Sotrovimab, the IC50s ranged from 2,874 to

19,391 ng/ml, which represents a 45-to-300-fold increase compared
to D641G.

These results demonstrate that the prevalent BA.2.75.2 and
BQ.1.1 strains are resistant or weakly sensitive to currently
approved mAbs.

Cohort design
We collected 72 sera from a cohort of 35 health-care workers, in
Orleans, France.Wepreviously studied the ability of someof these sera
to neutralize Alpha, Beta,Delta,OmicronBA.1 andBA.5 variants11,15. The
characteristics of the participants are indicated in Supplemental
Table 2. The participants, that were not previously infected at the time
of inclusion, received two doses of Pfizer BNT162b2 vaccine within an
intervalof 21–28days and abooster dose 164 to 314days later. 31 out of
35 individuals experienced a pauci-symptomatic breakthrough Omi-
cron infection 60 to 359 days after the third injection. Screening by
PCR or whole viral genome sequencing identified the Omicron sub-
variant responsible for the breakthrough infection. A first group of 16
individualswas infected betweenDecember 2021 andmid-June 2022, a
period when BA.1 and BA.2 were successively dominant in France47. A
second group of 15 individuals was infected between July and October
2022 andwas positive for BA.5.Wedidnot have access to their samples
prior to their BA.5 breakthrough infection. The days of vaccination,

Fig. 4 | Sensitivity of SARS-CoV-2D614G andOmicron subvariants to sera from
vaccinated, or infected-then-vaccinated individuals.Neutralization titers of the
sera against the indicated viral variants are expressed as ED50. a. Neutralizing
activity of sera from individuals vaccinatedwith 3doses of Pfizer vaccine. Serawere
sampled at 1 month (left panel; n = 18) and 4 months (right panel; n = 10) after the
third dose. b Neutralizing activity of sera from Pfizer-vaccinated recipients after
BA.1/BA.2 breakthrough infection. Sera were sampled about 3 months (left panel;
n = 16) and 8 months (right panel; n = 13) after the breakthrough. c Neutralizing
activity of sera fromPfizer-vaccinated recipients after BA.5 breakthrough infection.
Serawere sampled about 2months after the breakthrough (n = 15). The dotted line
indicates the limit of detection (ED50 = 30). Black lines represent the median
values. Two-sided Friedman test with Dunn’s test for multiple comparisons was
performed between each viral strain at the different time points; *p <0.05;
**p <0.001; ***p <0.0001; ****p <0.0001. 1 month post-third dose: D614G versus
BA.2.75.2, P <0.0001; D614G versus BQ.1.1, P <0.0001; D614G versus BA.4.6,

P <0.0001; BA.1 versus BA.2.75.2, P <0.0001; BA.1 versus BQ.1.1, P =0.0005; BA.5
versus BA.2.75.2, P <0.0001; BA.5 versus BQ.1.1, P =0.0033. 4 months post-third
dose: D614G versus BA.5, P =0.0152; D614G versus BA.2.75.2, P <0.0001; D614G
versus BQ.1.1, P =0.0003; D614G versus BA.4.6, P =0.0025; BA.1 versus BA.2.75.2,
P =0.0123. 3 months post-breakthrough BA.1/2: D614G versus BA.5, P =0.0034;
D614G versus BA.2.75.2, P <0.0001; D614G versus BQ.1.1, P <0.0001; D614G versus
BA.4.6, P =0.0071; BA.1 versus BA.2.75.2,P <0.0001; BA.1 versus BQ.1.1, P <0.0001.
8 months post-breakthrough BA.1/2: D614G versus BA.5, P =0.0024; D614G versus
BA.2.75.2, P <0.0001; D614G versus BQ.1.1, P <0.0001; D614G versus BA.4.6,
P =0.0173; BA.1 versus BA.2.75.2, P <0.0001; BA.1 versus BQ.1.1, P <0.0001.
2 months post-breakthrough BA.5: D614G versus BA.1, P =0.0192; D614G versus
BA.2.75.2, P <0.0001; D614G versus BQ.1.1, P =0.0009; BA.5 versus BA.2.75.2,
P <0.0001; BA.2.75.2 versus B.4.6, P =0.0002. Source data are provided as a
Source Data file.
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breakthrough infection and sampling are displayed in Supplemental
Table 2.

Sensitivity of BA.2.75.2, BA.4.6. and BQ.1.1 to sera from
vaccinees
We asked whether vaccine-elicited antibodies neutralized the novel
Omicron subvariants. Eighteen individuals were analyzed early
(1monthpost thirddose) and among them, ten individuals thatdidnot
experience a breakthrough infection were analyzed at a later time-
point (4 months post third dose). We measured the potency of their
sera against BA.2.75.2, BA.4.6., and BQ.1.1. We used as controls the
D614G ancestral strain (belonging to the basal B.1 lineage), as well as
BA.1 andBA.5 (Fig. 4a).We calculated the ED50 (EffectiveDose 50%) for
each combination of serum and virus. One month after the booster
dose, ED50 were high for D614G (ED50 of 5 × 103) and were decreased
by 8- and 15-fold for BA.1 (ED50 of 7 × 102) and BA.5 (ED50 of 3 × 102)
respectively, confirming the antibody escape properties of these pre-
vious sublineages. With BA.4.6. and BQ.1.1, the ED50 were low and
within the range of those observed with the parental BA.5 strain.
BA.2.75.2 neutralization titers were even lower (11-fold lower than
BA.1). A similar trendwas observed at a later time-point. Neutralization
was reduced against all strains, highlighting the declining humoral
response11,15. Theneutralizing activitywaseither undetectableorbarely
detectable against BA.2.75.2, BA.4.6., and BQ.1.1 (Fig. 3a).

Altogether, these results indicate that the prevalent Omicron
subvariants are poorly or not neutralized by vaccinees’ sera sampled
4 months after a third vaccine dose.

Impact of BA.1/BA.2 breakthrough infections on neutralization
of Omicron subvariants
We then examined the impact of BA.1/BA.2 breakthrough infections
on the cross-neutralizing activity of serum antibodies. Eighteen
individuals were analyzed about 3 months post-infection (median
84 days; range 44–109 days). Among them, 13 individuals were
resampled about 8 months (median 234 days; range 142–289 days)
after infection to evaluate the evolution of the humoral response.
After 3 months, a strong augmentation of neutralization against
D614G and BA.1 was observed, with ED50 above 104 (Fig. 4b).
Compared to BA.1, the Nab titers were reduced by about 7-fold
against BA.5 and BA.4.6 (ED50 of 1.5 × 103 and 1.8 × 103, respectively)
and reduced by 18-fold against BA.2.75.2 and BQ.1.1 (ED50 of 6 × 102

and 7 × 102, respectively). Neutralizing titers differently declined
depending on the viral isolate. Eight months after infection, titers
remained high against D614G and BA.1 (ED50 of 8 × 103 and 3 × 103,
respectively). The decline was stronger against BA.5 and BA.4.6
(ED50 of 4 × 102) and evenmoremarked against BA.2.75.2 and BQ.1.1
(ED50 of 2 × 102). Therefore, post-vaccination infection by BA.1/BA.2
led to an increase in Omicron-specific neutralizing antibody titers,
with disparities between variants. The anti-BA.1 responsewas higher
than against BA.5 and BA.4.6, whereas BA.2.75.2 and BQ.1.1 were less
sensitive to neutralization.

Impact of BA.5 breakthrough infections on neutralization of
Omicron subvariants
The distinct neutralization profile of BA.2.75.2, BA.4.6. and BQ.1.1 after
BA.1/BA.2 infection led us to examine the consequences of a BA.5
breakthrough infection on neutralization. We assessed the sera of fif-
teen individuals, about two months after BA.5 infection (median
50 days; range 12–127 days). As for BA.1/BA.2 breakthrough infection,
we observed a strong augmentation of neutralization against D614G,
with ED50 reaching 3 × 104 (Fig. 4c). The neutralization of BA.5 variants
(BA.5 and BQ.1.1) was high (ED50 of 104) and 10-fold lower for the BA.2-
derived BA.2.75.2 strain (ED50 of 1 × 103). The neutralization activity
against BA.1was less potent after a BA.5 infection thanafter a BA.1/BA.2
infection (ED50 of 6 × 103 and 1 × 104, respectively) (Fig. 4b, c).

Altogether, these results indicate that a BA.5 breakthrough
infection triggers a better neutralization of viral isolates of the BA.5
lineage than BA.1/BA.2-derived strains. Conversely, A BA.1/BA.2
breakthrough infection favors neutralization of BA.1 and BA.2 derived
strains, relative to the BA.5 lineage.

Discussion
We report here a simple method to isolate and grow Omicron strains.
We identify IGROV-1 cells as being highly permissive to Omicron,
through reasons that remain to be determined. Omicron is less repli-
cative and fusogenic than Delta in various human cell lines including
Vero, Calu-3, A549-ACE2, HeLa-ACE2/TMPRSS2 and U2OS-derived S-
Fuse cells11,15,48,49. Omicron strains inefficiently use TMPRSS2, which
promotes viral entry through plasma membrane fusion, with greater
dependency on endocytic entry32,33. Several lines of evidence indicate
that the evolution of Omicron sublineages towards increased trans-
missibility is associated with greater fitness in human primary cells.
BA.1 potently replicates in nasal epithelial cultures32. BA.4 and BA.5
replicate more efficiently than BA.2 in alveolar epithelial cells and are
more fusogenic50. BA.2.75.2 growth efficiency in alveolar epithelial cells
and spike-mediated fusion in Calu-3 cells are also higher than those of
BA.251,52. We did not observe an enhanced cell-cell fusogenicity of
BA.2.75.2, BA.4.6. and BQ.1.1 compared to BA.5, at least in S-Fuse cells,
but it will be worth further examining viral fitness and fusion of these
strains in IGROV-1 or primary cells.

Our results show that IGROV-1 cells recapitulate the permissibility
of primary human nasal or alveolar cells to Omicron strains. Future
work will help understanding viral entry pathways and replication in
IGROV-1 cells. Whatever the underlying mechanisms, these cells
proved useful to amplify BA.2.75.2, BA.4.6., and BQ.1.1 in a single pas-
sage, avoiding orminimizing the risk of selection of culture adaptative
mutations31. IGROV-1 cells are also sensitive to previous SARS-CoV-2
variants. Combining viral isolation in IGROV-1 cells with the S-Fuse
neutralization assay provides a rapid procedure to evaluate the prop-
erties of novel and forthcoming SARS-CoV-2 variants of concern.

We demonstrate that the currently approved or recently with-
drawn therapeutic mAbs lost most of their neutralization potential
against these Omicron subvariants. Evusheld no longer neutralized
BA.2.75.2, BA.4.6. and BQ.1.1. Bebtelovimab was active against
BA.2.75.2 and BA.4.6. but not against BQ.1.1. This fits with the
observation that the K444 residue, mutated in BQ.1.1 (K444T) but not
in BA.2.75.2 and BA.4.6, is important for Bebtelovimab activity45.
Ronapreve was active against BA.4.6 but not against the prevalent
BA.2.75.2 and BQ.1.1 isolates. Sotrovimab retained a relatively low
neutralization activity against all strains, with IC50 ranging from 3 to
more than 9 µg/ml. Sotrovimab also displays non-neutralizing anti-
viral activities, including ADCC53,54. Sotrovimab remains clinically
active against BA.255. It will be of interest determining whether
Sotrovimab could maintain some activity in vivo against these novel
Omicron subvariants, despite reduced neutralization. This will help
addressing the debate on the need to reassess WHO’s therapeutics
and COVID-19 living guideline on mAbs56. Overall, our results are in
line with a recent preprint using lentiviral pseudotypes22 and raise
important concerns regarding the prophylactic and therapeutic
administration of currently approved mAbs. Novel mAbs, with broad
cross-neutralizing activities and inhibiting most of Omicron sub-
lineages have been identified22,57 and are warranted to extend the
arsenal of mAb-based treatments.

We report that sera from individuals who had received three
doses of COVID-19 Pfizer BNT162b2 vaccine displayed reduced
neutralization activity against the Omicron subvariants. One
month after a first booster, ED50 displayed a 10- to 80-fold
decrease compared to the ancestral D614G strain. At 4 months
post vaccination, neutralization was undetectable for BA.2.75.2
and slightly above background for BA.4.6. and BQ.1.1. These
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results suggest an abbreviated efficacy of Pfizer BNT162b2 vac-
cine against the three variants, extending our previous results
with BA.1 and BA.515. The advantage of administrating monovalent
or bivalent boosters is under scrutiny26,28,58,59. Preliminary pre-
prints using lentiviral pseudotypes indicated that BA.5, BA.4.6, or
BA.2.75 titers were comparable after monovalent or BA.5 bivalent
boosters26,28. In contrast, when using tests based on recombinant
SARS-CoV-2 infectious virus carrying spikes from different Omi-
cron sublineages, it was observed that bivalent mRNA booster
may broaden humoral immunity27. These discrepancies may be
due to differences in experimental systems, the delay between
booster administration and blood sampling, and/or variation in
immune imprinting across cohorts. Future work with authentic
field isolates and well-characterized sera, combined with real-
world vaccine efficacy data60, will help characterizing the interest
of bivalent vaccines against Omicron subvariants.

We observed a dichotomy of the neutralizing response after BA.1/
BA.2 or BA.5 breakthrough infection in vaccinated individuals. In both
cases, the Nabs were particularly high against D614G, highlighting the
role of immune imprinting in anamnestic responses57,61. Although
increased neutralization occurs against the breakthrough strain, the
vast bulk of the response likely corresponds to boosting of rarer cross-
reactive antibodies related to imprinting with ancestral strain vaccines
or infections61. However, after BA.1/BA.2 infection, sera also potently
neutralized BA.1 but there was a 6 to 18-fold reduction in efficacy
against BA.2.75.2, BA.4.6. and BQ.1.1. Conversely, after BA.5 break-
through infection, titerswerehigher againstBA.5-derived variants than
against BA.1 or BA.2.75.2. It has been reported that vaccinated indivi-
duals infected during the first Omicron wave showed enhanced
immunity against earlier variants but reduced nAb potency and T cell
responses against Omicron62. This was not exactly the case in our
study, suggesting that in addition to imprinted memory, other
mechanisms such as the generation of responses targeting novel
antigens could be operative. Here, we confirm that hybrid immunity,
generated in vaccinated individuals after a breakthrough infection,
leads to higher antibody titers regardless of the viral variants. Future
investigation of the B cell repertoire in individuals with and without
breakthrough infections will help deciphering the drivers of immune
evasion in current or future variants.

Besides the RBD, antibodies targeting other regions of the spike,
such as the NTD or S2 region may also broaden the humoral
response63,64. The interval between prior SARS-CoV-2 infection and
booster vaccination impacts magnitude and quality of antibody and B
cell responses65. This raises important questions regarding the fre-
quency of booster doses, particularly in the presence of Omicron
variants with greater immune evasion properties.

There are several limitations to our study, notably the limited
number of individuals analyzed. However, the differences between
strains and categories of individuals were sufficiently marked to reach
statistical significance. We did not consider the effect of innate and
cellular immunity on BA.2.75.2, BA.4.6., and BQ.1.1 strains. We focused
our work on Pfizer vaccine recipients and did not assess the neu-
tralization conferred by a fourth dose. We did not characterize other
Omicron subvariants, such as XBB, a recombinant virus between two
Omicron strains (BJ.1 and BM.1.1). We analyzed the impact of break-
through infections up to 8 months after BA.1/BA.2 infection and only
2 months after BA.5 infection. Future studies will help evaluating long-
term immune responses toOmicron subvariants after infection and/or
vaccination.

In summary, we show here that the few convergent mutations
present in the spike of BA.2 or BA.5 subvariants led to resistance to
most of available therapeutic mAbs and strongly impaired the effi-
cacy of vaccine-elicited antibodies. Breakthrough infections in tri-
ply vaccinated individuals stimulate cross-neutralizing responses
with distinct efficacy depending on the variant responsible for the

infection. The evolution trajectory of the novel Omicron sub-
variants likely reflects their continuous circulation in immunized
populations.

Methods
Our research fulfills all relevant ethical requirements. The ABCOVID
study was approved by the Ile-de-France IV ethical committee. The
study with nasopharyngeal swabs from infected individuals was car-
ried out in accordance with the Declaration of Helsinki and was eval-
uated by the ethics committee “Comité d'éthique de la recherche AP-
HP Center” affiliated to the AP-HP. An informed consent was obtained
from all participants

No statisticalmethodswereused topredetermine sample size and
the experiments were not randomized. The investigators were not
blinded. Sex or gender analysis was not performed due to the limited
number of participants.

Cohorts
Serum fromvaccinated andBA.1/2 andBA.5 breakthrough infected
individuals (Orléans cohort). A prospective, monocentric, long-
itudinal, interventional cohort clinical study (ABCOVID) is conducted
since 27August 2020with the objective to study the kinetics of COVID-
19 antibodies in patients with confirmed SARS-CoV-2 infection
(NCT04750720). A sub-study aimed to describe the kinetic of neu-
tralizing antibodies after vaccination. The cohort was previously
described11,15. These publications11,15 and the present results are the
primary outcomes of this clinical study. Anti-N antibodies were mea-
sured at the time of enrollment to exclude individuals infected before
vaccination. Fifteen individuals were enrolled in November 2022 after
BA.5 breakthrough infection, without known history of previous
infection. This study was approved by the Ile-de-France IV ethical
committee. At enrollment,written informedconsentwascollected and
participants completed a questionnaire covering sociodemographic
characteristics. Virological findings (SARS-CoV-2 RT–qPCR results,
date of positive test, screening, or sequences results) and data related
to SARS-CoV-2 vaccination (brand product, date of first, second, third,
and fourth vaccination) were also collected.

Nasopharyngeal swabs from infected individuals (Hôpital Eur-
opéenGeorges Pompidou). 134 nasopharyngeal swabs collected for
standard care between December 2, 2021 and January 5, 2022 were
retrospectively analyzed to investigate Delta and Omicron BA.1
replication. This study was carried out in accordance with the
Declaration of Helsinki with no sampling addition to usual proce-
dures and was evaluated by the ethics committee “Comité d'éthique
de la recherche AP-HP Center” affiliated to the AP-HP (Assistance
publique des Hopitaux de Paris; IRB registration # 00011928). An
informed consent was obtained from all participants. Swab speci-
mens were collected for standard diagnostic following medical
prescriptions in HEGP and stored at −80 °C prior to infectivity
measurements and viral isolations.

Virus strains
The reference D614G strain (hCoV-19/France/GE1973/2020) was
supplied by the National Reference Center for Respiratory Viruses
hosted by Institut Pasteur and headed by S. van derWerf. This strain
was obtained through the European Virus Archive goes Global
(Evag) platform, a project that has received funding from the Eur-
opean Union’s Horizon 2020 research and innovation program
under grant agreement no 653316. The BA.2.75.2 strain was isolated
and sequenced by the NRC UZ/KU Leuven (Leuven, Belgium). BQ.1.1
and BA.4.6 were isolated from a nasopharyngeal swab of individuals
attending the emergency room of Hôpital Européen Georges Pom-
pidou (HEGP; Assistance Publique, Hôpitaux de Paris). The swabs
were sequenced by the laboratory of Virology of HEGP. All patients
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provided informed consent for the use of the biological materials.
The variant strains were isolated from nasopharyngeal swabs using
Vero E6 or IGROV-1 cells. Viral strains were amplified by one or two
passages on Vero cells. Only one passage was necessary for the
amplification on IGROV-1 cells. Supernatants were harvested 2 or
3 days after viral exposure. Titration of viral stocks was performed
on Vero E6 cells, with a limiting dilution technique enabling the
calculation of themedian tissue culture infectious dose or on S-Fuse
cells. Viral supernatants were sequenced directly from the naso-
pharyngeal swabs, and after their isolation and amplification on
Vero or IGROV-1 cells. For sequencing, we used an untargeted
metagenomic sequencing approach with ribosomal RNA (rRNA)
depletion. Briefly, RNA was extracted with the QIAamp Viral RNA
extraction kit (Qiagen), with the poly-A RNA carrier provided. Prior
to library construction, carrier RNA and host rRNA were depleted
using oligo (dT) and custom probes respectively. The RNA resulting
from selective depletion was used for random-primed cDNA
synthesis using the SuperScript IV RT (Invitrogen). Second-strand
cDNAwas generated using Escherichia coli DNA ligase, RNAse H and
DNA polymerase (New England Biolabs) and purified using Agen-
court AMPure XP beads (Beckman Coulter). Libraries were then
prepared using the Nextera XT kit and sequenced on an Illumina
NextSeq500 platform (2 × 75 cycles). Reads were assembled using
megahit v1.2.9. The sequences were deposited on GISAID (D614G:
EPI_ISL_414631; BA.1 ID: EPI_ISL_6794907; BA.5 ID:
EPI_ISL_13660702; BA.2.75.2 ID: EPI_ISL_15731524; BQ.1.1 ID:
EPI_ISL_15731523; BA.4.6 ID: EPI_ISL_15729633)36,66.

Cell lines
IGROV-1 cells were from the NCI-60 cell line panel and have been
authenticated67. Vero E6 and Vero-TMPRSS2 were described
previously36,66. 293T (CRL-3216) and U2OS (Cat# HTB-96) cells were
obtained from ATCC. S-Fuse cells have been described previously36,37.

S-Fuse neutralization assay
U2OS-ACE2 GFP1–10 or GFP 11 cells, also termed S-Fuse cells, become
GFP+ when they are productively infected by SARS-CoV-236,37. Cells
tested negative formycoplasma.Cells weremixed (ratio 1:1) andplated
at 8 × 103 per well in a μClear 96-well plate (Greiner Bio-One). The
indicated SARS-CoV-2 strains were incubated with serially diluted
monoclonal antibodies or sera for 15min at room temperature and
added to S-Fuse cells. Sera were heat-inactivated for 30min at 56 °C
before use. 18 h later, cells were fixed with 2% PFA (Electron micro-
scopy cat# 15714-S), washed and stained with Hoechst (dilution of
1:1000, Invitrogen, Invitrogen cat# H3570). Images were acquired
using an Opera Phenix high-content confocal microscope (Perki-
nElmer). The GFP area and the number of nuclei were quantified using
theHarmony software (PerkinElmer). The percentage of neutralization
was calculated using the number of syncytia as valuewith the following
formula: 100 × (1 − (valuewith serum − value in ‘non-infected’)/(value
in ‘no serum’ − value in ‘non-infected’)). Neutralizing activity of each
serum was expressed as the half maximal effective dilution (ED50).
ED50 values (in ng/ml formonoclonal antibodies and indilution values
—i.e titers—for sera) were calculated with a reconstructed curve using
the percentage of neutralization at each concentration. Of note, we
previously reported a correlation between neutralization titers
obtained with the S-Fuse reporter assay and a pseudovirus neu-
tralization assay68.

Nasopharyngeal swabs infectivity
Vero and IGROV-1 cells were plated at 30,000 cells per well in a
mClear 96-well plate (Greiner Bio-One). The nasopharyngeal swabs
were added to the Vero or IGROV-1 cells at serial dilutions from 1:10
to 1:31 250 as described previously66. 48 h later, cells were fixed with
2% PFA (Electron microscopy cat# 15714-S). Cells were washed and

stained intracellularly in 0.05% saponin with the anti-SARS-CoV-2
nucleoprotein (N) antibody NCP-1 for 2 h. Cells were washed and
intracellularly stained with an anti-IgG Alexa Fluor 488 (dilution
1:500, Invitrogen; Cat# A11029) antibody for 30min. Cells were
washed and stained with Hoechst (dilution 1:1000, Invitrogen cat#
H3570). Images were acquired with an Opera Phenix high content
confocal microscope (PerkinElmer). The number of N- positive
objects and nuclei were quantified using the Harmony Software v4.9
(PerkinElmer). The viral titer (Infectious units /mL) was calculated
from the last positive dilution with 1 infectious unit (IU) being 3
times the background.

Antibodies
Bamlanivimab, Casirivimab, Etesevimab, Imdevimab, Cilgavimab, Tix-
agevimab and Sotrovimab were provided by CHR Orleans. Bebt-
elovimab was produced as previously described49. NCP-1 antibody was
selected from a series of mouse monoclonal antibodies (mAbs)
directed against recombinant SARS-CoV-2 nucleoprotein. Four BALB/c
mice were immunized by intraperitoneal injections at 3-week intervals
of 50 µg of recombinant SARS-CoV-2 nucleoprotein mixed with alum
adjuvant. The two mice presenting the best immune response were
selected and were given a daily intravenous booster injection of SARS-
CoV-2 nucleoprotein for three days. Two days after the last boost,
hybridomas were produced by fusing spleen cells with NS1 myeloma
cells. The Hybridoma culture supernatants were screened for the
presence of anti-SARS-CoV-2 nucleoprotein antibodies with an ELISA
checking their capacity to bind nucleoprotein biotin conjugate.
Selected hybridomas were subsequently cloned and antibodies were
produced from culture supernatants and purified by protein A affinity
chromatography. All animal experiments were performed in accor-
dance with the European Directive 210/63/ECC on the protection of
animals used for scientific purposes and were approved by the Ethics
Committee of the Commissariat à l’Energie Atomique (CEtEA “Comité
d’Ethique en Expérimentation Animale” N°44) and by the French
Ministry of Higher Education and Research under registration number
APAFIS#3085-2015120909154560.

IGROV-1 cells were stained with goat anti-ACE2 polyclonal anti-
bodies (AF933—R&D) 1:500 and mouse anti-TMPRSS2 antibodies
(#HPA035787—Atlasantibodies) 1:500. Secondary antibodies coupled
with Alexa Fluor 488 or 647 (Invitrogen) were used at 1:500. Staining
was analyzed by flow cytometry on Attune Nxt Software v3.2.1.

Statistical analysis
Flow cytometry data were analyzed using FlowJo v.10 (TriStar). Cal-
culations were performed using Excel v16.46 365 (Microsoft). Figures
were generated using Prism 9 (GraphPad Software). Statistical analysis
was conducted using GraphPad Prism 9. Statistical significance
between different groups was calculated using the tests indicated in
each figure legend.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the
article or from the corresponding authors upon reasonable request
without any restrictions.

The raw data generated in this study are provided in the Source
Data file.

The sequencing data generated in this study have been deposited
in the GISAID database under accession code: D614G: EPI_ISL_414631;
BA.1 ID: EPI_ISL_6794907; BA.5 ID: EPI_ISL_13660702; BA.2.75.2 ID:
EPI_ISL_15731524; BQ.1.1 ID: EPI_ISL_15731523; BA.4.6 ID:
EPI_ISL_15729633 Source data are provided with this paper.
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